
https://doi.org/10.31449/inf.v49i20.7645 Informatica 49 (2025) 85–104 85

Enhanced Software Performance Testing for Big Data Platforms

Using Clock-Controlled Computation Tree Logic with Particle

Swarm and Genetic Optimization

Yuan Sun1, 2, Md Gapar Md Johar2, *, Jacquline Tham2

1School of Information Engineering, Gongqing Institute of Science and Technology, Jiujiang 332020, China
2Postgrduate Center, Management and Science University, Shah Alam 40100, Malaysia

E-mail: Yuan Sun: sunyuan12123@gmail.com, Md Gapar Md Johar: mdgapar@126.com, jacquline@msu.edu.my
*Corresponding author

Keywords: software testing, particle swarm algorithm, bell-controlled computational tree logic method, genetic

algorithm, testing effectiveness

Received: November 22, 2024

This research aims to solve the problems of testing inefficiency and lack of accuracy in software testing,

and proposes a software performance testing system for big data platforms based on the clock-controlled

computational tree logic method. The particle swarm algorithm finds the optimal solution through the

movement and mutual cooperation of particles in the search space. Genetic algorithm evolves the

population through selection, crossover, and mutation operations, ultimately finding the optimal solution.

Secondly, long short-term memory networks and linear autoregressive models also have advantages in

software testing, which can improve the effectiveness and efficiency of software testing through

reasonable selection and combined use. The new algorithm utilizes the ability of PSO and GA algorithms

to search for optimal solutions through particle motion and group cooperation in the search space, in

order to determine key moment parameters and other relevant information in software testing systems.

The research uses the algorithmic logic of the particle swarm algorithm and the genetic algorithm to

confirm the moment parameters and other information of the software testing system. At the same time,

an algorithmic model research on the joint coverage and the use of the value of the system, and finally

makes use of the big data platform to analyze the research system. The specific indicators used in the

study include 100% test case coverage, as well as the functional coverage of genetic algorithms and

particle swarm optimization algorithms. The innovative combination of CCTL method and optimization

algorithm in the research has improved the accuracy and stability of software testing. CCTL is an

extended computational tree logic that introduces the concept of time, allowing testers to explicitly specify

time constraints in software testing, thereby more accurately simulating real-world scenarios. The

research results show that using the system to test software can achieve a coverage rate of 100% for its

component use cases, while the functional coverage rates of genetic algorithm and particle swarm

algorithm reach 90.36% and 91.32%, respectively. The accuracy of software testing research methods is

5% and 6% higher than that of LSTM and LAR methods. When the moment range of the particle parameter

position information of the model is [150 ms, 250 ms], the maximum value of the target parameter velocity

is 80 m/s and the minimum value is 0 m/s. The maximum value of the target azimuth velocity is 20 rad/s,

and the minimum value is 0 rad/s. The system is able to determine the various parameters of the software,

and at the same time in the software test results on the test results are normal, fault analysis can be

completed normally, the performance of the algorithm is also superior to other algorithm models such as

LSTM and LAR, and the study of the use of algorithms with a higher degree of stability. It can be seen

that the system and methodology used in this research is superior to traditional methods and the test

results of software testing have improved. This study provides a new research direction for platform

software afterwards.

Povzetek: Opisan je sistem za testiranje zmogljivosti programske opreme na platformah za velike podatke,

ki uporablja metodologijo CCTL, optimizirano s pomočjo algoritmov PSO in GA.

1 Introduction
In the current digital age, big data platforms have become

a core technology for processing complex data sets. With

the increasing volume of data, it is critical to ensure stable

platform software performance [1]. Software performance

testing is a key component in ensuring efficient and

accurate data processing [2]. The existing performance

testing methods for big data platform software suffer from

low efficiency and insufficient accuracy when dealing

with large-scale data and complex scenarios. Therefore,

how to build an efficient and accurate method for testing

the performance of big data platform software has become

a difficult problem that still needs to be solved [3]. The

research objectives specifically include improving testing

accuracy, expanding testing coverage, and clarifying the

mailto:sunyuan12123@gmail.com
mailto:mdgapar@126.com
mailto:jacquline@msu.edu.my

86 Informatica 49 (2025) 85–104 Y. Sun et al.

performance of CCTL in handling specific types of

constraints, as well as enhancing the adaptability of the

model in handling large-scale datasets and real-time

parameter changes. Simultaneously studying the

hypothesis that combining CCTL methods and

optimization algorithms can significantly improve the

accuracy and coverage of big data platform software

testing, optimization algorithms can effectively address

the limitations of CCTL in processing large-scale datasets

and real-time parameter changes, and the combination of

PSO and GA can provide more stable and comprehensive

testing results in different testing scenarios. These

algorithms are used to optimize the search for critical

moment parameters and other relevant information in

software testing systems, thereby improving the accuracy

and efficiency of the testing process. In the current digital

age, big data platforms have become the core technology

for processing complex datasets. As the amount of data

increases, ensuring the stability of platform software

performance becomes crucial. Software performance

testing is a key component in ensuring efficient and

accurate data processing. The existing performance testing

methods for big data platform software face problems of

low efficiency and insufficient accuracy when dealing

with large-scale data and complex scenarios. Clock-

Controlled Computation Tree Logic (CCTL) is a temporal

logic that improves the traditional Computation Tree

Logic (CTL) by introducing the concept of time [4]. Long

Short Term Memory Network (LSTM) is a special type of

recurrent neural network that can remember cells and gate

mechanisms to solve the problems of gradient vanishing

and exploding in traditional RNNs when processing long

sequence data. Linear Autoregressive Model (LAR) is a

statistical model used for time series analysis. This

approach is particularly important in Big Data processing,

where it allows the testing process to consider the

temporal properties of the data flow, thus more accurately

simulating real-world situations. CCTL can more

effectively identify and analyze performance bottlenecks

and potential problems in big-data platforms. Although

the clock controlled computation tree logic method has

achieved certain application results in other fields, there is

still relatively little research on its application to software

performance testing on big data platforms. CCTL is used

to verify the temporal attributes of critical tasks and in

fields such as aviation electronics, automotive control, and

industrial automation. It ensures that data transmission

and reception are completed within specified time

intervals, which is crucial for network design and

optimization. The novelty of the research lies in the

innovative combination of clock controlled computation

tree logic with PSO and GA, which not only achieves

100% test case coverage, but also enhances adaptability to

different testing environments and conditions through

optimized algorithm logic. In addition, this method has

broad application prospects in potential fields such as big

data processing, cloud computing platforms, Internet of

Things (IoT) devices, as well as artificial intelligence and

machine learning. Firstly, the new model utilizes the

algorithm logic of particle swarm optimization and genetic

algorithm to improve and analyze the process, in order to

enhance the accuracy and stability of software testing

parameter validation. Secondly, the research constructed

testing scenarios and test cases suitable for big data

platforms, and verified the performance and accuracy of

the new method in different testing environments through

experiments. And provided new ideas and methods for

performance testing of big data platform software. By

utilizing CCTL, the accuracy and efficiency of software

performance testing have been significantly improved,

especially for big data platforms that handle dynamic and

large-scale datasets. The proposed method can be applied

to other big data platforms, providing a scalable and

effective performance testing solution applicable to

various fields. This research is divided into four parts; the

first part is an overview of domestic and international

research; the second part is a study of the system and

method of software testing; the third part is mainly to test

and analyze the performance of the system; and the fourth

part is a summary of the current research.

2 Literature review
Software is usually tested for different problems;

therefore, different research methods are required to solve

these problems. To address the complexities of data

analysis encountered by strength and conditioning

professionals who use strength platforms to conduct CMJ

assessments during training, this study proposes a solution

to create a data analysis program using MATLAB. The

findings suggest that the program can help coaches

simplify the process and improve the accuracy and

reliability of the data analysis. In addition, the sample

scripts provided allow further learning and mastery of

basic scripting strategies to create separate analysis

programs for the CMJ and other performance tests [5].

Kaur and Agrawal proposed a new approach based on the

Bat Search Algorithm and the Cuckoo Search Algorithm

to solve the problem of regression test case selection and

improve the efficiency and accuracy of software

maintenance. The results of this study show that both

algorithms are effective in reducing the number of

required test cases and improving the testing efficiency in

regression testing. Among them, the cuckoo search

algorithm is slightly better in terms of performance

parameters. The algorithm proposed by Kaur and Agrawal

performs well in reducing the number of test cases and

improving testing efficiency, but still has limitations when

dealing with large-scale datasets [6]. Chen et al., proposed

an auxiliary method based on machine learning to study

the benchmarking method in performance unit testing.

The results of this study show that the method can

effectively identify benchmarking methods, thus

improving the accuracy and efficiency of performance

unit testing. It was also found that the Random Forest

algorithm performs the best in predicting performance and

can retrieve 43% of the true BDMs by examining only 5%

of the candidate methods detected by the model. Chen et

al.'s method can effectively identify benchmark methods

and improve the accuracy and efficiency of testing.

However, this method has poor adaptability when dealing

with dynamic and large-scale datasets [7]. In order to

Enhanced Software Performance Testing for Big Data Platforms… Informatica 49 (2025) 85–104 87

address the problem of parameter estimation for software

reliability growth models, this paper proposes a

framework modelled on the Non-Homogeneous Poisson

Process (NHPP). The framework integrates test coverage

(TC), error propagation and troubleshooting efficiency

while limiting the number of parameters. The results show

that the model is more reliable than the existing models

and can effectively assess and predict software reliability.

Through sensitivity analyzes, we demonstrated that the

model parameters have less impact on the mean function.

The model proposed by Khurshid et al. performs well in

handling test coverage, error propagation, and

troubleshooting efficiency, but has shortcomings in

handling real-time parameter constraints [8].

