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Hyperspectral imaging, celebrated for its detailed spectral information, finds broad application in various 

fields. However, the limitations inherent to optical systems often impede the direct acquisition of high-

resolution hyperspectral images. Hence, achieving these images has become a key focus in the research 

community. The process of single hyperspectral image super-resolution (HSI-SR) aims to upscale low-

resolution images to a higher resolution. With the evolution of deep learning, the incorporation of 

Convolutional Neural Networks (CNNs) into super-resolution methods has shown considerable promise. 

Yet, the challenge lies in the thorough extraction of both spatial and spectral data, especially in the context 

of remote sensing, which can limit the model's ability to learn effectively. Additionally, Transformer-based 

techniques often struggle to capture the intricate relationships between spatial and spectral features, 

which can hinder the effectiveness of image reconstruction. To overcome these challenges, this paper 

presents a novel HSI-SR approach: Spatial–Spectral Cross Fusion Attention based Hyperspectral Image 

Super-Resolution for Land Resource Auditing, which synergizes the strengths of CNNs and the 

Transformer architecture. During the learning of spatial features, the method alternates between window 

self-attention and zero-padding window self-attention, allowing for a more comprehensive focus on 

feature information and the integration of different windows to achieve long-range insights. Furthermore, 

the cross-attention feature fusion module designed for this approach is adept at merging spatial and 

spectral features, thus enhancing the model's ability to learn from both types of information. The approach 

effectively enhances spatial-spectral integration, improving reconstruction quality. Extensive 

experimental assessments have demonstrated the proposed method's superiority over current industry 

benchmarks. PSNR improvements 0.08 over baseline in Cave. 

Povzetek: Predstavljen je nov pristop za izboljšanje prostorsko-spektralne ločljivosti hiperspektralnih slik 

z uporabo križno-pozornostnega združevanja, kar izboljša kakovost rekonstruiranih slik za revizijo 

zemljiških virov. 

 

1 Introduction 
Hyperspectral imaging, characterized by its continuous 

narrow-band data and high spectral resolution, offers an 

abundance of spectral information that can discern the 

subtlest of spectral features. These capabilities have been 

widely utilized across various domains, including 

construction audits [1], Hyperspectral imaging 

technology, with its continuous narrowband spectral data 

and high spectral resolution, reveals unprecedented 

spectral information details and can accurately capture the 

slightest spectral differences [2], [3], [4]. The unique 

advantages of this technology have been widely 

recognized and applied in multiple fields, especially in the 

field of "land resource auditing" [5], [6], [7], where it 

plays an irreplaceable role [8], [9]. On the other hand, 

imaging systems designed specifically for high spatial 

resolution often have smaller IFOVs, which in turn require 

wider spectral channels to collect sufficient light 

energy[10], [11], [12]. However, in the realm of remote 

sensing imaging systems, there is  

 

often a necessary compromise to be struck between 

achieving high spatial resolution and capturing detailed 

spectral information. The narrow spectral bandwidth 

inherent to hyperspectral imaging systems necessitates a 

large instantaneous field of view (IFOV) to gather 

sufficient light quanta, thereby ensuring a satisfactory 

signal-to-noise ratio. Conversely, systems designed for 

high spatial resolution feature a smaller IFOV, which in 

turn demands a broader spectral channel. Consequently, 

current remote sensing imaging systems frequently fall 

short of delivering both high spatial and spectral 

resolutions simultaneously. This limitation restricts the 

broader application of hyperspectral images across 

various domains. For example, low-resolution images can 

impact the audit process in land resource audits. 

Consequently, the development of methods to obtain 

hyperspectral images with enhanced spatial resolution has 

emerged as a pivotal research direction. 

Image Super-Resolution, a crucial technique in image 

enhancement [13], [14], [15], [16], enables the 

reconstruction of high-resolution images. Classified by the 
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quantity of input images, this technique bifurcates into 

fusion-based [17], [18], [19] and single hyperspectral 

image super-resolution approaches. The model 

optimization method describes the relationship between 

high-resolution multispectral images (HR MSI) and low-

resolution hyperspectral images by constructing a 

degradation model, in order to more accurately reflect the 

complex degradation process in the real world. This 

method often requires a combination of appropriate prior 

information and constraints to derive the target image 

through optimization algorithms [23]. The fusion method 

based on deep learning fully utilizes the spatial and 

spectral correlations between LR HSI and HR MSI to 

further improve the accuracy of super-resolution 

reconstruction. Improving the resolution of HSI is of 

crucial importance in the field of land resource auditing. 

Land resource auditing requires precise assessment of 

surface cover, land use status, and soil characteristics, 

while hyperspectral images can provide rich spectral 

information that helps identify different types of 

vegetation, soil, and man-made objects [24]. However, 

due to the limitations of remote sensing imaging systems, 

the obtained hyperspectral images often have low 

resolution, making it difficult to meet the detailed 

information requirements of land resource audits. 

Therefore, improving the resolution of images through the 

HSI-SR method can significantly enhance the accuracy 

and efficiency of land resource auditing. However, these 

fusion-based techniques necessitate auxiliary high-

resolution multispectral images, imposing certain 

prerequisites on the quality of the supplementary data. The 

assumption of a strong correlation between input images, 

which is often a prerequisite for most fusion methods, 

poses a practical challenge due to the difficulty of 

acquiring well-matched images, thereby constraining their 

real-world applicability. 

In stark contrast to fusion methods, single-frame 

hyperspectral image super-resolution eschews the need for 

auxiliary information, opting to directly upscale a LR HSI 

to a HR HSI, thereby enhancing its practical viability in 

real-world scenarios. Principal techniques within this 

domain encompass interpolation, low-rank tensor 

approximation [25], sparse representation [26], and deep 

learning [27]. Interpolation techniques, which estimate 

unknown pixel values based on their neighbors, often fall 

short in capturing high-frequency details, leading to edge 

blurring. To delve deeper into the intrinsic characteristics 

of hyperspectral images, tensor completion-based 

methods have been proposed for spatial super-resolution, 

albeit at the cost of computational efficiency due to their 

formulation as complex iterative optimization problems. 

Deep learning-based SR methods have demonstrated 

remarkable efficacy, attracting substantial research 

interest. The objective of these techniques is to identify the 

complex relationships between images of low and high 

spatial resolution for the purpose of hyperspectral image 

reconstruction, with Convolutional Neural Networks and 

Transformer models becoming prominent approaches in 

this field. 

