
https://doi.org/10.31449/inf.v49i2.7637 Informatica 49 (2025) 237–248 237

Enhancing Network QoS via Attack Classification Using

Convolutional Recurrent Neural Networks

Jawad Alkenani*, Mohsen Nickray

Department of Computer Engineering and Information Technology, University of Qom, Qom, Iran

E-mail: Jawadalkenani@sa-uc.edu.iq 1, m.nickray@qom.ac.ir 2
*Coresponding author

Keywords convolutional neural networks, recurrent neural networks, attack class, anomaly detection

Received: November 21, 2024

Cyber-attacks and intrusions in networks refer to malicious activities that breach or damage data. These

activities include direct attacks, such as denial-of-service (DoS) attacks, which overwhelm servers with

requests to disrupt services. Intrusion involves unauthorized access to systems by exploiting security

vulnerabilities. Malware threats like viruses and worms infect systems to steal information. Additionally,

social engineering techniques deceive individuals into revealing sensitive information, while phishing

relies on fake messages or websites to gather user data. To prevent these attacks, it is necessary to

implement effective security strategies, such as knowing the attack class to protect the network and data.

In this paper, ConvRNN (Convolutional Recurrent Neural Network) is used as a large-scale advanced

model between Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to process

data containing spatial and temporal information. In addition, ConvRNN generates magical features

from data through convolutional layers and serial convolution by RNN, which creates the model's ability

to understand complexity, especially in security and surveillance agreements. The simulation results show

that the proposed model outperforms LSTM, including precision, recall, F1 score, ROC curve, TPR, FPR,

FNR, and accuracy.

Povzetek: Prispevek predlaga izboljšano klasifikacijo omrežnih napadov z uporabo konvolucijskih

rekurentnih nevronskih mrež, s poudarkom na izboljšanju kakovosti storitev (QoS) in odkrivanju

varnostnih groženj.

1 Introduction
Cyber-attacks and intrusions pose significant threats

to the integrity, confidentiality, and availability of data in

networks. Various types of attacks exist, including denial-

of-service (DoS) attacks, where malicious actors

overwhelm a server with excessive requests, disrupting

services for legitimate users. Intrusions involve

unauthorized system access by exploiting security

vulnerabilities, allowing attackers to steal, alter, or delete

data. Malware is another major threat, encompassing

different types of malicious software such as viruses,

worms, ransomware, and Trojan horses. Viruses attach to

legitimate files and spread when shared, while worms

replicate themselves across networks independently.

Ransomware encrypts files and demands payment for

decryption, and Trojan horses disguise themselves as

legitimate software to carry out hidden malicious activities

[1].

Social engineering techniques manipulate individuals

into revealing confidential information, often through

impersonation or pretexting. Phishing involves fraudulent

emails or websites that deceive users into providing

sensitive information, with spear-phishing targeting

specific individuals or organizations. Man-in-the-middle

(MitM) attacks occur when an attacker intercepts

communication between two parties, allowing data theft

or manipulation, particularly in unsecured Wi-Fi networks

[2]. To prevent these attacks, organizations can implement

firewalls that filter incoming and outgoing traffic based on

security rules, blocking potentially harmful traffic. Data

encryption ensures that intercepted information remains

unreadable without proper decryption keys. Regular

software updates are crucial for patching vulnerabilities

that attackers may exploit, while continuous network

monitoring helps identify unusual activities that could

indicate an attack. Educating employees about

cybersecurity best practices and the importance of strong

passwords can significantly reduce the risk of successful

attacks. Multi-factor authentication (MFA) adds an extra

layer of security by requiring additional verification steps

beyond just a password. Finally, having a well-defined

incident response plan ensures organizations can respond

quickly and effectively to security breaches, minimizing

potential damage. Understanding the various cyber-attack

types and implementing comprehensive security measures

are essential for protecting networks and sensitive

information [3].

This group related to ConvRNN (Convolutional

Recurrent Neural Network) includes a variety of

applications that take advantage of its capabilities in

processing data with temporal and spatial dimensions. In

the field of real-time video analysis, ConvRNN can be

used to detect abnormal control or suspicious activation,

mailto:Jawadalkenani@sa-uc.edu.iq
mailto:m.nickray@qom.ac.ir

238 Informatica 49 (2025) 237–248 J. Alkenani et al.

which contributes to the activation of security

surveillance. ConvRNN is also relied upon in network

detection guidance in networks, where it helps to analyze

network traffic data and abnormal people that may

indicate the most important features of the network. In

addition, ConvRNN applications have become computer

vision, such as object recognition and motion tracking,

which enables later understanding of behavior in the view.

There are also studies on the development of intelligent

systems using ConvRNN, where the accuracy of detection

and analysis in real-time is enhanced. Finally, ConvRNN

is used in the analysis of complex temporal data, such as

weather forecasting or financial feature analysis, which

shows the potential to handle complexity in various fields

[4].

