
https://doi.org/10.31449/inf.v49i2.7637 Informatica 49 (2025) 237–248 237 

 

Enhancing Network QoS via Attack Classification Using 

Convolutional Recurrent Neural Networks  
 

Jawad Alkenani*, Mohsen Nickray 

Department of Computer Engineering and Information Technology, University of Qom, Qom, Iran 

E-mail: Jawadalkenani@sa-uc.edu.iq 1, m.nickray@qom.ac.ir 2 
*Coresponding author 

Keywords convolutional neural networks, recurrent neural networks, attack class, anomaly detection  

Received: November 21, 2024 

Cyber-attacks and intrusions in networks refer to malicious activities that breach or damage data. These 

activities include direct attacks, such as denial-of-service (DoS) attacks, which overwhelm servers with 

requests to disrupt services. Intrusion involves unauthorized access to systems by exploiting security 

vulnerabilities. Malware threats like viruses and worms infect systems to steal information. Additionally, 

social engineering techniques deceive individuals into revealing sensitive information, while phishing 

relies on fake messages or websites to gather user data. To prevent these attacks, it is necessary to 

implement effective security strategies, such as knowing the attack class to protect the network and data. 

In this paper, ConvRNN (Convolutional Recurrent Neural Network) is used as a large-scale advanced 

model between Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to process 

data containing spatial and temporal information.  In addition, ConvRNN generates magical features 

from data through convolutional layers and serial convolution by RNN, which creates the model's ability 

to understand complexity, especially in security and surveillance agreements. The simulation results show 

that the proposed model outperforms LSTM, including precision, recall, F1 score, ROC curve, TPR, FPR, 

FNR, and accuracy. 

Povzetek: Prispevek predlaga izboljšano klasifikacijo omrežnih napadov z uporabo konvolucijskih 

rekurentnih nevronskih mrež, s poudarkom na izboljšanju kakovosti storitev (QoS) in odkrivanju 

varnostnih groženj. 

 

1 Introduction 
Cyber-attacks and intrusions pose significant threats 

to the integrity, confidentiality, and availability of data in 

networks. Various types of attacks exist, including denial-

of-service (DoS) attacks, where malicious actors 

overwhelm a server with excessive requests, disrupting 

services for legitimate users. Intrusions involve 

unauthorized system access by exploiting security 

vulnerabilities, allowing attackers to steal, alter, or delete 

data.  Malware is another major threat, encompassing 

different types of malicious software such as viruses, 

worms, ransomware, and Trojan horses. Viruses attach to 

legitimate files and spread when shared, while worms 

replicate themselves across networks independently. 

Ransomware encrypts files and demands payment for 

decryption, and Trojan horses disguise themselves as 

legitimate software to carry out hidden malicious activities 

[1]. 

Social engineering techniques manipulate individuals 

into revealing confidential information, often through 

impersonation or pretexting. Phishing involves fraudulent 

emails or websites that deceive users into providing 

sensitive information, with spear-phishing targeting 

specific individuals or organizations. Man-in-the-middle 

(MitM) attacks occur when an attacker intercepts 

communication between two parties, allowing data theft  

 

or manipulation, particularly in unsecured Wi-Fi networks 

[2]. To prevent these attacks, organizations can implement 

firewalls that filter incoming and outgoing traffic based on 

security rules, blocking potentially harmful traffic. Data 

encryption ensures that intercepted information remains 

unreadable without proper decryption keys. Regular 

software updates are crucial for patching vulnerabilities 

that attackers may exploit, while continuous network 

monitoring helps identify unusual activities that could 

indicate an attack.  Educating employees about 

cybersecurity best practices and the importance of strong 

passwords can significantly reduce the risk of successful 

attacks. Multi-factor authentication (MFA) adds an extra 

layer of security by requiring additional verification steps 

beyond just a password. Finally, having a well-defined 

incident response plan ensures organizations can respond 

quickly and effectively to security breaches, minimizing 

potential damage. Understanding the various cyber-attack 

types and implementing comprehensive security measures 

are essential for protecting networks and sensitive 

information [3]. 

This group related to ConvRNN (Convolutional 

Recurrent Neural Network) includes a variety of 

applications that take advantage of its capabilities in 

processing data with temporal and spatial dimensions. In 

the field of real-time video analysis, ConvRNN can be 

used to detect abnormal control or suspicious activation, 
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which contributes to the activation of security 

surveillance. ConvRNN is also relied upon in network 

detection guidance in networks, where it helps to analyze 

network traffic data and abnormal people that may 

indicate the most important features of the network. In 

addition, ConvRNN applications have become computer 

vision, such as object recognition and motion tracking, 

which enables later understanding of behavior in the view. 