Qian et al. propose a method for prioritizing test

scripts to address the memory bloat problem in web

applications, as well as to improve the efficiency of

performance testing. The new method uses a learning

ranking technique to predict which test scripts are more

likely to cause memory bloats, and thus prioritizes the

execution of these scripts. Experimental results show that

the method is effective in speeding up testing and

improving the efficiency of detecting memory bloats. The

method proposed by Qian et al. significantly improves the

efficiency of detecting memory expansion. However, this

method is mainly targeted at web applications and lacks

adaptability to complex scenarios on big data platforms

[9]. To fill a gap in the research on programming language

security, this study proposes a methodology for

benchmarking the security and performance of languages.

The methodology compares six well-known programming

languages and uses quantitative and qualitative methods to

determine which language is best in terms of security and

performance by testing the code and analyzing the

available information. The results of the study show that

the Rust performs best in terms of security and

performance, achieving an excellent balance [10].

To investigate the effectiveness of Metamorphic

Testing (MT) in different application contexts, this study

revisited the use of MT in Sentiment Analysis (SA)

systems and found that false satisfaction is an important

factor affecting the validity of MT. An in-depth analysis

of false gratification reveals how it can occur and how it

can affect the effectiveness of MT. Our study also suggests

that MT may overestimate the consistency of the system

with the relevant MR if the occurrence of false satisfaction

is not taken into account. These findings will help the MT

community use MT test results more fairly and reliably

[11]. To compare the predictive performance of an

ensemble species distribution model with that of a single

model, a study was conducted using a large eucalyptus

species presence-absence dataset. Two spatial blocking

strategies were used to partition the dataset, and all models

within the calibration fold were calibrated and cross-

validated using repeated random partitioning of data and

spatial chunking. The results of the study showed that the

ensemble models performed well in some tests, but did not

always outperform their untuned individual models or the

tuned BRT. Additionally, good external performance was

obtained by selecting untuned individual models with the

best cross-validation performance [12]. Hosseini et al.

proposed a quantitative data error propagation rate and a

mutation location recognition method based on genetic

algorithm to reduce the cost of mutation detection. The

research results showed that this method effectively

reduced the number of mutants by about 24%, while

increasing the mutation score by about 5.6%. Only 7.46%

of the generated mutants were equivalent, significantly

reducing testing time and cost [13]. Zeb et al. found that

heuristic algorithms have been well studied in multiple

fields, among which the use of heuristic algorithms such

as particle swarm optimization in software testing can

reduce the defects of software testing, improve the

accuracy and reliability of software testing. It can be seen

that using particle swarm optimization algorithm can

improve the accuracy of software testing [14]. Pan et al.

proposed a similarity search test case minimization

technique based on genetic algorithm to improve the

efficiency and fault detection capability of software

testing. The research results indicate that the new method

achieves a higher average fault detection rate compared to

the existing technology FAST-R, with only 50% of test

cases running [15].

In summary, existing research has made significant

progress in the field of software testing, but there are still

some shortcomings. Although MATLAB’s data analysis

program simplifies the process, it relies on specific

environments; Although machine learning methods have

improved the efficiency of regression testing, they lack

applicability and have poor performance in evaluating

data. Research has shown that although other framework

models can accelerate the detection of webpage memory

inflation, there is still a problem of poor network

environment testing [16]. Therefore, this study proposes a

new solution to address the issues of insufficient accuracy

and performance in software testing. Firstly, the clock

controlled computation tree logic method is used to

generate software moment cases in the big data platform,

which solves the problems of environment dependence,

testing efficiency, and accuracy in existing research for

software performance testing in big data platforms.

Secondly, the model selects parameters such as moment

examples and determines their values to ensure the

accuracy and performance of software testing, solving the

problems of limited applicability and unstable results of

existing methods.

3 Method

3.1 Analysis of CCTL model

This chapter mainly focuses on the time platform for

software testing to build a system, using the CCTL method

to analyze the software testing system, build the moment

component use case generation model and the software

testing system model, and then analyze the system model

to achieve system building for software testing

performance. The main workflow of the current research

is shown in Figure 1.

88 Informatica 49 (2025) 85–104 Y. Sun et al.

Start

Generate component use cases

Build CCTL algorithm model

Conduct model software system

testing

Algorithm model system testing

End

Figure 1: Main workflow

Description: Shows the main workflow.

From Figure 1, it can be seen that the first step is to

analyze and generate test cases for the software. Secondly,

by using the CCTL algorithm model, a software testing

system based on the algorithm model is built. Then, based

on the constructed model, implement software testing.

Finally, the algorithm model constructed was tested for its

actual effectiveness through experiments.

3.2 Research on software testing model

In the software for testing, software parameters of the

moment input will have certain requirements, must be

input in a specific time parameter to make the whole

operation is effective, through this effective time input to

be able to follow up on the input function operation, this

time point and parameter point is the current software

input parameters of the space moment. Generally, there

are three types of input time space for software: interval

input, cycle input, and discrete input. The interval input

selects a fixed point in the cycle and selects a moment for

input; the cycle input selects a time moment within the

cycle and inputs different time points; the discrete input

selects any time point from the discrete time collection for

input. Interval input is suitable for systems that require

regular and consistent data input, loop input is suitable for

systems with periodic tasks, and discrete input is suitable

for systems with irregular or user driven events. By

classifying the input temporal space in this way, we can

better understand and model the temporal behavior of

software systems, which is crucial for accurate and

effective software testing.

The number of parameters covered by the input will

inevitably exist because of the moment processing

constraints, and the expression of the constraints before

the test generation is an important step in the analysis of

its parameters. The general constraint moment is divided

into two types: independent moment constraints and

related moment constraints, which are mainly due to the

non-existence of correlation between the parameters and

parameters. Therefore, the two parameters do not affect

each other, and at the same time the parameters

simultaneously have their own moment constraint

limitations. Independent moment constraints are temporal

constraints on individual parameters that are not

dependent on other parameters, thus simplifying the

testing process and increasing testing efficiency.

Correlation moment constraints, on the other hand,

involve temporal dependencies between multiple

parameters, ensuring that multiple parameters work

together at a specific point in time or time range.

Separating the independent moment constraints and

correlated moment constraints into two distinct parts

improves the clarity, efficiency and accuracy of testing.

Correlated moment constraints, on the other hand, refer to

the existence of identical moment constraints as well as

different correlated moment constraints between two

parameters. The CCTL method enables the description of

constraints to reduce the moment constraints of the

parameters. As shown in Eq. (1) is the independent time-

constraint formula for the CCTL method [17].

0 1

0 1

,

, ()

t t

n

t t

EX

EX









 (1)

In Eq. (1), 0 1,t t denotes the time interval, EX

denotes the relationship between the constraints present,

 denotes the event expression of the input parameters,

and n denotes the number of events satisfied by the test.

The times of the different parameter constraints in the

CCTL method can be expressed as shown in Eq. (2) [18]:

0 1 2 3, ,t t t tEX EX → (2)

In Eq. (2),


 is expressed in terms of execution in the

interval time, and the rest of the parameter expressions are

the same as above. The constraint expression for the same

moment means that at this time, the time will move to the

next pointing interval after execution in that interval. The

parameter expression for time can be substituted for the

separate moments. When the time moments are replaced

as separate moments the relative time constraints are also

induced as n, the expression is shown in Eq. (3).

0 1 2 3 2 4 2 3 2 2 2 1, , , ,n n n nt t t t t t t tEX EX EX EX   

− − − −
→ → → → (3)

In Eq. (3), ,  indicates the input conditions for

different parameters. The remaining parameters were the

same as those decribed. Because the existence of

constraints will cause some combinations to not be in a

time test case at the same time, for the current time

constraints software test cases need to deal with constraint

combinations; typically, there are four ways to deal with

time constraints under the CCTL approach: abstract

parameters, sub-models, substitution, and avoidance of

Enhanced Software Performance Testing for Big Data Platforms… Informatica 49 (2025) 85–104 89

selection methods. Abstract parameters simplify the

model and reduce complexity by abstracting specific

temporal parameters, but can lead to oversimplification of

the model and loss of important details. Submodels

decompose a complex model into multiple submodels, but

coordination between submodels can be complex,

increasing the complexity of the overall model.

Substitution methods simplify temporal constraints, but

may lead to loss of temporal information. Selection

methods choose specific temporal parameters or time

points to avoid conflicts and ensure model consistency,

but may require additional logic and computation,

increasing complexity. Their principle is to transform the

models and convert the models that appear to be in conflict

with valid combination methods. However, the problem

with this method is that when large parameters are

encountered, more unnecessary and redundant

information parameters appear [19]. At the same time,

when using the CCTL method for software parameter

moment determination and combinatorial testing, it is

necessary to input a large number of consecutive

parameters; therefore, it is necessary to study its parameter

coverage during the analyzis. At this time it is necessary

to use generative algorithms to study and analyse the

parameter inputs of the method.

3.3 Time parameter combination and

generation algorithm model

In the case of continuous input and transmission of the

software moment parameters selected by the CCTL

method, the parameter information at this time is

analyzed. The algorithm model of data analysis selects the

particle swarm algorithm and genetic algorithm for

analysis, through the parameters of the population optimal

solution and evolutionary optimal solution to find, to

output the optimal value of the current parameters, to

achieve the analysis of the parameters of the judgement.