ConvRNN combines convolutional layers with

recurrent layers, making it effective for processing data

with both spatial and temporal dimensions. This

architecture can significantly enhance Quality of Service

(QoS) across various applications. In video surveillance,

ConvRNNs analyze video streams by capturing spatial

features and temporal dependencies, improving real-time

object detection and tracking. For traffic prediction, they

forecast traffic patterns by analyzing spatial data from

road networks alongside historical traffic conditions,

helping manage traffic and reduce congestion [5]. In

speech recognition, ConvRNNs improves the accuracy of

systems by effectively processing audio signals and

enhancing user experiences in applications like virtual

assistants. For network traffic analysis, they predict

network performance and detect anomalies by examining

traffic patterns over time, optimizing bandwidth usage,

and maintaining service quality. In healthcare monitoring,

ConvRNNs analyze time-series data from sensors in

wearable devices to track health metrics, improving the

reliability and responsiveness of healthcare services. The

benefits of using ConvRNNs include enhanced feature

extraction, where convolutional layers excel at capturing

spatial features while recurrent layers handle temporal

dependencies, resulting in richer data representations.

They also achieve higher accuracy in predictions and

classifications by capturing both spatial and temporal

dynamics. Additionally, their architecture is well-suited

for real-time applications, providing timely responses in

critical systems [6]. In summary, ConvRNNs play a

crucial role in improving QoS across various domains by

effectively integrating spatial and temporal information,

leading to better performance and increased user

satisfaction.

In this research, we propose how DL approaches have

been used to improve QoS in IoT. According to the articles

evaluated, QoS in IoT-based systems is violated when the

security and privacy of the systems are jeopardized or

when IoT resources are not adequately managed. As a

result, the purpose of this study is to investigate how Deep

Learning has been used to improve QoS in IoT by

avoiding security and privacy breaches in IoT-based

systems and assuring effective and efficient resource

allocation and management.

The paper is structured as follows: Section 2 provides an

overview of Quality of Service (QoS) in IoT and deep

learning algorithms, focusing on techniques used to

improve QoS in IoT. It discusses challenges like network

congestion, delays, and the need for efficient data

processing, and how deep learning can address these

issues. Section 3 presents a proposal based on deep

learning for improving QoS, highlighting its use in data

processing and feature extraction to enhance performance,

such as improving data throughput, reducing latency, and

stabilizing the network. Section 4 discusses the model

evaluation, including the parameters, dataset, and metrics

used to assess performance, focusing on how QoS is

measured and the metrics like speed, accuracy, and

response time. Section 5 presents the results, comparing

the proposed model with existing models, and discusses

improvements in QoS such as better throughput and lower

latency. The final section concludes the paper, by

summarizing key findings, lessons learned, and

suggesting areas for future research, along with

recommendations for more effective application of deep

learning to improve QoS in IoT networks.

2 Literature review
In the field of networking, deep learning is a powerful

tool for improving service quality. This area relies on

advanced techniques such as neural networks to analyze

vast amounts of data related to traffic and network

performance. By analyzing this data, patterns, and

anomalies can be detected, which may indicate network

issues or opportunities for performance enhancement.

When it comes to traffic management, deep learning

models can be used to predict congestion periods [7]. By

processing historical data, these models can forecast times

when there will be a spike in resource demand. Based on

these predictions, resources can be dynamically

redistributed to mitigate congestion and enhance network

responsiveness. Additionally, deep learning can improve

the overall performance of the network. By analyzing data

traffic and prioritizing it, bandwidth can be managed more

effectively. For instance, bandwidth can be allocated in a

way that ensures critical or essential applications receive

priority, thereby enhancing the overall user experience.

Deep learning also plays a crucial role in threat detection

[8]. By implementing deep learning algorithms, systems

can recognize abnormal activities or suspicious behaviors

that may indicate a breach or an attack. These capabilities

help enhance network security and protect sensitive data.

Finally, deep learning significantly improves user

experience. By analyzing user behaviors and interactions

with the network, services can be fine-tuned and adjusted

to better meet users’ needs. This approach leads to

increased customer satisfaction and loyalty, ultimately

contributing to business success. Accordingly, deep

learning provides powerful tools for enhancing service

quality in networking, contributing to more efficient,

secure operations and an improved user experience [8].

The methodology of related works, their performance,

and outcomes have been compiled in Table 1 to provide a

concise and organized summary of previous research. The

table focuses on the methods employed and evaluation

criteria.

Enhancing Network QoS via Attack Classification Using… Informatica 49 (2025) 237–248 239

Table 1: Summarization table on the related works
Ref Methodology Performance/Results

[9] • MAFENN The goal of the MAFENN algorithm and framework design is to improve the feedforward DL

networks' or their variants' learning capabilities using straightforward data feedback. A multi-agent

MAFENN-based equalizer (MAFENN-E) is created for wireless fading channels with inter-symbol

interference (ISI) to confirm the viability of the MAFENN framework in wireless communications.

Based on experimental findings, the SER performance of systems that use the quadrature phase shift

keying (QPSK) modulation method.

[10] • PLC-

READER

PLC-READER, a memory attack detection and response framework for safe cyber-physical systems.

PLC_READER comprises a fine-grained memory structure analysis approach to pinpoint the crucial

memory data. According to experimental results, PLC-READER can identify all memory assaults with

100% accuracy and promptly carry out the necessary emergency measures.

[11] • OPTIMIST OPTIMIST, a transparent, distributed IDS that is well-positioned and capable of managing both high-

rate and low-rate DDoS attacks. Numerous simulation and testbed experiments demonstrate that

OPTIMIST is the most effective method for striking a balance between DDoS detection and energy

overhead. To classify DDoS attacks in software-defined networking (SDN)-based Industrial Internet

of Things (IIoT) networks.

[12] • CNN-LSTM offers a feature selection technique for identifying the most pertinent data characteristics using a hybrid

convolutional neural network and long short-term memory (CNN-LSTM). The suggested model

achieves a high accuracy of 99.50% with a time cost of 0.179 ms, according to performance findings.

