
https://doi.org/10.31449/inf.v49i13.7651 Informatica 49 (2025) 77–90 77

Dual-Layer Dynamic Path Optimization for Airport Ground

Equipment Using Graph Theory and Adaptive Genetic Algorithms

Pinzheng Qian

School of Transportation, Southeast University, Nanjing 211189, China

E-mail: pinzhengqian@163.com

Keywords: graph theory; conflict avoidance; airport; special unmanned equipment vehicle; path planning; genetic

algorithm

Received: November 23, 2024

With the continuous promotion of smart airport construction, the application of unmanned ground

equipment vehicles in airports is becoming increasingly popular. The existing path planning methods rely

on manual management, which has problems such as low efficiency and poor ability to respond to

unexpected situations. Given this, this study first models the airport path based on graph theory.

Secondly, a two-layer dynamic path optimization algorithm is designed by combining the improved

dynamic programming Dijkstra algorithm with the introduced genetic algorithm for path conflict

identification and avoidance mechanisms. Performance test results showed that the running time of the

improved Dijkstra algorithm was shortened by about 48.29% and the number of edges was reduced by

10.07%. The fitness value and variance of the improved genetic algorithm increased by 8.99% and

decreased by 66.67%, respectively. In a high-density and high-frequency conflict environment, the path

success rate of the proposed model was 90.1%, which was 7.2% higher than the comparative algorithm.

In addition, its path smoothness standard deviation was 5.32° , better than 6.68° and 8.47° of the

comparative algorithms. The results indicate that the optimized path planning method can reduce the

total running time and effectively avoid path conflicts between multiple vehicles, providing certain

technical support and new ideas for the safe operation of airport special unmanned equipment vehicles.

Povzetek: Dvoslojni algoritem načrtuje dinamično optimizacijo poti letaliških talnih vozil. S kombinacijo

grafovske teorije in izboljšanih genetskih algoritmov rešuje izzive načrtovanja poti in izogibanja

konfliktom.

1 Introduction
With the rapid growth of the global aviation industry,

the business volume and scale of airports continue to

expand, and the efficiency of ground support services

has become an important factor affecting the operational

capacity of airports [1]. Especially in large airports,

various special equipment vehicles undertake heavy

ground support tasks, such as shuttle buses, refueling

trucks, luggage trucks, etc. [2-3]. In recent years, the

concept of smart airports has gradually emerged.

Unmanned Equipment Vehicles (UEVs), as an

important component, can replace manual operations

through autonomous driving technology and improve

the intelligence level of ground services. However, the

popularity of UEVs has also brought new challenges,

especially in path planning and multi-vehicle

coordination [4-5]. The main challenge currently faced

by airport operations is how to effectively plan paths

under complex conditions of multiple vehicles, multiple

starting points, and multiple endpoints. Chen Y et al.

proposed a method minimizing the number of paths with

a length of 0 in a given graph and proved that the

problem can be addressed in polynomial time.

Meanwhile, further experiments demonstrated another

variant that minimized the total number of paths with

lengths of 0 and 1 was also polynomial time solvable

[6]. Hu H et al. proposed a method based on multi-agent

deep deterministic policy gradient and discretized the

scene generated by the node network. By constructing a

node network model, they analyzed the situations of

opposing conflicts and same-point occupancy conflicts

and established an integer programming model for

solving the shortest path [7]. Li P et al. proposed a

priority-free Ant Colony Optimization (ACO)

algorithm. They also proposed energy-constrained ACO

for single-robot energy optimal path planning by

modeling unstructured rough terrain through dual-

resolution grid maps [8]. Ren Z et al. proposed a

conflict-based multi-objective search method, which

utilized conflict-based search algorithms and the

principle of superiority in multi-objective optimization

to address the curse of search space dimensions caused

by the increase in the number of agents [9].

The main objective of Vehicle Routing Problem (VRP)

is usually to reduce transportation costs, decrease the

required number of vehicles, or optimize delivery

efficiency. Zhao N et al. designed an aircraft taxiing

Path Planning Method (PPM) based on a spatiotemporal

network model and dynamic programming algorithm.

They constructed a 2D-directed graph of airport network

nodes and combined it with Dijkstra's algorithm to plan

the shortest taxiing distance path for the aircraft [10]. He

mailto:pinzhengqian@163.com

78 Informatica 49 (2025) 77–90 P. Qian

K et al. proposed an enhanced fast random exploration

tree algorithm based on clustering and pre-search. This

algorithm constructed an undirected graph using

Markov clustering techniques and employs Dijkstra's

algorithm for pre-search [11]. Pan Y proposed an

autonomous PPM based on intelligent optical sensors

and an ACO algorithm. It was found that the new model

improved by an average of about 17.8% in four

evaluation indicators [12]. Zhang Z et al. proposed a

general robust Reference Path Selection Method. This

method maintained a dynamic path array containing

newly discovered paths, historical optimal paths, and

local trajectories, and selected the path with the lowest

cost through unified criteria evaluation [13].

At the same time, many scholars have conducted in-

depth research in areas such as path optimization, target

detection, and autonomous capability enhancement.

Yang X et al. proposed an anchor-free and efficient real-

time damage detection method YOLOv6s-GRE and

combined it with re-parameterization optimization and

quantization technology to improve the detection

efficiency and energy consumption performance [14].

Tyagi S et al. discussed the cutting-edge applications of

deep reinforcement learning in drone tactical

deployment. The study highlighted the advancement of

drone intelligence in surveillance and defense and

looked forward to the potential of deep reinforcement

learning in enhancing drone autonomy [15]. Liu Z et al.

proposed a lightweight and memory-efficient target

detection model to meet the real-time and accuracy

requirements of target detection of UAVs in traffic

systems. The model combined the FasterNet-16

backbone network and multi-scale feature fusion

technology to achieve high-quality target detection [16].

Table 1 summarizes the related research, highlighting

the methods, datasets, and key results.

Table 1: Comparison of related works

References Method Dataset Key Results

Chen Y [6]
Minimum nontrivial path cover

algorithm
Conflict graph

Proved that multiple variations of the path

cover problem are polynomial-time solvable.

Hu H [7]
MADDPG (Multi-Agent Deep

Deterministic Policy Gradient)

Automated container

terminal scenarios

Solved conflict issues through a node

network model.

Li J [8]
PFACO (Priority-Free ACO

Algorithm)

Dual-Resolution grid

data

Reduced multi-robot motion costs in rough

terrain.

Ma H [9] MO-CBS and its variants
Simulated multi-agent

scenarios

Computed Pareto optimal solutions for multi-

agent path planning problems.

Wang Y [10]
Combines time-space network with

the Dijkstra

Six planes at Xi 'an

Xianyang Airport
Effectively planned conflict-free paths.