There are also studies on the development of intelligent 

systems using ConvRNN, where the accuracy of detection 

and analysis in real-time is enhanced. Finally, ConvRNN 

is used in the analysis of complex temporal data, such as 

weather forecasting or financial feature analysis, which 

shows the potential to handle complexity in various fields 

[4]. 

ConvRNN combines convolutional layers with 

recurrent layers, making it effective for processing data 

with both spatial and temporal dimensions. This 

architecture can significantly enhance Quality of Service 

(QoS) across various applications.  In video surveillance, 

ConvRNNs analyze video streams by capturing spatial 

features and temporal dependencies, improving real-time 

object detection and tracking. For traffic prediction, they 

forecast traffic patterns by analyzing spatial data from 

road networks alongside historical traffic conditions, 

helping manage traffic and reduce congestion [5]. In 

speech recognition, ConvRNNs improves the accuracy of 

systems by effectively processing audio signals and 

enhancing user experiences in applications like virtual 

assistants. For network traffic analysis, they predict 

network performance and detect anomalies by examining 

traffic patterns over time, optimizing bandwidth usage, 

and maintaining service quality.  In healthcare monitoring, 

ConvRNNs analyze time-series data from sensors in 

wearable devices to track health metrics, improving the 

reliability and responsiveness of healthcare services. The 

benefits of using ConvRNNs include enhanced feature 

extraction, where convolutional layers excel at capturing 

spatial features while recurrent layers handle temporal 

dependencies, resulting in richer data representations. 

They also achieve higher accuracy in predictions and 

classifications by capturing both spatial and temporal 

dynamics. Additionally, their architecture is well-suited 

for real-time applications, providing timely responses in 

critical systems [6]. In summary, ConvRNNs play a 

crucial role in improving QoS across various domains by 

effectively integrating spatial and temporal information, 

leading to better performance and increased user 

satisfaction. 

In this research, we propose how DL approaches have 

been used to improve QoS in IoT. According to the articles 

evaluated, QoS in IoT-based systems is violated when the 

security and privacy of the systems are jeopardized or 

when IoT resources are not adequately managed. As a 

result, the purpose of this study is to investigate how Deep 

Learning has been used to improve QoS in IoT by 

avoiding security and privacy breaches in IoT-based 

systems and assuring effective and efficient resource 

allocation and management.  

The paper is structured as follows: Section 2 provides an 

overview of Quality of Service (QoS) in IoT and deep 

learning algorithms, focusing on techniques used to 

improve QoS in IoT. It discusses challenges like network 

congestion, delays, and the need for efficient data 

processing, and how deep learning can address these 

issues. Section 3 presents a proposal based on deep 

learning for improving QoS, highlighting its use in data 

processing and feature extraction to enhance performance, 

such as improving data throughput, reducing latency, and 

stabilizing the network.  Section 4 discusses the model 

evaluation, including the parameters, dataset, and metrics 

used to assess performance, focusing on how QoS is 

measured and the metrics like speed, accuracy, and 

response time.  Section 5 presents the results, comparing 

the proposed model with existing models, and discusses 

improvements in QoS such as better throughput and lower 

latency.  The final section concludes the paper, by 

summarizing key findings, lessons learned, and 

suggesting areas for future research, along with 

recommendations for more effective application of deep 

learning to improve QoS in IoT networks. 

2 Literature review 
In the field of networking, deep learning is a powerful 

tool for improving service quality. This area relies on 

advanced techniques such as neural networks to analyze 

vast amounts of data related to traffic and network 

performance. By analyzing this data, patterns, and 

anomalies can be detected, which may indicate network 

issues or opportunities for performance enhancement. 

When it comes to traffic management, deep learning 

models can be used to predict congestion periods [7]. By 

processing historical data, these models can forecast times 

when there will be a spike in resource demand. Based on 

these predictions, resources can be dynamically 

redistributed to mitigate congestion and enhance network 

responsiveness. Additionally, deep learning can improve 

the overall performance of the network. By analyzing data 

traffic and prioritizing it, bandwidth can be managed more 

effectively. For instance, bandwidth can be allocated in a 

way that ensures critical or essential applications receive 

priority, thereby enhancing the overall user experience. 

Deep learning also plays a crucial role in threat detection 

[8]. By implementing deep learning algorithms, systems 

can recognize abnormal activities or suspicious behaviors 

that may indicate a breach or an attack. These capabilities 

help enhance network security and protect sensitive data.  

Finally, deep learning significantly improves user 

experience. By analyzing user behaviors and interactions 

with the network, services can be fine-tuned and adjusted 

to better meet users’ needs. This approach leads to 

increased customer satisfaction and loyalty, ultimately 

contributing to business success.  Accordingly, deep 

learning provides powerful tools for enhancing service 

quality in networking, contributing to more efficient, 

secure operations and an improved user experience [8]. 