[13] • CADeSH CADeSH is a two-step collaborative anomaly detection technique that first distinguishes between

potentially harmful and benign traffic flows using an autoencoder. Only the rare flows are then

analyzed using clustering, which determines whether they are malicious or benign. Eight IoT sensors

spread across many networks provide 21 days of real-world traffic data to assess the approach. The

findings of the experiment indicate an F1 score of 0.929, an FPR of 0.014, and a macro-average area

under the precision-recall curve of 0.841.

[14]
• TL Transfer learning (TL) is used to overcome the lack of labeled data and the dissimilarity of data

characteristics for training in their collaborative learning framework for intrusion detection in IoT

networks. The suggested framework can outperform the most advanced deep learning-based methods

by over 40%, according to experiments conducted on current real-world cybersecurity datasets.

[15]
• ViFLa ViFLa is updating DL-based models for traffic anomaly detection in IoT systems via machine

unlearning, a method that rapidly updates machine-learning models without retraining. The technique,

known as ViFLa, interprets each batch of training data as a virtual client in an FL framework and

organizes them according to projected unlearning likelihood.

[16]
• FL an intrusion detection method based on the semi-supervised FL scheme is proposed to address known

FL issues, such as the privacy risk of having model parameters used to recover private data, the lack

of independent and identically distributed private data, which hurts FL training, and the high

communication overhead caused by the large model size, which impedes the solution's deployment.

[17]
• Deep

Learning

Approach

They proposed a unique anomaly detection strategy based on unsupervised deep learning techniques.

The model compares the use of Restricted Boltzmann machines as generative energy-based models to

autoencoders as non-probabilistic algorithms to determine if Deep Learning can detect anomalies. The

simulation results indicate around 99% anomaly detection accuracy, ensuring QoS in IoT.

[18]
• LSTM DL method for intrusion detection in IoT networks using bi-directional long short-term memory

recurrent neural networks. Their study concentrated on the binary categorization of normal and attack

behaviors using the Internet of Things network. With over 95% accuracy in attack detection and QoS

in intrusion detection.

[19]
• PAD The WMCA multi-channel face PAD database, which includes a variety of 2D and 3D assaults, is

used to test the suggested solution. Additionally, we have conducted tests employing RGB channels

only on the MLFP and SiW-M datasets. The usefulness of the suggested strategy is demonstrated by

superior performance in invisible attack protocols. Publicly accessible software, data, and techniques

are used to replicate the findings.

[20]
• RNN Introduces a Time-Series-based Recurrent Neural Network (RNN) model, utilizing the LSTM network

and applied to the CICDDoS2019 dataset. The proposed model outperforms previous benchmark

models, achieving the highest performance with a one-layer LSTM network in a multiclass

classification task. The one-layer LSTM model achieves an F1-Score of 0.980, Recall of 0.975, and

Precision of 0.988.

240 Informatica 49 (2025) 237–248 J. Alkenani et al.

3 Proposed method
DL offers great potential to enhance QoS in IoT

networks and applications in the era of big data by

enabling unique analytics. Different IoT networks require

different QoS. However, maintaining QoS in IoT is a

difficult task. Two areas need to be well handled to

enforce QoS in IoTs: (1) Network and equipment security,

which guarantees network resource security and privacy.

(2) Verify the appropriate allocation and management of

IoT network resources. Numerous facets of our daily

existence, such as business, infrastructure, lifestyle,

health, education, and the environment, might be

revolutionized by IoT. Our lives depend on a few of these

elements, therefore any decline in QoS might have

catastrophic consequences. As a result, every issue that

might jeopardize QoS must be addressed as soon as

possible. IoT QoS breaches happen because of inadequate

resource management or security flaws in IoT networks

and systems. Optimization and heuristics are examples of

traditional resource management techniques that are

unable to effectively learn from data and behave

appropriately in real time. For large and distributed IoT

networks and applications, deep learning algorithms offer

dynamic, intelligent decision-making and autonomous

resource management.

Network traffic is a crucial component in today's

network administration and management systems. Quality

of Service (QoS) and network management both benefit

from this information since the service being utilized

directly affects the user's QoS needs. Because of the vast

quantity and diversity of linked devices, Internet of Things

(IoT) traffic will be difficult for existing network

management and monitoring systems to handle. Figure 1

illustrates the proposed method of work.

Figure 1: Proposed method of work

3.1 Preprocessing
Preprocessing is a crucial step in any machine

learning project as it involves preparing raw data for use

in models. The CICIDS2017 dataset was selected because

it offers a diverse range of cyberattacks and realistic

simulated network traffic with well-labeled data, making

it highly suitable for training models to detect threats and

analyze network behavior effectively. The case of the

CICIDS2017 dataset, which contains network traffic data,

includes several key steps. First, the data be loaded using

the `pandas` library, which provides a flexible way to load

data from CSV files into a DataFrame, a table-like

structure. Once the data is loaded, it is important to explore

the general structure of the dataset. This helps in

understanding the columns, data types, and statistical

measurements, and identifying any missing or incorrect

data. After loading and inspecting the data, handling

missing values becomes the next step. Some columns may

contain missing values (like Nan), which need to be

addressed. There are several ways to handle missing data,

such as filling the missing values with the mean or median

of the column or dropping the rows that contain missing

values.