The analysis of parameter coverage helps ensure that all

possible input conditions and scenarios are fully tested,

thereby improving the comprehensiveness and accuracy

of testing. PSO and GA algorithms can better generate test

cases, ensuring the reliability and effectiveness of test

results. At the same time, these algorithms perform well in

parameter optimization problems and can quickly find the

optimal solution, thereby improving the efficiency and

accuracy of testing. The algorithm joint process includes

PSO and GA initializing populations separately, with each

individual representing a test case or parameter

combination. Simultaneously, both models undergo

iterative optimization and evaluate the quality of test cases

through fitness functions. Finally, during the iteration

process, excellent individuals are exchanged between PSO

and GA to improve optimization efficiency. Figure 2

shows the flow of the moment-combination generation

algorithm.

Start

Input parameter

constraints, time, etc

Number of time

combinations generated

Initialize candidate set

Update candidate set

Avoiding constraints

Whether the preset

parameters have been

reached？

Update time

combination

Enter the number of time

coverage combinations

Is the time combination

empty？

End

Y

Y

N

N

Figure 2: Time combination generation algorithm process

Description: Illustrates how the parameter information is analysed by particle swarm algorithm and genetic algorithm.

As shown in Figure 2, in the analysis phase of the

algorithm, the number of parameters is first input to select

the constraints and input moments, after which the

combination of parameters at the current moment is

generated, the parameter candidate set is initialized, and

the set is updated so as to select a better individual for

constraint evasion. Then, it is judged whether the current

parameters under test reach the pre-set parameter data, and

if they do, the combination of the target time is updated

and then the combination is output. If it is reached, then

90 Informatica 49 (2025) 85–104 Y. Sun et al.

update the target time combination and output the

combination; if it is not reached, then reinitialise the

candidate collection. In software performance testing,

selecting the optimal value of the current parameter is

achieved through optimization algorithms. The algorithm

gradually optimizes the combination of parameters to find

the optimal test case. After outputting the number of

combinations again, judge whether the combination set is

empty; if it is empty, end the algorithm; if not, initialize

the candidate set. Firstly, when generating examples, the

model initializes the population of genetic algorithm and

the particle swarm of particle swarm algorithm, with each

individual representing a time combination. Based on the

differences in algorithm structures, generate and optimize

time combinations separately. Then regularly exchange

individuals of genetic algorithm and particle swarm

algorithm, add excellent particles from particle swarm

algorithm to the population of genetic algorithm, and add

excellent chromosomes from genetic algorithm to the

particle swarm of particle swarm algorithm. Finally, after

the iteration is completed, the results of the two algorithms

are fused and the optimal time combination is selected as

the final solution. When the algorithm is running, an initial

population is formed by randomly generating a set of

individuals, which ensures the diversity of the population.

Secondly, setting a larger population can provide more

solutions, but the computational complexity will also

increase; Smaller populations require less computation,

but may not be able to cover all possible solutions. The

evolutionary process of the population requires four steps:

population selection, population crossover, population

mutation, and population replacement. Finally, suppose

that when solving a problem, individuals can be

represented using binary encoding. In software

performance testing, genetic operations such as crossover

and mutation can be easily performed by encoding

parameter values as binary strings. First, the initial

population randomly generates binary strings, and then the

selection operation selects individuals with high fitness.

Finally, a portion of new individuals will replace some

individuals in the current population, maintaining the

continuous evolution of the population. The data input

process of the algorithm first selects the number of data

parameters as k . Then generate a combination function

through target coverage combination, which includes

combinations between parameters, combinations between

parameter values and input time, and direct combinations

between input parameter data and time. After selecting the

set of algorithm data parameters, the algorithm data is

expressed by integrating the data parameters. In software

performance testing, selecting and integrating data

parameters is a key step in ensuring the effectiveness and

accuracy of the testing. By selecting parameters directly

related to the testing objectives and ensuring that these

parameters comprehensively cover the testing scenario,

the efficiency and accuracy of testing can be improved. By

optimizing parameter combinations through PSO and GA

algorithms, optimal test cases can be generated. This not

only improves the efficiency and accuracy of testing, but

also ensures that the test results can truly reflect the

performance of the software under various conditions. At

the same time, for the purpose of concluding the data

space, all the parameter data mentioned above are

collected. Due to the need to determine both time data

parameters and initial candidate sets during algorithm

execution, the study selects two parameter values
1 2,p p

through the algorithm process, and the set of parameter

sets is shown in Eq. (4).

1 2, 1 2{(,) | [0, 1], [0, 1]}n

p pCT a b a v b v=  −  − (4)

In Eq. (4),
1 2,

n

p pCT denotes the set of parameters,

,a b denote the constraint moment parameter expression

at that moment, and 1v denotes the numerical magnitude

of the parameter expression. At this time, the particle

swarm algorithm is used to obtain the particle velocity

formula as shown in Eq. (5) [20]:

1 2(, , ,)t t t t

i i i ikv v v v= (5)

In Eq. (5),
t

iv represents the total position

information of the particle, and
1 2(, , ,)t t t

i i ikv v v

represents the particle velocity information at different

moments. The position information at this time is

expressed as shown in Eq. (6).

1 2(, , ,)t t t t

i i i ikx x x x= (6)

In Eq. (6),
t

ix represents the total position

information of the particle, and
1 2(, , ,)t t t

i i ikx x x

represents the position coordinate information of the

particle at different moments. In software performance

testing, the calculation formula for particle velocity is the

core part of PSO algorithm, used to optimize parameter

combinations. By adjusting the speed of particles

reasonably, the movement speed of particles in the search

space can be accelerated, thereby finding the optimal

solution faster. This not only improves the efficiency of

testing, but also enhances the accuracy of testing.

Chromosome combination query refers to evaluating the

fitness of chromosomes through fitness functions in

genetic algorithms, and selecting chromosomes with high

fitness for optimization. This process involves querying

and selecting chromosome combinations to generate

better combinations of test case parameters. Through these

steps, the efficiency and accuracy of test cases can be

ensured, and the efficiency and reliability of testing can be

improved. Because the position information of the particle

in the algorithm calculation is a vector coordinate of a

dimension, the position of each coordinate needs to

correspond to a specific moment in the dimension to be

selected, and the value of the position coordinates at this

time is shown in Eq. (7).

Enhanced Software Performance Testing for Big Data Platforms… Informatica 49 (2025) 85–104 91

 [0, 1]t

ij jx v − (7)

In Eq. (7), the parameter expression is the same as that

described above: The chromosome combination query by

initialization adaptation comparing the current parameters

completes the extraction of chromosomes; then, at this

time, the adaptation is calculated as shown in Eq. (8) [21]:

1

i
i k

i

i

s
p

s
=

=


 (8)

In Eq. (8), ip denotes the corresponding adaptation

value of the chromosome and is denotes the calculated

probability of the population. The fitness function is used

to evaluate the performance of individuals in the search

space. By quantifying the proximity of individuals to the

objective function, it provides a measurement standard for

the algorithm. In software testing, the fitness function can

help assess the quality of test cases, such as whether they

can cover more functional modules and whether they can

detect potential defects. Individuals with higher fitness

values have a higher probability of being selected. The

genetic algorithm probability calculation formula is given

by Eq. (9).

1

1

i

i

i
i k

j

j

p

s

p

=

=

=



 (9)

Eq. (9) is shown, and the parameter expression is the

same as that above. Through the crossover calculation

after the expression of the operator of the above formula

there will be a new chromosome pairing, and the crossover

probability at this time is indicated by cp , The crossover

method in the method algorithm selects a point crossover

through the crossover and then the exchange of the

number of gene positions. The dot crossing method

generates two offspring chromosomes by selecting a

random crossing point and exchanging gene fragments of

two parent chromosomes. Gene location plays a crucial

role in this process, determining which genes will be

exchanged to generate new parameter combinations. By

selecting appropriate intersection points and exchanging

gene fragments, the point crossing method can effectively

explore the search space, generate better combinations of

test case parameters, and improve the efficiency and

accuracy of testing. Simultaneously, in the algorithm

performed by particle updating, as shown in Eq. (10) [22,

23].

1

1 1 2 2() ()t t t t t t

ij ij ij ij j ijv v c r pBest x c r gBest x+ = + − + − (10)

In Eq. (10),  denotes the weight value of the inertia

factor, 1 2,c c denote the learning factor, 1 2,r r denote

random numbers in the interval 0-1,
t

ijpBest denotes the

limit of individual values,
t

jgBest denotes the global

limit value, and ,i j denotes the iterative updating

completed in the first particle. Iterative updating of the

particles can achieve optimal selection of the current

parameters. Because the data selected in the time selection

of software parameters are only valid for a period of time,

it is necessary to perform time selection and value

constraints before executing the CCTL method.

Therefore, the joint algorithm combining value and time

is shown in Figure 3.

Start

Input parameter

constraints and generate

stacked combinations

Initialize candidate

Update Selection

Avoiding constraints Update combination

Enter the number of combinations

Is the time combination

empty？

End

Y

N

Figure 3: Joint algorithm flow combining value and time

Description: Explains the detailed steps to generate the final coverage combination during testing.