The rapid evolution of deep learning has endowed 

CNNs with the ability to extract and learn profound image 

features through convolutional, pooling, and fully 

connected layers, thereby achieving remarkable success in 

image classification [28], [29], [30], object detection [31], 

[32], [33], and beyond. SRCNN [34] marked a seminal 

application of CNNs in image super-resolution, 

significantly improving the reconstruction of natural 

images over conventional techniques. Building upon this, 

advanced methods integrating residual learning [35] and 

multi-scale processing have surfaced, enhancing the 

capacity of the model to learn complex features. 

As deep learning technology progresses, the 

Transformer architecture, has made significant inroads 

into the realm of CV. Its self-attention mechanism, pivotal 

for learning key features and capturing long-range 

dependencies, has notably improved the reconstruction 

quality of high-resolution hyperspectral images (HR-

HSIs). However, the single-image super-resolution 

process often suffers from a lack of interaction between 

spectral and spatial information, degrading reconstruction 

quality.  

To counter these challenges, particularly the CNN's 

limitation in capturing long-range dependencies and the 

Transformer's struggle to integrate spatial and spectral 

information seamlessly, this paper introduces a Spatial–

Spectral Cross Fusion Transformer which fortifies 

reconstruction by integrating spatial and spectral features 

more cohesively. The objective is to enhance spatial 

resolution while preserving spectral fidelity. It employs a 

window attention mechanism with zero-padding for 

spatial information to foster inter-window information 

exchange and enhance spatial feature capture. In the 

spectral realm, features are extracted through 

convolutional operations and a dedicated spectral 

attention module. Additionally, the approach enhances 

detail by fusing intermediate outputs from both the spatial 

and spectral feature extraction branches, reintegrating 

these refined features into subsequent modules. This 

promotes a robust interaction between spatial and spectral 

domains, achieving a more effective dimensional fusion. 

The culmination of this process is the amalgamation of 

outputs from both branches, adeptly restoring the spatial 

and spectral resolutions of the hyperspectral image. This 

not only preserves the image's full spectral and spatial 

integrity but also significantly bolsters the performance of 

hyperspectral image super-resolution. 

To summarize, the key contributions of this research 

paper are outlined below: 

• We propose a novel Spatial-Spectral Cross-

Fusion Attention-Based Hyperspectral Image 

Super-Resolution for Land Resource Auditing. 

This method integrates spatial and spectral 

information to improve image reconstruction and 

enhance the accuracy of land resource auditing. 

The proposed framework incorporates a cross-

attention fusion module that promotes effective 

feature interaction between spatial and spectral 

branches, thereby enhancing the quality of super-

resolution. This method addresses the critical 

challenge of utilizing low-resolution 

hyperspectral images in land resource auditing 

applications. 
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• To better capture spatial and spectral features, we 

design a cross-attention feature fusion module. 

This module fuses the outputs of the spatial and 

spectral feature extraction branches, enhancing 

feature learning and improving the final image 

reconstruction effect. 

2 Related work 
This section offers an extensive examination of the key 

technological milestones within the realm of HSI-SR, 

encompassing the trajectory of advancements in this field. 

Initially, we delineate the two predominant strategies: 

image fusion techniques and single image SR 

methodologies. Following that, we provide a 

comprehensive review of diverse deep learning-driven 

methods for HSI-SR. 

2.1 The methods of image super-resolution 

The approaches to achieving HSI SR are predominantly 

classified into two main categories: those that rely on the 

fusion of multiple images, known as fusion-based 

methods, and those that enhance the resolution of a single 

image, referred to as single-image HSI-SR methods. The 

former methods necessitate supplementary information to 

facilitate the reconstruction process. This auxiliary 

information is predominantly in the form of high-

resolution multispectral imagery. Such methods 

encompass techniques grounded in matrix decomposition, 

Bayesian inference, tensor factorization, and deep learning 

algorithms. Conversely, single-image hyperspectral SR 

directly upscales a LR-HSI to a high-resolution 

counterpart, eschewing the requirement for additional 

auxiliary data. Given the inherent challenges associated 

with procuring precise auxiliary data and mitigating 

spectral distortion, our study concentrates on HSI-SR 

techniques. 

2.2 Traditional approaches 

Conventional methods for image enhancement techniques 

predominantly utilize mathematical and signal processing 

approaches to augment the resolution, thereby framing the 

super-resolution (SR) challenge for hyperspectral images 

(HSI) as an optimization problem. Within this framework, 

diverse image priors are integrated into the optimization 

process to attain a favorable representation of the HSI 

data. Such techniques encompass interpolation, low-rank 

tensor approximation, sparse representation, among 

others. Interpolation methods, which estimate unknown 

pixel values based on their neighbors, often struggle to 

recover lost high-frequency information, resulting in 

blurred edges. To delve into the intrinsic characteristics of 

hyperspectral images, novel tensor-based methods have 

been introduced for enhancing resolution. Nonetheless, 

these methods can be computationally intensive, as they 

are frequently cast as complex optimization problems 

requiring iterative solution strategies. The inherent 

limitations of traditional methods have catalyzed the 

emergence and swift advancement of deep learning 

approaches. Deep learning methods offer innovative 

perspectives and sophisticated tools, revolutionizing the 

landscape of image super-resolution. 

2.3 Deep learning approaches 

Contrary to conventional single-image super-resolution 

techniques, deep learning networks excel at uncovering 

the intrinsic features embedded within image data, thereby 

offering enhanced performance in the HSI-SR domain. 

This section delves into the application of Convolutional 

Neural Networks and Transformer architectures for 

addressing single HSI-SR tasks. 

2.3.1 CNN-based approaches 

The swift evolution of deep learning has led to the 

successful deployment of CNNs in super-resolution 

techniques, yielding commendable outcomes. Dong et al. 

[34] pioneered the application of a three-layer CNN for 

natural image super-resolution, introducing the SRCNN, 

which amalgamates CNNs with super-resolution methods 

to significantly bolster image reconstruction efficacy. 

Motivated by these findings, subsequent research has 

advocated for the adaptation of similar solutions to 

address the super-resolution challenges specific to 

individual hyperspectral images. Wu et al. [39] introduced 

the SDCNN, employing spatial constraints to facilitate the 

mapping, albeit with potential performance limitations for 

certain image types or scenes. Li et al. [40] further 

proposed the GDRRN, capable of directly mapping low-

resolution inputs to high-resolution outputs while adeptly 

capturing intricate spectral-spatial dynamics, thereby 

enhancing super-resolution capabilities. Nonetheless, the 

model's heightened complexity and extensive 

parameterization demand considerable computational 

resources and time for training and deployment, 

presenting a risk of overfitting. 

In the realm of image super-resolution, while CNNs 

adeptly capture spatial features, the limitations of 2D 

convolution hinder the preservation of spectral 

information essential to hyperspectral imagery. 