The next step is dealing with categorical columns

(text-based data). The CICIDS2017 dataset may include

columns that are textual, such as protocol names. These

columns need to be converted into numerical values so

that machine learning models can handle them. This can

be achieved using One-Hot Encoding or Label Encoding.

One-Hot Encoding converts categorical text columns into

binary columns that represent each category as a 1 or 0,

while) Label Encoding (transforms the text into numeric

labels. Once the textual data is handled, the next step is to

normalize the data. Normalization is the process of scaling

data so that it falls within a certain range, such as 0 to 1.

This step is especially important for models like LSTM or

ConvRNN, where large values may negatively affect the

model’s learning efficiency. A common tool for this step

Enhancing Network QoS via Attack Classification Using… Informatica 49 (2025) 237–248 241

is the MinMaxScaler, which scales the data to a range of

0-1.

After the data is normalized, it must be split into

training and testing datasets. This step is essential to

ensure that the model is trained and tested on different data

to get an accurate evaluation. Typically, the data is split

into 70% for training and 30% for testing.

Considering the size of the categories and percentages

between the selected sample, the first two weeks of the

OpenStack environment, and the full data, we count the

number of items in each category in each group (the

selected sample, the first two weeks, and the full data).

The categories we use may include “Normal,” “Attacker,”

“Victim,” “Suspicious,” and “Unknown,” or any other

categories depending on the data you have.

3.2 ConvRNN
The ConvRNN model is a deep learning model that

combines the strengths of Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs),

allowing it to process data that has both spatial and

temporal components. In this work, ConvRNN is used to

analyze data that contains both time-dependent (temporal)

and spatial features, such as network traffic data or cloud

environment data, where patterns evolve. When using

ConvRNN in this context, the convolutional layers are

first used to extract spatial features from the input data.

These convolutional layers apply convolutional filters to

detect recurring patterns in the spatial structure of the data.

For example, if the data represents network traffic, the

convolutional layers help identify recurring patterns such

as the protocols used or the amount of data flowing

through the network. This helps the model understand the

spatial relationships in the data.

Once the spatial features are extracted through CNN,

these features are passed on to RNN layers, such as LSTM

(Long Short-Term Memory). These recurrent layers are

crucial for capturing the temporal dynamics of the data,

meaning the relationships between events over time. The

RNN layers allow the model to track how the spatial

features evolve, making them capable of understanding

how the patterns change over time. For example, if there

is a cyber-attack on the network, the model can track

sudden increases in traffic or abnormal changes in

network behavior over time.

The integration of CNN and RNN in the ConvRNN

model allows it to leverage the strengths of both types of

networks. The CNN layers handle the spatial features of

the data, while the RNN layers deal with the temporal

dependencies. This combination makes ConvRNN

particularly powerful for tasks that require both spatial and

temporal understanding.

In this specific work, ConvRNN is applied to

OpenStack data, which is a cloud environment that

involves time-series data that changes continuously. The

goal of using this model is to classify patterns in the

OpenStack environment, such as cyber-attacks or

abnormal activities within the network. By utilizing

ConvRNN, the model can analyze the network traffic over

time and identify patterns that indicate attacks or unusual

behavior in the cloud environment.

The advantage of using ConvRNN is that it

effectively combines the ability to process spatial data

(which requires identifying patterns in the static features

of the data) with the ability to handle temporal data (which

involves understanding how patterns evolve). This makes

the model capable of detecting attack classes that might

appear as sudden changes in the network traffic patterns

over time, such as a normal attack or an unusual surge in

traffic. Overall, ConvRNN is a powerful model for

handling data with both spatial and temporal components,

making it ideal for applications such as attack detection in

network environments like OpenStack, where patterns

evolve dynamically over time.

4 Evaluation
The simulation for the proposed method of optimal

spectrum and power allocation was conducted on a system

equipped with an Intel Core™ i5 processor, 7th

generation, running at a speed of 2.60 GHz. This processor

has seven cores, providing efficient multi-tasking

capabilities that help accelerate the complex calculations

required for simulation. The system operates in a dual-

boot configuration, allowing the user to switch between

Windows 10 and Windows 8, which provides additional

flexibility to choose the operating system best suited to the

specific simulation and software requirements.

The system includes 1 GB of RAM, sufficient for

running essential simulation tasks, although it may limit

the handling of large datasets or intensive multi-

processing operations. MATLAB 2020b was used to

perform the simulations and conduct necessary analyses.

MATLAB is one of the most widely used software

packages in engineering and scientific fields, offering a

powerful environment for data analysis, algorithm

development, and executing experiments that require high

computational accuracy and flexibility in handling various

data types.

4.1 Evaluation parameters
A confusion matrix for a multi-class classification model,

such as one with categories like Normal, Attacker,

Victim, Suspicious, and Unknown, shows the

performance of the model in classifying each category.

True Positives (TP) represent cases correctly classified

within their respective categories, such as when

"Normal" cases are correctly identified as "Normal."

False Positives (FP) refer to cases that were incorrectly

classified as a particular category, like "Attacker" cases

wrongly classified as "Normal." False Negatives (FN)

occur when cases are incorrectly classified into a

different category, such as "Normal" cases mistakenly

classified as "Attacker." True Negatives (TN) represent

all other cases that were correctly identified as not

belonging to the target category. The confusion matrix

provides valuable insight into the model’s accuracy for

each class, revealing areas where errors occur and

helping to assess and improve the model's performance ,

Table 2 shows the confusion matrix.

