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This research aims to solve the problems of testing inefficiency and lack of accuracy in software testing,
and proposes a software performance testing system for big data platforms based on the clock-controlled
computational tree logic method. The particle swarm algorithm finds the optimal solution through the
movement and mutual cooperation of particles in the search space. Genetic algorithm evolves the
population through selection, crossover, and mutation operations, ultimately finding the optimal solution.
Secondly, long short-term memory networks and linear autoregressive models also have advantages in
software testing, which can improve the effectiveness and efficiency of software testing through
reasonable selection and combined use. The new algorithm utilizes the ability of PSO and GA algorithms
to search for optimal solutions through particle motion and group cooperation in the search space, in
order to determine key moment parameters and other relevant information in software testing systems.
The research uses the algorithmic logic of the particle swarm algorithm and the genetic algorithm to
confirm the moment parameters and other information of the software testing system. At the same time,
an algorithmic model research on the joint coverage and the use of the value of the system, and finally
makes use of the big data platform to analyze the research system. The specific indicators used in the
study include 100% test case coverage, as well as the functional coverage of genetic algorithms and
particle swarm optimization algorithms. The innovative combination of CCTL method and optimization
algorithm in the research has improved the accuracy and stability of software testing. CCTL is an
extended computational tree logic that introduces the concept of time, allowing testers to explicitly specify
time constraints in software testing, thereby more accurately simulating real-world scenarios. The
research results show that using the system to test software can achieve a coverage rate of 100% for its
component use cases, while the functional coverage rates of genetic algorithm and particle swarm
algorithm reach 90.36% and 91.32%, respectively. The accuracy of software testing research methods is
5% and 6% higher than that of LSTM and LAR methods. When the moment range of the particle parameter
position information of the model is [150 ms, 250 ms], the maximum value of the target parameter velocity
is 80 m/s and the minimum value is 0 m/s. The maximum value of the target azimuth velocity is 20 rad/s,
and the minimum value is 0 rad/s. The system is able to determine the various parameters of the software,
and at the same time in the software test results on the test results are normal, fault analysis can be
completed normally, the performance of the algorithm is also superior to other algorithm models such as
LSTM and LAR, and the study of the use of algorithms with a higher degree of stability. It can be seen
that the system and methodology used in this research is superior to traditional methods and the test
results of software testing have improved. This study provides a new research direction for platform
software afterwards.

Povzetek: Opisan je sistem za testiranje zmogljivosti programske opreme na platformah za velike podatke,
ki uporablja metodologijo CCTL, optimizirano s pomocjo algoritmov PSO in GA.

Introduction

testing methods for big data platform software suffer from

In the current digital age, big data platforms have become
a core technology for processing complex data sets. With
the increasing volume of data, it is critical to ensure stable
platform software performance [1]. Software performance
testing is a key component in ensuring efficient and
accurate data processing [2]. The existing performance

low efficiency and insufficient accuracy when dealing
with large-scale data and complex scenarios. Therefore,
how to build an efficient and accurate method for testing
the performance of big data platform software has become
a difficult problem that still needs to be solved [3]. The
research objectives specifically include improving testing
accuracy, expanding testing coverage, and clarifying the
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performance of CCTL in handling specific types of
constraints, as well as enhancing the adaptability of the
model in handling large-scale datasets and real-time
parameter changes. Simultaneously studying the
hypothesis that combining CCTL methods and
optimization algorithms can significantly improve the
accuracy and coverage of big data platform software
testing, optimization algorithms can effectively address
the limitations of CCTL in processing large-scale datasets
and real-time parameter changes, and the combination of
PSO and GA can provide more stable and comprehensive
testing results in different testing scenarios. These
algorithms are used to optimize the search for critical
moment parameters and other relevant information in
software testing systems, thereby improving the accuracy
and efficiency of the testing process. In the current digital
age, big data platforms have become the core technology
for processing complex datasets. As the amount of data
increases, ensuring the stability of platform software
performance becomes crucial. Software performance
testing is a key component in ensuring efficient and
accurate data processing. The existing performance testing
methods for big data platform software face problems of
low efficiency and insufficient accuracy when dealing
with large-scale data and complex scenarios. Clock-
Controlled Computation Tree Logic (CCTL) is a temporal
logic that improves the traditional Computation Tree
Logic (CTL) by introducing the concept of time [4]. Long
Short Term Memory Network (LSTM) is a special type of
recurrent neural network that can remember cells and gate
mechanisms to solve the problems of gradient vanishing
and exploding in traditional RNNs when processing long
sequence data. Linear Autoregressive Model (LAR) is a
statistical model used for time series analysis. This
approach is particularly important in Big Data processing,
where it allows the testing process to consider the
temporal properties of the data flow, thus more accurately
simulating real-world situations. CCTL can more
effectively identify and analyze performance bottlenecks
and potential problems in big-data platforms. Although
the clock controlled computation tree logic method has
achieved certain application results in other fields, there is
still relatively little research on its application to software
performance testing on big data platforms. CCTL is used
to verify the temporal attributes of critical tasks and in
fields such as aviation electronics, automotive control, and
industrial automation. It ensures that data transmission
and reception are completed within specified time
intervals, which is crucial for network design and
optimization. The novelty of the research lies in the
innovative combination of clock controlled computation
tree logic with PSO and GA, which not only achieves
1009% test case coverage, but also enhances adaptability to
different testing environments and conditions through
optimized algorithm logic. In addition, this method has
broad application prospects in potential fields such as big
data processing, cloud computing platforms, Internet of
Things (10T) devices, as well as artificial intelligence and
machine learning. Firstly, the new model utilizes the
algorithm logic of particle swarm optimization and genetic
algorithm to improve and analyze the process, in order to
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enhance the accuracy and stability of software testing
parameter validation. Secondly, the research constructed
testing scenarios and test cases suitable for big data
platforms, and verified the performance and accuracy of
the new method in different testing environments through
experiments. And provided new ideas and methods for
performance testing of big data platform software. By
utilizing CCTL, the accuracy and efficiency of software
performance testing have been significantly improved,
especially for big data platforms that handle dynamic and
large-scale datasets. The proposed method can be applied
to other big data platforms, providing a scalable and
effective performance testing solution applicable to
various fields. This research is divided into four parts; the
first part is an overview of domestic and international
research; the second part is a study of the system and
method of software testing; the third part is mainly to test
and analyze the performance of the system; and the fourth
part is a summary of the current research.

2 Literature review

Software is usually tested for different problems;
therefore, different research methods are required to solve
these problems. To address the complexities of data
analysis encountered by strength and conditioning
professionals who use strength platforms to conduct CMJ
assessments during training, this study proposes a solution
to create a data analysis program using MATLAB. The
findings suggest that the program can help coaches
simplify the process and improve the accuracy and
reliability of the data analysis. In addition, the sample
scripts provided allow further learning and mastery of
basic scripting strategies to create separate analysis
programs for the CMJ and other performance tests [5].
Kaur and Agrawal proposed a new approach based on the
Bat Search Algorithm and the Cuckoo Search Algorithm
to solve the problem of regression test case selection and
improve the efficiency and accuracy of software
maintenance. The results of this study show that both
algorithms are effective in reducing the number of
required test cases and improving the testing efficiency in
regression testing. Among them, the cuckoo search
algorithm is slightly better in terms of performance
parameters. The algorithm proposed by Kaur and Agrawal
performs well in reducing the number of test cases and
improving testing efficiency, but still has limitations when
dealing with large-scale datasets [6]. Chen et al., proposed
an auxiliary method based on machine learning to study
the benchmarking method in performance unit testing.
The results of this study show that the method can
effectively identify benchmarking methods, thus
improving the accuracy and efficiency of performance
unit testing. It was also found that the Random Forest
algorithm performs the best in predicting performance and
can retrieve 43% of the true BDMs by examining only 5%
of the candidate methods detected by the model. Chen et
al.'s method can effectively identify benchmark methods
and improve the accuracy and efficiency of testing.
However, this method has poor adaptability when dealing
with dynamic and large-scale datasets [7]. In order to
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address the problem of parameter estimation for software
reliability growth models, this paper proposes a
framework modelled on the Non-Homogeneous Poisson
Process (NHPP). The framework integrates test coverage
(TC), error propagation and troubleshooting efficiency
while limiting the number of parameters. The results show
that the model is more reliable than the existing models
and can effectively assess and predict software reliability.
Through sensitivity analyzes, we demonstrated that the
model parameters have less impact on the mean function.
The model proposed by Khurshid et al. performs well in
handling test coverage, error propagation, and
troubleshooting efficiency, but has shortcomings in
handling real-time parameter constraints [8].