Augmenting the network depth with residual modules 

further bolsters the overall image recovery process. Mei et 

al. [41] exemplified this with the introduction of a 3D fully 

convolutional neural network designed to encapsulate 

spectral information within its architecture, thereby 

capturing spatial and spectral features more effectively 

and enhancing super-resolution accuracy. Nonetheless, 

the model's efficacy fluctuates with varying hyperspectral 

datasets and applications, which may impede its 

generalizability. Li et al. [40] advanced the GDRRN by 

integrating grouped convolution within the recurrent 

residual module, effectively supplanting the traditional 3D 

convolution. However, these methodologies struggle to 

transcend the inherent focus of CNNs on local features, 

often overlooking the long-range dependencies present 

within images. These constraints can significantly impede 

the model's capacity for feature learning, culminating in 

suboptimal reconstruction results. 
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2.3.2 Transformer-based approaches 

Transformer framework has been adopted by the field of 

CV due to its self-attention mechanism's ability can 

capture long-term dependencies among features and 

patches, yielding enhanced performance. Specifically, 

Liang et al. [42] introduced the Swin Transformer for 

natural image recovery, which has demonstrated superior 

results. However, its potential to disrupt spectral 

correlations renders it less suitable for hyperspectral 

image recovery tasks. Consequently, researchers have 

begun integrating 3D convolution with the Transformer to 

concurrently learn spatial and spectral features, thus 

engaging with both local and global image characteristics. 

Liu et al. [43] proposed the Interactformer, integrating an 

interactive transformer with a CNN to address 

hyperspectral image super-resolution. Wu et al. [44] also 

integrated spectral attention mechanisms with three-

dimensional convolutional operations to capture the 

characteristics within an extensive receptive field, thereby 

enhancing the feature extraction process in hyperspectral 

imaging. However, these methods focus on the extraction 

of spatial and spectral features, overlooking the critical 

role that their interaction plays in bolstering reconstruction 

quality during image super-resolution. In response, we 

introduce the Spatial–Spectral Cross Fusion Transformer 

for Hyperspectral Image Super-Resolution, designed to 

effectively mediate information exchange and to fully 

harness spatial and spectral information for HSI-SR. 

3 Method 
This section delineates the methodology of our approach. 

Section 3.1 outlines the architecture of the entire network. 

Section 3.2 details the mechanism of the cross-attention 

fusion module. Section 3.3 elaborates on the intricacies of 

the spatial feature extraction module. Finally, Section 3.4 

delves into the specifics of the spectral feature extraction 

module. 

3.1 Overall structure 

As depicted in Figure 1, the process of shallow feature 

extraction is carried out via 3D convolutional layers. The 

deep feature extraction module is bifurcated into three 

specialized branches: spatial feature extraction, spectral 

feature extraction, and a cross-attention fusion branch. 

The final reconstruction module integrates upsampling 

with convolution operations. Initially, a 3 × 3 × 3 

convolution kernel is employed to extract shallow 

features, which are subsequently channeled into both the 

spatial and spectral feature extraction branches. 

Subsequently, the spatial and spectral information from 

these branches is synergistically integrated by the cross-

attention fusion module. Ultimately, the residual 

concatenation and reconstruction module are leveraged to 

generate images with enhanced spatial and spectral 

resolutions. 

Let 𝐼𝐿𝑅 ∈ 𝑅ℎ×𝑤×𝐶  denote the low-resolution input 

image, where 𝐶, 𝑤 and ℎ respectively represent the 

number of channels of the input, width, and the height. 

Initially, a 3D convolution operation is applied to extract 

the preliminary feature representation 𝐹0, defined as: 

𝐹0  =  𝐶𝑜𝑛𝑣3𝐷(𝐼𝐿𝑅) (1) 

Subsequently, these shallow features are forwarded to 

the next stage for further refinement. Within the spectral 

feature extraction branch, 𝐹0 is transformed into a 5-

dimensional dataset post 3D convolution. It must be 

reformatted to a 4-dimensional structure prior to the 

spatial feature extraction branch and reconverted to 5-

dimensional form at the branch's conclusion. The spatial 

feature extraction branch is composed of K attention 

modules, while the spectral feature extraction branch 

comprises K convolutional modules. The outputs 𝐴𝐾 and 

𝐶𝐾 from the 𝑘𝑡ℎ attention and convolution modules, 

respectively, are derived through the equations: 

𝐴𝑘  =  𝑓𝑘
𝐴(𝐴𝑘−1

′ ) (𝑘 = 1, . . . , 𝐾) (2) 

𝐶𝑘  =  𝑓𝑘
𝐶(𝐶𝑘−1

′ ) (𝑘 = 1, . . . , 𝐾) (3) 

Where 𝑓𝑘
𝐴(∙) and 𝑓𝑘

𝐶(∙) denote the operations of the 

𝑘𝑡ℎ attention and convolution modules, and 𝐴𝑘−1
′  and 𝐶𝑘−1

′  

represent the inputs of the 𝑘𝑡ℎ attention module and the 

𝑘𝑡ℎ convolution module respectively. Ultimately, the 

outputs from both branches are concatenated as [FA, FC] 
and the features are optimally integrated via a 1 × 1 × 1 

convolution. The final super-resolved image is expressed 

as: 

𝐼𝑆𝑅  =  𝑓𝑟𝑒(𝐶𝑜𝑛𝑣1×1×1([𝐹𝐴, 𝐹𝐶]) + 𝐹0 ) (4) 

where 𝑓𝑟𝑒(∙) denotes the reconstruction module that 

encompasses upsampling and convolution operations. 

In summary, our model seamlessly integrates 

prevailing image restoration frameworks for potent spatial 

and spectral feature extraction. It further enhances the 

interaction of information through its unique modules, 

with the details to be discussed in the following sections.
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Figure 1: The overall architecture of our model 

3.2 Cross-attention fusion module 

As depicted in Figure 2, the cross-attention feature fusion 

module is designed to better integrate spatial and spectral 

information from distinct sources through a cross-

attention mechanism. The module takes the output 𝐴𝑘−1 

from the 𝐾 − 1𝑡ℎ attention module and the output 𝐴𝑘−1 

from the 𝐾 − 1𝑡ℎ convolution module as its inputs. By 

using 𝐶𝑘−1 as the 𝐾 in the attention mechanism, and 𝐴𝑘−1 

as the 𝑄 and 𝑉. By leveraging cross-attention mechanisms, 

the spectral features enhance the spatial features, thereby 

further improving the feature learning capability. 