242 Informatica 49 (2025) 237–248 J. Alkenani et al.

Table 2: Confusion matrix for five categories

 Predicted:

Normal
Predicted:
Attacker

Predicted:
Victim

Predicted:
Suspicious

Predicted:
Unknown

Actual:

Normal TP FP FP FP FP

Actual:

Attacker FP TP FP FP FP

Actual:

Victim FP FP TP FP FP

Actual:

Suspicious FP FP FP TP FP

Actual:

Unknown FP FP FP FP TP

Here’s an explanation of the key performance metrics

used to evaluate a classification model, including their

formulas and interpretations:

 4.1.1 True positive rate (TPR)

 Also known as Recall or Sensitivity, this metric

measures the proportion of actual positive cases that are

correctly identified by the model. It reflects how well the

model can detect positive instances.

(1) TPR =
𝑇𝑃

𝑇𝑃+𝐹𝑁

4.1.2 False positive rate (FPR)

 This metric measures the proportion of actual

negative cases that are incorrectly classified as positive by

the model. It shows the likelihood of a Type I error

(incorrectly classifying a negative instance as positive).

(2) FPR =
𝐹𝑃

𝐹𝑃+𝐹𝑁

4.1.3 False negative rate (FNR)

 This metric measures the proportion of actual

positive cases that are incorrectly classified as negative. It

shows the likelihood of a Type II error (incorrectly

classifying a positive instance as negative).

(3) FNR =
𝐹𝑁

𝑇𝑃+𝐹𝑁

 4.1.4 Classification rate (CR) or accuracy

 Accuracy is the metric that measures the overall

correctness of the model. It is calculated as the ratio of

correctly predicted instances to the total number of

instances.

 CR (Accuracy) gives a general sense of how well

the model is performing, but it does not always reflect the

model's performance in classifying individual classes,

especially in imbalanced datasets.

(4) 𝐶𝑅 =Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

4.1.5 Receiver operating characteristic curve (ROC)

 The ROC curve is a graphical representation that

shows the tradeoff between the True Positive Rate (TPR)

and False Positive Rate (FPR) at various thresholds. It

helps evaluate the model’s ability to distinguish between

classes.

The X-axis represents the False Positive Rate (FPR).

The Y-axis represents the True Positive Rate (TPR).

These metrics help evaluate a model's performance in

detail. TPR, FPR, and FNR provide insights into correct

and incorrect classifications, while CR (Accuracy)

4.2 Research database
Child Table 3 is a dataset used for studying and

analyzing network security attacks. It contains

information that helps classify network activities and

identify the type of attack or suspicious behavior. The

table typically includes data such as the time of the event,

source and destination IP addresses, the protocol used, the

event label (such as "Normal," "Attacker," "Victim," or

"Suspicious"), and the duration of the connection between

devices. The CLDDS table is used to train artificial

intelligence or machine learning models in Intrusion

Detection Systems (IDS) and to analyze security patterns

in networks.

External Server and OpenStack are two subfolders of

the traffic folder. Several CSV files containing the

collected ow-based network traffic in unidirectional

NetFlow format may be found in these subfolders. These

sub-folders le names are created as follows: Every file

begins with CIDDS-001. Trac is identified as internal

origin when it is logged in the OpenStack environment.

The external server's trace is identified as having an

external origin. Information about when the network

traffic was recorded (week 1, week 2, week 3, and week

4) is provided in the last section (period). The CIDDS-001

data collection, which includes about 32 million flows,

was collected over four weeks. In the OpenStack context,

over 31 million flows were therefore recorded. At the

remote server, about 0.7 million flows were recorded.

In this paper, we focus on Class labels (normal,

attacker, victim, suspicious, and unknown) for the first and

second weeks of OpenStack.

Enhancing Network QoS via Attack Classification Using… Informatica 49 (2025) 237–248 243

Table 3: Database specifications [21]

Feature’s name Description of the feature Number

Src IP Source IP address 1

Src Port Source port 2

Dest IP Destination IP address 3

Dest Port Destination port 4

Proto Transport protocol (eg, ICMP, TCP, or UDP) 5

Date first seen The start time stream was first observed 6

Duration Duration of flow 7

Bytes The number of bytes sent 8

Packets The number of packages sent 9

Flags or append all TCP flags 10

Tos Type of service 11

Flows Not specified 12

Class Class label (normal, attacker, victim, suspicious and unknown) 13

AttackType Attack type (PortScan, DoS, Bruteforce, PingScan) 14

AttackID
A unique attack ID allows attacks that belong to the same class to have

the same attack ID

15

AttackDescription
Provides more information about configured attack parameters (eg,

number of password-guessing attempts for SSH-Brute-Force attacks)

16

4.3 Parameter setting
To design a ConvRNN model for attack classification

using the CLDDS dataset, we need architecture that

leverages convolutional layers for spatial feature

extraction, followed by recurrent neural network (RNN)

layers to capture temporal sequences, and finally, dense

layers for final classification.

We start with one sequential convolutional layer,

which is responsible for extracting the basic spatial

features from the data. In the convolutional layer, we use

32 filters with a kernel size of (3x3). This layer serves as

a foundation, capturing simple, fundamental features in

the data such as repeated patterns. After this layer, we

apply a Tanh activation function, commonly used in

neural networks to introduce non-linearity, which allows

the model to learn complex relationships in the data. Next,

we add a Max Pooling layer with a (2x2) pool size, which

reduces the data size and number of parameters, speeding

up training and avoiding excessive complexity.