The methodology of related works, their performance, 

and outcomes have been compiled in Table 1 to provide a 

concise and organized summary of previous research. The 

table focuses on the methods employed and evaluation 

criteria. 
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Table 1: Summarization table on the related works
Ref Methodology Performance/Results 

[9] • MAFENN The goal of the MAFENN algorithm and framework design is to improve the feedforward DL 

networks' or their variants' learning capabilities using straightforward data feedback. A multi-agent 

MAFENN-based equalizer (MAFENN-E) is created for wireless fading channels with inter-symbol 

interference (ISI) to confirm the viability of the MAFENN framework in wireless communications. 

Based on experimental findings, the SER performance of systems that use the quadrature phase shift 

keying (QPSK) modulation method. 

[10] • PLC-

READER 

PLC-READER, a memory attack detection and response framework for safe cyber-physical systems. 

PLC_READER comprises a fine-grained memory structure analysis approach to pinpoint the crucial 

memory data. According to experimental results, PLC-READER can identify all memory assaults with 

100% accuracy and promptly carry out the necessary emergency measures. 

[11] • OPTIMIST OPTIMIST, a transparent, distributed IDS that is well-positioned and capable of managing both high-

rate and low-rate DDoS attacks. Numerous simulation and testbed experiments demonstrate that 

OPTIMIST is the most effective method for striking a balance between DDoS detection and energy 

overhead. To classify DDoS attacks in software-defined networking (SDN)-based Industrial Internet 

of Things (IIoT) networks. 

[12] • CNN-LSTM offers a feature selection technique for identifying the most pertinent data characteristics using a hybrid 

convolutional neural network and long short-term memory (CNN-LSTM).  The suggested model 

achieves a high accuracy of 99.50% with a time cost of 0.179 ms, according to performance findings. 

[13] • CADeSH  CADeSH is a two-step collaborative anomaly detection technique that first distinguishes between 

potentially harmful and benign traffic flows using an autoencoder. Only the rare flows are then 

analyzed using clustering, which determines whether they are malicious or benign. Eight IoT sensors 

spread across many networks provide 21 days of real-world traffic data to assess the approach. The 

findings of the experiment indicate an F1 score of 0.929, an FPR of 0.014, and a macro-average area 

under the precision-recall curve of 0.841. 

    

[14] 
• TL Transfer learning (TL) is used to overcome the lack of labeled data and the dissimilarity of data 

characteristics for training in their collaborative learning framework for intrusion detection in IoT 

networks. The suggested framework can outperform the most advanced deep learning-based methods 

by over 40%, according to experiments conducted on current real-world cybersecurity datasets. 

    

[15] 
• ViFLa  ViFLa is updating DL-based models for traffic anomaly detection in IoT systems via machine 

unlearning, a method that rapidly updates machine-learning models without retraining. The technique, 

known as ViFLa, interprets each batch of training data as a virtual client in an FL framework and 

organizes them according to projected unlearning likelihood.  

    

[16] 
• FL  an intrusion detection method based on the semi-supervised FL scheme is proposed to address known 

FL issues, such as the privacy risk of having model parameters used to recover private data, the lack 

of independent and identically distributed private data, which hurts FL training, and the high 

communication overhead caused by the large model size, which impedes the solution's deployment.  

    

[17] 
• Deep 

Learning 

Approach 

They proposed a unique anomaly detection strategy based on unsupervised deep learning techniques. 

The model compares the use of Restricted Boltzmann machines as generative energy-based models to 

autoencoders as non-probabilistic algorithms to determine if Deep Learning can detect anomalies. The 

simulation results indicate around 99% anomaly detection accuracy, ensuring QoS in IoT. 

    

[18]   
• LSTM DL method for intrusion detection in IoT networks using bi-directional long short-term memory 

recurrent neural networks. Their study concentrated on the binary categorization of normal and attack 

behaviors using the Internet of Things network. With over 95% accuracy in attack detection and QoS 

in intrusion detection. 

    

[19] 
• PAD  The WMCA multi-channel face PAD database, which includes a variety of 2D and 3D assaults, is 

used to test the suggested solution. Additionally, we have conducted tests employing RGB channels 

only on the MLFP and SiW-M datasets. The usefulness of the suggested strategy is demonstrated by 

superior performance in invisible attack protocols. Publicly accessible software, data, and techniques 

are used to replicate the findings.  