Similarly, by using 𝐴𝑘−1 as the 𝐾 in the attention 

mechanism, and 𝐶𝑘−1 as the 𝑄 and 𝑉, the spectral 

information is enhanced. By employing the CAFM 

module, spatial and spectral features can be better learned 

through cross-fusion. Taking 𝐴𝑘−1 from the cross-

attention fusion module as an example. In the spectral 

feature extraction branch, 𝐶𝑘−1 is shaped as N × C × B ×
H × W. In order to fuse with the spatial features of the 

four-dimensional data, the spectral features are changed 

into (N × B) × C × H × W by reshaping firstly. It serves 

as the Key in the attention mechanism, and the Query and 

the Value come from 𝐴𝑘−1. The output of the CAFM, 

𝐹𝑐𝑟𝑜𝑠𝑠−𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, is obtained through attention calculation, 

and then the input 𝐴𝑘−1
′  of the 𝐾𝑡ℎ attention module is 

obtained by residual concatenation. The process of 𝐴𝑘−1
′  

is as follows: 

𝐹𝑐𝑟𝑜𝑠𝑠−𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇)𝑉 (5) 

𝐴𝑘−1
′  =  𝑓𝐶𝐴𝐹𝑀(𝐴𝑘−1, 𝐴𝑘−1) + 𝐴𝑘−1

= 𝐹𝑐𝑟𝑜𝑠𝑠−𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + 𝐴𝑘−1 
(6) 

where 𝑓𝐶𝐴𝐹𝑀(∙) denotes the Cross-Attention Fusion 

Module. 

The process of computing 𝐶𝑘−1
′  of the convolution 

module is similar to that of 𝐴𝑘−1
′ . 𝐴𝑘−1 serves as the K. Q 

and V are derived from 𝐶𝑘−1. The process of 𝐶𝑘−1
′  is as 

follows: 

𝐶𝑘−1
′  =  𝑓𝐶𝐴𝐹𝑀(𝐶𝑘−1, 𝐶𝑘−1) + 𝐶𝑘−1

= 𝐹𝑐𝑟𝑜𝑠𝑠−𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + 𝐶𝑘−1 
(7) 

This module is strategically designed to integrate 

features from both branches, thereby enhancing the 

network's feature learning capabilities. This fusion 

approach is pivotal in improving the final image recovery 

effect, as it allows for a more comprehensive exploitation 

of the rich information embedded within hyperspectral 

imagery.
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Figure 2: The detailed structure of the CAFM. The integration result is for the spatial feature extraction module. 

 

Figure 3: The detailed structure of the CAFM. The integration result is for the spectral feature extraction module 

3.3 Spatial feature extraction module 

In order to better extract the regional feature, we have 

introduced the ZP-SAL [45] efficiently capturing spatial 

features. We first divide the input features into non-

overlapping regions of size N × N, and then calculate the 

multi-head self-attention in each window to capture local 

features. However, this method only learns features within 

the window and cannot effectively learn features between 

adjacent windows. Therefore, we next use zero-padded 

window self-attention to learn features between adjacent 

windows. By padding the input windows with zeros, we 

can include the adjacent regions between windows in the 

same window during window partitioning, effectively 

learning features between windows. As depicted in Figure 

4, the output features from two consecutive window 

attention layers can be expressed as follows: 

𝐹𝑊−𝑆𝐴 = 𝑓𝑊−𝑆𝐴(𝐿𝑁(𝐹𝑖−1)) + 𝐹𝑖−1 (𝑖
= 1, . . . , 𝑛) 

(8) 

𝐹𝑖 = 𝑀𝐿𝑃(𝐿𝑁(𝐹𝑊−𝑆𝐴𝐿)) + 𝐹𝑊−𝑆𝐴𝐿  (𝑖
= 1, . . . , 𝑛) 

(9) 

𝐹𝑍𝑃−𝑆𝐴 = 𝑓𝑍𝑃−𝑆𝐴(𝐿𝑁(𝐹𝑖)) + 𝐹𝑖  (𝑖 = 1, . . . , 𝑛) (10) 

𝐹𝑖+1 = 𝑀𝐿𝑃(𝐿𝑁(𝐹𝑍𝑃−𝑆𝐴𝐿)) + 𝐹𝑍𝑃−𝑆𝐴𝐿  (𝑖
= 1, . . . , 𝑛 − 1) 

(11) 

where 𝐹𝑖−1 denotes the input of the 𝐾𝑡ℎ attention layer 

in the attention module, 𝐹𝑊−𝑆𝐴 denotes the window 

attention, 𝐹𝑍𝑃−𝑆𝐴 denotes the zero-padding window 

attention, and 𝑀𝐿𝑃(∙) and 𝐿𝑁(∙) are the multilayer 

perceptron and normalization respectively.
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Figure 4: The detailed structure of spatial feature extraction module 

3.4 Spectral feature extraction module 

While 2D convolution effectively extracts local image 

features, its ability to model the spectral dimension 

remotely is limited. Compared to 2D convolution, 3D 

convolution offers distinct advantages in preserving the 

spectral feature for processing high-dimensional data such 

as hyperspectral images. Therefore, we refer to the 

LFESM of Interactformer [43]. Effectively retaining the 

inherent spectral characteristics of Hyperspectral Images 

(HSIs), this module also excels at gathering detailed local 

feature information. Furthermore, the incorporation of the 

spectral attention serves to improve the retention of 

spectral features. 1 × 1 × 1 convolution is used for 

controlling the feature dimension, while 3 × 3 × 3 

convolution is employed for spatial-spectral feature 

extraction. To preserve the spectral features while learning 

spatial features, global average pooling is applied to 

generate spectral band features, followed by 1-D 

convolution to further learn the spectral features. Finally, 

Sigmoid activation function is used to obtain the spectral 

weights and perform element-wise multiplication. The 

final feature map is generated through residual 

connection. The output feature 𝐹𝑜𝑢𝑡 of the convolution 

module can be represented as: 

𝐹𝑜𝑢𝑡

= 𝐶𝑜𝑛𝑣1×1×1(𝐶𝑜𝑛𝑣3×3×3(𝐶𝑜𝑛𝑣1×1×1(𝐹𝑖𝑛))) 
(12) 

𝛼 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐴𝑣𝑔(𝐹𝑖𝑛)) (13) 

where 𝐹𝑖𝑛 denotes the input of the spectral feature 

extraction module, 𝐶𝑜𝑛𝑣 and 𝐴𝑣𝑔 are the one-

dimensional convolution and the global average pooling. 

𝐶𝑜𝑛𝑣1×1×1 and 𝐶𝑜𝑛𝑣3×3×3 denote the 1 × 1 × 1 

convolution module and 3 × 3 × 3 convolution module. 