Once we have extracted the spatial features, we move

on to the recurrent layers. Here, we use one LSTM layer

to analyze the temporal sequences of the extracted

features. RNN layers are highly suitable for tasks

involving time sequences, like detecting attack classes. In

the LSTM layer, we use 64 units (or cells), which are

responsible for capturing the temporal information from

the data. After this layer, we add a Dropout layer with a

rate of 0.3 to prevent overfitting and improve the model’s

generalization.

After completing the recurrent layers, we pass the data

to a two-hidden Dense layer with 64. This dense layer

aggregates the features extracted from previous layers and

prepares them for the final output layer. Finally, we add

an output Dense layer with 5 units, representing the target

classes: "normal," "attacker," "victim," "suspicious," and

"unknown." We use the SoftMax activation function in

this final layer to produce probabilities for each class,

allowing the model to classify each sample based on the

highest probability. Table 4 shows the architecture of the

ConvRNN model for attack classification with its main

details.

Table 4: ConvRNN model architecture for attack classification

Layer Type Parameters Purpose

Input Layer - Input shape: based on feature size and sequence length

Conv2D Filters: 32, Kernel Size:

(3,3), Activation: Tanh

Extract basic spatial features, capturing simple patterns

MaxPooling2D Pool Size: (2,2) Reduce feature size, parameters, and computational cost

LSTM Units: 64 Capture temporal relationships within extracted features

Dropout Rate: 0.3 Prevent overfitting and improve generalization

Dense (Hidden) Units: 64 Aggregate features from previous layers for final output

prep

Output Dense Units: 5, Activation:

Softmax

Produce class probabilities for 'normal', 'attacker',

'victim', 'suspicious', and 'unknown'

244 Informatica 49 (2025) 237–248 J. Alkenani et al.

 In the ConvRNN model, cross-entropy is used as both

the objective and the loss function. Cross-entropy is

commonly used for classification tasks because it

measures the difference between the actual distribution of

labels and the predicted distribution, helping to improve

the model's prediction accuracy. The model is trained

using the Adam optimizer, which is widely used in

machine learning because it adapts the learning rate for

each parameter individually, making the optimization

process more efficient. The default learning rate for the

Adam optimizer is set to 0.001, which works well for most

tasks. The number of epochs is set to 50, meaning the

model will perform 50 full passes over the training data.

The batch size is set to 1024, meaning the model updates

its weight based on 1024 samples in each iteration. This

large batch size helps stabilize gradient estimation during

training but requires significant memory resources.

Table 5 shows the training settings of the ConvRNN

model.

Table 5: ConvRNN model training settings

Parameter Value Description

Loss Function Cross-

Entropy

Measures the difference between actual and predicted label

distributions to improve classification accuracy

Optimizer Adam Adapts the learning rate for each parameter to improve

optimization efficiency

Learning Rate 0.001 Default rate for the Adam optimizer, suitable for most tasks

Epochs 50 The model will perform 50 full passes over the training data

Batch Size 1024 The large batch size stabilizes gradient estimation, and

requires more memory resources

5 Results
Examining the results of the trained models

(ConvRNN and LSTM) in detail provides insights into

why ConvRNN performed better in this case. First, the

confusion matrix is a primary tool for understanding how

well each model classified the data. In the case of

ConvRNN, in Figure 2 the matrix shows that the model

classified the categories more accurately, with values on

the diagonal representing correct classifications and off-

diagonal values indicating misclassifications. If

ConvRNN has a higher number of correct classifications

with fewer errors than LSTM, this indicates that

ConvRNN was better at understanding and categorizing

the data.

Next, the classification report, containing precision,

recall, F1-score, and overall accuracy, provides a broader

view of model performance. Precision reflects the model’s

ability to classify positive samples accurately, while recall

(sensitivity) measures the model's ability to detect positive

samples. Here, if ConvRNN exhibits higher precision and

recall, the model could classify samples accurately

without confusing them with other classes. Additionally,

the F1-score a harmonic means of precision and recall

highlights the balance between these two metrics. If

ConvRNN achieves higher F1 scores, it suggests that it

balanced precision and recall more effectively in

classification.

Figure 2: Comparison of the two models Precision, Recall, F1 Score

\

Enhancing Network QoS via Attack Classification Using… Informatica 49 (2025) 237–248 245

The ROC curve (Receiver Operating Characteristic),

in Figure 3 is valuable for assessing how well each model

distinguishes between different classes. TPR (True

Positive Rate) and FPR (False Positive Rate) are used to

plot this curve. If ConvRNN achieves a more favorable

ROC curve compared to LSTM, it indicates that

ConvRNN can distinguish between categories more

accurately, as shown by a higher AUC (Area Under the

Curve), which summarizes the model's overall

classification capability.

The comparison in figure 4 of results between

ConvRNN and LSTM for metrics such as True Positive

Rate (TPR), False Positive Rate (FPR), False Negative

Rate (FNR), and overall Accuracy demonstrates a clear

advantage for the ConvRNN model. Regarding TPR,

which measures the percentage of correctly identified

positive cases, ConvRNN achieved a higher rate,

indicating its efficiency in accurately detecting real attacks

within the data compared to LSTM. This advantage is due

to ConvRNN's ability to recognize complex patterns

within network data, where its convolutional and recurrent

layers enhance its sensitivity to true positive cases. For

FPR, which measures the rate of negative cases incorrectly

classified as positive, ConvRNN exhibited a lower rate

than LSTM. This reduction in FPR signifies ConvRNN's

capacity to minimize false alarms, thereby improving the

classification accuracy and reliability of the model in

monitoring network traffic. This is essential in reducing

the likelihood of benign network activity being flagged as

an attack, increasing the model's trustworthiness.