Zhang T [11]
ERCP (Enhanced RRT* with

clustering and pre-searching)
Unspecified

Achieved a good balance between path

quality and search efficiency.

Liu Y [12]

Autonomous path planning with

intelligent optical sensors and

ACO

Industrial AGV scenarios
Performance indicators improved by

approximately 17.8%.

Kim S [13]
RPSM (Robust Reference Path

Selection Method)
Unspecified

Reduced trajectory distance, direction

changes, and execution time.

Yang X [14] YOLOv6s-GRE
Concrete bridge damage

dataset

Increased detection speed by 83.5%, saved

79.7% energy.

Tyagi S [15] Deep Reinforcement Learning Unspecified Enhanced UAV autonomy.

Liu Z [16]
Memory-efficient lightweight

object-detection algorithm

VisDrone, COCO,

Traffic-Net
Improved real-time object detection accuracy.

As illustrated in Table 1, the process of planning the

routes of UEVs in complex airport environments

presents numerous challenges. These include the

efficient management of path conflicts among multiple

vehicles dispatched concurrently, the optimization of

path length under conditions of multiple starting points

and multiple endpoints, and the prompt response to

emergencies in dynamic environments. Although many

studies attempt to improve the accuracy and efficiency

of path planning by introducing graph theory and path

planning algorithms, conflict avoidance mechanisms,

and intelligent optimization methods. However, there

are still problems such as unsatisfactory avoidance of

path conflicts, insufficient global search capability of

algorithms, and low computational efficiency.

Given this, this study proposes a two-level dynamic path

planning optimization algorithm based on graph theory

and conflict avoidance. The research innovation is

mainly reflected in the following points: First,

topological modeling based on graph theory optimizes

the expression of path nodes and edges, and improves

modeling efficiency and accuracy. Secondly, the

Dijkstra algorithm is improved and an Adaptive Path

Search Dijkstra Algorithm (APSDA) is proposed. The

dynamic planning strategy is used to reduce redundant

node access and calculation, thereby improving the path

planning efficiency. Finally, conflict avoidance and

Dual-Layer Dynamic Path Optimization for Airport Ground Equipment… Informatica 49 (2025) 77–90 79

dynamic time period optimization strategies are

introduced into the Genetic Algorithm (GA), and a

Dynamic Adaptive Genetic Algorithm (DAGA) is

proposed, which enhances the path conflict avoidance

capability and global optimization effect. The

combination of APSDA and DAGA forms a two-layer

dynamic path optimization framework. It has achieved a

comprehensive improvement in path planning efficiency

and safety.

2 Methods and materials

2.1 Airport VRP modeling based on graph

theory

To meet different ground service needs, the airport uses

various types of UEVs. These vehicles possess

autonomous driving capabilities and can perform

various specific ground support tasks, including

passenger transportation, luggage handling, and aircraft

maintenance [17-18]. Figure 1 shows a common

classification of airport ground support vehicles.

Aircraft ground service

equipment

Passenger

transportation service

equipment

Luggage and cargo

transportation service

equipment

Outbound ground

support vehicles

Inbound ground

support vehicles

Shuttle bus

Aircraft water

tanker Aircraft

refueling tanker

Aircraft tractor

Aircraft sewage

truck

Aircraft tractor

Passenger

elevator

Aircraft food

truck
Aircraft garbage

truck

Lift platform

vehicle

Luggage conveyor

vehicle

Luggage tractor

Figure 1: Airport ground support vehicle structure.

Figure 1 shows the classification of airport ground

support vehicles, covering aircraft support equipment,

passenger transportation equipment, and baggage and

cargo transportation equipment. The study's objective is

to analyze the key supporting roles of seven frequently

used vehicles in passenger transportation, fuel supply,

and baggage transfer. The vehicles selected for the study

include shuttle buses, refueling trucks, water supply

trucks, baggage transfer trucks, airline food trucks, health

service trucks, and tractors. The path optimization and

conflict avoidance capabilities of these vehicles directly

affect the overall operational efficiency and safety of the

airport. Low-frequency equipment such as de-icing trucks

and sewage treatment trucks are not included in the

research scope due to their limited usage scenarios.

Focusing on these high-frequency vehicles can

effectively solve path planning and scheduling problems

in complex airport environments and help the unmanned

development of smart airports.

Subsequently, this study adopts a PPM based on graph

theory, abstracting the traffic paths within the airport into

nodes and edges by constructing the topological structure

of airport roads. This facilitates global optimization and

conflict avoidance of the vehicle's driving route,

improving overall operational efficiency. The route

diagram and stopping node positions are shown in Figure

2.

2

1

4 6

3 5

Entrance Exit

(a) Airport ground path

Tractor truck

Food truck

Lifting platform truck

Luggage trailer

Video truck
Water truck

Refueling truck

Lifting platform truck

Luggage conveyor

truck

Passenger

elevator truck

Sewage truck

(b) Location of special unmanned equipment vehicles

Figure 2: Schematic diagram of routes and stop nodes.

Figure 2 (a) shows the topological structure of the

airport ground path. It abstracts the main traffic paths

within the airport as a network model in graph theory

through nodes and edges. Figure 2 (b) shows the

80 Informatica 49 (2025) 77–90 P. Qian

distribution of operational positions of different types of

airports special UEVs near aircraft, illustrating the

specific parking and service areas of the vehicles. To

balance the rationality of the vehicle path planning

model with the complexity of practical application, the

following assumptions are made: (1) The road is

bidirectional, which complies with the common rules of

airport design. (2) The vehicle speed is constant, which

simplifies the model calculation and is consistent with

the internal speed limit regulations of the airport. (3) All

roads are available without obstacles or traffic

interruptions, which is used to analyze the performance

of the algorithm under ideal conditions. (4) The vehicle

travel time is an integer, and the calculation efficiency is

improved by rounding without affecting the accuracy of

the results. (5) Low-priority vehicles give way to high-

priority vehicles based on the urgency of the task and

flight demand. This assumption complies with the

scheduling rules of airport operations and achieves

conflict avoidance through a priority scheduling

mechanism. (6) Vehicles must comply with time

window constraints to ensure task timeliness. (7)

Vehicles have the ability to detect and avoid conflicts

and avoid conflicts by waiting or re-planning the path.

The conflict resolution is displayed in Figure 3.

E1 E2 E3 E4 E5 E6

N1

N2

N3

N4

C1

C2

Priority: 1, Arrival time: t1

Priority: 2, Arrival time: t2

C1 driving route

C2 driving routeN
o
d
es

Edges

Figure 3: Vehicle conflict resolution diagram.