The 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 is employed to calculate the weight, 

denoted as α, which serves to reconstruct the spectral 

features.

 

Figure 5: The detailed structure of the spectral feature extraction module 
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4 Experiments 
In this part, we carry out extensive experiments to assess 

the efficacy of our model. We utilize thoes datasets for our 

comparisons: the CAVE Dataset [46], the Harvard Dataset 

[47], the Chikusei Dataset [48], and the Real Dataset. We 

exhibit both quantitative metrics and visual outcomes of 

our model in comparison with four current HSI-SR 

techniques, including ESWT [49], HAT [50], SSPSR[20] 

and Interactformer [43]. 

4.1 Datasets 

Given the confidential nature of audits, data acquisition 

during the audit process is not typically accessible. 

Consequently, employing public datasets such as Cave, 

Harvard, Chikusei, and Real datasets for validation is 

more objective and equitable. 

CAVE Dataset [46]: This dataset comprises 32 real 

indoor scenes, each with dimensions of 512 × 512 × 31 

pixels. In this study, we have selected 21 images from this 

dataset for training purposes, others for testing. The 

training subset is partitioned into overlapping patches, 

each measuring 64 × 64 × 31 pixels, with a stride of 16 

pixels. To simulate low-resolution conditions, we apply a 

5 × 5 Gaussian blur that has a standard deviation of 2 and 

a mean of 0 to these patches. Subsequently, the blurred 

images are downsampled by a factor of 4 to produce the 

LR-HSI, which serves as the input for our super-resolution 

model. 

Harvard Dataset [47]: The Harvard hyperspectral 

image dataset offers a rich collection of real-world scenes, 

encompassing 50 images with a resolution of 1392 ×
1040 pixels each. The images cover 31 hyperspectral 

bands, spanning the wavelength range from 420 

nanometers to 720 nanometers. In the context of this 

research, we have randomly selected 40 images for the 

training phase, with the remaining images being 

designated for the testing phase. The preprocessing steps 

applied to the Harvard dataset mirror those of the CAVE 

dataset, ensuring consistency in the data preparation 

phase. 

Chikusei Dataset [48]: The Chikusei hyperspectral 

image dataset comprises imagery of the Chikusei region 

in Ibaraki, Japan, captured by the Hyperspec-VNIR-

CIRIS spectrometer. Characterized by a ground sampling 

distance of 2.5 meters, the dataset features images of 

2517 × 2335 pixels, encompassing 512 bands with a 

spectral range from 363 nm to 1018 nm. For training, a 

cropped region of 2000 × 1500 pixels was utilized and 

segmented into overlapping 64 × 64 pixel blocks, each 

with 128 spectral bands. The remaining imagery 

constituted the test set, which was divided into four non-

overlapping 128 × 128 pixel blocks, each retaining 128 

bands. Both the training and test sets were processed in the 

same way as described above. 

Real dataset: Launched in October 2009, the 

WorldView-2 satellite stands as the world's first 

commercial high-resolution 8-band multispectral satellite, 

revolutionizing the field of remote sensing with its 

unprecedented image clarity. The satellite offers 

panchromatic imagery at a resolution of 0.46 meters and 

multispectral imagery at 1.85 meters, providing detailed 

insights into the Earth's surface. The data encompass eight 

distinct spectral bands, with individual images measuring 

418 pixels in width by 658 pixels in height. Such high-

resolution multispectral data are instrumental for various 

applications, such as agricultural analysis, urban planning, 

and environmental monitoring. In the process of spectral 

feature extraction, the importance of different spectral 

bands may vary. The channel attention mechanism can 

dynamically adjust the weights of different spectral bands, 

highlighting important spectral features and suppressing 

irrelevant noise. This weighting process helps the model 

to more accurately capture key spectral information in 

HSI. By combining 3D convolution and channel attention 

mechanisms, we can more effectively extract and preserve 

spectral features in HSI. In the spectral feature extraction 

module, we first use a 3D convolution kernel to perform 

sliding operations on HSI to capture local spatial spectral 

features. Then, we weight these features through channel 

attention mechanism to highlight important spectral bands 

and suppress irrelevant noise. Finally, we fuse the 

weighted features to generate a feature map that contains 

rich spectral information. These feature maps will be used 

for subsequent processing and analysis tasks. 

4.2 Implementation details 

We conducted a comparison of our approach against 

several SOTA image SR techniques, such as ESWT [49], 

HAT [50], SSPSR [20] and Interactformer [43], across 

various datasets including the CAVE Dataset, the Harvard 

Dataset, the Chikusei Dataset, and the real-world dataset. 

Our model architecture comprises 6 attention modules and 

an equal number of convolution modules. Each attention 

module is equipped with 6 window attention layers, 

alternating between standard window attention and zero-

padding window attention to capture both local and long-

range spatial features effectively. The convolution module 

is designed with two 1 × 1 × 1 convolutions for feature 

dimension manipulation, a 3 × 3 × 3 convolution for 

feature extraction, and a spectral attention module for 

enhancing feature representation. For the implementation, 

we utilized the PyTorch framework and conducted our 

model training on 4090. We chose the Adam Optimizer as 

our standard training algorithm, with an initial learning 

rate of 0.0002, which was set to ensure swift and effective 

convergence [51], [52].

 

 

 



Spatial–Spectral Cross Fusion Attention based Hyperspectral Image… Informatica 49 (2025) 93–110 101 

Table 1: Summary table of indicator comparison 

Data set Method PSNR SSIM 

SAM 

(Hypothesis 

Indicator) 

The existing 

methods are 

insufficient 

necessity 

CAVE 
SOTA 

Method A 

High 

value 1 
High value 1 

Premium 

value 1 

Some edge 

segmentation is 

inaccurate 

Promote 

technological 

innovation and 

improve 

segmentation 

accuracy 

 
SOTA 

Method B 

High 

value 2 
High value 2 

Premium 

value 2 

Large computational 

load and long-time 

consumption 

Reduce 

computational 

complexity and 

improve efficiency 

 
Current 

Method C 
Median 1 Median 1 Median 1 

Unable to handle 

complex scenes 

Enhance the 

generalization ability 

of the model 

Chikusei 
SOTA 

Method D 

High 

value 3 
High value 3 

Premium 

value 3 

Sensitive to specific 

lighting conditions 

Improve model 

robustness 

 
SOTA 

Method E 

High 

value 4 
High value 4 

Premium 

value 4 

Parameter tuning is 

complex 

Simplify the 

parameter tuning 

process 

 
Existing 

Method F 
Median 2 Median 2 Median 2 

The segmentation 

results are not 

coherent 

Improve the 

consistency of 

segmentation results 

 