    

[20] 
• RNN Introduces a Time-Series-based Recurrent Neural Network (RNN) model, utilizing the LSTM network 

and applied to the CICDDoS2019 dataset. The proposed model outperforms previous benchmark 

models, achieving the highest performance with a one-layer LSTM network in a multiclass 

classification task. The one-layer LSTM model achieves an F1-Score of 0.980, Recall of 0.975, and 

Precision of 0.988. 
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3 Proposed method 
DL offers great potential to enhance QoS in IoT 

networks and applications in the era of big data by 

enabling unique analytics. Different IoT networks require 

different QoS. However, maintaining QoS in IoT is a 

difficult task. Two areas need to be well handled to 

enforce QoS in IoTs: (1) Network and equipment security, 

which guarantees network resource security and privacy. 

(2) Verify the appropriate allocation and management of 

IoT network resources. Numerous facets of our daily 

existence, such as business, infrastructure, lifestyle, 

health, education, and the environment, might be 

revolutionized by IoT. Our lives depend on a few of these 

elements, therefore any decline in QoS might have 

catastrophic consequences.  As a result, every issue that 

might jeopardize QoS must be addressed as soon as 

possible. IoT QoS breaches happen because of inadequate 

resource management or security flaws in IoT networks 

and systems. Optimization and heuristics are examples of 

traditional resource management techniques that are 

unable to effectively learn from data and behave 

appropriately in real time. For large and distributed IoT 

networks and applications, deep learning algorithms offer 

dynamic, intelligent decision-making and autonomous 

resource management. 

Network traffic is a crucial component in today's 

network administration and management systems. Quality 

of Service (QoS) and network management both benefit 

from this information since the service being utilized 

directly affects the user's QoS needs. Because of the vast 

quantity and diversity of linked devices, Internet of Things 

(IoT) traffic will be difficult for existing network 

management and monitoring systems to handle. Figure 1 

illustrates the proposed method of work. 

 

 

 
Figure 1: Proposed method of work 

 

3.1 Preprocessing 
Preprocessing is a crucial step in any machine 

learning project as it involves preparing raw data for use 

in models. The CICIDS2017 dataset was selected because 

it offers a diverse range of cyberattacks and realistic 

simulated network traffic with well-labeled data, making 

it highly suitable for training models to detect threats and 

analyze network behavior effectively. The case of the 

CICIDS2017 dataset, which contains network traffic data, 

includes several key steps.  First, the data be loaded using 

the `pandas` library, which provides a flexible way to load 

data from CSV files into a DataFrame, a table-like 

structure. Once the data is loaded, it is important to explore 

the general structure of the dataset. This helps in 

understanding the columns, data types, and statistical 

measurements, and identifying any missing or incorrect 

data. After loading and inspecting the data, handling 

missing values becomes the next step. Some columns may 

contain missing values (like Nan), which need to be 

addressed. There are several ways to handle missing data, 

such as filling the missing values with the mean or median 

of the column or dropping the rows that contain missing 

values. 

The next step is dealing with categorical columns 

(text-based data). The CICIDS2017 dataset may include 

columns that are textual, such as protocol names. These 

columns need to be converted into numerical values so 

that machine learning models can handle them. This can 

be achieved using One-Hot Encoding or Label Encoding.  

One-Hot Encoding  converts categorical text columns into 

binary columns that represent each category as a 1 or 0, 

while) Label Encoding   ( transforms the text into numeric 

labels. Once the textual data is handled, the next step is to 

normalize the data. Normalization is the process of scaling 

data so that it falls within a certain range, such as 0 to 1. 

This step is especially important for models like LSTM or 

ConvRNN, where large values may negatively affect the 

model’s learning efficiency. A common tool for this step 
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is the  MinMaxScaler, which scales the data to a range of 

0-1. 

After the data is normalized, it must be split into 

training and testing datasets. This step is essential to 

ensure that the model is trained and tested on different data 

to get an accurate evaluation. Typically, the data is split 

into 70% for training and 30% for testing. 

Considering the size of the categories and percentages 

between the selected sample, the first two weeks of the 

OpenStack environment, and the full data, we count the 

number of items in each category in each group (the 

selected sample, the first two weeks, and the full data). 

The categories we use may include “Normal,” “Attacker,” 

“Victim,” “Suspicious,” and “Unknown,” or any other 

categories depending on the data you have.  

 

3.2 ConvRNN 
The ConvRNN model is a deep learning model that 

combines the strengths of Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), 

allowing it to process data that has both spatial and 

temporal components. In this work, ConvRNN is used to 

analyze data that contains both time-dependent (temporal) 

and spatial features, such as network traffic data or cloud 

environment data, where patterns evolve. When using 

ConvRNN in this context, the convolutional layers are 

first used to extract spatial features from the input data. 

These convolutional layers apply convolutional filters to 

detect recurring patterns in the spatial structure of the data. 

For example, if the data represents network traffic, the 

convolutional layers help identify recurring patterns such 

as the protocols used or the amount of data flowing 

through the network. This helps the model understand the 

spatial relationships in the data. 