In Figure 3, two vehicles C1 and C2 have potential

conflicts at the passing nodes (E3, N1), and the vehicles

use corresponding conflict avoidance mechanisms to

avoid them. C1 is a higher-priority vehicle, and its

arrival time is t1. C2 is a lower-priority vehicle, and its

arrival time is t2. According to the model constraints,

when the arrival time difference (t2 minus t1) of the two

vehicles is less than the safe time interval, the vehicles

cannot pass through node N2 at the same time. To avoid

conflicts, a priority scheduling mechanism is adopted,

and vehicle C2 gives way or changes its driving path to

allow vehicle C1 with higher priority to pass first. The

road system of the airport is abstracted as an undirected

graph (,)G V E= , which includes a set of nodes

 1 2, ,..., nV v v v= and a set of edges  ,ijE e i j V=  .

Each edge
ije has a weight

ijd , representing the distance

or time traveled by the vehicle on this path. Next, the

objective function is defined as minimizing the total

distance traveled by all vehicles, expressed as equation

(1).

1 1 1

min
m n n

ijk ij

k i j

X d
= = =

 (1)

In equation (1), k represents the vehicle number, and its

range is 1 k m  , where m is the total number of

vehicles. i and j represent the node numbers, and their

value ranges are 1 i and j n , where n is the total

number of nodes. The starting conditions for summation

are 1k = , 1i = , and 1j = . ijkX is a 0-1 decision

variable, with a value of 1 indicating that vehicle k

travels from node i to j , and vice versa, it is 0. ijd is

the time it takes for i to travel to j . The path integrity

constraint of the model is shown in equation (2).

1 1

11
,

0,0,

n n
fs

ijk ijk

j i fs

j Pi P
X X

i Pi P= =

== 
= = 

 
 

，，
 (2)

In equation (2), SP and fP represent the starting point

and the end point, respectively. Each vehicle must start

from the designated starting point SP and conserve the

flow of other nodes. Each vehicle must reach the

designated end point fP while ensuring the

conservation of the path flow of all vehicles. The

vehicle must remain unobstructed during operation and

should not stop prematurely before reaching the finish

line, as shown in equation (3).

1 1

1,

1,

0,

sn n

ijk ijk f

j j

i P

X X i P

otherwise
= =

=


− = − =



 
 (3)

Equation (3) ensures that the inflow and outflow of the

path at all nodes are conserved. The net outflow of the

starting point is 1, the net inflow of the end point is 1,

and the net change of the flow at the intermediate node

is 0, thus ensuring the connectivity of the path. The

conflict avoidance constraint is shown in equation (4).

Dual-Layer Dynamic Path Optimization for Airport Ground Equipment… Informatica 49 (2025) 77–90 81

1 21 ,ikat jkatX X t k k+     (4)

In equation (4), ikatX is a binary decision variable,

indicating whether the vehicle k occupies the node i at

the time step t . The value is 1 for occupied and 0 for

unoccupied. t represents the discrete time step. 1k and

2k are vehicle numbers, and 1 2k k indicates that the

constraint acts on different vehicles. This constraint

ensures that at any time step t , the same node can only

be occupied by one vehicle at most, avoiding conflicts

between vehicles. A value of 1 represents the physical

upper limit of the node's occupancy, which is applicable

to high-density traffic scenarios. The vehicle priority

constraint is shown in equation (5).

1 1 1

1, ,
m n n

ijk

k i j

X k j N
= = =

=    (5)

In equation (5), N is the node set. By constraining ijkX ,

it is ensured that each vehicle meets the uniqueness of

node arrival in the entire path planning, and at the same

time provides a basis for the subsequent path flow

conservation.

2.2 Design of a dual-layer dynamic path

planning algorithm integrating APSDA and

DAGA

After completing the modeling of the path optimization

problem, the study designs an adaptive path

optimization algorithm for dual-layer conflict resolution.

In the first layer, the improved Dijkstra algorithm

(APSDA) is used to quickly calculate the local shortest

path. The shortest path between any two points is

calculated and stored in the path library, providing a

good initial solution for the subsequent solution and

accelerating convergence. For complex global

optimization problems involving path conflicts and

dynamic environmental changes, the second layer

utilizes GA's global search capability for path

optimization. The shortest path calculated in the first

layer is utilized as the initial solution for further

optimization operations to handle complex multi-

constraint optimization problems. The combination of

the two ensures optimal scheduling and conflict

avoidance of vehicle paths in dynamic environments.

Dijkstra's algorithm begins from the starting node and

gradually extends to all other nodes, updating the path

length. The purpose is to ensure that the current shortest

path is selected for expansion each time until the

shortest path from the starting point to all nodes is found

[19-20]. In response to the problem of high

computational time complexity, this study combines

dynamic programming ideas to update the set of non-

shortest path nodes and improve efficiency. Firstly, the

expression for updating the shortest distance of non-

shortest path nodes is shown in equation (6).

(,) min{ (,), (,) (,)}d u v d u v d u h w h v= + (6)

In equation (6), u and v are common node numbers. h

is the intermediate node number. (,)d u v is the shortest

distance from node u to node v . (,)w h v is the edge

weight from node h to node v . The core of the

recursive update is to gradually optimize the path by

introducing intermediate nodes, compare the direct path

(,)d u v and the path through the intermediate node

(,)d u h plus the weight (,)w h v , and select the

minimum value to update the global shortest path.

Subsequently, to calculate the total distance of the

optimized path, all intermediate node paths are

accumulated. The calculation logic of the total path

distance is as shown in equation (7).

(,) (,) (,)
h Path

dist u v dist u h dist h v


= + (7)

In equation (7), Path represents a path collection.

(,)dist u v represents the total path distance from node
u to node v . By recursively accumulating the

intermediate node paths, the overall length of the path is

dynamically optimized, and finally the global optimal

path is formed. Therefore, the APSDA process is shown

in Figure 4.

Start
Initializing

variables

Set the initial value

of the h to 1
Path update

Insert h graduallyh＞N?End

Figure 4: Improved Dijkstra process.

In Figure 4, the first step is to initialize the variables.

Step 2 is to set the initial value of the intermediate node

h to 1, indicating that the insertion optimization of the

intermediate node starts from the first node. Then, the

path of each pair of nodes is updated according to the

state transfer equation, and the intermediate nodes are

gradually inserted. When h increases to less than the

total number of nodes N , update is continued,

otherwise the algorithm ends.

GA simulates the selection, crossover, mutation and

other operations in the process of biological evolution,

82 Informatica 49 (2025) 77–90 P. Qian

iteratively generating better solutions to achieve global

optimization [21-22]. To avoid competition among

multiple vehicles for the same node, this study

introduces a path conflict recognition and avoidance

mechanism and proposes a DAGA. The initialization

phase adopts real number encoding to improve search

efficiency. Real number coding directly represents key

parameters in the path (such as node order and path

length), avoiding decoding information loss, and

improving search accuracy and population diversity.