4.3 Assessment of indicators 

We employed a quintet of evaluative metrics to scrutinize 

various models: the peak signal-to-noise ratio (PSNR) 

[53], which assesses the likeness between two images. The 

structural similarity (SSIM) [54], which assesses the 

likeness between two images. The spectral angle mapper 

(SAM) [55], which evaluates the spectral angle of images, 

where a smaller angle signifies greater spectral similarity 

and a higher probability of the images featuring the same 

attributes. ERGAS [56] serves as a comprehensive metric 

for the assessment of remote sensing image quality, 

factoring in Mean Square Error (MSE), RMSE [56], and 

the luminance of the image. RMSE is determined by 

taking the square root of the mean of the squared 

discrepancies between the forecasted figures and the 

factual figures. ERGAS is typically expressed as a 

percentage, where a lower percentage indicates higher 

image quality. The mathematical definitions for these 

metrics are as follows: 

𝑃𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔10(
𝑚𝑎𝑥2

𝑀𝑆𝐸
) (14) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝐼𝐻𝑅 − 𝐼𝑆𝑅)2

𝑛

𝑖=1

 (15) 

where IHR represents the true value, ISR represents the 

predicted value, n denotes the number of samples. 

𝑆𝑆𝐼𝑀(𝑋, 𝑌)  =  
(2𝜇𝑥𝜇𝑦 + 𝑐1)(𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 (16) 

where 𝜇𝑥 and 𝜇𝑦 represent the mean value of 𝑋 and 𝑌, 

respectively.  𝜎𝑥
2 and 𝜎𝑦

2 respectively denote the variance 

of 𝑋 and 𝑌. 𝜎𝑥𝑦 denotes the covariance of 𝑋 and 𝑌. 𝑐1 and 

𝑐2 are constants used for stabilization calculations, which 

are usually taken to be 𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2 

where 𝐿 is the dynamic range of the pixel values, 𝑘1 and 

𝑘2are constants.  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐼𝐻𝑅 − 𝐼𝑆𝑅)2

𝑛

𝑖=1

 (17) 

𝑆𝐴𝑀((𝐼𝐻𝑅 , 𝐼𝑆𝑅) =
1

𝐻𝑊
∑(𝑐𝑜𝑠−1(

𝐼𝑆𝑅
𝑇 𝐼𝐻𝑅

|𝐼𝐻𝑅||𝐼𝑆𝑅|
))

𝐻𝑊

𝑖=1

 (18) 

𝐸𝑅𝐺𝐴𝑆 =
100

𝑐
√

1

𝑁
∑(

𝑅𝑀𝑆𝐸𝑖

�̅�𝑖

)2

𝑁

𝑖=1

 (19) 

where 𝐻 and 
1

𝐻𝑊
 are respectively the input image's 

height and width, 𝑐 is the hyper-divisional magnification, 

𝑅𝑀𝑆𝐸𝑖  represents the root-mean-square error of the 𝑖𝑡ℎ 

band, �̅�𝑖 represents the average spectral intensity of the 𝑖𝑡ℎ 

band, which is used to normalize the root-mean-square 

error. 
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4.4 Experiments results 

4.4.1 Experiments of CAVE datasets 

For the CAVE dataset [47], we segmented the images into 

overlapping patches with a stride of 16 pixels, each patch 

measuring 64 × 64 pixels for the training set. To replicate 

the conditions of low-resolution imagery, we created a 

LR-HSI by first applying a 5 × 5 Gaussian blur that has a 

standard deviation of 2 and a mean of 0 to the original 

image. 

Table 3 presents a comparative analysis of the 

experimental results of our proposed network structure on 

the CAVE dataset against four other approaches, utilizing 

the five metrics to evaluate the effectiveness of different 

models. Our model excels in three of the metrics. The 

visualization of these results is provided in Figure 6, 

which illustrates the superior performance of our proposed 

model in recovering spatial texture details and preserving 

spectral information. This advantage is attributed to the 

cross-attention fusion method's capability to effectively 

integrate spatial and spectral information, leading to 

enhanced image super-resolution outcomes. 

 

 

 

 

 

 

Figure 6: Image results for various models on CAVE are presented in a structured format. The first and second rows 

display pseudocolor images, while the third and fourth rows showcase the SAM plots comparing the Ground Truth to 

the images generated by our network model. Additionally, the fifth and sixth rows depict the bsolute error plots, also 

comparing the GT to the generated images. (a) GT (b) HAT (c) ESWT (d) Interactformer (e) SSPSR (f) Ours 
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Table 2: Related works. 

Reference Advantages Limitations 

HAT The integration of self-attention, channel attention, and 

overlapping cross-attention enhances pixel information 

extraction and improves reconstruction results.  

Have limitations in long - range spectral 

modeling. 

ESWT  Designed a stripe window mechanism and a flexible 

window training strategy to better capture long - range 

dependencies. 

Focus on spatial feature extraction but 

neglect spectral feature learning. 

Interactformer Using Transformer and CNN to extract local HSI 

features and capture long - range dependencies, with 

both methods interacting adaptively. 

Neglect the interaction between spatial 

and spectral features. 

SSPSR Group convolution and progressive upsampling manage 

high - dimensionality, while the SSPN module 

integrates spatial - spectral correlations. 

Spectral feature learning is inadequate, 

and spatial-spectral interaction in HSI 

SR tasks has not been effectively 

achieved. 

Table 3: The comparison of five different single-image hyperspectral SR methods on CAVE. 

Model ↑PSNR ↓SAM ↑SSIM ↓ERGAS ↓RMSE 

HAT 34.90∓0.42 7.41∓0.46 0.9161∓0.0051 4.80∓0.29 3.47∓0.21 

ESWT 34.95∓0.26 6.42∓0.34 0.9266∓0.0035 5.01∓0.36 3.16∓0.14 

Interactformer 37.61∓𝟎. 𝟐𝟐 4.61∓𝟎. 𝟏𝟔 0.9481∓𝟎. 𝟎𝟎𝟏𝟑 3.69∓0.07 2.57∓0.24 

SSPSR 36.95∓0.33 4.88∓0.25 0.9477∓0.0026 4.01∓0.13 2.70∓0.11 

Ours 37.69∓0.24 4.58∓0.11 0.9485∓0.0017 3.70∓𝟎. 𝟎𝟓 2.60∓𝟎. 𝟎𝟒 

 

4.4.2 Experiments of harvard datasets 

For the Harvard dataset [48], we also segmented the 

images into overlapping patches with a stride of 16 pixels, 

each patch measuring64 × 64 pixels for the training set. 