Once the spatial features are extracted through CNN, 

these features are passed on to RNN layers, such as LSTM 

(Long Short-Term Memory). These recurrent layers are 

crucial for capturing the temporal dynamics of the data, 

meaning the relationships between events over time. The 

RNN layers allow the model to track how the spatial 

features evolve, making them capable of understanding 

how the patterns change over time. For example, if there 

is a cyber-attack on the network, the model can track 

sudden increases in traffic or abnormal changes in 

network behavior over time. 

The integration of CNN and RNN in the ConvRNN 

model allows it to leverage the strengths of both types of 

networks. The CNN layers handle the spatial features of 

the data, while the RNN layers deal with the temporal 

dependencies. This combination makes ConvRNN 

particularly powerful for tasks that require both spatial and 

temporal understanding. 

In this specific work, ConvRNN is applied to 

OpenStack data, which is a cloud environment that 

involves time-series data that changes continuously. The 

goal of using this model is to classify patterns in the 

OpenStack environment, such as cyber-attacks or 

abnormal activities within the network. By utilizing 

ConvRNN, the model can analyze the network traffic over 

time and identify patterns that indicate attacks or unusual 

behavior in the cloud environment. 

The advantage of using ConvRNN is that it 

effectively combines the ability to process spatial data 

(which requires identifying patterns in the static features 

of the data) with the ability to handle temporal data (which 

involves understanding how patterns evolve). This makes 

the model capable of detecting attack classes that might 

appear as sudden changes in the network traffic patterns 

over time, such as a normal attack or an unusual surge in 

traffic. Overall, ConvRNN is a powerful model for 

handling data with both spatial and temporal components, 

making it ideal for applications such as attack detection in 

network environments like OpenStack, where patterns 

evolve dynamically over time. 

4 Evaluation 
The simulation for the proposed method of optimal 

spectrum and power allocation was conducted on a system 

equipped with an Intel Core™ i5 processor, 7th 

generation, running at a speed of 2.60 GHz. This processor 

has seven cores, providing efficient multi-tasking 

capabilities that help accelerate the complex calculations 

required for simulation. The system operates in a dual-

boot configuration, allowing the user to switch between 

Windows 10 and Windows 8, which provides additional 

flexibility to choose the operating system best suited to the 

specific simulation and software requirements. 

The system includes 1 GB of RAM, sufficient for 

running essential simulation tasks, although it may limit 

the handling of large datasets or intensive multi-

processing operations.   MATLAB 2020b was used to 

perform the simulations and conduct necessary analyses. 

MATLAB is one of the most widely used software 

packages in engineering and scientific fields, offering a 

powerful environment for data analysis, algorithm 

development, and executing experiments that require high 

computational accuracy and flexibility in handling various 

data types. 

 

4.1 Evaluation parameters 
A confusion matrix for a multi-class classification model, 

such as one with categories like Normal, Attacker, 

Victim, Suspicious, and Unknown, shows the 

performance of the model in classifying each category. 

True Positives (TP) represent cases correctly classified 

within their respective categories, such as when 

"Normal" cases are correctly identified as "Normal." 

False Positives (FP) refer to cases that were incorrectly 

classified as a particular category, like "Attacker" cases 

wrongly classified as "Normal." False Negatives (FN) 

occur when cases are incorrectly classified into a 

different category, such as "Normal" cases mistakenly 

classified as "Attacker." True Negatives (TN) represent 

all other cases that were correctly identified as not 

belonging to the target category. The confusion matrix 

provides valuable insight into the model’s accuracy for 

each class, revealing areas where errors occur and 

helping to assess and improve the model's performance , 

Table 2 shows the confusion matrix. 
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Table 2: Confusion matrix for five categories 

 
 Predicted: 

Normal 
Predicted: 
Attacker 

Predicted: 
Victim 

Predicted: 
Suspicious 

Predicted: 
Unknown 

Actual:  

Normal TP FP FP FP FP 

Actual: 

Attacker FP TP FP FP FP 

Actual: 

Victim FP FP TP FP FP 

Actual:  

Suspicious FP FP FP TP FP 

Actual:  

Unknown FP FP FP FP TP 

Here’s an explanation of the key performance metrics 

used to evaluate a classification model, including their 

formulas and interpretations: 

 

 4.1.1 True positive rate (TPR) 

   Also known as Recall or Sensitivity, this metric 

measures the proportion of actual positive cases that are 

correctly identified by the model. It reflects how well the 

model can detect positive instances. 

 

(1) TPR =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

4.1.2 False positive rate (FPR) 

   This metric measures the proportion of actual 

negative cases that are incorrectly classified as positive by 

the model. It shows the likelihood of a Type I error 

(incorrectly classifying a negative instance as positive). 