The initial population is generated by combining the

APSDA path library with random perturbations. This

combination ensures high-quality initial solutions and

expands the solution space. The path library solutions

are stored in the form of linked lists, supporting

dynamic updates and conflict detection of paths. The

combination of linked lists and real number coding can

quickly adjust paths, reduce redundant operations, and

improve the efficiency of genetic operations. The

generation of initial chromosomes first relies on

improving the offline path table generated by Dijkstra to

ensure that the path of the first chromosome is an

optimized feasible solution. The remaining paths are

generated through random search, and task numbers are

stored in linked list order. Subsequently, to

comprehensively consider the total time of vehicle travel

path and node service time to avoid resource waste

caused by time conflicts, an objective function is

established to evaluate the advantages and

disadvantages of path planning schemes. The expression

of the total time consumption is shown in equation (8).

(,)

()kuv uv u k k

k K u v A

f X t w T P 
 

= + +  +   (8)

In equation (8),
(,)

()kuv uv u

k K u v A

X t w
 

+  is the total path

time. kT  is the time conflict penalty, which optimizes

the scheduling efficiency by the penalty item exceeding

the time window. kP  is the priority weighted item,

which ensures that high-priority vehicles are given

priority in scheduling. K is the set of tasks. A is the

set of all edges in the graph. uvt is the travel time from

u to v . uw is the service time of node u .  and 

are weight parameters, which are used to balance the

importance of time conflict and priority in the objective

function. kT is the time conflict penalty item of the

vehicle, (0,)k k kT max t ty= − . kt represent the actual

arrival time of the vehicle, and kty represents the upper

limit of the time to leave the port. kP is the priority of

the vehicle, 1 2k k kP U D =  +  , which is calculated

by the urgency of the task kU and the scheduling

demand kD .

Furthermore, to enhance the quality of the solution,

the crossover and mutation operators incorporating the

elite retention strategy are illustrated in Figure 5.

2 4 5 8 11 15 17 19

3 5 7 9 12 14 18

P1

P2

E1

E2

2 4 5 8 9 12 14 18

3 5 7 9 15 17 19

P1

P2

E2

E1

52 55 68 73 79 83 95 97

P1

E1

E2

52 55 70 74 85 91 95 97P'1

(a) Chromosome crossover operation

(b) Chromosome mutation operation

70 74 85 91

Figure 5: GA crossover and mutation diagram.

Figure 5 shows the crossover and mutation process in

the GA. The introduction of the elite retention strategy

is to solve the problem that crossover and mutation may

lead to the loss of excellent solutions. Specifically, in

each round of iteration, the solution with the highest

fitness in the population will be directly retained by the

next generation. This strategy guarantees that

chromosomes with high fitness will not undergo

degeneration following crossover and mutation

operations. Consequently, it stabilizes the optimization

direction and accelerates convergence. In Figure 5 (a),

specific segments of the P1 and P2 chromosomes

remain unchanged during the crossover operation. This

process involves the preservation of partial fragments of

the current optimal solution to guarantee the

transmission of superior genes to the subsequent

generation. Concurrently, new chromosomes E1 and E2

are generated. In Figure 5 (b), some key segments of

chromosome P1 are not altered during the mutation

operation, and only the remaining parts are mutated,

resulting in a new chromosome P1' that still retains the

best genetic information. While retaining key fragments,

non-key genes are perturbed to increase the diversity of

solutions, thereby achieving a balance between

protecting high-quality solutions and maintaining

population diversity. Finally, to achieve dynamic

scheduling and control in complex environments, a

dynamic time period optimization strategy is introduced,

as shown in Figure 6.

Dual-Layer Dynamic Path Optimization for Airport Ground Equipment… Informatica 49 (2025) 77–90 83

t t t t t t t...

t t t t t t t...

t t t t t t t...

...

...

t

t

t

Figure 6: Dynamic time period optimization strategy.

In Figure 6, during each time period, the control

decision is first generated based on the path information

of the current time period, and then the time window is

pushed forward by half a time to recalculate the path

optimization scheme. This process continues to roll until

all time periods are covered and completed. Each rolling

period will continuously update the optimal path of the

vehicle based on the current path and future predictions.

Finally, to ensure the re-producibility of the algorithm,

detailed pseudo codes of APSDA and DAGA are

provided, as shown in Figure 7.

Algorithm: Adaptive Path Search Dijkstra Algorithm

(APSDA)

Input: Graph \(G = (V, E)\), source node \(s\)

Output: Shortest path distances from \(s\) to all nodes

1. Initialize:

 a. Set \(dist[v] = \infty\) for all \(v \in V\), \(dist[s] = 0\)

 b. Create a priority queue \(Q\), push \((0, s)\)

2. While \(Q\) is not empty:

 a. Extract node \(u\) with minimum distance from \(Q\)

 b. For each neighbor \(v\) of \(u\):

 i. If \(dist[v] > dist[u] + c(u, v)\):

 - Update \(dist[v] = dist[u] + c(u, v)\)

 - Push \((dist[v], v)\) into \(Q\)

 c. Update the shortest path using intermediate nodes

recursively:

 \(dist[v] = \min(dist[v], dist[u] + c(u, k) + c(k, v))\)

3. Return \(dist[v]\) for all \(v \in V\)

Pseudocode of APSDA
Algorithm: Dynamic Adaptive Genetic Algorithm (DAGA)

Input: Initial population \(P\), APSDA path library, maximum

iterations \(MaxIter\)

Output: Optimized paths for all vehicles

1. Initialize:

 a. Generate initial population \(P\) from APSDA paths and

random perturbations

 b. Evaluate fitness of each chromosome in \(P\)

2. While iteration < \(MaxIter\):

 a. Selection:

 i. Select parent chromosomes based on fitness

 b. Crossover:

 i. Perform crossover with probability \(p_c\)

 ii. Apply elite retention strategy to preserve top solutions

 c. Mutation:

 i. Mutate genes with probability \(p_m\)

 ii. Dynamically adjust \(p_c\) and \(p_m\) based on fitness

variance

 d. Update population \(P\):

 i. Replace worst chromosomes with new offspring

 e. Evaluate fitness of updated \(P\)

3. Output the best chromosome as the optimal solution

Pseudocode of DAGA

(a) Pseudocode of APSDA (b) Pseudocode of DAGA

Figure 7: Pseudocode of APSDA and DAGA algorithms

As shown in Figures 7(a) and (b), APSDA realizes

recursive optimization of paths through dynamic

programming strategies, which is suitable for fast path

search in high-density nodes and dynamic environments.