Qian et al. propose a method for prioritizing test
scripts to address the memory bloat problem in web
applications, as well as to improve the efficiency of
performance testing. The new method uses a learning
ranking technique to predict which test scripts are more
likely to cause memory bloats, and thus prioritizes the
execution of these scripts. Experimental results show that
the method is effective in speeding up testing and
improving the efficiency of detecting memory bloats. The
method proposed by Qian et al. significantly improves the
efficiency of detecting memory expansion. However, this
method is mainly targeted at web applications and lacks
adaptability to complex scenarios on big data platforms
[9]. To fill a gap in the research on programming language
security, this study proposes a methodology for
benchmarking the security and performance of languages.
The methodology compares six well-known programming
languages and uses quantitative and qualitative methods to
determine which language is best in terms of security and
performance by testing the code and analyzing the
available information. The results of the study show that
the Rust performs best in terms of security and
performance, achieving an excellent balance [10].

To investigate the effectiveness of Metamorphic
Testing (MT) in different application contexts, this study
revisited the use of MT in Sentiment Analysis (SA)
systems and found that false satisfaction is an important
factor affecting the validity of MT. An in-depth analysis
of false gratification reveals how it can occur and how it
can affect the effectiveness of MT. Our study also suggests
that MT may overestimate the consistency of the system
with the relevant MR if the occurrence of false satisfaction
is not taken into account. These findings will help the MT
community use MT test results more fairly and reliably
[11]. To compare the predictive performance of an
ensemble species distribution model with that of a single
model, a study was conducted using a large eucalyptus
species presence-absence dataset. Two spatial blocking
strategies were used to partition the dataset, and all models
within the calibration fold were calibrated and cross-
validated using repeated random partitioning of data and
spatial chunking. The results of the study showed that the
ensemble models performed well in some tests, but did not
always outperform their untuned individual models or the
tuned BRT. Additionally, good external performance was
obtained by selecting untuned individual models with the
best cross-validation performance [12]. Hosseini et al.

Informatica 49 (2025) 85-104 87

proposed a quantitative data error propagation rate and a
mutation location recognition method based on genetic
algorithm to reduce the cost of mutation detection. The
research results showed that this method effectively
reduced the number of mutants by about 24%, while
increasing the mutation score by about 5.6%. Only 7.46%
of the generated mutants were equivalent, significantly
reducing testing time and cost [13]. Zeb et al. found that
heuristic algorithms have been well studied in multiple
fields, among which the use of heuristic algorithms such
as particle swarm optimization in software testing can
reduce the defects of software testing, improve the
accuracy and reliability of software testing. It can be seen
that using particle swarm optimization algorithm can
improve the accuracy of software testing [14]. Pan et al.
proposed a similarity search test case minimization
technique based on genetic algorithm to improve the
efficiency and fault detection capability of software
testing. The research results indicate that the new method
achieves a higher average fault detection rate compared to
the existing technology FAST-R, with only 50% of test
cases running [15].

In summary, existing research has made significant
progress in the field of software testing, but there are still
some shortcomings. Although MATLAB’s data analysis
program simplifies the process, it relies on specific
environments; Although machine learning methods have
improved the efficiency of regression testing, they lack
applicability and have poor performance in evaluating
data. Research has shown that although other framework
models can accelerate the detection of webpage memory
inflation, there is still a problem of poor network
environment testing [16]. Therefore, this study proposes a
new solution to address the issues of insufficient accuracy
and performance in software testing. Firstly, the clock
controlled computation tree logic method is used to
generate software moment cases in the big data platform,
which solves the problems of environment dependence,
testing efficiency, and accuracy in existing research for
software performance testing in big data platforms.
Secondly, the model selects parameters such as moment
examples and determines their values to ensure the
accuracy and performance of software testing, solving the
problems of limited applicability and unstable results of
existing methods.

3 Method

3.1 Analysis of CCTL model

This chapter mainly focuses on the time platform for
software testing to build a system, using the CCTL method
to analyze the software testing system, build the moment
component use case generation model and the software
testing system model, and then analyze the system model
to achieve system building for software testing
performance. The main workflow of the current research
is shown in Figure 1.
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Figure 1: Main workflow

Description: Shows the main workflow.

From Figure 1, it can be seen that the first step is to
analyze and generate test cases for the software. Secondly,
by using the CCTL algorithm model, a software testing
system based on the algorithm model is built. Then, based
on the constructed model, implement software testing.
Finally, the algorithm model constructed was tested for its
actual effectiveness through experiments.

3.2 Research on software testing model

In the software for testing, software parameters of the
moment input will have certain requirements, must be
input in a specific time parameter to make the whole
operation is effective, through this effective time input to
be able to follow up on the input function operation, this
time point and parameter point is the current software
input parameters of the space moment. Generally, there
are three types of input time space for software: interval
input, cycle input, and discrete input. The interval input
selects a fixed point in the cycle and selects a moment for
input; the cycle input selects a time moment within the
cycle and inputs different time points; the discrete input
selects any time point from the discrete time collection for
input. Interval input is suitable for systems that require
regular and consistent data input, loop input is suitable for
systems with periodic tasks, and discrete input is suitable
for systems with irregular or user driven events. By
classifying the input temporal space in this way, we can
better understand and model the temporal behavior of
software systems, which is crucial for accurate and
effective software testing.

The number of parameters covered by the input will
inevitably exist because of the moment processing
constraints, and the expression of the constraints before
the test generation is an important step in the analysis of
its parameters. The general constraint moment is divided
into two types: independent moment constraints and
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related moment constraints, which are mainly due to the
non-existence of correlation between the parameters and
parameters. Therefore, the two parameters do not affect
each other, and at the same time the parameters
simultaneously have their own moment constraint
limitations. Independent moment constraints are temporal
constraints on individual parameters that are not
dependent on other parameters, thus simplifying the
testing process and increasing testing efficiency.
Correlation moment constraints, on the other hand,
involve temporal dependencies between multiple
parameters, ensuring that multiple parameters work
together at a specific point in time or time range.
Separating the independent moment constraints and
correlated moment constraints into two distinct parts
improves the clarity, efficiency and accuracy of testing.
Correlated moment constraints, on the other hand, refer to
the existence of identical moment constraints as well as
different correlated moment constraints between two
parameters. The CCTL method enables the description of
constraints to reduce the moment constraints of the
parameters. As shown in Eq. (1) is the independent time-
constraint formula for the CCTL method [17].

EX,u#

. @
EX,, . (#)

In Eq. (1), t,,t, denotes the time interval, EX

denotes the relationship between the constraints present,
¢ denotes the event expression of the input parameters,

and N denotes the number of events satisfied by the test.
The times of the different parameter constraints in the
CCTL method can be expressed as shown in Eq. (2) [18]:

Ext0 ,t1¢ - Extz ¥ )

In Eq. (2), Y is expressed in terms of execution in the
interval time, and the rest of the parameter expressions are
the same as above. The constraint expression for the same
moment means that at this time, the time will move to the
next pointing interval after execution in that interval. The
parameter expression for time can be substituted for the
separate moments. When the time moments are replaced
as separate moments the relative time constraints are also
induced as n, the expression is shown in Eq. (3).