92 Informatica 49 (2025) 85–104 Y. Sun et al.

Figure 3 shows that, the algorithm input the

parameters to be tested, time selection, and related

constraints. Based on the input parameters and constraints,

generate preliminary coverage combinations. Then

initialize the candidate individual set and generate the

final coverage combination through subsequent selection

and optimization steps. Secondly, based on the current

candidate individuals and coverage combinations, select

new candidate individuals to optimize the coverage

combination, ensuring that the selected individuals meet

the constraint conditions. And when selecting new

candidate individuals, it is necessary to ensure that they do

not violate the previously set constraints. After selecting

eligible candidate individuals, update the target coverage

combination, generate the current joint coverage

combination, and output the result. Finally, determine

whether the currently generated joint coverage

combination is an empty set. If it is an empty set, it

indicates the end of the algorithm and the final test result

can be output. If it is not an empty set, proceed to the next

round of candidate initialization and selection. Selecting

and optimizing new candidate individuals by evaluating

the performance of each individual in the current

population, selecting outstanding individuals, and

generating new candidate individuals through crossover

and mutation operations can ensure that the algorithm can

effectively explore new solution spaces and find better

solutions. In software performance testing, the joint

algorithm combines the advantages of PSO and GA

algorithms to optimize parameter combinations and

generate high-quality test cases. The process of joint

algorithm includes inputting parameters and constraints,

generating initial parameter combinations, optimizing

parameter combinations, evaluating and updating, and

checking termination conditions. Through these steps, the

joint algorithm not only improves the efficiency and

accuracy of testing, but also adapts to complex testing

scenarios, ensuring that the test results can truly reflect the

performance of the software under various conditions.

After the judgment is completed, the user inputs a new

number of joint combinations to prepare for the next round

of candidate individual initialization and optimization

process. In the initialization of candidate individuals, to

facilitate subsequent calculations, needs to be added to the

set of values of the parameters through the construction of

a simple index relationship to achieve its dimensionality

reduction process. The formula is given by Eq. (11) [24,

25].

 i iindex i T t= + (11)

In Eq. (11), index denotes the index of the

computation and i ii T t+ denotes the Cartesian set of the

set composition. Dimensionality reduction is a data

processing technique primarily aimed at simplifying data,

improving efficiency, and enhancing interpretability. The

parameters referred to in dimensionality reduction usually

include test case parameters, system performance

parameters, and constraint conditions. The idea of the

particle swarm algorithm and genetic algorithm is also

used in the selection of the combination of the union for

the change in the same way as described above. PSO and

GA are chosen for parameter information analysis because

these two algorithms perform well in dealing with

complex parameter optimisation problems, and are able to

find the global optimal solution quickly and adapt to

different test environments and conditions. The analysis

process includes initialising the parameter candidate set,

optimising the parameter combinations, evaluating the

results and iterative updating. However, the difference lies

in the update selection of their algorithms using the update

as in Eq. (12) [26].

/

%

ij ij j

ij ij j

v d T

t d T

=

=
 (12)

In Eq. (12), i denotes the first chromosome, j

denotes the chromosome position, ijd denotes the gene

value size at the j position, and % denotes the residual

value. The parameter analysis of the software test and the

moment selection in the CCTL method are completed by

generating and overriding the target parameters.

3.4 Analysis of software testing model

system

The main purpose of the software testing tool system is to

load and parse software models, generate test case

parameters and constraint combinations, and import test

cases into the testing database. The CCTL method serves

as the core logical foundation and generates test cases by

introducing time constraints; PSO and GA algorithms are

used to optimize the generation process of test cases,

improve testing efficiency and coverage. The testing tool

system of software mainly exists in the form of

components; the main function is to load the model, after

completing the parsing to obtain the data information of

the protocol, and then to match the strength constraints and

other requirements using case analysis. A use case

analysis of the software testing tool is shown in Figure 4.

Enhanced Software Performance Testing for Big Data Platforms… Informatica 49 (2025) 85–104 93

User

Load Object Model

Generate test

cases

Generator

sequences

Editing

operations

Editing and

publishing

Import

Data

platform

Command

sending

Test

case

Figure 4: Use case analysis of software testing tools

Description: Demonstrates the use case analysis of user task operations in a software testing system

As shown in Figure 4, in the software testing system,

the user needs to load the software model and generate test

software case parameters and combinations of constraints

and other settings, while inputting the sequence of

generation events, editing the current need to release the

task operation, edit the current need to release the software

testing methods, as well as test cases and other information

for the import and export operations. At the same time, the

system needs to join the communication protocol to

manipulate and receive instructions and send the current

software test cases and test cases generated into the

database to complete the import and transfer process of the

test database components. Through a specific analysis of

the system, it is necessary needs to add it to the dynamic

analysis system of the model, as shown in Figure 5.

User
Test Case Generation

Test Case

Interface

Generate Use Cases

Select Generate Use Cases

Complete generating use cases

Export Use Cases

Import Use Cases

Completing

Configuration

Complete test

cases

Update test

cases

Obtain Use

Cases

Select Release

Use Cases

Figure 5: Example of model dynamic analysis

Description: Illustrates how the user analyses the system software or model according to the object model in the

testing phase and completes the dynamic model construction

Figure 5 shows that in the testing phase, the user is

required to analyze the system software or model in the

component according to the object model, and input the

information into the parameters of the test case after

completing the analysis. Then, the operation is performed

after receiving the analysis information of the parameters,

including the combination of settings such as choosing the

value of the parameter at the moment and setting the

current moment and constraints, etc., and then completing

the dynamic model. Construction of the dynamic model.

Dynamic analysis is aimed at more accurately simulating

and evaluating the behavior and performance of software

in actual operating environments. The CCTL method

generates test cases through time constraints, while

dynamic analysis verifies the effectiveness and coverage

of these test cases at runtime; PSO and GA algorithms

optimize the generation of test cases, and dynamic

analysis further verifies the actual effectiveness of these

optimized test cases. Simultaneously, in the test, the user

needs to deploy the front information in advance as shown

in Figure 6 for the parameter sequence image.

94 Informatica 49 (2025) 85–104 Y. Sun et al.

Component

based

Parsing

Components

Custom

Components

Select test

dataUser

Generate Use Cases

Select Generate Use Cases

Complete generating use cases

Export Use Cases

Import Use Cases

Test Case

Interface

Obtain Use

Cases

Select Release

Use Cases Test Case Generation

Completing

Configuration

Complete test

cases

Update test

cases

Figure 6: Example of deployment pre parameter sequence process

Description: Describe how to generate test case information before deployment and generate test cases through the

CCTL method and algorithm process

As shown in Figure 6, after the deployment of the

predecessor information, the test case information is

generated, after receiving the generation signal, the

predecessor information is read and analyzed to obtain the

generated parameter value data and moments, constraints,

etc., and the test cases are produced through the CCTL

method and algorithmic process, and the user is reminded

of the completion of the generation after the end of the

generation, and the data information is then exported to be

used for other operations, and the test data needs to be

constantly updated when the test cases are generated.

Parameter selection is based on the time constraints of test

case generation requirements and CCTL methods,

optimized through PSO and GA algorithms to ensure that

test cases can cover all key scenarios. Pre information

refers to the initial conditions and contextual information

before the generation of test cases, providing necessary

background and initial conditions for the generation of test

cases. The pre deployment parameter sequence process is

an important part of the testing process, which directly

affects the generation of test cases and the accuracy of test

results. Simultaneously, it is necessary to updat the use

cases when generating test data. The entire software

testing system platform is shown in Figure 7.

Control

components

Generate

Components Hardware

interface

Hardware

interface

Hardware

interface

Virtual

components

Result

component

Fault location

component

Fault

injection

component

Figure 7: System platform for software testing

Description: Outline how the test system through the CCTL method and particle swarm algorithm genetic algorithm to

generate and distribute software test case information

Enhanced Software Performance Testing for Big Data Platforms… Informatica 49 (2025) 85–104 95

As shown in Figure 7, the main idea in the testing

system is to generate and distribute the use case

information for software testing through the main idea of

the CCTL method and the particle swarm algorithm

genetic algorithm. Therefore, in the general framework of

the system, the test system includes a test case, hardware

interface, virtual comparison model, result comparison

and fault location components. The simulation to be tested

included a hardware interface component and a fault

injection component. The control component is

responsible for controlling the testing process and

execution. Generate components that can use different

generated test cases. Virtual components can create tested

system components through virtualization methods. The

hardware interface can connect the generated test cases

and virtual components with the actual hardware through

the hardware interface. The result component is capable of

collecting and processing test results for comparison. The

fault location component can locate and analyze faults in

the system. The hardware interface will conduct hardware

level testing through the hardware interface. The fault

injection component is mainly used to introduce faults into

the system, verify the system’s fault handling capability

and robustness. The fault detection and analysis

component is responsible for analyzing the test result data

collected during the testing execution phase, comparing

the actual test results with the expected results, and

detecting whether there are deviations or abnormal

behaviors. The fault location component uses parameters

generated by the CCTL method, and utilizes these

parameters and constraints to more accurately locate the

time and location of the fault occurrence. The fault

injection component is responsible for introducing

predefined faults during the testing process, verifying the

system's fault handling capability and stability, and

injecting faults at specific time points and conditions

based on the parameters generated by the CCTL method.

During software testing, control components to generate

test cases and distribute them to the generating

components. Generate test cases using CCTL method and

PSO/GA algorithms, and transmit them to virtual

components. Virtual components interact with actual

hardware through hardware interfaces and apply test cases

to the system under test. During the testing process, the

result component collects and processes the test results.

The test results are transmitted to the fault location

component for fault analysis and localization. Finally, the

hardware interface is also used to interact with the fault

injection component, introducing faults into the system to

verify its stability and robustness. The higher the error

detection rate, the more defects are discovered in the test

case set, and the better the testing effect. The calculation

formula is error detection rate = (number of discovered

defects/total number of introduced defects) × 100%. The

criteria for determining the coverage of a model are its

functional coverage, with a functional coverage of ≥90%,

a state coverage of ≥85%, a transition coverage of ≥80%,

and a path coverage of 75%. These all indicate that the

current model has good coverage. However, the study

only uses the functional coverage of the model as the

criterion for judgment, so a functional coverage rate of

≥90% is considered to be better for the current model.