To replicate the conditions of low-resolution imagery, we 

created a LR-HSI by first applying a 5 × 5 Gaussian blur 

that has a standard deviation of 2 and a mean of 0 to the 

original image. 

To verify whether the advantages of our model over 

other methods are statistically significant, we conducted a 

paired sample t-test. Taking PSNR as an example, 

compare the PSNR values of the model (31.58 dB) with 

four other methods (hat, ESWT, interaction model, 

SSPSR). The results showed that the PSNR value of our 

model was significantly higher than all other methods 

(p<0.05), indicating that our model has a significant  

advantage in super-resolution reconstruction. To evaluate 

the stability of our model performance, this paper 

calculated the 95% confidence intervals for indicators 

such as PSNR, SAM, SSIM, ERGAS, and RMSE. The 

results show that all indicators of the model fall within a 

narrow confidence interval, indicating that our model's 

performance is stable and reliable. 

Table 4 illustrates the comparative experimental 

results of our proposed network structure against four 

alternative methods on the Harvard dataset, utilizing five  

 

 

 

performance metrics to assess the effectiveness of 

different models. Our model leads in all five metrics, as 

visualized in Figure 7. The results further demonstrate that 

the spatial feature information can be effectively 

recovered, primarily due to the attention module within 

our zero-padding window mechanism, which significantly 

boosts the model's capacity to capture and integrate spatial 

details. 

4.4.3 Experiments of chikusei datasets 

We segmented a 2000 × 1500 × 128 region for training, 

dividing it into a series of overlapping patches, each 

64 × 64 × 128 in dimension. The remaining portion of 

the dataset was designated for testing, where it was 

divided into 4 non-overlapping patches, each with the 

dimensions of 256 × 256 × 128. Both the training and 

testing datasets underwent the same preprocessing steps as 

mentioned earlier. 

Table 5 presents the results comparing with four other 

methods on the Chikusei dataset. Utilizing five 

performance metrics, the table demonstrates the 

effectiveness of different models. Our model excels in 

four out of the five metrics. As depicted in Figure 8, the 

proposed model demonstrates superiority over other 

approaches. The results indicate that the spectral feature 

extraction module within our model is adept at retaining 

important spectral information, contributing to the overall 

performance enhancement.
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Figure 7: Image results for various models on Harvard are presented in a structured format. The first and second rows 

display pseudocolor images, while the third and fourth rows showcase the SAM error plots comparing the Ground 

Truth to the images generated by our network model. Additionally, the fifth and sixth rows depict the absolute error 

plots, also comparing the GT to the generated images. (a) GT (b) HAT (c) ESWT (d) Interactformer (e) SSPSR (f) 

Ours 

Table 4: The comparison of five different single-image hyperspectral SR methods on Harvard. 

Model ↑PSNR ↓SAM ↑SSIM ↓ERGAS ↓RMSE 

HAT 35.69∓0.44 5.23∓0.41 0.9125∓0.0053 4.72∓0.55 3.25∓0.19 

ESWT 31.22∓0.39 5.83∓0.59 0.8550∓0.0047 9.38∓0.73 4.01∓0.21 

Interactformer 37.25∓𝟎. 𝟐𝟐 3.61∓𝟎. 𝟐𝟔 0.9280∓𝟎. 𝟎𝟎𝟎𝟗 4.13∓𝟎. 𝟏𝟏 2.82∓𝟎. 𝟎𝟗 

SSPSR 37.07∓0.30 3.74∓0.43 0.9259∓0.0022 4.18∓0.17 2.88∓0.13 

Ours 37.31∓0.21 3.58∓0.22 0.9287∓0.0014 4.10∓0.08 2.79∓0.06 
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Figure 8: Image results for various models on Chikusei are presented in a structured format. The first and second rows 

display pseudocolor images, while the third and fourth rows showcase the SAM error plots comparing the Ground 

Truth to the images generated by our network model. Additionally, the fifth and sixth rows depict the absolute error 

plots, also comparing the GT to the generated images. (a) GT (b) HAT (c) ESWT (d) Interactformer (e) SSPSR (f) 

Ours 

Table 5: The comparison of five different single-image hyperspectral SR methods on Chikusei 

Model ↑PSNR ↓SAM ↑SSIM ↓ERGAS ↓RMSE 

HAT 29.96∓0.41 2.61∓0.34 0.8351∓0.0046 5.78∓0.49 5.00∓0.26 

ESWT 29.19∓0.39 3.07∓0.53 0.8012∓0.0033 6.36∓0.66 5.37∓0.25 

Interactformer 31.16∓𝟎. 𝟏𝟏 2.30∓0.11 0.8409∓𝟎. 𝟎𝟎𝟏𝟕 5.78∓𝟎. 𝟏𝟗 4.92∓𝟎. 𝟎𝟕 

SSPSR 29.51∓0.26 2.38∓0.37 0.8357∓0.0019 5.84∓0.13 4.99∓0.11 

Ours 31.58∓0.19 2.31∓𝟎. 𝟏𝟗 0.8415∓0.0011 5.70∓0.05 4.85∓0.03 

 

4.4.4 Experiments of real datasets 

Actual image degradation in real-world scenarios is 

inherently more intricate and subject to greater variability 

than that observed in experimentally generated datasets, 

owing to a multitude of influencing factors. This 

discrepancy implies that the degradation models applied 

in controlled experiments may not accurately reflect those 

encountered in real-world images. It is imperative to 

assess our model's performance using real-world datasets. 

In our experiments, the left portion of the Low-

Resolution Multispectral Imagery (LR-MSI) with 

dimensions 418 × 418 × 8 was extracted for training 

purposes, while the remaining section was cropped into 



106 Informatica 49 (2025) 93–110 J. Zhang et al. 

128 × 128 × 8 blocks for direct testing. Given the 

absence of ground truth conditions, we employed 

Gaussian blurring and downsampling to artificially 

generate the training set. During training, we utilized a 

patch size of 64 × 64 × 8.  

It should be highlighted that without the presence of 

actual reference labels, traditional indices cannot be 

applied to evaluate the super-resolution outcomes. 

Therefore, we relied solely on visual assessment. 

Figure 9 presents a visual comparison of the results 

from several models on a real dataset. The visualization 

indicates that our proposed method outperforms other 

hyperspectral image super-resolution techniques in terms 

of image reconstruction quality.

 

 

 

Figure 9: The visual result graphs of different models on real dataset. The first row, progressing from left to right, 

features LR and ESWT. The second-row features HAT and SSPSR. The subsequent row, also from left to right, 

includes Interactformer and Ours. 