EX‘O,!1¢ I Exlz ,t3W - —>EX 0= EX'zn—Zvlzn—lg (3)

tnalons

In Eq. (3), ®,¢ indicates the input conditions for

different parameters. The remaining parameters were the
same as those decribed. Because the existence of
constraints will cause some combinations to not be in a
time test case at the same time, for the current time
constraints software test cases need to deal with constraint
combinations; typically, there are four ways to deal with
time constraints under the CCTL approach: abstract
parameters, sub-models, substitution, and avoidance of
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selection methods. Abstract parameters simplify the
model and reduce complexity by abstracting specific
temporal parameters, but can lead to oversimplification of
the model and loss of important details. Submodels
decompose a complex model into multiple submodels, but
coordination between submodels can be complex,
increasing the complexity of the overall model.
Substitution methods simplify temporal constraints, but
may lead to loss of temporal information. Selection
methods choose specific temporal parameters or time
points to avoid conflicts and ensure model consistency,
but may require additional logic and computation,
increasing complexity. Their principle is to transform the
models and convert the models that appear to be in conflict
with valid combination methods. However, the problem
with this method is that when large parameters are
encountered, more unnecessary and redundant
information parameters appear [19]. At the same time,
when using the CCTL method for software parameter
moment determination and combinatorial testing, it is
necessary to input a large number of consecutive
parameters; therefore, it is necessary to study its parameter
coverage during the analyzis. At this time it is necessary
to use generative algorithms to study and analyse the
parameter inputs of the method.

Start

Input parameter
constraints, time, etc

Number of time
combinations generated

Y
= Initialize candidate set

A4
Update candidate set

!

Avoiding constraints
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3.3 Time parameter combination and
generation algorithm model

In the case of continuous input and transmission of the
software moment parameters selected by the CCTL
method, the parameter information at this time is
analyzed. The algorithm model of data analysis selects the
particle swarm algorithm and genetic algorithm for
analysis, through the parameters of the population optimal
solution and evolutionary optimal solution to find, to
output the optimal value of the current parameters, to
achieve the analysis of the parameters of the judgement.
The analysis of parameter coverage helps ensure that all
possible input conditions and scenarios are fully tested,
thereby improving the comprehensiveness and accuracy
of testing. PSO and GA algorithms can better generate test
cases, ensuring the reliability and effectiveness of test
results. At the same time, these algorithms perform well in
parameter optimization problems and can quickly find the
optimal solution, thereby improving the efficiency and
accuracy of testing. The algorithm joint process includes
PSO and GA initializing populations separately, with each
individual representing a test case or parameter
combination. Simultaneously, both models undergo
iterative optimization and evaluate the quality of test cases
through fitness functions. Finally, during the iteration
process, excellent individuals are exchanged between PSO
and GA to improve optimization efficiency. Figure 2
shows the flow of the moment-combination generation
algorithm.

Is the time combination
empty ?

Enter the number of time
coverage combinations

Update time
combination

Whether the preset
parameters have been
reached?

Figure 2: Time combination generation algorithm process

Description: Hlustrates how the parameter information is analysed by particle swarm algorithm and genetic algorithm.

As shown in Figure 2, in the analysis phase of the
algorithm, the number of parameters is first input to select
the constraints and input moments, after which the
combination of parameters at the current moment is
generated, the parameter candidate set is initialized, and

the set is updated so as to select a better individual for
constraint evasion. Then, it is judged whether the current
parameters under test reach the pre-set parameter data, and
if they do, the combination of the target time is updated
and then the combination is output. If it is reached, then
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update the target time combination and output the
combination; if it is not reached, then reinitialise the
candidate collection. In software performance testing,
selecting the optimal value of the current parameter is
achieved through optimization algorithms. The algorithm
gradually optimizes the combination of parameters to find
the optimal test case. After outputting the number of
combinations again, judge whether the combination set is
empty; if it is empty, end the algorithm; if not, initialize
the candidate set. Firstly, when generating examples, the
model initializes the population of genetic algorithm and
the particle swarm of particle swarm algorithm, with each
individual representing a time combination. Based on the
differences in algorithm structures, generate and optimize
time combinations separately. Then regularly exchange
individuals of genetic algorithm and particle swarm
algorithm, add excellent particles from particle swarm
algorithm to the population of genetic algorithm, and add
excellent chromosomes from genetic algorithm to the
particle swarm of particle swarm algorithm. Finally, after
the iteration is completed, the results of the two algorithms
are fused and the optimal time combination is selected as
the final solution. When the algorithm is running, an initial
population is formed by randomly generating a set of
individuals, which ensures the diversity of the population.
Secondly, setting a larger population can provide more
solutions, but the computational complexity will also
increase; Smaller populations require less computation,
but may not be able to cover all possible solutions. The
evolutionary process of the population requires four steps:
population selection, population crossover, population
mutation, and population replacement. Finally, suppose
that when solving a problem, individuals can be
represented using binary encoding. In software
performance testing, genetic operations such as crossover
and mutation can be easily performed by encoding
parameter values as binary strings. First, the initial
population randomly generates binary strings, and then the
selection operation selects individuals with high fitness.
Finally, a portion of new individuals will replace some
individuals in the current population, maintaining the
continuous evolution of the population. The data input
process of the algorithm first selects the number of data
parameters as k . Then generate a combination function

through target coverage combination, which includes
combinations between parameters, combinations between
parameter values and input time, and direct combinations
between input parameter data and time. After selecting the
set of algorithm data parameters, the algorithm data is
expressed by integrating the data parameters. In software
performance testing, selecting and integrating data
parameters is a key step in ensuring the effectiveness and
accuracy of the testing. By selecting parameters directly
related to the testing objectives and ensuring that these
parameters comprehensively cover the testing scenario,
the efficiency and accuracy of testing can be improved. By
optimizing parameter combinations through PSO and GA
algorithms, optimal test cases can be generated. This not
only improves the efficiency and accuracy of testing, but
also ensures that the test results can truly reflect the
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performance of the software under various conditions. At
the same time, for the purpose of concluding the data
space, all the parameter data mentioned above are
collected. Due to the need to determine both time data
parameters and initial candidate sets during algorithm
execution, the study selects two parameter values p,, o,

through the algorithm process, and the set of parameter
sets is shown in Eq. (4).

cT, . ={(ab)ac[0,v|-1.be[0|v,|-1} 4

In Eq. (4), CT'

P1, P2
a,b denote the constraint moment parameter expression

denotes the set of parameters,

at that moment, and |V1| denotes the numerical magnitude

of the parameter expression. At this time, the particle
swarm algorithm is used to obtain the particle velocity
formula as shown in Eg. (5) [20]:

Vit =(Vitllvit27”"vitk) ®)

In Eqg. (5), Vit represents the total position

information of the particle, and (Vi,V.,, -,V )

represents the particle velocity information at different
moments. The position information at this time is
expressed as shown in Eq. (6).

Xit :(Xitllxitz"'"xitk) (6)

In Eqg. (6), Xit represents the total position

information of the particle, and (X, X, -, X )

represents the position coordinate information of the
particle at different moments. In software performance
testing, the calculation formula for particle velocity is the
core part of PSO algorithm, used to optimize parameter
combinations. By adjusting the speed of particles
reasonably, the movement speed of particles in the search
space can be accelerated, thereby finding the optimal
solution faster. This not only improves the efficiency of
testing, but also enhances the accuracy of testing.
Chromosome combination query refers to evaluating the
fitness of chromosomes through fitness functions in
genetic algorithms, and selecting chromosomes with high
fitness for optimization. This process involves querying
and selecting chromosome combinations to generate
better combinations of test case parameters. Through these
steps, the efficiency and accuracy of test cases can be
ensured, and the efficiency and reliability of testing can be
improved. Because the position information of the particle
in the algorithm calculation is a vector coordinate of a
dimension, the position of each coordinate needs to
correspond to a specific moment in the dimension to be
selected, and the value of the position coordinates at this
time is shown in Eq. (7).
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In Eq. (7), the parameter expression is the same as that
described above: The chromosome combination query by
initialization adaptation comparing the current parameters
completes the extraction of chromosomes; then, at this
time, the adaptation is calculated as shown in Eq. (8) [21]:

Si
P =

R ®)

K
i
i=1

In Eq. (8), P, denotes the corresponding adaptation

value of the chromosome and S; denotes the calculated

probability of the population. The fitness function is used
to evaluate the performance of individuals in the search
space. By quantifying the proximity of individuals to the
objective function, it provides a measurement standard for
the algorithm. In software testing, the fitness function can
help assess the quality of test cases, such as whether they
can cover more functional modules and whether they can
detect potential defects. Individuals with higher fitness
values have a higher probability of being selected. The
genetic algorithm probability calculation formula is given

by Eq. (9).
Dp
_ =l
i~ Tk
2P,
j=1

Eqg. (9) is shown, and the parameter expression is the
same as that above. Through the crossover calculation
after the expression of the operator of the above formula

S 9)
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!