 

(2) FPR =  
𝐹𝑃

𝐹𝑃+𝐹𝑁
 

 

4.1.3 False negative rate (FNR) 

   This metric measures the proportion of actual 

positive cases that are incorrectly classified as negative. It 

shows the likelihood of a Type II error (incorrectly 

classifying a positive instance as negative). 

    

(3) FNR =  
𝐹𝑁

𝑇𝑃+𝐹𝑁
 

 4.1.4 Classification rate (CR) or accuracy 

   Accuracy is the metric that measures the overall 

correctness of the model. It is calculated as the ratio of 

correctly predicted instances to the total number of 

instances. 

   CR (Accuracy) gives a general sense of how well 

the model is performing, but it does not always reflect the 

model's performance in classifying individual classes, 

especially in imbalanced datasets. 

 

(4) 𝐶𝑅 =Accuracy  =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

4.1.5 Receiver operating characteristic curve (ROC) 

   The ROC curve is a graphical representation that 

shows the tradeoff between the True Positive Rate (TPR) 

and False Positive Rate (FPR) at various thresholds. It 

helps evaluate the model’s ability to distinguish between 

classes. 

The X-axis represents the False Positive Rate (FPR). 

The Y-axis represents the True Positive Rate (TPR). 

These metrics help evaluate a model's performance in 

detail. TPR, FPR, and FNR provide insights into correct 

and incorrect classifications, while CR (Accuracy)  

 

4.2 Research database 
Child Table 3 is a dataset used for studying and 

analyzing network security attacks. It contains 

information that helps classify network activities and 

identify the type of attack or suspicious behavior. The 

table typically includes data such as the time of the event, 

source and destination IP addresses, the protocol used, the 

event label (such as "Normal," "Attacker," "Victim," or 

"Suspicious"), and the duration of the connection between 

devices. The CLDDS table is used to train artificial 

intelligence or machine learning models in Intrusion 

Detection Systems (IDS) and to analyze security patterns 

in networks. 

External Server and OpenStack are two subfolders of 

the traffic folder. Several CSV files containing the 

collected ow-based network traffic in unidirectional 

NetFlow format may be found in these subfolders. These 

sub-folders le names are created as follows: Every file 

begins with CIDDS-001. Trac is identified as internal 

origin when it is logged in the OpenStack environment. 

The external server's trace is identified as having an 

external origin. Information about when the network 

traffic was recorded (week 1, week 2, week 3, and week 

4) is provided in the last section (period). The CIDDS-001 

data collection, which includes about 32 million flows, 

was collected over four weeks. In the OpenStack context, 

over 31 million flows were therefore recorded. At the 

remote server, about 0.7 million flows were recorded.  

In this paper, we focus on Class labels (normal, 

attacker, victim, suspicious, and unknown) for the first and 

second weeks of OpenStack. 
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Table 3: Database specifications [21] 

Feature’s name Description of the feature Number 

Src IP Source IP address 1 

Src Port Source port 2 

Dest IP Destination IP address 3 

Dest Port Destination port 4 

Proto Transport protocol (eg, ICMP, TCP, or UDP) 5 

Date first seen The start time stream was first observed 6 

Duration Duration of flow 7 

Bytes The number of bytes sent 8 

Packets The number of packages sent 9 

Flags or append all TCP flags 10 

Tos Type of service 11 

Flows Not specified 12 

Class Class label (normal, attacker, victim, suspicious and unknown) 13 

AttackType Attack type (PortScan, DoS, Bruteforce, PingScan) 14 

AttackID 
A unique attack ID allows attacks that belong to the same class to have 

the same attack ID 

15 

AttackDescription 
Provides more information about configured attack parameters (eg, 

number of password-guessing attempts for SSH-Brute-Force attacks) 

16 

4.3 Parameter setting 
To design a ConvRNN model for attack classification 

using the CLDDS dataset, we need architecture that 

leverages convolutional layers for spatial feature 

extraction, followed by recurrent neural network (RNN) 

layers to capture temporal sequences, and finally, dense 

layers for final classification. 

We start with one sequential convolutional layer, 

which is responsible for extracting the basic spatial 

features from the data. In the convolutional layer, we use 

32 filters with a kernel size of (3x3). This layer serves as 

a foundation, capturing simple, fundamental features in 

the data such as repeated patterns. After this layer, we 

apply a Tanh activation function, commonly used in 

neural networks to introduce non-linearity, which allows 

the model to learn complex relationships in the data. Next, 

we add a Max Pooling layer with a (2x2) pool size, which 

reduces the data size and number of parameters, speeding 

up training and avoiding excessive complexity. 