Functional coverage can directly reflect the extent to

which test cases cover software functionality, and high

coverage can help identify potential defects. A functional

coverage rate of ≥ 90% can significantly improve the

accuracy and reliability of testing, covering most key

functions and ensuring the practicality and reference value

of research results. The test case generation module

generates test cases that meet time constraints and

functional coverage requirements based on CCTL method

and PSO/GA algorithm. The virtual comparison model

simulates the actual operating environment through

virtualization technology, executes test cases, and

dynamically adjusts configurations. Compare the

accuracy and completeness of the verification test results

in the module, and generate a test report. Fault location

module analysis report, accurately locate the fault. The

hardware interface module and fault injection module

respectively support the execution of test cases on actual

hardware and fault injection, ensuring system stability and

reliability.

4 Results and discussion

4.1 Results

Research the use of an online shopping system program

for software testing. Firstly, the system needs to verify

user login, product search, shopping cart functionality,

and order payment. Next, configure the web server and

database server, and set up development, testing, and

production environments. Write test cases for user login,

product search, addition, deletion, quantity modification,

and order payment of shopping cart items. At the same

time, the software uses PSO and GA to generate multiple

input combinations during testing, ensuring coverage of

all testing scenarios. And use automation tools such as

Selenium to perform functional testing of the web

interface, use JMeter for performance testing, and use

OWASP ZAP for security testing. Finally, record the

execution status of all test cases and analyze the failed

cases. Use Selenium for automated testing of user

interfaces, as it supports multiple browsers and operating

systems and can simulate real user operations. Use JMeter

for performance testing as it can simulate high

concurrency scenarios and evaluate the system's response

time and throughput. The population size is set to 30, the

maximum number of iterations is 50, the learning factors

are 2.05, and the inertia weight is 0.9. For the GA

population size of 100, the maximum number of iterations

is 20, the crossover rate is 0.8, and the mutation rate is

0.01. The experimental environment for the research

includes the use of Intel Core i7-9700 CPU, 32GB RAM,

and Windows 10 Professional 64 bit operating system,

developed using MATLAB R2020b and Python 3.8, and

automated testing, performance evaluation, and security

checks implemented using tools such as Selenium, JMeter,

and OWASP ZAP. The testing platform takes an online

shopping system as an example, covering functional

modules such as user login, product search, shopping cart

operation, and order payment. The evaluation indicators

96 Informatica 49 (2025) 85–104 Y. Sun et al.

include functional coverage (≥ 90%), state coverage (≥

85%), transition coverage (≥ 80%), and path coverage (≥

75%), as well as error detection rate, algorithm

performance, and stability. The experimental design

covers the complexity stratification of test cases,

parameter settings for PSO and GA, number of repeated

experiments, and verifies the significance of the results

through charts and statistical analysis. Generate a test

report, record the discovered defects, and ultimately

complete software testing. When conducting software

testing, it is necessary to ensure the stability and reliability

of the system under various input conditions.

Simultaneously, it is necessary to include functional

testing, performance testing, and security testing. And use

automated testing tools to perform testing. Regularly

conduct code reviews and test case reviews, and use static

analysis tools to check code quality. Randomly select 50

software test data from the currently selected ones for

testing. The selection of 50 test data is based on statistical

sample size calculation, ensuring that the error range is

within 10% at a 95% confidence level. This sample size

can meet the testing requirements while also being within

resource constraints. Complexity refers to the

comprehensive difficulty of test cases in terms of

functional coverage, operational steps, data input, and

expected results. According to the complexity of the test

cases, they are divided into three layers: simple, medium,

and complex. Each layer selects 20%, 50%, and 30% of

the test cases. The goal of this test is to verify the

performance and stability of the system under high load

conditions. The testing scope includes the login module,

data processing module, and report generation module.

The main method of calculating the coverage is obtained

by comparing the actual number of covered combinations

with the target number of combinations, so that in the

coverage test using CCTL is obtained as shown in Table

1. The target coverage combination refers to the coverage

of all possible parameter combinations and functional

modules, while the actual coverage combination refers to

the parameter combinations and functional modules

actually covered through test cases. Use case coverage

focuses more on the coverage of user scenarios and

interactions, focusing on how users use the software.

Functionality coverage focuses more on the coverage of

the software's functionality, and is concerned with the

specific operations that the software can perform. The

software being tested refers to the user login module of the

online shopping system. The "CA (33, 2; 2)" in Table 1

indicates that under three constraint conditions, the target

combination quantity is 80, and the actual number of

combinations covered is 78.

Table 1: Analysis of CCTL method testing software coverage

Software under

testing

Number of

constraints

Number of target

combinations

Number of target

combinations after

unconstrained

Constrain the number of target

combinations before validation

CA (33, 2; 2) 3 80 78 78

CA (33, 2; 2) 6 125 135 135

CA (53, 2; 2) 6 224 224 224

CA (53, 2; 2) 3 600 456 456

CA (83, 2; 2) 2 900 894 894

CA (83, 2; 2) 10 1654 1645 1645

Note: Shows the number of combinations of objectives under different number of constraints, etc. CA stands for

‘Clock-Controlled Computation Tree Logic Algorithm’

As shown in Table 1, when the coverage rate of

software testing is analyzed, it is found that the target array

and the number of constraints after removing the

constraints have the same value as the number of coverage

combinations verified, which is visible of the software

testing. The use of the method is able to achieve 100%

coverage, which shows that the current method of testing

the different software is able to achieve the number of

constraints and time of the selection of software

constraints; at the same time, the high coverage rate

indicates that the method of testing is better. The similarity

between the number of unconstrained combinations and

the number of combinations before validation is due to the

fact that the test case generation algorithm has already

considered most of the constraint conditions when

generating test cases. After removing the constraints, if the

actual number of generated test case combinations does

not change significantly, then the test coverage rate can

reach 100%. To compare the generation time and data size

of the current system method for software testing, the

number of populations and the number of iterations were

set to 150 populations and 20 iterations, respectively, as

shown in Figure 8. When generating test cases, the

average time for particle swarm optimization algorithm to

generate test cases is longer than that of genetic algorithm.

Therefore, it is said that the test cases generated by the

particle swarm algorithm require a longer period of time.

Enhanced Software Performance Testing for Big Data Platforms… Informatica 49 (2025) 85–104 97

120

90

60

30

0
0 CA(33,

3;2)

Testing software

(a) Generation time

G
en

er
at

io
n

 t
im

e
 (

s)

CA(83,

3;2)

CA(55

66,3;2)

CA(10
10,3;2)

CA(12
13,3;2)

CA(104

115,3;2)

350

280

210

140

0
0 CA(33,

3;2)

Testing software

(b) Dataset size

S
o
ft

w
ar

e
d
at

as
et

 s
iz

e

CA(83,

3;2)

CA(55

66,3;2)

CA(10
10,3;2)

CA(12
13,3;2)

CA(104

115,3;2)

70

Particle Swarm Optimization

Genetic algorithm

Particle Swarm Optimization

Genetic algorithm

Figure 8: Comparison of testing time and data scale for different system software

Description: Compare the current system approach with other algorithms in terms of software test generation time and

data size

Figure 8(a) shows that in the analysis of the CCTL

method of the two algorithms for software testing

generation time is different from the genetic algorithm

method in the generation of the moment of generation of

the event is significantly higher than the particle swarm

algorithm, which indicates that in the generation of

software data processing particle swarm algorithm of the

generation of a longer period of time to test the software

is significantly faster than the genetic algorithm, as can be

seen from Figure 8(b) particle swarm algorithm of the

From Figure 8(b), it can be seen that the particle swarm

algorithm is significantly higher than the genetic

algorithm in generating the number of coverage

combinations, which indicates that the size of the data

generated by it is larger, and the CCTL method is more

important to generate the data coverage combinations,

while the genetic algorithm is more important to generate

and analyse the time moments. To test the effect of the

current build system test software, the software parameter

position information, speed information, analog, and other

parameters to test, as shown in Table 2. The target

parameter speed reflects the speed at which the software

processes data or tasks, while the azimuth velocity reflects

the efficiency of the system in multi-dimensional task

scheduling. These parameters directly affect testing

efficiency and accuracy. Higher speeds and azimuth

velocities can improve testing efficiency. At the same

time, by precisely controlling the parameter range, it can

better simulate actual scenarios and improve the accuracy

of test results. The maximum and minimum values of the

target distance are based on the possible maximum and

minimum shopping cart distances in the system. The

injection time is the time interval used to simulate actual

user operations, ensuring that test cases can cover system

behavior at different time points.

Table 2: Test results of parameter position information, speed information, and analog parameters

Attribute name Maximum value Minimum value Injection time

Target distance (m) 10000 0 [0 ms, 100 ms]

Target coordinates X (m) 10000 0 [0 ms, 100 ms]

Target coordinates Z (m) 10000 0 [0 ms, 100 ms]

Target coordinates Y (m) 10000 0 [0 ms, 100 ms]

Target direction speed (rad/s) 20 0 [150 ms, 250 ms]

Target speed (m/s) 80 0 [150 ms, 250 ms]

A1 12 0 [0 ms, 10 ms]

A2 12 0 [0 ms, 10 ms]

B1 15 0 [30 ms, 40 ms]

B2 15 0 [30 ms, 40 ms]

C1 28.5 0 [50 ms, 60 ms]

C2 28.5 0 [50 ms, 60 ms]

Note: Lists the software parameter information in the test

Table 2 shows that the size of the maximum and

minimum values in the target position of the parameter are

the same, the maximum value is 10000 m, the minimum

value is 0 m, and the range of the injected moments of the

position are in [0 ms, 100 ms]. The range of the moment

of the position information of the particle parameter are in

98 Informatica 49 (2025) 85–104 Y. Sun et al.

[150 ms, 250 ms], the maximum value of the velocity of

the target parameter is 80 m/s, and the minimum value is

0 m/s. The maximum value of the azimuthal velocity of

the target is 20 rad/s, and the minimum value is 0 rad/s.