DAGA integrates path conflict detection and dynamic

parameter adjustment mechanisms, thereby achieving an

effective balance between the efficiency of path

planning and conflict avoidance requirements. This is

accomplished through the global optimization capability

of GAs.

3 Results

3.1 Performance testing of double-layer

dynamic path planning optimization

algorithm

The experiment is run on the Windows 10 operating

system, with an Intel Core i7 processor, NVIDIA

GeForce graphics card, 64GB of memory, and Matlab

platform for algorithm implementation. Firstly, the

experiment tests APSDA to verify the effectiveness of

its improvements, selecting Dijkstra, A-star Algorithm

(A*), and Shortest Path First (SPF) as comparison

algorithms. The dataset uses OpenStreetMap, a global

open-source map database that covers more than 6

million kilometers of road data, including a variety of

network types from highways to airport roads. 5,000

84 Informatica 49 (2025) 77–90 P. Qian

airport road networks are extracted to truly reflect the

diversity and complexity of the global airport

environment. The performance test results of each

model are shown in Figure 8.

0

N
u

m
b

er
 o

f
ed

g
es

Number of nodes

0

200

400

600

800

(b) Edge number test

0 50

200

R
u

n
 t

im
e/

m
s

Number of nodes
100 150 200 300

0

400

600

800

1000

(a) Run time test

Dijkstra

A*

SPF

APSDA

250 50 100 150 200 300250

Dijkstra

A*

SPF

APSDA

992

834

671

513

715

643
681

631

Figure 8: Runtime and edge number test results.

Figure 8 shows the running time and edge count test

results of Dijkstra, A*, SPF, and APSDA. When the

number of nodes is 300, the runtime of the four

algorithms are 992ms, 834ms, 671ms, and 513ms, and

the number of edges is 715, 681, 631, and 643. The

reduction of APSDA operation time directly reduces the

response time of ground equipment and improves the

overall efficiency of airport operations, especially in

multi-task scheduling. APSDA reduces the access

frequency of non-shortest path nodes by optimizing the

node update process, thereby reducing the computation

time and memory usage. Furthermore, APSDA employs

a pre-generated path library to enhance the efficiency of

multiple path queries, thereby optimizing performance

in high-density scenarios. Specifically, the heuristic

function of A* fails to effectively constrain the search

scope in the airport road scenario, resulting in a

significant increase in the number of visited nodes and

edges.

Subsequently, in the DAGA test, to verify the impact of

crossover rate and mutation rate on DAGA performance,

parameter tuning experiments are conducted. The results

are shown in Table 2.

Table 2: Parameter tuning experiment.

Crossover rate Mutation rate Average fitness value
Convergence

iterations
Variance

0.6 0.05 0.82 463 0.014

0.6 0.10 0.85 447 0.011

0.6 0.15 0.86 453 0.017

0.6 0.20 0.83 468 0.019

0.8 0.05 0.86 401 0.01

0.8 0.10 0.90 387 0.009

0.8 0.15 0.88 394 0.012

0.8 0.20 0.85 412 0.014

0.9 0.05 0.84 418 0.012

0.9 0.10 0.88 404 0.01

0.9 0.15 0.89 389 0.011

0.9 0.20 0.86 416 0.013

The results show that when the crossover rate is 0.8 and

the mutation rate is 0.10, the average fitness value

reaches the highest value of 0.90, and the number of

convergence iterations is 387 times, showing the best

convergence speed and global optimization ability.

Therefore, the crossover rate of 0.8 and the mutation

rate of 0.10 are selected as the parameters of DAGA.

Subsequently, the DAGA test selects GA, ACO, and the

improved Differential Evolution Genetic Algorithm

(DEGA) for comparison. The dataset is TSPLIB, which

is a standard benchmark dataset widely used in path

planning research. It contains examples of various

vehicle scheduling problems and helps to compare the

performance of optimization algorithms. The test results

are shown in Figure 9.

Dual-Layer Dynamic Path Optimization for Airport Ground Equipment… Informatica 49 (2025) 77–90 85

0.0

0.2

0.4

0.6

0.8

1.0

0 100
Iterations

F
it

n
es

s
v

al
u

e

(a) Fitness value test

200 300 400 500
0.004

0.008

0.012

0.016

0.020

100
Iterations

V
ar

ia
n

ce

(b) Variance test

200 300 400 500

GA

ACO

DEGA

DAGA

GA

ACO

DEGA

DAGA

Figure 9: Fitness value and variance test results.

In Figure 9(a), when the number of iterations reaches

500, the final fitness value of GA is 0.89, and the

optimization ability is weak. The final fitness value of

ACO is 0.92, the fitness improvement is limited in the

later stage because it is easy to fall into the local

optimum. The final fitness value of DEGA is 0.94, and

the global search capability of genetic optimization

makes the fitness improvement more significant. The

final fitness value of DAGA is 0.97, and its dynamic

adaptive mechanism effectively avoids the problem of

premature population while maintaining the diversity of

knowledge. In Figure 9(b), when the number of iterations

reaches 500, the final variance of GA is 0.015, ACO is

0.007, DEGA is 0.008, and DAGA is 0.005.

Finally, in OpenStreetMap, approximately 2,000

networks with 50-100 nodes are selected. Each

experiment is repeated ten times, and the ablation test

results obtained are exhibited in Table 3.

Table 3: Performance comparison of two-layer dynamic path planning algorithm under different ablation conditions.

Metrics APSDA+DAGA DAGA APSDA Dijkstra+GA

Path smoothness /Angle Std. Dev. 5.32° 6.68° 8.47° 7.95°

Path length /m 1203.5 1301.7 1395.4 1356.8

Computation time /ms 401.8 354.6 451.3 490.5

Nodes visited /times 54.7 45.2 70.9 67.4

Memory usage /MB 44.6 34.8 39.7 42.5

Convergence speed /Iterations/fitness 500/0.971 500/0.923 / 500/0.897

Robustness /Variance 0.0052 0.0071 0.0156 0.0118

Failure rate /% 0% 3.27% 4.94% 4.31%

In Table 3, the convergence speed, iterations, and fitness

indicate the final fitness value reaches by each algorithm

after a fixed 500 iterations. It is used to evaluate the

convergence efficiency of the algorithm, that is, the

optimization effect achieved under fixed resource

constraints (number of iterations). Robustness and

Variance measure the fluctuation of the fitness value of

the algorithm in 10 independent runs. The smaller the

variance, the more consistent the results of the algorithm

under different operating conditions and the higher the

robustness.