Initialize candidate

A
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there will be a new chromosome pairing, and the crossover
probability at this time is indicated by P, The crossover

method in the method algorithm selects a point crossover
through the crossover and then the exchange of the
number of gene positions. The dot crossing method
generates two offspring chromosomes by selecting a
random crossing point and exchanging gene fragments of
two parent chromosomes. Gene location plays a crucial
role in this process, determining which genes will be
exchanged to generate new parameter combinations. By
selecting appropriate intersection points and exchanging
gene fragments, the point crossing method can effectively
explore the search space, generate better combinations of
test case parameters, and improve the efficiency and
accuracy of testing. Simultaneously, in the algorithm
performed by particle updating, as shown in Eq. (10) [22,
23].

t+1
V..

i =Vjo+cn(pBest; —x;)+C,r,(gBest; —x;)  (10)

In Eqg. (10), @ denotes the weight value of the inertia
factor, C,,C, denote the learning factor, I, I, denote

random numbers in the interval 0-1, pBestitj denotes the

limit of individual values, gBest} denotes the global

limit value, and 1, ] denotes the iterative updating
completed in the first particle. Iterative updating of the
particles can achieve optimal selection of the current
parameters. Because the data selected in the time selection
of software parameters are only valid for a period of time,
it is necessary to perform time selection and value
constraints before executing the CCTL method.
Therefore, the joint algorithm combining value and time
is shown in Figure 3.

Is the time combination
empty ?

Update Selection

Enter the number of combinations

Y

f

Avoiding constraints

» Update combination

Figure 3: Joint algorithm flow combining value and time

Description: Explains the detailed steps to generate the final coverage combination during testing.
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Figure 3 shows that, the algorithm input the
parameters to be tested, time selection, and related
constraints. Based on the input parameters and constraints,
generate preliminary coverage combinations. Then
initialize the candidate individual set and generate the
final coverage combination through subsequent selection
and optimization steps. Secondly, based on the current
candidate individuals and coverage combinations, select
new candidate individuals to optimize the coverage
combination, ensuring that the selected individuals meet
the constraint conditions. And when selecting new
candidate individuals, it is necessary to ensure that they do
not violate the previously set constraints. After selecting
eligible candidate individuals, update the target coverage
combination, generate the current joint coverage
combination, and output the result. Finally, determine
whether the currently generated joint coverage
combination is an empty set. If it is an empty set, it
indicates the end of the algorithm and the final test result
can be output. If it is not an empty set, proceed to the next
round of candidate initialization and selection. Selecting
and optimizing new candidate individuals by evaluating
the performance of each individual in the current
population, selecting outstanding individuals, and
generating new candidate individuals through crossover
and mutation operations can ensure that the algorithm can
effectively explore new solution spaces and find better
solutions. In software performance testing, the joint
algorithm combines the advantages of PSO and GA
algorithms to optimize parameter combinations and
generate high-quality test cases. The process of joint
algorithm includes inputting parameters and constraints,
generating initial parameter combinations, optimizing
parameter combinations, evaluating and updating, and
checking termination conditions. Through these steps, the
joint algorithm not only improves the efficiency and
accuracy of testing, but also adapts to complex testing
scenarios, ensuring that the test results can truly reflect the
performance of the software under various conditions.
After the judgment is completed, the user inputs a new
number of joint combinations to prepare for the next round
of candidate individual initialization and optimization
process. In the initialization of candidate individuals, to
facilitate subsequent calculations, needs to be added to the
set of values of the parameters through the construction of
a simple index relationship to achieve its dimensionality
reduction process. The formula is given by Eq. (11) [24,
25].

index =i|T;|+t, (12)

Y. Sun et al.

In Eg. (11), index denotes the index of the

computation and i |T. | +1, denotes the Cartesian set of the

set composition. Dimensionality reduction is a data
processing technique primarily aimed at simplifying data,
improving efficiency, and enhancing interpretability. The
parameters referred to in dimensionality reduction usually
include test case parameters, system performance
parameters, and constraint conditions. The idea of the
particle swarm algorithm and genetic algorithm is also
used in the selection of the combination of the union for
the change in the same way as described above. PSO and
GA are chosen for parameter information analysis because
these two algorithms perform well in dealing with
complex parameter optimisation problems, and are able to
find the global optimal solution quickly and adapt to
different test environments and conditions. The analysis
process includes initialising the parameter candidate set,
optimising the parameter combinations, evaluating the
results and iterative updating. However, the difference lies
in the update selection of their algorithms using the update
as in Eq. (12) [26].

vy =dy /[T}|
L :dii%‘Ti‘

In Eg. (12), i denotes the first chromosome, j

(12)

denotes the chromosome position, dij denotes the gene

value size at the ] position, and % denotes the residual
value. The parameter analysis of the software test and the
moment selection in the CCTL method are completed by
generating and overriding the target parameters.

3.4 Analysis of software testing model
system

The main purpose of the software testing tool system is to
load and parse software models, generate test case
parameters and constraint combinations, and import test
cases into the testing database. The CCTL method serves
as the core logical foundation and generates test cases by
introducing time constraints; PSO and GA algorithms are
used to optimize the generation process of test cases,
improve testing efficiency and coverage. The testing tool
system of software mainly exists in the form of
components; the main function is to load the model, after
completing the parsing to obtain the data information of
the protocol, and then to match the strength constraints and
other requirements using case analysis. A use case
analysis of the software testing tool is shown in Figure 4.
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Figure 4: Use case analysis of software testing tools

Description: Demonstrates the use case analysis of user task operations in a software testing system

As shown in Figure 4, in the software testing system,
the user needs to load the software model and generate test
software case parameters and combinations of constraints
and other settings, while inputting the sequence of
generation events, editing the current need to release the
task operation, edit the current need to release the software
testing methods, as well as test cases and other information
for the import and export operations. At the same time, the

system needs to join the communication protocol to
manipulate and receive instructions and send the current
software test cases and test cases generated into the
database to complete the import and transfer process of the
test database components. Through a specific analysis of
the system, it is necessary needs to add it to the dynamic
analysis system of the model, as shown in Figure 5.
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Figure 5: Example of model dynamic analysis

Description: Illustrates how the user analyses the system software or model according to the object model in the
testing phase and completes the dynamic model construction

Figure 5 shows that in the testing phase, the user is
required to analyze the system software or model in the
component according to the object model, and input the
information into the parameters of the test case after
completing the analysis. Then, the operation is performed
after receiving the analysis information of the parameters,
including the combination of settings such as choosing the
value of the parameter at the moment and setting the
current moment and constraints, etc., and then completing
the dynamic model. Construction of the dynamic model.
Dynamic analysis is aimed at more accurately simulating

and evaluating the behavior and performance of software
in actual operating environments. The CCTL method
generates test cases through time constraints, while
dynamic analysis verifies the effectiveness and coverage
of these test cases at runtime; PSO and GA algorithms
optimize the generation of test cases, and dynamic
analysis further verifies the actual effectiveness of these
optimized test cases. Simultaneously, in the test, the user
needs to deploy the front information in advance as shown
in Figure 6 for the parameter sequence image.
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Figure 6: Example of deployment pre parameter sequence process

Description: Describe how to generate test case information before deployment and generate test cases through the
CCTL method and algorithm process