The maximum value of the analogue of the software test

and the different analogues are different but the minimum

value is 0, and at the same time, their moment ranges are

not the same. This shows that when the moment and

parameter determinations are made for the software, the

values of the parameters are different but some of the

parameters have the same range of values. In order to

verify the effectiveness of the current CCTL method for

software testing, the test cases are set to 4700, with 100%

coverage, using 46 parameters for analysis, and the system

is analysed and tested using the big data platform,

obtaining a partial test result graph as shown in Table 3.

Safety value is an indicator to assess the performance and

stability of software during testing, which is used to

determine whether there is any potential security risk in

the software. Fault information location is used to

determine the exact location and cause of faults in the

software by analysing the test results, helping developers

to quickly diagnose and fix problems.

Table 3: Software test data results

Combination test data results

2100 16.907 14.25 2100 16.907 14.25 2100 16.907 14.25

2101 16.574 14.25 2101 16.574 14.25 2101 16.574 14.25

2102 14.00 15.75 2102 14.00 15.75 2102 14.00 15.75

2103 14.00 0.75 2103 14.00 0.75 2103 14.00 0.75

2104 17.702 7.291 2104 17.702 7.291 2104 17.702 7.291

2105 24 -5.162 2105 24 -5.162 2105 24 -5.162

2106 17.707 5.52 2106 17.707 5.52 2106 17.707 5.52

2107 17.207 14.25 2107 17.207 14.25 2107 17.207 14.25

2104 24 - 2104 24 - 2104 24 -

2104 14.25 - 2104 14.25 - 2104 14.25 -

2107 17.207 12 2107 17.207 12 2107 17.207 12

2103 3.5345 6.471 2103 3.5345 6.471 2103 3.5345 6.471

2107 17.207 -0.75 2107 17.207 -0.75 2107 17.207 -0.75

2108 2 -15.75 2108 2 -15.75 2108 2 -15.75

2109 10.327 0 2109 10.327 0 2109 10.327 0

Note: Provides the results of combined test data, showing the test results of different combinations of test cases

As shown in Table 3, the results of the software testing in

the simulation test and fault results of the analysis and

testing, and then in the results of the test to obtain the

safety value, obtain the safety value of the test software

fault information positioning, the test fault positioning in

the results of the analysis of the region to display, and then

the positioning results obtained and the simulation of the

data parameters for the combination of the results of the

positioning and fault results for the combination of the

analysis of the results of the conclusions obtained were

used to reflect the test software use cases and parameters

of the direct combination of coverage and software testing.

The above test results show that the current method can be

tested and analyzed on the parameter combinations, and

therefore verify the feasibility of the software testing

method. Table 3 shows the actual test data results, which

are generated based on the parameters defined in Table 2.

Each set of data in Table 3 corresponds to a different

combination and value of the parameters defined in Table

2. For example, the data set 2100 may indicate that for a

particular combination of parameters, the test result is

16.907, 14.25, etc. The data set 2101 corresponds to the

test result for another combination of parameters, and so

on. The first set of data represents the execution results of

the test cases. The second set of data represents

performance indicators such as response time, throughput,

etc. The third set of data represents the results of safety or

fault detection. Therefore, the data is divided into three

groups. In analysing the test results, the data were first pre-

processed and then statistical metrics such as mean,

standard deviation and variance were calculated for each

algorithm. And key performance indicators were also

calculated and finally visualised and analysed using bar

charts and line graphs. In comparing the test results of

different algorithms, LSTM and LAR are chosen as

benchmark algorithms. To ensure the fairness of the

comparison, all algorithms are tested on the same test

dataset and test environment. In addition, the study

verified whether the differences between the different

algorithms were statistically significant using statistical

methods such as t-test and ANOVA. To test the accuracy

of the test parameters of the current method, the test results

of the parameters were analyzed and compared with the

test results of other algorithms, namely, long short-term

neural networks (LSTM), and logistic regression

algorithm (LRA) as shown in Figure 9. LSTM can help

identify and predict potential issues in software testing by

analyzing system logs, user behavior data, and historical

Enhanced Software Performance Testing for Big Data Platforms… Informatica 49 (2025) 85–104 99

testing data, thereby improving testing coverage and

efficiency. LSTM and LRA were chosen as comparison

algorithms for the study because LSTM has a significant

advantage in dealing with time series data by capturing

long-term dependencies in the data. LRA was chosen

because the algorithms provide a simple linear benchmark

that helps to understand the underlying linear trends in the

test data. LSTM is effective in analysing parameter

variations in the test, while LRA provides a simple linear

benchmark that helps to understand the underlying linear

trends in the parameters.

0.69
0.70

0.71

0.72

0.73

0.74

0.75
0.76

0.77

0.78

0.79

0.80

500 1000 1500 2000 2500 3000
Iterations

A
cc

u
ra

cy
 (

%
)

3500

Research usage methods

LAR

LSTM

(a) Dataset 1

0.81

0.69
0.70

0.71

0.72

0.73

0.74

0.75
0.76

0.77

0.78

0.79

0.80

500 1000 1500 2000 2500 3000
Iterations

A
cc

u
ra

cy
 (

%
)

3500

(b) Dataset 2

0.81
Research usage methods

LAR

LSTM

Figure 9: Comparison of software testing accuracy with different algorithm logics added

Description: Demonstrates the change in algorithm accuracy after adding different algorithm logic

As shown in Figure 9, after adding different

algorithmic logic to the CCTL, the accuracy of the LSTM

and LAR algorithms first increases with the number of

iterations and then tends to stabilize, while the accuracy of

CCTL combines PSO and GA approaches is in the

increasing stage. Accuracy continues to increase over

time, showing better learning ability and adaptability. This

indicates that the research usage method is more effective

in testing the accuracy of software, while the other two

algorithms have the highest accuracy, at 76% and 75%

respectively. The accuracy of the research usage method

is higher, at 5% and 6% higher than the LSTM and LAR

methods, respectively. To test the algorithmic stability of

the proposed method, the loss functions of the three

algorithms were compared and tested, as shown in Figure

10.

0 300k 600k 900k 1200k 1500k
0

1

2

3

4

5

6

7

8

9

10

Iterations

L
o

ss
 f

u
n

ct
io

n
 R

M
S

E

LSTM

LAR

Research usage methods

Figure 10: Comparison of loss functions among three algorithms

Description: compares the change in loss function of the three algorithms during the iteration process

Figure 10 shows that the loss function of the three

algorithms decreases and then gradually stabilizes

throughout the algorithm as the number of iterations

increases. The loss function value of the research use

method dropped to a minimum of 1.5 loss function at 300

k iterations, the LSTM algorithm dropped to a loss

function of 3 at 300 k, and the LAR algorithm dropped to

a minimum loss function of 3.2 at 320 k iterations. Loss

function is an important tool in machine learning to

measure the prediction error of a model, the smaller its

value the smaller and more stable the model error. The

research use model loss function value drops to 1.5 after

100 Informatica 49 (2025) 85–104 Y. Sun et al.

300,000 iterations and outperforms other models, which

indicates that the research use model learns data features

better during training, makes more accurate predictions,

and performs better when dealing with complex data. This

shows that the algorithmic logic of the research method

has the smallest loss function value, and the algorithmic

model is more stable. To test the effectiveness of different

algorithm models in software testing, a comparative

analysis was conducted on the Pairwise Testing (PT)

model, Ant Colony Optimization (ACO), Reinforcement

Learning Algorithm (RLA), and Particle Swarm

Optimization (PSO) algorithm models, as shown in Table

4.

Table 4: Comparison of test results of different algorithm software

/ Test result

Model ACO PT PSO GA RLA CCTL

Error detection rate (%) 94.35 92.65 91.54 91.58 92.35 96.54

Functional coverage (%) 92.61 91.26 90.36 91.32 92.67 94.85

Status coverage rate (%) 88.67 89.65 93.51 91.54 89.35 94.68

Conversion coverage (%) 81.26 90.35 92.54 84.65 83.51 93.59

Path coverage (%) 82.36 83.65 86.57 89.65 90.13 91.35

Note: Compares the performance of different algorithm models in software testing

From Table 4, it can be seen that after using different

algorithms for software testing, it is evident that the CCTL

model performs better in terms of testing results. In the

comparison of software testing performance, the error

detection rate of the CCTL model reached the highest

level of 96.54%, which is about 5.00% higher than that of

the PSO model. In the comparison of algorithm coverage,

the CCTL model achieved good coverage levels under

different coverage tests, with the model reaching the

highest value of 94.85% in functional coverage analysis.

It can be seen that the coverage and error detection rate of

the model used in the study have a high level, and the

actual software testing effect of the model is good. Unified

testing environment, selection of unified performance

indicators, and data alignment for performance research of

different algorithms that have not been tested. Statistical

tests show that the CCTL model performs the best on all

indicators. Error detection rate is a key indicator for

measuring the performance of software testing models,

reflecting the model's ability to detect defects. A high error

detection rate means that the model can more effectively

detect software defects, thereby improving software

quality and reliability. The high error detection rate of

CCTL model indicates that CCTL combined with PSO

and GA can generate high coverage test cases more

comprehensively, effectively reducing software failure

risks and improving user satisfaction. When comparing

algorithm coverage, the CCTL model performed well in

the function, state, transition and path coverage tests. This

indicates that the CCTL model, by introducing time

constraints and optimising parameter combinations, can

generate high-coverage test cases more comprehensively

and effectively improve the comprehensiveness and

accuracy of software testing. This indicates that the CCTL

model combined with PSO and GA can more effectively

generate high coverage test cases, resulting in better

performance in detecting defects and covering software

features. Table 5 shows a summary comparison of the test

results of the different methods.