Similarly, FNR, reflecting the number of true positive

cases that went undetected, was also lower in ConvRNN

compared to LSTM. This lower FNR highlights

ConvRNN's superior ability to capture a wider range of

attack patterns without overlooking them, further

showcasing its strength in handling various attack

scenarios within the data.

In terms of overall Accuracy, ConvRNN achieved

significantly higher results than LSTM. This accuracy

metric reflects the model's ability to correctly classify both

positive and negative cases, and ConvRNN’s

improvement in TPR while reducing FPR and FNR

collectively contributed to this superior performance.

Consequently, ConvRNN has proven to be a more reliable

and effective model for network attack classification,

offering high accuracy, reduced false alarms, and better

detection of actual threats.

Figure 3: Comparison of the two models ROC Curve

246 Informatica 49 (2025) 237–248 J. Alkenani et al.

The loss comparison between the ConvRNN and

LSTM models reveals that ConvRNN consistently

outperformed LSTM in both training and testing phases,

as shown in figure 5. ConvRNN achieved lower training

and testing loss, indicating that it was more effective at

fitting the data and generalizing to new, unseen data. This

lower loss demonstrates ConvRNN's ability to capture

both spatial and temporal patterns in the network data,

leading to more accurate predictions. In contrast, although

LSTM showed some improvement in reducing loss during

training, its performance on testing data was less robust,

resulting in higher loss. This reinforces ConvRNN's

superiority in minimizing errors and providing more

reliable results in classifying network attack patterns.

Figure 5: Loss comparison between the ConvRNN, LSTM

The comparison of training and prediction time

between ConvRNN and LSTM revealed that ConvRNN,

due to its more complex architecture, required slightly

longer training times than LSTM. The ConvRNN model

combines convolutional and recurrent layers, which

demand more computational resources, thus increasing

training time. However, regarding prediction time, both

models performed similarly, with LSTM being marginally

faster due to its simpler architecture. Despite the longer

training time, ConvRNN demonstrated significantly

higher classification accuracy, showing that the extra time

spent on training was worthwhile for improved results in

classifying network attacks.

Figure 6 shows the training time, and Figure 7 shows

the prediction time.

Figure 4: Comparison of the two TPR, FPR, FNR, Accuracy

Enhancing Network QoS via Attack Classification Using… Informatica 49 (2025) 237–248 247

In summary, ConvRNN outperformed LSTM due to

its effective combination of convolutional and recurrent

layers, which allow it to learn more quickly, identify local

patterns accurately, and improve consistently across

epochs. This combination makes ConvRNN especially

well-suited to this task, allowing it to classify more

accurately than LSTM in this context.

6 Conclusions
The ConvRNN model demonstrates superiority in

classifying network attacks and improving service quality

by effectively capturing spatial and temporal patterns. By

integrating convolutional layers to extract spatial features

and LSTM layers to process temporal sequences,

ConvRNN excels in analyzing complex, multi-

dimensional data. Although its intricate structure

necessitates longer training times, the model achieves

higher accuracy and surpasses LSTM in crucial

performance metrics, such as true positive rate and error

reduction. In contrast, LSTM, which focuses solely on

temporal patterns, is less effective when dealing with data

that incorporates spatial characteristics. Simulation results

confirm that ConvRNN outperforms LSTM across various

measures, including precision, recall, F1 score, ROC

curve, true positive rate, false positive rate, false negative

rate, and overall accuracy.

References

[1] Chaganti, Rajasekhar, et al. "A comprehensive review

of denial-of-service attacks in the blockchain

ecosystem and open challenges." IEEE Access 10

(2022): 96538-96555, doi:

10.1109/ACCESS.2022.3205019.

[2] Al-Shareeda, Mahmood A., et al. "Review of

prevention schemes for man-in-the-middle (MITM)

attack in vehicular ad hoc networks." International

Journal of Engineering and Management Research 10

(2020), doi:10.31033/ijemr.10.3.23.

[3] Suleski, Tance, et al. "A review of multi-factor

authentication in the Internet of Healthcare

Things." Digital health 9 (2023),doi:

10.1177/20552076231177.

[4] Vazhenina, Daria, and Atsunori Kanemura. "Reducing

the number of multiplications in convolutional

recurrent neural networks (ConvRNNs)." Advances in

Artificial Intelligence: Selected Papers from the

Annual Conference of Japanese Society of Artificial

Intelligence (JSAI 2019) 33. Springer International

Publishing, 2020,doi: 10.1007/978-3-030-39878-1_5.

[5] Bodapati, Suraj, et al. "Comparison and analysis of

RNN-LSTMs and CNNs for social reviews

classification." Advances in Applications of Data-

Driven Computing (2021): 49-59,doi: 10.1007/978-

981-33-6919-1_4.

[6] Raza, Muhammad Raheel, Walayat Hussain, and José

Maria Merigó. "Cloud sentiment accuracy comparison

using RNN, LSTM and GRU." 2021 Innovations in

intelligent systems and applications conference

(ASYU). IEEE, 2021,doi:

10.1109/ASYU52992.2021.9599044.