As shown in Figure 6, after the deployment of the
predecessor information, the test case information is
generated, after receiving the generation signal, the
predecessor information is read and analyzed to obtain the
generated parameter value data and moments, constraints,
etc., and the test cases are produced through the CCTL
method and algorithmic process, and the user is reminded
of the completion of the generation after the end of the
generation, and the data information is then exported to be
used for other operations, and the test data needs to be
constantly updated when the test cases are generated.
Parameter selection is based on the time constraints of test
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case generation requirements and CCTL methods,
optimized through PSO and GA algorithms to ensure that
test cases can cover all key scenarios. Pre information
refers to the initial conditions and contextual information
before the generation of test cases, providing necessary
background and initial conditions for the generation of test
cases. The pre deployment parameter sequence process is
an important part of the testing process, which directly
affects the generation of test cases and the accuracy of test
results. Simultaneously, it is necessary to updat the use
cases when generating test data. The entire software
testing system platform is shown in Figure 7.
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Figure 7: System platform for software testing

Description: Outline how the test system through the CCTL method and particle swarm algorithm genetic algorithm to
generate and distribute software test case information
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As shown in Figure 7, the main idea in the testing
system is to generate and distribute the use case
information for software testing through the main idea of
the CCTL method and the particle swarm algorithm
genetic algorithm. Therefore, in the general framework of
the system, the test system includes a test case, hardware
interface, virtual comparison model, result comparison
and fault location components. The simulation to be tested
included a hardware interface component and a fault
injection component. The control component is
responsible for controlling the testing process and
execution. Generate components that can use different
generated test cases. Virtual components can create tested
system components through virtualization methods. The
hardware interface can connect the generated test cases
and virtual components with the actual hardware through
the hardware interface. The result component is capable of
collecting and processing test results for comparison. The
fault location component can locate and analyze faults in
the system. The hardware interface will conduct hardware
level testing through the hardware interface. The fault
injection component is mainly used to introduce faults into
the system, verify the system’s fault handling capability
and robustness. The fault detection and analysis
component is responsible for analyzing the test result data
collected during the testing execution phase, comparing
the actual test results with the expected results, and
detecting whether there are deviations or abnormal
behaviors. The fault location component uses parameters
generated by the CCTL method, and utilizes these
parameters and constraints to more accurately locate the
time and location of the fault occurrence. The fault
injection component is responsible for introducing
predefined faults during the testing process, verifying the
system's fault handling capability and stability, and
injecting faults at specific time points and conditions
based on the parameters generated by the CCTL method.
During software testing, control components to generate
test cases and distribute them to the generating
components. Generate test cases using CCTL method and
PSO/GA algorithms, and transmit them to virtual
components. Virtual components interact with actual
hardware through hardware interfaces and apply test cases
to the system under test. During the testing process, the
result component collects and processes the test results.
The test results are transmitted to the fault location
component for fault analysis and localization. Finally, the
hardware interface is also used to interact with the fault
injection component, introducing faults into the system to
verify its stability and robustness. The higher the error
detection rate, the more defects are discovered in the test
case set, and the better the testing effect. The calculation
formula is error detection rate = (number of discovered
defects/total number of introduced defects) x 100%. The
criteria for determining the coverage of a model are its
functional coverage, with a functional coverage of >90%,
a state coverage of >85%, a transition coverage of >80%,
and a path coverage of 75%. These all indicate that the
current model has good coverage. However, the study
only uses the functional coverage of the model as the
criterion for judgment, so a functional coverage rate of
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>90% 1is considered to be better for the current model.
Functional coverage can directly reflect the extent to
which test cases cover software functionality, and high
coverage can help identify potential defects. A functional
coverage rate of > 90% can significantly improve the
accuracy and reliability of testing, covering most key
functions and ensuring the practicality and reference value
of research results. The test case generation module
generates test cases that meet time constraints and
functional coverage requirements based on CCTL method
and PSO/GA algorithm. The virtual comparison model
simulates the actual operating environment through
virtualization technology, executes test cases, and
dynamically adjusts configurations. Compare the
accuracy and completeness of the verification test results
in the module, and generate a test report. Fault location
module analysis report, accurately locate the fault. The
hardware interface module and fault injection module
respectively support the execution of test cases on actual
hardware and fault injection, ensuring system stability and
reliability.

4 Results and discussion

4.1 Results

Research the use of an online shopping system program
for software testing. Firstly, the system needs to verify
user login, product search, shopping cart functionality,
and order payment. Next, configure the web server and
database server, and set up development, testing, and
production environments. Write test cases for user login,
product search, addition, deletion, quantity modification,
and order payment of shopping cart items. At the same
time, the software uses PSO and GA to generate multiple
input combinations during testing, ensuring coverage of
all testing scenarios. And use automation tools such as
Selenium to perform functional testing of the web
interface, use JMeter for performance testing, and use
OWASP ZAP for security testing. Finally, record the
execution status of all test cases and analyze the failed
cases. Use Selenium for automated testing of user
interfaces, as it supports multiple browsers and operating
systems and can simulate real user operations. Use JMeter
for performance testing as it can simulate high
concurrency scenarios and evaluate the system's response
time and throughput. The population size is set to 30, the
maximum number of iterations is 50, the learning factors
are 2.05, and the inertia weight is 0.9. For the GA
population size of 100, the maximum number of iterations
is 20, the crossover rate is 0.8, and the mutation rate is
0.01. The experimental environment for the research
includes the use of Intel Core i7-9700 CPU, 32GB RAM,
and Windows 10 Professional 64 bit operating system,
developed using MATLAB R2020b and Python 3.8, and
automated testing, performance evaluation, and security
checks implemented using tools such as Selenium, JMeter,
and OWASP ZAP. The testing platform takes an online
shopping system as an example, covering functional
modules such as user login, product search, shopping cart
operation, and order payment. The evaluation indicators
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include functional coverage (> 90%), state coverage (>
85%), transition coverage (= 80%), and path coverage (>
75%), as well as error detection rate, algorithm
performance, and stability. The experimental design
covers the complexity stratification of test cases,
parameter settings for PSO and GA, number of repeated
experiments, and verifies the significance of the results
through charts and statistical analysis. Generate a test
report, record the discovered defects, and ultimately
complete software testing. When conducting software
testing, it is necessary to ensure the stability and reliability
of the system under wvarious input conditions.
Simultaneously, it is necessary to include functional
testing, performance testing, and security testing. And use
automated testing tools to perform testing. Regularly
conduct code reviews and test case reviews, and use static
analysis tools to check code quality. Randomly select 50
software test data from the currently selected ones for
testing. The selection of 50 test data is based on statistical
sample size calculation, ensuring that the error range is
within 10% at a 95% confidence level. This sample size
can meet the testing requirements while also being within
resource constraints. Complexity refers to the
comprehensive difficulty of test cases in terms of
functional coverage, operational steps, data input, and
expected results. According to the complexity of the test
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cases, they are divided into three layers: simple, medium,
and complex. Each layer selects 20%, 50%, and 30% of
the test cases. The goal of this test is to verify the
performance and stability of the system under high load
conditions. The testing scope includes the login module,
data processing module, and report generation module.
The main method of calculating the coverage is obtained
by comparing the actual number of covered combinations
with the target number of combinations, so that in the
coverage test using CCTL is obtained as shown in Table
1. The target coverage combination refers to the coverage
of all possible parameter combinations and functional
modules, while the actual coverage combination refers to
the parameter combinations and functional modules
actually covered through test cases. Use case coverage
focuses more on the coverage of user scenarios and
interactions, focusing on how users use the software.
Functionality coverage focuses more on the coverage of
the software's functionality, and is concerned with the
specific operations that the software can perform. The
software being tested refers to the user login module of the
online shopping system. The "CA (33, 2; 2)" in Table 1
indicates that under three constraint conditions, the target
combination quantity is 80, and the actual number of
combinations covered is 78.