Table 5: Summary comparison of tests for different methods of testing

Method Accuracy Efficiency Coverage

Rate

Capability to

Handle Large

Datasets

Real-Time Parameter

Constraint Handling

Capability

Bat Search

Algorithm

72.35% Moderate 79.84% Limited Weaker

Random Forest 88.67% High 88.67% Better Average

PSO 91.32% High 90.36% Better Strong

GA 90.36% Moderate 90.47% Average Strong

Proposed Method

(CCTL+PSO/GA)

5%-6% higher

than PSO/GA

High 100% Strong Very Strong

Note: Comparison of test results of different methods

As can be seen from Table 5, the CCTL+PSO/GA method

used in the research is significantly better than other

methods in different test results, which has the strongest

ability to deal with large-scale datasets, and the best ability

to deal with real-time parameter constraints, which

suggests that the model used in the research has a better

practical application in the testing of different methods.

Enhanced Software Performance Testing for Big Data Platforms… Informatica 49 (2025) 85–104 101

4.2 Discussion

In Raamish et al.’s study, in order to test the quality and

performance of the software and improve its reliability, a

ramp up algorithm based on LSTM and BrainStorm

optimization and post acceptance was used. The new

algorithm can be used for software fault detection.

Compared with traditional methods, the new method can

effectively improve the effectiveness of software

detection [27]. However, this method only analyzes and

detects faults and defects detected by software, and cannot

improve the performance and stability of software

detection. Oleshchenko’s research found that software

testing can consume a significant amount of cost and time

during software development. However, using the KNN

algorithm to train and test software development data can

greatly reduce software testing time and cost. From this, it

can be seen that using clustering algorithms for software

data analysis and cost control is an important direction in

the software testing process [28]. Build a new model for

software testing in this study. After 300,000 iterations, the

PSO algorithm generates a significantly higher number of

test case coverage combinations than the GA algorithm.

The PSO algorithm achieves a functional coverage of

90.36% compared to the GA algorithm's 91.32%.The PSO

algorithm achieves an error detection rate of 91.54%,

which is slightly lower than that of the GA algorithm's

91.58%.The CCTL method is able to, through the

introduction of temporal constraints more accurately

simulate the temporal characteristics of the software in

actual operation. Meanwhile, the CCTL method is better

at generating high-coverage test cases after combining the

PSO and GA algorithms. When comparing the software

production time of models, particle swarm optimization

algorithm has a higher coverage combination than genetic

algorithm in testing the performance of models with

different iteration times. This indicates that particle swarm

optimization algorithm has better performance in data

coverage combination processing and higher performance

in improving the coverage combination set of the model.

Compared with KNN, CCTL is more efficient in dealing

with complex time series data; compared with LSTM,

CCTL is more flexible in dealing with nonlinear data;

compared with BrainStorm optimisation, CCTL is more

comprehensive in dealing with complex test scenarios.

These advantages enable the CCTL method to

demonstrate higher accuracy and efficiency in software

performance testing, while reducing cost and improving

software reliability. This may be because particle swarm

optimization algorithms are easier to integrate data. When

comparing the accuracy of different algorithm models, the

study found that the accuracy of LSTM and LAR models

were 5% and 6%, respectively. This may be due to the

combination of genetic algorithm and particle swarm

optimization algorithm used in the study. The types of

constraints selected for research are closely related to the

actual situation, aiming to reflect the various scenarios that

software testing may encounter and ensure that test cases

cover all key operations and interactions of the software.

Although the experimental results showed high test

coverage and accuracy, some test cases failed due to

parameter configuration errors, environmental

dependencies, resource limitations, concurrency conflicts,

algorithm limitations, or insufficient test data. This

indicates that the test cases further reveal the shortcomings

of the testing strategy and algorithm performance, and

points out the necessity of enhancing the robustness of the

test cases. In software performance testing, PSO and GA

optimization algorithms significantly improve the

comprehensiveness and accuracy of testing by generating

high coverage test cases. Algorithms not only improve

testing efficiency and reduce resource consumption, but

also lower testing costs. In addition, high-quality test cases

generated by algorithm models can effectively detect

software defects, improve software reliability and

stability.

When comparing the loss functions of different

models, the changes in the loss functions of the models

show a trend of first decreasing and then approaching

equilibrium. This may be because as the number of

iterations increases, the functional loss of the model also

increases, but when the model reaches a certain value, it

begins to stabilize. The loss function value of the model

used in the study is relatively small, which may be due to

the improved algorithm performance after adding

different algorithms to the model. When comparing the

performance of different models, it was found that the

algorithm using this model performed better, with the

highest error detection rate of 96.54%. Compared with

other algorithms, the algorithm used in this study has

higher coverage and error rates. This may be due to the

current algorithm model performing better in software

testing. Has shown certain efficiency and accuracy in

selecting regression test cases, but has limitations in

handling large-scale datasets and real-time parameter

constraints. The current research method uses PSO and

GA optimization algorithm logic to significantly improve

test coverage and outperforms bat search algorithm in

terms of functional coverage. The random forest algorithm

performs the best in predictive performance, but its real-

time parameter processing ability in software testing is

average. The method currently used in the research not

only has a 5% -6% higher accuracy, but also demonstrates

a very strong ability to handle real-time parameter

limitations. PSO is faster in some cases, mainly because it

can quickly find the optimal solution through the

collaboration of individuals and groups. Meanwhile, GA

simulates the genetic and mutation mechanisms in natural

selection, making it suitable for global search, but its

convergence speed may not be as fast as PSO. By

combining the advantages of PSO and GA, the study not

only improved the coverage and accuracy of testing, but

also maintained efficient testing performance in

environments with real-time parameter changes. It also

provides new ideas and tools for software testing in more

complex environments in the future. In future research,

researchers may further explore how to optimize PSO and

GA algorithms to improve performance in specific

situations. At the same time, the proposed methods may

stimulate the development of new testing methods, and

with the improvement of algorithm performance, future

software testing may become more automated and

102 Informatica 49 (2025) 85–104 Y. Sun et al.

intelligent, thereby improving testing efficiency and

reducing costs.

In summary, in the comparison of different algorithm

models, it is found that the use of models has better

software testing performance. At the same time, the use of

algorithms in software testing can effectively analyze and

test software, and its effect can reach

5 Conclusion
This research mainly focuses on the current problem of

lack of stability and performance of software testing, and

proposes a new software testing system based on the

CCTL method, first analyzing the component use case

generation of software testing. Subsequently, the system

is transformed and analyzed using the particle swarm

algorithm and genetic algorithm logic, and a system model

is built for software testing. The method used in the study

is based on CCTL combined with PSO and GA. The loss

function value of the method is significantly lower than

other methods, indicating that it can better learn data

features during the training process and make more

accurate predictions. The new methodology achieves 100

per cent test coverage. Meanwhile, the new method

effectively selects the number of constraints. In terms of

algorithm performance, GA excels in generating test

moments, while PSO is more advantageous in handling

complex parameter combinations and large-scale data.

These advantages enable the new method to excel in

generating high-coverage test cases, significantly

improving the comprehensiveness and accuracy of the

tests. During the testing process, parameter settings

significantly affect the generation of test cases and test

results. The range of values of the algorithm parameters

has a significant effect on the test results. For example, an

increase in the number of particles and population size can

enhance the search ability but increase the running time;

an increase in the learning factor and crossover rate can

make the search direction clearer but may fall into the

local optimum. By reasonably adjusting these parameters,

the speed and coverage of test case generation can be

optimised and the test results can be improved. In addition,

the effect of different parameter settings on the testing

effect showed that the parameter values were different, but

the range of values is similar. Simultaneously, the new

method can effectively obtain the safety value and fault

location information of the software. Meanwhile, the

accuracy of other traditional methods is as high as 76%

and 75%, whereas the accuracy of the research use method

is higher, outperforming the accuracy of the LSTM and

LAR methods by 5% and 6% respectively. Also the loss

function of the algorithm used in the study is 1.7 and 1.5

lower than the loss functions of the other two algorithms,

which shows that the method is more stable. From this, it

can be seen that researching usage methods has better

testing effects in software testing, and at the same time,

studying the testing error rate, coverage rate, and accuracy

of using models in different model comparisons has a high

level. It can be seen that although this study has achieved

a lot of results, it still needs to be improved, first of all, the

algorithm needs to be further improved subsequently

when it is constrained to the combination of cases, and the

data used for the study was small, so larger data sets will

need to be analysed in subsequent studies. The current

research is mainly conducted in specific testing scenarios

and may not fully cover all complex situations in practical

applications. Therefore, further research is needed to

expand the testing scenarios to verify the universality of

the method. Although the methods used in the study have

shown improvements in accuracy and stability compared

to other methods, their stability and accuracy still need

further validation in larger scale data and more diverse

testing environments. The PSO and GA algorithms in the

current study have limitations although they perform well.

Therefore, future research will improve these algorithms

by introducing hybrid strategies, dynamically tuning the

parameters and optimising the cross-variance operation.

The current research focuses on specific scenarios such as

online shopping system, data processing module and

report generation module. Future work will expand the test

scenarios to validate the stability and accuracy of the new

methods using larger scale data and more diverse test

environments.

Data availability statement
The datasets used and/or analyzed during the current study

are available from the corresponding author upon

reasonable request.

Conflicts of interest
The authors declare that this article is free of any conflicts

of interest.