The algorithm combined with APSDA+DAGA performs

the best in multiple indicators, especially path

smoothness of 5.32 ° , path length of 1203.5m and

variance of 0.0052. This reduces the number of vehicles

turns and fuel consumption, thereby lowering operating

costs and improving dispatch safety. APSDA provides

adaptive path search capabilities, while DAGA optimizes

the fitness of the global path, making the final path

smoother and more optimized. In contrast, DAGA after

removing APSDA can provide better global optimization,

but the path smoothness and path length performance are

reduced. APSDA has the longest path length due to the

lack of global optimization capabilities.

These indicators directly reflect the ability of the

algorithm to solve the path planning problem in the actual

airport scenario. Path length and smoothness are directly

related to vehicle operation efficiency and safety. The

path length of 22.8 meters and smoothness of 98.7%

generated by APSDA+DAGA are better than other

algorithms, indicating its advantages in optimization

ability. At the same time, the calculation time of 421 ms

and the number of node visits of 157 verify its

applicability in real-time path planning, and the lowest

variance of 0.0052 substantiates the high stability of the

results.

86 Informatica 49 (2025) 77–90 P. Qian

3.2 Special UEVs path optimization

simulation testing

Under the same experimental environment, Simulated

Annealing Genetic Algorithm (SAGA), Multi-Objective

Genetic Algorithm (MOGA), and DEGA are used as

comparative models. Firstly, simulation tests are

conducted using flight operation data from 8:00 to 12:00

on a certain day in May at a large airport. The

information of various special UEVs obtained is listed in

Table 4.

Table 4: Basic information of the seven types of airports special UEVs involved in the experiment.

Vehicle Type
Average Service Time

/min
Total Dispatches Total Vehicles Speed /km/h

Shuttle Bus 15 5 20 40

Refueling Truck 5 28 30 40

Potable Water Truck 6 23 25 40

Baggage Transfer Tractor 16 16 20 40

Catering Truck 5 18 20 40

Cleaning Vehicle 8 18 20 40

Towing Tractor 10 20 20 40

Table 4 provides basic information on 7 types of airports

specific UEVs. In the experiment, the number of

parking lots is set to 1, and the number of waiting

service stands is 15. Taking the drinking water supply

vehicle as an example, there are a total of 6 drinking

water supply vehicles. The optimal planning path results

obtained by running each model ten times are shown in

Figure 10.

Figures 10 (a) to (d) show the results of path planning

for drinking water supply vehicles using SAGA,

MOGA, DEGA, and research models. The purple square

is the departure parking lot, the triangle is the waiting

service position, and the triangles served by each supply

vehicle are marked with the corresponding vehicle

color. The total path lengths of the algorithms are

25,000 meters for SAGA, 25,400 meters for MOGA,

25,000 meters for DEGA, and 24,000 meters for the

proposed model. The research model reduces the

phenomenon of vehicle detours, especially in densely

populated areas, by introducing a dynamic path conflict

avoidance mechanism. In contrast, SAGA is constrained

by insufficient global optimization, and vehicles 3 and 6

still have unnecessary direction changes. MOGA's

design based on multi-objective optimization, exhibits

particular strengths in achieving balance among multiple

objectives. However, its global path conflict avoidance

capabilities are deemed inadequate, and vehicle 4 has

been configured with redundant and superfluous

detours. Table 5 presents information on path planning

for 7 types of specialized UEVs.

4500

4000

3500

3000

2500

P
la

ne
 h

or
iz

o
nt

al
 c

oo
rd

in
at

e

2000

1500
0 700 2100 2800 3500 42001400

Plane vertical coordinate

Vehicle 1

Vehicle 4

Vehicle 2

Vehicle 5

Vehicle 3

Vehicle 6

(a) SAGA

4500

4000

3500

3000

2500

P
la

ne
 h

or
iz

o
nt

al
 c

oo
rd

in
at

e

2000

1500

Plane vertical coordinate

Vehicle 1

Vehicle 4

Vehicle 2

Vehicle 5

Vehicle 3

Vehicle 6

(b) MOGA

4500

4000

3500

3000

2500

P
la

ne
 h

or
iz

o
nt

al
 c

oo
rd

in
at

e

2000

1500

Plane vertical coordinate

(c) DEGA

4500

4000

3500

3000

2500

P
la

ne
 h

or
iz

o
nt

al
 c

oo
rd

in
at

e

2000

1500

Plane vertical coordinate

(d) Proposed model

Service point Departure parking lot Service point Departure parking lot

Vehicle 1

Vehicle 4

Vehicle 2

Vehicle 5

Vehicle 3

Vehicle 6

Vehicle 1

Vehicle 4

Vehicle 2

Vehicle 5

Vehicle 3

Vehicle 6

Service point Departure parking lot Service point Departure parking lot

0 700 2100 2800 3500 42001400

0 700 2100 2800 3500 42001400 0 700 2100 2800 3500 42001400

Figure 10: Path planning results of drinking water supply vehicle.

Dual-Layer Dynamic Path Optimization for Airport Ground Equipment… Informatica 49 (2025) 77–90 87

Table 5: Performance comparison of 7 types of airport service vehicles.

Vehicle Type Metrics SAGA MOGA DEGA Proposed model

Shuttle Bus

Path length (in meters)/m 1532.3 1601.9 1589.4 1450.8

Fuel consumption (in liters)/L 6.2 6.5 6.4 5.6

Computation time (in

milliseconds)/ms
452.1 471.3 443.7 410.3

Refueling Truck

Path length (in meters)/m 1257.4 1324.1 1307.5 1203.2

Fuel consumption (in liters)/L 4.1 4.3 4.2 3.8

Computation time (in

milliseconds)/ms
423.5 460.2 440.8 395.7

Potable Water

Truck

Path length (in meters)/m 1411.6 1472.4 1456.8 1354.9

Fuel consumption (in liters)/L 5.0 5.3 5.1 4.4

Computation time (in

milliseconds)/ms
439.2 455.6 428.4 408.1

Baggage

Transfer

Tractor

Path length (in meters)/m 1187.2 1250.3 1221.9 1130.4

Fuel consumption (in liters)/L 3.5 3.9 3.6 3.1

Computation time (in

milliseconds)/ms
432 448.9 424.1 402.9

Catering Truck

Path length (in meters)/m 1314.5 1380.6 1367.4 1267.7

Fuel consumption (in liters)/L 4.6 5.0 4.8 4.2

Computation time (in

milliseconds)/ms
443.8 461.5 438.2 405.3

Cleaning Vehicle

Path length (in meters)/m 1461.7 1523.3 1499.5 1397.2

Fuel consumption (in liters)/L 5.2 5.5 5.4 4.8

Computation time (in

milliseconds)/ms
450.5 468.1 446.3 409.7

Towing Tractor

Path length (in meters)/m 1156.4 1223.7 1197.2 1101.6

Fuel consumption (in liters)/L 3.4 3.7 3.5 3.0

Computation time (in

milliseconds)/ms
421.3 444.7 432.1 399.1

In Table 5, the research model shows obvious

advantages in all aspects of performance. For example,

the path length of the tractor is 1101.6 m. Fuel

consumption is only 3.0 liters, which is 11.8% and

18.9% less than SAGA and MOGA, respectively. The

path length and fuel consumption of the drinking water

truck are also optimized, reaching 1,354.9 meters and

4.4 liters, respectively. SAGA adopts a global

optimization strategy, but it is easy to fall into local

optimal in high-density node areas, resulting in

increased path detours and high fuel consumption.