Table 1: Analysis of CCTL method testing software coverage

Software under Number of Number of target

Number of target

. Constrain the number of target
combinations after

testing constraints combinations . combinations before validation
unconstrained

CA (33,2;2) 3 80 78 78

CA (33,2;2) 6 125 135 135
CA(53,2;2) 6 224 224 224

CA (53,2;2) 3 600 456 456
CA(83,2;2) 2 900 894 894
CA(83,2;2) 10 1654 1645 1645

Note: Shows the number of combinations of objectives under different number of constraints, etc. CA stands for

‘Clock-Controlled Computation Tree Logic Algorithm’

As shown in Table 1, when the coverage rate of
software testing is analyzed, it is found that the target array
and the number of constraints after removing the
constraints have the same value as the number of coverage
combinations verified, which is visible of the software
testing. The use of the method is able to achieve 100%
coverage, which shows that the current method of testing
the different software is able to achieve the number of
constraints and time of the selection of software
constraints; at the same time, the high coverage rate
indicates that the method of testing is better. The similarity
between the number of unconstrained combinations and
the number of combinations before validation is due to the
fact that the test case generation algorithm has already

considered most of the constraint conditions when
generating test cases. After removing the constraints, if the
actual number of generated test case combinations does
not change significantly, then the test coverage rate can
reach 100%. To compare the generation time and data size
of the current system method for software testing, the
number of populations and the number of iterations were
set to 150 populations and 20 iterations, respectively, as
shown in Figure 8. When generating test cases, the
average time for particle swarm optimization algorithm to
generate test cases is longer than that of genetic algorithm.
Therefore, it is said that the test cases generated by the
particle swarm algorithm require a longer period of time.
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Figure 8: Comparison of testing time and data scale for different system software

Description: Compare the current system approach with other algorithms in terms of software test generation time and
data size

Figure 8(a) shows that in the analysis of the CCTL
method of the two algorithms for software testing
generation time is different from the genetic algorithm
method in the generation of the moment of generation of
the event is significantly higher than the particle swarm
algorithm, which indicates that in the generation of
software data processing particle swarm algorithm of the
generation of a longer period of time to test the software
is significantly faster than the genetic algorithm, as can be
seen from Figure 8(b) particle swarm algorithm of the
From Figure 8(b), it can be seen that the particle swarm
algorithm is significantly higher than the genetic
algorithm in generating the number of coverage
combinations, which indicates that the size of the data
generated by it is larger, and the CCTL method is more
important to generate the data coverage combinations,
while the genetic algorithm is more important to generate
and analyse the time moments. To test the effect of the

current build system test software, the software parameter
position information, speed information, analog, and other
parameters to test, as shown in Table 2. The target
parameter speed reflects the speed at which the software
processes data or tasks, while the azimuth velocity reflects
the efficiency of the system in multi-dimensional task
scheduling. These parameters directly affect testing
efficiency and accuracy. Higher speeds and azimuth
velocities can improve testing efficiency. At the same
time, by precisely controlling the parameter range, it can
better simulate actual scenarios and improve the accuracy
of test results. The maximum and minimum values of the
target distance are based on the possible maximum and
minimum shopping cart distances in the system. The
injection time is the time interval used to simulate actual
user operations, ensuring that test cases can cover system
behavior at different time points.

Table 2: Test results of parameter position information, speed information, and analog parameters

Attribute name

Maximum value

Minimum value Injection time

Target distance (m) 10000
Target coordinates X (m) 10000
Target coordinates Z (m) 10000
Target coordinates Y (m) 10000

Target direction speed (rad/s) 20

Target speed (m/s) 80

Al 12
A2 12
B1 15
B2 15
C1 28.5
c2 28.5

[0 ms, 100 ms]
[0 ms, 100 ms]
[0 ms, 100 ms]
[0 ms, 100 ms]
[150 ms, 250 ms]
[150 ms, 250 ms]
[0 ms, 10 ms]
[0 ms, 10 ms]
[30 ms, 40 ms]
[30 ms, 40 ms]
[50 ms, 60 ms]
[50 ms, 60 ms]

O O O O O O O o o o o o

Note: Lists the software parameter information in the test

Table 2 shows that the size of the maximum and
minimum values in the target position of the parameter are
the same, the maximum value is 10000 m, the minimum

value is 0 m, and the range of the injected moments of the
position are in [0 ms, 100 ms]. The range of the moment
of the position information of the particle parameter are in
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[150 ms, 250 ms], the maximum value of the velocity of
the target parameter is 80 m/s, and the minimum value is
0 m/s. The maximum value of the azimuthal velocity of
the target is 20 rad/s, and the minimum value is O rad/s.
The maximum value of the analogue of the software test
and the different analogues are different but the minimum
value is 0, and at the same time, their moment ranges are
not the same. This shows that when the moment and
parameter determinations are made for the software, the
values of the parameters are different but some of the
parameters have the same range of values. In order to
verify the effectiveness of the current CCTL method for
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software testing, the test cases are set to 4700, with 100%
coverage, using 46 parameters for analysis, and the system
is analysed and tested using the big data platform,
obtaining a partial test result graph as shown in Table 3.
Safety value is an indicator to assess the performance and
stability of software during testing, which is used to
determine whether there is any potential security risk in
the software. Fault information location is used to
determine the exact location and cause of faults in the
software by analysing the test results, helping developers
to quickly diagnose and fix problems.

Table 3: Software test data results

Combination test data results

2100 16.907 14.25 2100 16.907 14.25 2100 16.907 14.25
2101 16.574 14.25 2101 16.574 14.25 2101 16.574 14.25
2102 14.00 15.75 2102 14.00 15.75 2102 14.00 15.75
2103 14.00 0.75 2103 14.00 0.75 2103 14.00 0.75
2104 17.702 7.291 2104 17.702 7.291 2104 17.702 7.291
2105 24 -5.162 2105 24 -5.162 2105 24 -5.162
2106 17.707 5.52 2106 17.707 5.52 2106 17.707 5.52
2107 17.207 14.25 2107 17.207 14.25 2107 17.207 14.25
2104 24 - 2104 24 - 2104 24 -

2104 14.25 - 2104 14.25 - 2104 14.25 -

2107 17.207 12 2107 17.207 12 2107 17.207 12
2103 3.5345 6.471 2103 3.5345 6.471 2103 3.5345 6.471
2107 17.207 -0.75 2107 17.207 -0.75 2107 17.207 -0.75
2108 2 -15.75 2108 2 -15.75 2108 2 -15.75
2109 10.327 0 2109 10.327 0 2109 10.327 0

Note: Provides the results of combined test data, showing the test results of different combinations of test cases

As shown in Table 3, the results of the software testing in
the simulation test and fault results of the analysis and
testing, and then in the results of the test to obtain the
safety value, obtain the safety value of the test software
fault information positioning, the test fault positioning in
the results of the analysis of the region to display, and then
the positioning results obtained and the simulation of the
data parameters for the combination of the results of the
positioning and fault results for the combination of the
analysis of the results of the conclusions obtained were
used to reflect the test software use cases and parameters
of the direct combination of coverage and software testing.
The above test results show that the current method can be
tested and analyzed on the parameter combinations, and
therefore verify the feasibility of the software testing
method. Table 3 shows the actual test data results, which
are generated based on the parameters defined in Table 2.
Each set of data in Table 3 corresponds to a different
combination and value of the parameters defined in Table
2. For example, the data set 2100 may indicate that for a
particular combination of parameters, the test result is
16.907, 14.25, etc. The data set 2101 corresponds to the
test result for another combination of parameters, and so
on. The first set of data represents the execution results of