Author contributions
All authors contributed to the study conception and

design. Material preparation, data collection and analysis

were performed by Yuan Sun, Md Gapar Md Johar,

Jacquline Tham. The first draft of the manuscript was

written by Yuan Sun, Md Gapar Md Johar, Jacquline

Tham. All authors read and approved the final manuscript.

Funding
No funding was received.

References
[1] Alhroob A, Alzyadat W, Imam A T, Jaradat Ghaith

M. The genetic algorithm and binary search technique

in the program path coverage for improving software

testing using big data. Intelligent Automation and

Soft Computing, 2020, 26(4): 725-733.

http://dx.doi.org/10.32604/iasc.2020.010106

[2] Han X, Yu T, Yan G. A systematic mapping study of

software performance research. Software: Practice

and Experience, 2023, 53(5): 1249-1270.

https://doi.org/10.1002/spe.3185

[3] Murthy M S N, Suma V, Chandrappa C N, Shankar

M M. Factors influencing effectiveness of testing

applications in cloud using regression testing: a

https://www.nstl.gov.cn/search.html?t=JournalPaper&q=5L2c6ICF77yaSmFyYWRhdCwgR2hhaXRoIE0u
https://www.nstl.gov.cn/search.html?t=JournalPaper&q=5L2c6ICF77yaSmFyYWRhdCwgR2hhaXRoIE0u

Enhanced Software Performance Testing for Big Data Platforms… Informatica 49 (2025) 85–104 103

statistical analysis. International Journal of Advanced

Intelligence Paradigms, 2020, 17(1/2): 109-126.

https://doi.org/10.1504/ijaip.2020.108770

[4] Guo S, Wang J, Xu Z, Huang L. Feature transfer

learning by reinforcement learning for detecting

software defects. Software: Practice and Experience,

2023, 53(2): 366-389.

https://doi.org/10.1002/spe.3152

[5] Chen J. Construction and Application of an Economic

Intelligent Decision-making Platform Based on

Artificial Intelligence Technology. Informatica.

2024, 48(9). https://doi.org/10.31449/inf.v48i9.5705

[6] Kaur A, Agrawal A P. Performance comparison of

Bat search and Cuckoo search using software artefact

infrastructure repository and regression testing.

International Journal of Advanced Intelligence

Paradigms, 2021, 18(2): 99-118.

https://doi.org/10.1504/IJAIP.2021.112899

[7] Chen J, Hu H, Yu D. Characterising and detecting

methods to be benchmarked under performance unit

test. International Journal of Software Engineering

and Knowledge Engineering, 2022, 32(9): 1279-

1305. https://doi.org/10.1142/S0218194022500486

[8] Khurshid S, Iqbal J, Malik I A, Yousuf B. Modelling

of NHPP based software reliability growth model

from the perspective of testing coverage, error

propagation and fault withdrawal efficiency.

International Journal of Reliability, Quality and

Safety Engineering, 2022, 29(6): 10-28.

https://doi.org/10.1142/s0218539322500139

[9] Qian J, Zhou X, Zhou H. Prioritising test scripts for

the testing of memory bloat in web applications. IET

Software, 2022, 16(3): 317-330.

https://doi.org/10.1049/sfw2.12057

[10] Bugden W, Alahmar A. The safety and performance

of prominent programming languages. International

Journal of Software Engineering and Knowledge

Engineering, 2022, 32(5): 713-744.

https://doi.org/10.1142/S0218194022500231

[11] Jiang M, Chen T Y, Wang S. On the effectiveness of

testing sentiment analysis systems with metamorphic

testing. Information and Software Technology

Information and Software Technology, 2022,

150(10): 1-11.

https://doi.org/10.1016/j.infsof.2022.106966

[12] Hao T, Elith J, Lahoz-Monfort J, Guillera-Arroita G.

Testing whether ensemble modelling is advantageous

for maximising predictive performance of species

distribution models. Ecography, 2020, 43(4): 549-

558. https://doi.org/10.1111/ecog.04890

[13] Hosseini S M J, Arasteh B, Isazadeh A, Mohsenzadeh

M, Mirzarezaee M. An error-propagation aware

method to reduce the software mutation cost using

genetic algorithm. Data Technologies and

Applications, 2021, 55(1): 118-148.

https://doi.org/10.1108/DTA-03-2020-0073

[14] Zeb A, Din F, Fayaz M, Mehmood G, Zamli K Z. A

systematic literature review on robust swarm

intelligence algorithms in search‐based software

engineering. Complexity, 2023, 2023(1): 4577581-

4577582. https://doi.org/10.1155/2023/4577581

[15] Pan R, Ghaleb T A, Briand L. Atm: Black-box test

case minimization based on test code similarity and

evolutionary search. In 2023 IEEE/ACM 45th

International Conference on Software Engineering

(ICSE), 2023, 14(5): 1700-1711.

https://doi.org/10.48550/arXiv.2210.16269

[16] Omar H K, Frikha M, Jumaa A K. Improving Big data

recommendation system performance using NLP

techniques with multi attributes. Informatica. 2024,

48(5). https://doi.org/10.31449/inf.v48i5.5255

[17] Sornkliang W, Phetkaew T. Performance analysis of

test path generation techniques based on complex

activity diagrams. Slovenian Association

Informatika, 2021, 45(2): 231-242.

https://doi.org/10.31449/inf.v45i2.3049

[18] Bednárek D, Kruliš M, Yaghob J. Letting future

programmers experience performance-related tasks.

Journal of Parallel and Distributed Computing, 2021,

155(C): 74-86.

https://doi.org/10.1016/j.jpdc.2021.04.014

[19] Ke S Z, Huang C Y. Software reliability prediction

and management: a multiple change-point model

approach. Quality and Reliability Engineering

International, 2020, 36(5): 1678-1707.

https://doi.org/10.1002/qre.2653

[20] Bi W, Yu F, Cao N. Wei H, Cao G, Han X, Sun L,

Higgs R. Research on data extraction and analysis of

software defect in IoT communication software.

Computers, Materials, and Continuum, 2020, 65(2):

1837- 1854.

https://doi.org/10.32604/cmc.2020.010420

[21] Li L, Xu L, Cui H, Abdelkareem M A A. Validation

and optimization of suspension design for testing

platform vehicle. Shock and Vibration, 2021,

2021(7): 1-15. https://doi.org/10.1155/2021/7963517

[22] Shao Y, Liu B, Wang S, Xiao P. A novel test case

prioritization method based on problems of numerical

software code statement defect prediction.

Eksploatacja i Niezawodnosc - Maintenance and

Reliability, 2020, 22(3): 419-431.

https://doi.org/10.17531/ein.2020.3.4

[23] Serat Z, Fatemi S A Z, Shirzad S. Design and

economic analysis of on-grid solar rooftop PV system

using PVsyst software. Archives of Advanced

Engineering Science, 2023, 1(1): 63-76.

http://dx.doi.org/10.47852/bonviewAAES32021177

[24] Garmaki M, Gharib R K, Boughzala I. Big data

analytics capability and contribution to firm

performance: the mediating effect of organizational

learning on firm performance. Journal of Enterprise

Information Management, 2023, 36(5): 1161-1184.

https://doi.org/10.1108/JEIM-06-2021-0247

[25] Jalil S, Rafi S, LaToza T D, Moran K, Lam W.

Chatgpt and software testing education: Promises &

perils. In2023 IEEE international conference on

software testing, verification and validation

workshops (ICSTW), 2023, 16(6): 4130-4137.

https://doi.org/10.48550/arXiv.2302.03287

[26] Weber M, Kaltenecker C, Sattler F, Apel S, Siegmund

N. Twins or false friends? a study on energy

consumption and performance of configurable

https://www.nstl.gov.cn/search.html?t=JournalPaper&q=5L2c6ICF77yaTW9oYW1lZCBBLiBBLiBBYmRlbGthcmVlbQ

104 Informatica 49 (2025) 85–104 Y. Sun et al.

software. In 2023 IEEE/ACM 45th International

Conference on Software Engineering (ICSE), 2023,

14(5): 2098-2110.

https://doi.org/10.1109/ICSE48619.2023.00177

[27] Raamesh L, Jothi S, Radhika S. Enhancing software

reliability and fault detection using hybrid brainstorm

optimization-based LSTM model. IETE Journal of

Research, 2023, 69(12): 8789-8803.

https://doi.org/10.1080/03772063.2022.2069603

[28] Oleshchenko L. Software testing errors classification

method using clustering algorithms. International

Conference on Innovative Computing and

Communication, 2023, 17(10): 553-566.

https://doi.org/10.1007/978-981-99-3315-0_42

Appendix

Item Details

Experimental Purpose
To evaluate the performance of the software performance testing system based

on Clock-Controlled Computation Tree Logic (CCTL)

Experimental Environment
Intel Core i7-9700 CPU @ 3.20GHz, 32GB RAM, Windows 10 Professional

64-bit

Software Tools MATLAB R2020b, Python 3.8 with necessary libraries

Experimental Steps
Setup environment, write test cases, apply PSO and GA, use automation tools,

record results, generate reports

PSO Parameters
Number of particles: 30, Maximum iterations: 50, Acceleration coefficients:

2.05, 2.05, Inertia weight: 0.9

GA Parameters
Population size: 100, Crossover rate: 0.8, Mutation rate: 0.01, Selection

method: Roulette wheel selection

CCTL Parameters
Time interval: [0 ms, 250 ms], Event expressions: Defined based on software

functionality requirements

LSTM and LAR Parameters LSTM hidden units: 128, LAR order: 4

Test Case Data
Derived from functional requirements documents of online shopping systems

and user operation logs

Performance Data Generated under various loads using JMeter tool

Security Data Generated through security scans with OWASP ZAP tool

Software Defect Data Collected from previous software testing and maintenance records