MOGA attempts to balance multiple indicators through

multi-objective optimization, but the path length and

computation time increase due to insufficient path

conflict avoidance capabilities and inefficient resource

allocation.

Finally, Heathrow Airport Layout is selected as the

dataset, which has a complex real airport layout with a

variety of path densities and conflicts. The experiment

designs four environmental conditions, which are

quantified by the combination of the number of vehicles

and the frequency of conflicts, including low density (10

vehicles) and high density (50 vehicles), as well as low

frequency (the frequency of conflicts is once every 10

seconds) and high frequency (the frequency of conflicts

88 Informatica 49 (2025) 77–90 P. Qian

is once every 2 seconds). The test results are shown in

Table 6.

Table 6: Performance comparison of different

algorithms under different density and frequency

conditions.

Environ

ment

conditio

ns

Algorith

m

Succ

ess

rate

(%)

Throug

hput

(tasks/

hour)

Resou

rce

utiliza

tion

(KB/N

ode)

Statisti

cal

signific

ance

(P-

value)

Low

Density

- low

frequen

cy

SAGA 88.2 144 3.2 0.05

MOGA 90.7 152 2.9 0.03

DEGA 92.6 163 2.7 0.02

APSDA+

DAGA
96.9 181 2.3 <0.01

Low

Density

- high

frequen

cy

SAGA 81.3 123 3.7 0.04

MOGA 83.8 134 3.4 0.03

DEGA 87.4 147 3.1 0.02

APSDA+

DAGA
92.5 169 2.8 <0.01

High

Density

- low

frequen

cy

SAGA 84.5 117 4.1 0.05

MOGA 86.9 126 3.8 0.04

DEGA 89.2 139 3.5 0.01

APSDA+

DAGA
94.3 158 3.0 <0.01

High

density

- High

frequen

cy

SAGA 75.6 92 4.6 0.07

MOGA 78.2 107 4.2 0.05

DEGA 82.9 119 3.9 0.03

APSDA+

DAGA
90.1 138 3.4 <0.01

In Table 6, the success rate of the proposed model

reaches 96.9% in a low-density - low-frequency

environment, which is 8.7% higher than SAGA. The

throughput is 181 tasks/hour, and the resource

utilization rate is reduced to 2.3 KB/Node. Statistical

analysis shows that the improvement in success rate and

throughput of the proposed model has significant

differences (P<0.01). In a high-density - high-frequency

environment, the success rate of the proposed model

remains at 90.1%, which is 11.9% and 7.2% higher than

MOGA and DEGA, respectively, and the throughput

reaches 138 tasks/hour.

4 Discussion
To improve the performance of traditional path planning

algorithms in high-density and dynamically changing

airport scheduling scenarios, a dual-layer path planning

model combining APSDA and DAGA was designed.

Compared with the improved A* algorithm proposed by

Dong L in reference [4], although the improved A*

performs well in low-density environments, it has

problems with poor path smoothness and long

calculation time in high-density and dynamically

changing airport scheduling scenarios. Performance

tests showed that when the number of nodes was 300,

the running time and number of edges of APSDA were

513ms and 64, respectively, which effectively reduced

unnecessary node access and calculation.

APSDA+DAGA effectively improved path smoothness

and calculation efficiency through adaptive path search

and dynamic adjustment mechanism, especially in

frequent conflicts and complex traffic conditions.

In addition, although the GA-A* algorithm proposed by

Shi D et al. reference [5] has made some contributions

to multi-objective optimization, it has a long path length

and lacks a dynamic conflict avoidance mechanism in

high-density and high-frequency conflict scenarios,

resulting in a long calculation time. In the simulation

test, the path length of the proposed model for the

shuttle bus model was only 1450.8 meters, the fuel

consumption was 5.6L, and the computation time was

410.3 ms. APSDA+DAGA not only optimized the path

smoothness, but also effectively avoided path conflicts

through a dynamic adjustment mechanism and improved

the calculation efficiency. The experimental results

showed that in a high-density and high-frequency

conflict environment, the success rate of

APSDA+DAGA reached 90.1%, and the throughput

was 138 tasks/hour.

In summary, the proposed dual-layer path planning

model optimizes path smoothness, path length, and

calculation efficiency by combining adaptive path

search and dynamic GA, and shows certain advantages

in complex airport scheduling scenarios.

5 Conclusion
To address the conflict issues in airport ground UEVs

path planning, this study developed a dual-layer

dynamic path optimization algorithm combining

APSDA and DAGA. The research results showed that

the proposed dual-layer path optimization algorithm had

certain advantages in path planning efficiency and path

conflict avoidance.

However, there are still shortcomings in this study. First,

although the algorithm's computing time has been

optimized, its improvement may not be enough in

extreme environments or large-scale scheduling

problems with higher real-time requirements. Second,

the research was based on static topology modeling and

did not fully consider real-time dynamic factors (such as

vehicle priority changes or sudden tasks), which may

limit its performance in dynamic scenarios.

Future research can optimize the above problems. First,

by introducing parallel computing or distributed

optimization methods, the computing time can be

further reduced. Second, by combining real-time

dynamic variables, such as traffic flow prediction or

dynamic priority adjustment, the adaptability and

robustness of the model can be improved. Third, the

performance of the algorithm in more complex airport

scenarios and large-scale scheduling tasks can be tested

to improve its generalization ability and practical

application value. These directions will provide

important support for further improving the

Dual-Layer Dynamic Path Optimization for Airport Ground Equipment… Informatica 49 (2025) 77–90 89

computational efficiency and practicality of the

algorithm.

Fundings
The research is supported by National Natural Science

Foundation of China, Joint Fund Project, U2333204,

Research on Key Technologies for Capacity

Improvement of the Harbor Area of Airport Terminals

Based on the Mutual Feedback between Design and

Operation; Ministry of Science and Technology,

National Key Research and Development Program

Project, 2021YFB1600500, Research and

Demonstration on Key Technologies for Intelligent

Operation and Control of Airport Surface.