the test cases. The second set of data represents
performance indicators such as response time, throughput,
etc. The third set of data represents the results of safety or
fault detection. Therefore, the data is divided into three
groups. In analysing the test results, the data were first pre-
processed and then statistical metrics such as mean,
standard deviation and variance were calculated for each
algorithm. And key performance indicators were also
calculated and finally visualised and analysed using bar
charts and line graphs. In comparing the test results of
different algorithms, LSTM and LAR are chosen as
benchmark algorithms. To ensure the fairness of the
comparison, all algorithms are tested on the same test
dataset and test environment. In addition, the study
verified whether the differences between the different
algorithms were statistically significant using statistical
methods such as t-test and ANOVA. To test the accuracy
of the test parameters of the current method, the test results
of the parameters were analyzed and compared with the
test results of other algorithms, namely, long short-term
neural networks (LSTM), and logistic regression
algorithm (LRA) as shown in Figure 9. LSTM can help
identify and predict potential issues in software testing by
analyzing system logs, user behavior data, and historical
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testing data, thereby improving testing coverage and
efficiency. LSTM and LRA were chosen as comparison
algorithms for the study because LSTM has a significant
advantage in dealing with time series data by capturing
long-term dependencies in the data. LRA was chosen
because the algorithms provide a simple linear benchmark

o— Research usage methods
o [ i :
0.79 | °

078 | 0"
077 | o ©

0.76 |
0.75 t
0.74 |
0.73
072 f
071 f
0.70 |
0.69

0.81

Accuracy (%

500 1000 1500 2000 2500 3000 3500
Iterations
(a) Dataset 1

Informatica 49 (2025) 85-104 99

that helps to understand the underlying linear trends in the
test data. LSTM is effective in analysing parameter
variations in the test, while LRA provides a simple linear
benchmark that helps to understand the underlying linear
trends in the parameters.
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Figure 9: Comparison of software testing accuracy with different algorithm logics added
Description: Demonstrates the change in algorithm accuracy after adding different algorithm logic

As shown in Figure 9, after adding different
algorithmic logic to the CCTL, the accuracy of the LSTM
and LAR algorithms first increases with the number of
iterations and then tends to stabilize, while the accuracy of
CCTL combines PSO and GA approaches is in the
increasing stage. Accuracy continues to increase over
time, showing better learning ability and adaptability. This
indicates that the research usage method is more effective

10
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4

Loss function RMSE

3_
2_

— LST™M

in testing the accuracy of software, while the other two
algorithms have the highest accuracy, at 76% and 75%
respectively. The accuracy of the research usage method
is higher, at 5% and 6% higher than the LSTM and LAR
methods, respectively. To test the algorithmic stability of
the proposed method, the loss functions of the three
algorithms were compared and tested, as shown in Figure
10.
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Figure 10: Comparison of loss functions among three algorithms
Description: compares the change in loss function of the three algorithms during the iteration process

Figure 10 shows that the loss function of the three
algorithms decreases and then gradually stabilizes
throughout the algorithm as the number of iterations
increases. The loss function value of the research use
method dropped to a minimum of 1.5 loss function at 300
k iterations, the LSTM algorithm dropped to a loss

function of 3 at 300 k, and the LAR algorithm dropped to
a minimum loss function of 3.2 at 320 k iterations. Loss
function is an important tool in machine learning to
measure the prediction error of a model, the smaller its
value the smaller and more stable the model error. The
research use model loss function value drops to 1.5 after
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300,000 iterations and outperforms other models, which
indicates that the research use model learns data features
better during training, makes more accurate predictions,
and performs better when dealing with complex data. This
shows that the algorithmic logic of the research method
has the smallest loss function value, and the algorithmic
model is more stable. To test the effectiveness of different
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algorithm models in software testing, a comparative
analysis was conducted on the Pairwise Testing (PT)
model, Ant Colony Optimization (ACO), Reinforcement
Learning Algorithm (RLA), and Particle Swarm
Optimization (PSO) algorithm models, as shown in Table
4.

Table 4: Comparison of test results of different algorithm software

/ Test result
Model ACO PT PSO GA RLA CCTL
Error detection rate (%) 9435 92,65 9154 9158 92.35 96.54
Functional coverage (%) 9261 9126 90.36 91.32 92.67 94.85
Status coverage rate (%) 88.67 89.65 9351 9154 89.35 94.68
Conversion coverage (%) 81.26 90.35 9254 8465 8351 93.59
Path coverage (%) 82.36 83.65 86.57 89.65 90.13 91.35

Note: Compares the performance of different algorithm models in software testing

From Table 4, it can be seen that after using different
algorithms for software testing, it is evident that the CCTL
model performs better in terms of testing results. In the
comparison of software testing performance, the error
detection rate of the CCTL model reached the highest
level of 96.54%, which is about 5.00% higher than that of
the PSO model. In the comparison of algorithm coverage,
the CCTL model achieved good coverage levels under
different coverage tests, with the model reaching the
highest value of 94.85% in functional coverage analysis.
It can be seen that the coverage and error detection rate of
the model used in the study have a high level, and the
actual software testing effect of the model is good. Unified
testing environment, selection of unified performance
indicators, and data alignment for performance research of
different algorithms that have not been tested. Statistical
tests show that the CCTL model performs the best on all
indicators. Error detection rate is a key indicator for
measuring the performance of software testing models,

reflecting the model's ability to detect defects. A high error
detection rate means that the model can more effectively
detect software defects, thereby improving software
quality and reliability. The high error detection rate of
CCTL model indicates that CCTL combined with PSO
and GA can generate high coverage test cases more
comprehensively, effectively reducing software failure
risks and improving user satisfaction. When comparing
algorithm coverage, the CCTL model performed well in
the function, state, transition and path coverage tests. This
indicates that the CCTL model, by introducing time
constraints and optimising parameter combinations, can
generate high-coverage test cases more comprehensively
and effectively improve the comprehensiveness and
accuracy of software testing. This indicates that the CCTL
model combined with PSO and GA can more effectively
generate high coverage test cases, resulting in better
performance in detecting defects and covering software
features. Table 5 shows a summary comparison of the test
results of the different methods.

Table 5: Summary comparison of tests for different methods of testing

Method Accuracy Efficiency Coverage Capability to Real-Time Parameter
Rate Handle Large Constraint Handling
Datasets Capability
Bat Search 72.35% Moderate 79.84% Limited Weaker
Algorithm
Random Forest 88.67% High 88.67% Better Average
PSO 91.32% High 90.36% Better Strong
GA 90.36% Moderate 90.47% Average Strong
Proposed Method ~ 5%-6% higher High 100% Strong Very Strong
(CCTL+PSO/GA) than PSO/GA

Note: Comparison of test results of different methods

As can be seen from Table 5, the CCTL+PSO/GA method
used in the research is significantly better than other
methods in different test results, which has the strongest
ability to deal with large-scale datasets, and the best ability

to deal with real-time parameter constraints, which
suggests that the model used in the research has a better
practical application in the testing of different methods.



Enhanced Software Performance Testing for Big Data Platforms...