Once we have extracted the spatial features, we move 

on to the recurrent layers. Here, we use one LSTM layer 

to analyze the temporal sequences of the extracted 

features. RNN layers are highly suitable for tasks 

involving time sequences, like detecting attack classes. In 

the LSTM layer, we use 64 units (or cells), which are 

responsible for capturing the temporal information from 

the data. After this layer, we add a Dropout layer with a 

rate of 0.3 to prevent overfitting and improve the model’s 

generalization. 

After completing the recurrent layers, we pass the data 

to a two-hidden Dense layer with 64. This dense layer 

aggregates the features extracted from previous layers and 

prepares them for the final output layer. Finally, we add 

an output Dense layer with 5 units, representing the target 

classes: "normal," "attacker," "victim," "suspicious," and 

"unknown." We use the SoftMax activation function in 

this final layer to produce probabilities for each class, 

allowing the model to classify each sample based on the 

highest probability.  Table 4 shows the architecture of the 

ConvRNN model for attack classification with its main 

details. 

 

 

 

 

Table 4: ConvRNN model architecture for attack classification 

Layer Type Parameters Purpose 

Input Layer - Input shape: based on feature size and sequence length 

Conv2D Filters: 32, Kernel Size: 

(3,3), Activation: Tanh 

Extract basic spatial features, capturing simple patterns 

MaxPooling2D Pool Size: (2,2) Reduce feature size, parameters, and computational cost 

LSTM Units: 64 Capture temporal relationships within extracted features 

Dropout Rate: 0.3 Prevent overfitting and improve generalization 

Dense (Hidden) Units: 64 Aggregate features from previous layers for final output 

prep 

Output Dense Units: 5, Activation: 

Softmax 

Produce class probabilities for 'normal', 'attacker', 

'victim', 'suspicious', and 'unknown' 
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   In the ConvRNN model, cross-entropy is used as both 

the objective and the loss function. Cross-entropy is 

commonly used for classification tasks because it 

measures the difference between the actual distribution of 

labels and the predicted distribution, helping to improve 

the model's prediction accuracy. The model is trained 

using the  Adam optimizer, which is widely used in 

machine learning because it adapts the learning rate for 

each parameter individually, making the optimization 

process more efficient. The default learning rate for the  

Adam optimizer is set to 0.001, which works well for most 

tasks.  The number of epochs is set to 50, meaning the 

model will perform 50 full passes over the training data. 

The batch size is set to 1024, meaning the model updates 

its weight based on 1024 samples in each iteration. This 

large batch size helps stabilize gradient estimation during 

training but requires significant memory resources.  

Table 5 shows the training settings of the ConvRNN 

model.

 

Table 5: ConvRNN model training settings 

Parameter Value Description 

Loss Function Cross-

Entropy 

Measures the difference between actual and predicted label 

distributions to improve classification accuracy 

Optimizer Adam Adapts the learning rate for each parameter to improve 

optimization efficiency 

Learning Rate 0.001 Default rate for the Adam optimizer, suitable for most tasks 

Epochs 50 The model will perform 50 full passes over the training data 

Batch Size 1024 The large batch size stabilizes gradient estimation, and 

requires more memory resources 

 
 

5   Results 
Examining the results of the trained models 

(ConvRNN and LSTM) in detail provides insights into 

why ConvRNN performed better in this case. First, the 

confusion matrix is a primary tool for understanding how 

well each model classified the data. In the case of 

ConvRNN, in Figure 2 the matrix shows that the model 

classified the categories more accurately, with values on 

the diagonal representing correct classifications and off-

diagonal values indicating misclassifications. If 

ConvRNN has a higher number of correct classifications 

with fewer errors than LSTM, this indicates that 

ConvRNN was better at understanding and categorizing 

the data. 

Next, the classification report, containing precision, 

recall, F1-score, and overall accuracy, provides a broader 

view of model performance. Precision reflects the model’s 

ability to classify positive samples accurately, while recall 

(sensitivity) measures the model's ability to detect positive 

samples. Here, if ConvRNN exhibits higher precision and 

recall, the model could classify samples accurately 

without confusing them with other classes. Additionally, 

the F1-score a harmonic means of precision and recall 

highlights the balance between these two metrics. If 

ConvRNN achieves higher F1 scores, it suggests that it 

balanced precision and recall more effectively in 

classification. 

  
Figure 2: Comparison of the two models Precision, Recall, F1 Score 

 

\ 
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The ROC curve (Receiver Operating Characteristic), 

in Figure 3 is valuable for assessing how well each model 

distinguishes between different classes. TPR (True 

Positive Rate) and FPR (False Positive Rate) are used to 

plot this curve. If ConvRNN achieves a more favorable 

ROC curve compared to LSTM, it indicates that 

ConvRNN can distinguish between categories more 

accurately, as shown by a higher AUC (Area Under the 

Curve), which summarizes the model's overall 

classification capability. 