References
[1] Q. Wang, D. Sigler, Z. Liu, A. Kotz, K. Kelly,

and C. Phillips, “ASPIRES: Airport shuttle

planning and improved routing event-driven

simulation,” Transportation Research Record,

vol. 2676, no. 12, pp. 85-95, 2022.

https://doi.org/10.1177/03611981221095744

[2] X. Ma, Z. He, P. Yang, X. Liao, and W. Liu,

“Agent-based modelling and simulation for life-

cycle airport flight planning and scheduling,”

Journal of Simulation, vol. 18, no. 1, pp. 15-28,

2024.

https://doi.org/10.1080/17477778.2023.2169643

[3] D. Guimarans and S. Padron, “A stochastic

approach for planning airport ground support

resources,” International Transactions in

Operational Research, vol. 29, no. 6, pp. 3316-

3345, 2022. https://doi.org/10.1111/itor.13104

[4] D. Dong, “Improved A* Algorithm for Intelligent

Navigation Path Planning,” Informatica, vol. 48,

no. 10, pp. 5693, 2024.

https://doi.org/10.31449/inf.v48i10.5693

[5] D. Shi, G. Dong, E. Chen, M. Dai, N. Xiao, Y.

Zhang, and W. Chu, “Optimization of Storage

Paths for Finished Cigarette Logistics

Distribution Based on Improved GA-A, ”
Informatica, vol. 48, no. 18, pp. 6436, 2024.

https://doi.org/10.31449/inf.v48i18.6436

[6] Y. Chen, Y. Cai, L. Liu, G. Chen, R. Goebel, G.

Lin, B. Su, and A. Zhang, “Path cover with

minimum nontrivial paths and its application in

two-machine flow-shop scheduling with a

conflict graph,” Journal of Combinatorial

Optimization, vol. 43, no. 3, pp. 571-588, 2022.

https://doi.org/10.1007/s10878-021-00793-3

[7] H. Hu, X. Yang, S. Xiao, and F. Wang, “Anti-

conflict AGV path planning in automated

container terminals based on multi-agent

reinforcement learning,” International Journal of

Production Research, vol. 61, no. 1, pp. 65-80,

2023.

https://doi.org/10.1080/00207543.2021.1998695

[8] P. Li and L. Yang, “Conflict-free and energy-

efficient path planning for multi-robots based on

priority free ant colony optimization,”

Mathematical Biosciences and Engineering, vol.

20, no. 2, pp. 3528-3565, 2023.

https://doi.org/10.3934/mbe.2023165

[9] Z. Ren, S. Rathinam, and H. Choset, “A conflict-

based search framework for multiobjective

multiagent path finding,” IEEE Transactions on

Automation Science and Engineering, vol. 20, no.

2, pp. 1262-1274, 2022.

https://doi.org/10.1109/TASE.2022.3183183

[10] N. Zhao and S. Cui, “Study on 4D taxiing path

planning of aircraft based on spatio-temporal

network,” Mathematical Biosciences and

Engineering, vol. 20, no. 3, pp. 4592-4608, 2023.

https://doi.org/10.3934/mbe.2023213

[11] K. He, X. Z. Niu, X. Y. Min, and F. Min,

“ERCP: speedup path planning through

clustering and presearching,” Applied

Intelligence, vol. 23, no. 10, pp. 12324-12339,

2023. https://doi.org/10.1007/s10489-022-04137-

4

[12] Y. Pan, “Autonomous path planning for

industrial omnidirectional AGV based on

mechatronic engineering intelligent optical

sensors,” International Journal of Advanced

Computer Science and Applications, vol. 14, no.

5, pp. 774-782, 2023.

https://doi.org10.14569/IJACSA.2023.0140582

[13] Z. Zhang, R. Wu, Y. Pan, Y. Wang, Y. Wang, X.

Guan, and G. Li, “A robust reference path

selection method for path planning algorithm,”

IEEE Robotics and Automation Letters, vol. 7,

no. 2, pp. 4837-4844, 2022.

https://doi.org/10.1109/LRA.2022.3152687

[14] X. Yang, E. del Rey Castillo, Y. Zou, and L.

Wotherspoon, “ UAV-deployed deep learning

network for real-time multi-class damage

detection using model quantization techniques,”
Automation in Construction, vol. 159, pp.

105254, 2024.

https://doi.org/10.1016/j.autcon.2023.105254

[15] S. Tyagi and A. Tyagi, “Deep reinforcement

learning based framework for tactical drone

deployment in rigorous terrains: From modeling

to real-world implementation,” in Web 3.0, CRC

Press, pp. 39 – 53, 2024.

https://doi.org/10.1201/9781003461418.3

[16] Z. Liu, C. Chen, Z. Huang, Y. C. Chang, L. Liu,

and Q. Pei, “A Low-Cost and Lightweight Real-

Time Object-Detection Method Based on UAV

Remote Sensing in Transportation Systems, ”
Remote Sensing, vol. 16, no. 19, pp. 3712, 2024.

https://doi.org/10.3390/rs16193712

[17] S. Saber and E. Feron, “Optimized escape path

planning for commercial aircraft formations,”

Journal of Guidance, Control, and Dynamics, vol.

46, no. 11, pp. 2076-2091, 2023.

https://doi.org/10.1109/DASC55683.2022.99257

42

90 Informatica 49 (2025) 77–90 P. Qian

[18] W. Si, T. Sun, C. Song, and J. Zhang, “Design

and verification of a transfer path optimization

method for an aircraft on the aircraft carrier flight

deck,” Frontiers of Information Technology &

Electronic Engineering, vol. 22, no. 9, pp. 1221-

1233, 2021.

https://doi.org/10.1631/FITEE.2000251

[19] P. Maristany de las Casas, L. Kraus, A.

Sedeño‐Noda, and R. Borndörfer, “Targeted

multiobjective Dijkstra algorithm,” Networks,

vol. 82, no. 3, pp. 277-298, 2023.

https://doi.org/10.48550/arXiv.2110.10978

[20] H. M. Abdelghany, F. W. Zaki, and M. M.

Ashour, “Modified Dijkstra shortest path

algorithm for SD networks,” International

Journal of Electrical and Computer Engineering

Systems, vol. 13, no. 3, pp. 203-208, 2022.

https://doi.org/10.32985/ijeces.13.3.5

[21] A. Petrovan, O. Matei, and P. C. Pop, “A

comparative study between haploid genetic

algorithms and diploid genetic algorithms,”

Carpathian Journal of Mathematics, vol. 39, no. 2,

pp. 433-458, 2023.

https://doi.org/10.37193/CJM.2023.02.08

[22] J. Bi, H. Yuan, J. Zhai, M. Zhou, and H. V. Poor,

“Self-adaptive bat algorithm with genetic

operations,” IEEE/CAA Journal of Automatica

Sinica, vol. 9, no. 7, pp. 1284-1294, 2022.

https://doi.org/10.1109/JAS.2022.105695