4.2 Discussion

In Raamish et al.’s study, in order to test the quality and
performance of the software and improve its reliability, a
ramp up algorithm based on LSTM and BrainStorm
optimization and post acceptance was used. The new
algorithm can be used for software fault detection.
Compared with traditional methods, the new method can
effectively improve the effectiveness of software
detection [27]. However, this method only analyzes and
detects faults and defects detected by software, and cannot
improve the performance and stability of software
detection. Oleshchenko’s research found that software
testing can consume a significant amount of cost and time
during software development. However, using the KNN
algorithm to train and test software development data can
greatly reduce software testing time and cost. From this, it
can be seen that using clustering algorithms for software
data analysis and cost control is an important direction in
the software testing process [28]. Build a new model for
software testing in this study. After 300,000 iterations, the
PSO algorithm generates a significantly higher number of
test case coverage combinations than the GA algorithm.
The PSO algorithm achieves a functional coverage of
90.36% compared to the GA algorithm's 91.32%.The PSO
algorithm achieves an error detection rate of 91.54%,
which is slightly lower than that of the GA algorithm’s
91.58%.The CCTL method is able to, through the
introduction of temporal constraints more accurately
simulate the temporal characteristics of the software in
actual operation. Meanwhile, the CCTL method is better
at generating high-coverage test cases after combining the
PSO and GA algorithms. When comparing the software
production time of models, particle swarm optimization
algorithm has a higher coverage combination than genetic
algorithm in testing the performance of models with
different iteration times. This indicates that particle swarm
optimization algorithm has better performance in data
coverage combination processing and higher performance
in improving the coverage combination set of the model.
Compared with KNN, CCTL is more efficient in dealing
with complex time series data; compared with LSTM,
CCTL is more flexible in dealing with nonlinear data;
compared with BrainStorm optimisation, CCTL is more
comprehensive in dealing with complex test scenarios.
These advantages enable the CCTL method to
demonstrate higher accuracy and efficiency in software
performance testing, while reducing cost and improving
software reliability. This may be because particle swarm
optimization algorithms are easier to integrate data. When
comparing the accuracy of different algorithm models, the
study found that the accuracy of LSTM and LAR models
were 5% and 6%, respectively. This may be due to the
combination of genetic algorithm and particle swarm
optimization algorithm used in the study. The types of
constraints selected for research are closely related to the
actual situation, aiming to reflect the various scenarios that
software testing may encounter and ensure that test cases
cover all key operations and interactions of the software.
Although the experimental results showed high test
coverage and accuracy, some test cases failed due to
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parameter  configuration  errors, environmental
dependencies, resource limitations, concurrency conflicts,
algorithm limitations, or insufficient test data. This
indicates that the test cases further reveal the shortcomings
of the testing strategy and algorithm performance, and
points out the necessity of enhancing the robustness of the
test cases. In software performance testing, PSO and GA
optimization algorithms significantly improve the
comprehensiveness and accuracy of testing by generating
high coverage test cases. Algorithms not only improve
testing efficiency and reduce resource consumption, but
also lower testing costs. In addition, high-quality test cases
generated by algorithm models can effectively detect
software defects, improve software reliability and
stability.

When comparing the loss functions of different
models, the changes in the loss functions of the models
show a trend of first decreasing and then approaching
equilibrium. This may be because as the number of
iterations increases, the functional loss of the model also
increases, but when the model reaches a certain value, it
begins to stabilize. The loss function value of the model
used in the study is relatively small, which may be due to
the improved algorithm performance after adding
different algorithms to the model. When comparing the
performance of different models, it was found that the
algorithm using this model performed better, with the
highest error detection rate of 96.54%. Compared with
other algorithms, the algorithm used in this study has
higher coverage and error rates. This may be due to the
current algorithm model performing better in software
testing. Has shown certain efficiency and accuracy in
selecting regression test cases, but has limitations in
handling large-scale datasets and real-time parameter
constraints. The current research method uses PSO and
GA optimization algorithm logic to significantly improve
test coverage and outperforms bat search algorithm in
terms of functional coverage. The random forest algorithm
performs the best in predictive performance, but its real-
time parameter processing ability in software testing is
average. The method currently used in the research not
only has a 5% -6% higher accuracy, but also demonstrates
a very strong ability to handle real-time parameter
limitations. PSO is faster in some cases, mainly because it
can quickly find the optimal solution through the
collaboration of individuals and groups. Meanwhile, GA
simulates the genetic and mutation mechanisms in natural
selection, making it suitable for global search, but its
convergence speed may not be as fast as PSO. By
combining the advantages of PSO and GA, the study not
only improved the coverage and accuracy of testing, but
also maintained efficient testing performance in
environments with real-time parameter changes. It also
provides new ideas and tools for software testing in more
complex environments in the future. In future research,
researchers may further explore how to optimize PSO and
GA algorithms to improve performance in specific
situations. At the same time, the proposed methods may
stimulate the development of new testing methods, and
with the improvement of algorithm performance, future
software testing may become more automated and
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intelligent, thereby improving testing efficiency and
reducing costs.

In summary, in the comparison of different algorithm
models, it is found that the use of models has better
software testing performance. At the same time, the use of
algorithms in software testing can effectively analyze and
test software, and its effect can reach

5 Conclusion

This research mainly focuses on the current problem of
lack of stability and performance of software testing, and
proposes a new software testing system based on the
CCTL method, first analyzing the component use case
generation of software testing. Subsequently, the system
is transformed and analyzed using the particle swarm
algorithm and genetic algorithm logic, and a system model
is built for software testing. The method used in the study
is based on CCTL combined with PSO and GA. The loss
function value of the method is significantly lower than
other methods, indicating that it can better learn data
features during the training process and make more
accurate predictions. The new methodology achieves 100
per cent test coverage. Meanwhile, the new method
effectively selects the number of constraints. In terms of
algorithm performance, GA excels in generating test
moments, while PSO is more advantageous in handling
complex parameter combinations and large-scale data.
These advantages enable the new method to excel in
generating high-coverage test cases, significantly
improving the comprehensiveness and accuracy of the
tests. During the testing process, parameter settings
significantly affect the generation of test cases and test
results. The range of values of the algorithm parameters
has a significant effect on the test results. For example, an
increase in the number of particles and population size can
enhance the search ability but increase the running time;
an increase in the learning factor and crossover rate can
make the search direction clearer but may fall into the
local optimum. By reasonably adjusting these parameters,
the speed and coverage of test case generation can be
optimised and the test results can be improved. In addition,
the effect of different parameter settings on the testing
effect showed that the parameter values were different, but
the range of values is similar. Simultaneously, the new
method can effectively obtain the safety value and fault
location information of the software. Meanwhile, the
accuracy of other traditional methods is as high as 76%
and 75%, whereas the accuracy of the research use method
is higher, outperforming the accuracy of the LSTM and
LAR methods by 5% and 6% respectively. Also the loss
function of the algorithm used in the study is 1.7 and 1.5
lower than the loss functions of the other two algorithms,
which shows that the method is more stable. From this, it
can be seen that researching usage methods has better
testing effects in software testing, and at the same time,
studying the testing error rate, coverage rate, and accuracy
of using models in different model comparisons has a high
level. It can be seen that although this study has achieved
a lot of results, it still needs to be improved, first of all, the
algorithm needs to be further improved subsequently
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when it is constrained to the combination of cases, and the
data used for the study was small, so larger data sets will
need to be analysed in subsequent studies. The current
research is mainly conducted in specific testing scenarios
and may not fully cover all complex situations in practical
applications. Therefore, further research is needed to
expand the testing scenarios to verify the universality of
the method. Although the methods used in the study have
shown improvements in accuracy and stability compared
to other methods, their stability and accuracy still need
further validation in larger scale data and more diverse
testing environments. The PSO and GA algorithms in the
current study have limitations although they perform well.
Therefore, future research will improve these algorithms
by introducing hybrid strategies, dynamically tuning the
parameters and optimising the cross-variance operation.
The current research focuses on specific scenarios such as
online shopping system, data processing module and
report generation module. Future work will expand the test
scenarios to validate the stability and accuracy of the new
methods using larger scale data and more diverse test
environments.
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Appendix

Item

Details

Experimental Purpose

Experimental Environment
Software Tools

Experimental Steps
PSO Parameters

GA Parameters

CCTL Parameters

LSTM and LAR Parameters

Test Case Data

Performance Data
Security Data
Software Defect Data

To evaluate the performance of the software performance testing system based
on Clock-Controlled Computation Tree Logic (CCTL)
Intel Core i7-9700 CPU @ 3.20GHz, 32GB RAM, Windows 10 Professional
64-bit
MATLAB R2020b, Python 3.8 with necessary libraries
Setup environment, write test cases, apply PSO and GA, use automation tools,
record results, generate reports
Number of particles: 30, Maximum iterations: 50, Acceleration coefficients:
2.05, 2.05, Inertia weight: 0.9
Population size: 100, Crossover rate: 0.8, Mutation rate: 0.01, Selection
method: Roulette wheel selection

Time interval: [0 ms, 250 ms], Event expressions: Defined based on software
functionality requirements

LSTM hidden units: 128, LAR order: 4

Derived from functional requirements documents of online shopping systems
and user operation logs
Generated under various loads using JMeter tool
Generated through security scans with OWASP ZAP tool
Collected from previous software testing and maintenance records

8789-8803.

553-566.