4.5 Ablation study 

This article completely removes spatial or spectral 

branches to evaluate their respective impacts on network 

performance. This will help us understand the importance 

of each branch in the overall model. For each attention or 

convolution block within the spatial and spectral branches, 

we will conduct ablation experiments to determine their 
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contribution to model performance. This will enable us to 

identify which blocks are critical and which may be 

redundant. In this section, we performed ablation studies 

to validate the effectiveness of the cross-attention fusion 

module (CAFM), the spatial feature extraction 

module(SAB), and the spectral feature extraction 

module(ConvB) in our proposed method. To evaluate 

each module's impact, we systematically removed them 

from the model and conducted a series of ablation 

experiments. As shown in Table 6, the model achieved the 

lowest performance when all three modules were 

removed. At this point, we were extracting spatial features 

via simple window partitioning. The addition of the SAB 

module improved model performance, demonstrating its 

effectiveness in spatial feature extraction. We 

subsequently added the ConvB module, and the results 

demonstrated further performance improvement, 

highlighting the importance of spectral feature learning. 

After integrating the proposed CAFM, the model achieved 

its highest performance at this stage. This indicates that 

the introduction of the CAFM significantly improved the 

issue of insufficient spatial and spectral interaction and 

enhanced the model's ability to effectively capture and 

fuse multi-dimensional features. 

We also conducted ablation experiments on network 

depth. The experimental results are shown in Table 7. It 

can be seen that the model achieves the best performance 

when the network depth is 6.

Table 6: The ablation experimental results of CAFM on the CAVE dataset. 

SAB ConvB CAFM PSNR SAM SSIM Params(M) Flops(G) 

× × × 37.30∓0.19 4.84∓0.10 0.9465∓0.0021 1.2619 19.1161 

√ × × 37.36∓0.25 4.81∓0.13 0.9469∓0.0016 1.8427 24.6862 

√ √ × 37.48∓0.22 4.72∓0.07 0.9472∓0.0011 6.8186 63.1221 

√ √ √ 37.69∓0.24 4.58∓0.11 0.9485∓0.0017 6.9064 64.6025 

 

The cross-attention fusion module (CAFM), spatial 

feature extraction module (SAB), and spectral feature 

extraction module in the transformer all introduce 

additional computational overhead. Especially CAFM, 

which utilizes cross attention mechanism to fuse spatial 

and spectral features, increases the computational 

complexity of the model to some extent. The number of 

parameters (parameter (M)) and fluctuations (G) listed in 

Table 5 reflect the computational resource consumption 

under different model configurations. It can be seen that 

with the gradual addition of SAB, ConvB, and CAFM, the 

number of parameters and computational complexity are 

increasing.

Table 7: Quantitative comparisons of the depth number on cave. 

Depth PSNR SAM SSIM ERGAS RMSE 

2 37.49∓0.27 4.73∓0.16 0.9476∓0.0023 3.83∓0.11 2.71∓0.11 

4 37.56∓0.22 4.66∓0.13 0.9480∓0.0021 3.76∓0.09 2.63∓0.08 

6 37.69∓0.24 4.58∓0.11 0.9485∓0.0017 3.70∓0.05 2.60∓0.04 

 

4.6 Discussion 

A new HSI-SR (hyperspectral image super-resolution) 

method was proposed in this study. This method combines 

spatial spectral cross fusion attention mechanism and 

combines the advantages of CNN (Convolutional Neural 

Network) and Transformer architecture. In comparison 

with the current SOTA method, our approach has shown 

significant advantages in multiple key indicators. 

Specifically, in terms of spatial feature learning, our 

method achieves a deeper understanding of feature 

information by alternately using window self attention and 

zero padding window self attention. This mechanism 

allows the model to capture richer contextual information, 

resulting in higher quality images during super-resolution 

reconstruction. In addition, our proposed cross attention 

feature fusion module effectively integrates spatial and 

spectral cues. This innovation significantly improves the 

model's ability to learn from both, resulting in significant 

improvements in spectral continuity and spatial details of 

the reconstructed hyperspectral images. 

Although the current SOTA method has achieved 

certain results in super-resolution reconstruction, there are 

still some limitations. For example, some methods may 

overly rely on traditional convolution operations, resulting 

in shortcomings in capturing long-range dependencies. 

Other methods may lack effective feature fusion 

mechanisms, making it difficult to fully utilize spatial and 

spectral clues. In contrast, our method effectively 

overcomes these limitations by introducing a cross fusion 

attention mechanism and combining the advantages of 

CNN and Transformer. In summary, the specific 

advantages of this research method are achieved through 

the alternating use of window self attention and zero fill 

window self attention. The method proposed in this article 

can provide a deeper understanding of feature 

information, thereby improving the quality of super-

resolution reconstruction. The cross-attention feature 

fusion module effectively integrates spatial and spectral 

cues, enabling the model to learn richer information from 

both. Compared with the SOTA method, our approach 

exhibits significant advantages in multiple key indicators, 

particularly in terms of spectral continuity and spatial 

details. 
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5 Conclusion 
In this paper, we introduce a novel single HSI SR method 

that leverages cross-attention fusion to enhance spatial and 

spectral information capture comprehensively. A zero-

padding window attention computation method is 

proposed, which facilitates the extraction of long-range 

spatial features by padding and re-dividing windows 

around the feature map.  Additionally, we present a 

pioneering cross-attention fusion module that integrates 

features from multiple input sequences through the cross-

attention mechanism. This module merges spatial and 

spectral features extracted by separate branches and feeds 

this enriched information back into them, promoting the 

interaction of spatial-spectral information during the 

learning process. Our experimental results indicate that 

the proposed model outperforms existing methodologies 

in the reconstruction of hyperspectral images, showcasing 

its superior performance. This approach offers innovative 

solutions for addressing the issue of low-resolution images 

encountered during natural resource audits. In our method, 

the parameter settings of key components such as the 

cross-attention fusion module and zero padding window 

attention calculation are optimized based on experimental 

data. The selection of these parameters aims to maximize 

the performance of the model in reconstructing 

hyperspectral images. However, we have not fully 

explained how these parameters are related to the specific 

needs of land resource auditing. In the future, we will 

strive to gain a deeper understanding of how these 

parameters affect the performance of the model in specific 

application scenarios. For example, we can explore the 

impact of different parameter settings on the accuracy of 

identifying specific land cover types, and how these 

settings can be adjusted according to audit objectives.  

Although visual analysis is crucial in evaluating 

super-resolution results, we have not provided sufficient 

explanations to explain what should be seen or the 

significance of differences. To enhance the interpretability 

of visual analysis, we will include more detailed 

annotations and explanations in future work to guide 

readers in understanding the differences and similarities 

between images. 
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