[7] Sujanthi, S., and S. Nithya Kalyani. "SecDL: QoS-

aware secure deep learning approach for dynamic

cluster-based routing in WSN assisted IoT." Wireless

Personal Communications 114.3 (2020): 2135-2169,

doi: 10.1007/s11277-020-07469-x.

[8] Wu, Zheng, et al. "Online multimedia traffic

classification from the QoS perspective using deep

learning." Computer Networks 204 (2022):

108716,doi: 10.1016/j.comnet.2021.108716.

[9] Li, Yang, et al. "MAFENN: Multi-agent feedback

enabled neural network for wireless channel

equalization." 2021 IEEE Global Communications

Conference (GLOBECOM). IEEE, 2021,doi:

10.1109/GLOBECOM46510.2021.9685522.

[10] Y. Geng et al., “Defending cyber–physical systems

through reverse engineering-based memory sanity

check,” IEEE Internet Things J., vol. 10, no. 10, pp.

8331–8347, 15 May 2023,doi:

10.1109/JIOT.2022.3200127.

[11] P. Bhale, D. R. Chowdhury, S. Biswas, and S. Nandi,

“OPTIMIST: Lightweight and transparent IDS with

optimum placement strategy to mitigate mixed-rate

DDoS attacks in IoT networks,” IEEE Internet Things

J., vol. 10, no. 10, pp. 8357–8370, 15 May 2023,doi:

10.1109/JIOT.2023.3234530.

Figure 6 Training time time. Figure 7: Prediction time.

https://doi.org/10.1177/20552076231177144
https://doi.org/10.1109/ASYU52992.2021.9599044
https://doi.org/10.1016/j.comnet.2021.108716
https://doi.org/10.1109/GLOBECOM46510.2021.9685522
https://doi.org/10.1109/JIOT.2022.3200127
https://doi.org/10.1109/JIOT.2023.3234530

248 Informatica 49 (2025) 237–248 J. Alkenani et al.

[12] A. Zainudin, L. A. C. Ahakonye, R. Akter, D.-S.

Kim, and J.-M. Lee, “An efficient hybrid-DNN for

DDoS detection and classification in software-defined

IIoT networks,” IEEE Internet Things J., vol. 10, no.

10, pp. 8491–8504, 15 May 2023,doi:

10.1109/JIOT.2022.3196942.

[13] Y. Meidan, D. Avraham, H. Libhaber, and A.

Shabtai, “CADeSH: Collaborative anomaly detection

for smart homes,” IEEE Internet Things J., vol. 10, no.

10, pp. 8514–8532, 15 May 2023,doi:

10.1109/JIOT.2022.3194813.

[14] T. V. Khoa et al., “Deep transfer learning: A novel

collaborative learning model for cyberattack detection

systems in IoT networks,” IEEE Internet Things J., vol.

10, no. 10, pp. 8578–8589, 15 May 2023,doi:

10.1109/JIOT.2022.3202029.

[15] J. Fan, K. Wu, Y. Zhou, Z. Zhao, and S. Huang,

“Fast model update for IoT traffic anomaly detection

with machine unlearning,” IEEE Internet Things J.,

vol. 10, no. 10, pp. 8590–8602, 15 May 2023,doi:

10.1109/JIOT.2022.3214840.

[16] R. Zhao, Y. Wang, Z. Xue, T. Ohtsuki, B. Adebisi,

and G. Gui, “Semi-supervised federated-learning-

based intrusion detection method for Internet of

Things,” IEEE Internet Things J., vol. 10, no. 10, pp.

8645–8657, 15 May 2023,doi:

10.1109/JIOT.2022.3175918.

[17] Dawoud, A.; Sianaki, O.A.; Shahristani, S.; Raun, C.

Internet of Things Intrusion Detection: A Deep

Learning Approach. In Proceedings of the 2020 IEEE

Symposium Series on Computational Intelligence

(SSCI), Canberra, ACT, Australia, 1–4 December

2020; pp. 1516–1522,doi:

10.1109/SSCI47803.2020.9308293.

[18] Roy, B.; Cheung, H. A Deep Learning Approach for

Intrusion Detection in the Internet of Things using Bi-

Directional Long Short-Term Memory Recurrent

Neural Network. In Proceedings of the 2018 28th

International Telecommunication Networks and

Applications Conference (ITNAC), Sydney, NSW,

Australia, 21–23 November 2018; pp. 1–6,doi:

10.1109/ATNAC.2018.8615294.

[19] George, Anjith, and Sébastien Marcel. "Learning one

class representations for face presentation attack

detection using multi-channel convolutional neural

networks." IEEE Transactions on Information

Forensics and Security 16 (2020): 361-375,doi:

10.1109/TIFS.2020.3013214.

[20] Gaur, Vimal, et al. "Multiclass classification for

DDoS attacks using LSTM time-series model." (2022):

135-141,doi: 10.1049/icp.2022.0605.

[21] Ring, Markus, et al. "Technical Report CIDDS-001

data set." J Inf Warfare 13 (2017).

https://doi.org/10.1109/JIOT.2022.3196942
https://doi.org/10.1109/JIOT.2022.3194813
https://doi.org/10.1109/JIOT.2022.3202029
https://doi.org/10.1109/JIOT.2022.3214840
https://doi.org/10.1109/JIOT.2022.3175918
https://doi.org/10.1109/SSCI47803.2020.9308293
https://doi.org/10.1109/ATNAC.2018.8615294
https://doi.org/10.1109/TIFS.2020.3013214
https://doi.org/10.1049/icp.2022.0605