 

 

 
 

 

 

The comparison in figure 4 of results between 

ConvRNN and LSTM for metrics such as True Positive 

Rate (TPR), False Positive Rate (FPR), False Negative 

Rate (FNR), and overall Accuracy demonstrates a clear 

advantage for the ConvRNN model. Regarding TPR, 

which measures the percentage of correctly identified 

positive cases, ConvRNN achieved a higher rate, 

indicating its efficiency in accurately detecting real attacks 

within the data compared to LSTM. This advantage is due 

to ConvRNN's ability to recognize complex patterns 

within network data, where its convolutional and recurrent 

layers enhance its sensitivity to true positive cases.  For 

FPR, which measures the rate of negative cases incorrectly 

classified as positive, ConvRNN exhibited a lower rate 

than LSTM. This reduction in FPR signifies ConvRNN's 

capacity to minimize false alarms, thereby improving the 

classification accuracy and reliability of the model in 

monitoring network traffic. This is essential in reducing 

the likelihood of benign network activity being flagged as 

an attack, increasing the model's trustworthiness.  

Similarly, FNR, reflecting the number of true positive 

cases that went undetected, was also lower in ConvRNN 

compared to LSTM. This lower FNR highlights 

ConvRNN's superior ability to capture a wider range of 

attack patterns without overlooking them, further 

showcasing its strength in handling various attack 

scenarios within the data. 

In terms of overall Accuracy, ConvRNN achieved 

significantly higher results than LSTM. This accuracy 

metric reflects the model's ability to correctly classify both 

positive and negative cases, and ConvRNN’s 

improvement in TPR while reducing FPR and FNR 

collectively contributed to this superior performance. 

Consequently, ConvRNN has proven to be a more reliable 

and effective model for network attack classification, 

offering high accuracy, reduced false alarms, and better 

detection of actual threats.

 

Figure 3: Comparison of the two models ROC Curve 
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The loss comparison between the ConvRNN and 

LSTM models reveals that ConvRNN consistently 

outperformed LSTM in both training and testing phases, 

as shown in figure 5. ConvRNN achieved lower training 

and testing loss, indicating that it was more effective at 

fitting the data and generalizing to new, unseen data. This 

lower loss demonstrates ConvRNN's ability to capture 

both spatial and temporal patterns in the network data, 

leading to more accurate predictions. In contrast, although 

LSTM showed some improvement in reducing loss during 

training, its performance on testing data was less robust, 

resulting in higher loss. This reinforces ConvRNN's 

superiority in minimizing errors and providing more 

reliable results in classifying network attack patterns.

 

 
Figure 5: Loss comparison between the ConvRNN, LSTM 

 

The comparison of training and prediction time 

between ConvRNN and LSTM revealed that ConvRNN, 

due to its more complex architecture, required slightly 

longer training times than LSTM. The ConvRNN model 

combines convolutional and recurrent layers, which 

demand more computational resources, thus increasing 

training time. However, regarding prediction time, both  

 

 

models performed similarly, with LSTM being marginally 

faster due to its simpler architecture. Despite the longer 

training time, ConvRNN demonstrated significantly 

higher classification accuracy, showing that the extra time 

spent on training was worthwhile for improved results in 

classifying network attacks. 

Figure 6 shows the training time, and Figure 7 shows 

the prediction time.

 

Figure 4: Comparison of the two TPR, FPR, FNR, Accuracy 
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In summary, ConvRNN outperformed LSTM due to 

its effective combination of convolutional and recurrent 

layers, which allow it to learn more quickly, identify local 

patterns accurately, and improve consistently across 

epochs. This combination makes ConvRNN especially 

well-suited to this task, allowing it to classify more 

accurately than LSTM in this context. 

6   Conclusions 
The ConvRNN model demonstrates superiority in 

classifying network attacks and improving service quality 

by effectively capturing spatial and temporal patterns. By 

integrating convolutional layers to extract spatial features 

and LSTM layers to process temporal sequences, 

ConvRNN excels in analyzing complex, multi-

dimensional data. Although its intricate structure 

necessitates longer training times, the model achieves 

higher accuracy and surpasses LSTM in crucial 

performance metrics, such as true positive rate and error 

reduction. In contrast, LSTM, which focuses solely on 

temporal patterns, is less effective when dealing with data 

that incorporates spatial characteristics. Simulation results 

confirm that ConvRNN outperforms LSTM across various 

measures, including precision, recall, F1 score, ROC 

curve, true positive rate, false positive rate, false negative 

rate, and overall accuracy. 
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