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With the continuous promotion of smart airport construction, the application of unmanned ground 

equipment vehicles in airports is becoming increasingly popular. The existing path planning methods rely 

on manual management, which has problems such as low efficiency and poor ability to respond to 

unexpected situations. Given this, this study first models the airport path based on graph theory. 

Secondly, a two-layer dynamic path optimization algorithm is designed by combining the improved 

dynamic programming Dijkstra algorithm with the introduced genetic algorithm for path conflict 

identification and avoidance mechanisms. Performance test results showed that the running time of the 

improved Dijkstra algorithm was shortened by about 48.29% and the number of edges was reduced by 

10.07%. The fitness value and variance of the improved genetic algorithm increased by 8.99% and 

decreased by 66.67%, respectively. In a high-density and high-frequency conflict environment, the path 

success rate of the proposed model was 90.1%, which was 7.2% higher than the comparative algorithm. 

In addition, its path smoothness standard deviation was 5.32° , better than 6.68°  and 8.47°  of the 

comparative algorithms. The results indicate that the optimized path planning method can reduce the 

total running time and effectively avoid path conflicts between multiple vehicles, providing certain 

technical support and new ideas for the safe operation of airport special unmanned equipment vehicles. 

Povzetek: Dvoslojni algoritem načrtuje dinamično optimizacijo poti letaliških talnih vozil. S kombinacijo 

grafovske teorije in izboljšanih genetskih algoritmov rešuje izzive načrtovanja poti in izogibanja 

konfliktom. 

 

1 Introduction 
With the rapid growth of the global aviation industry, 

the business volume and scale of airports continue to 

expand, and the efficiency of ground support services 

has become an important factor affecting the operational 

capacity of airports [1]. Especially in large airports, 

various special equipment vehicles undertake heavy 

ground support tasks, such as shuttle buses, refueling 

trucks, luggage trucks, etc. [2-3]. In recent years, the 

concept of smart airports has gradually emerged. 

Unmanned Equipment Vehicles (UEVs), as an 

important component, can replace manual operations 

through autonomous driving technology and improve 

the intelligence level of ground services. However, the 

popularity of UEVs has also brought new challenges, 

especially in path planning and multi-vehicle 

coordination [4-5]. The main challenge currently faced 

by airport operations is how to effectively plan paths 

under complex conditions of multiple vehicles, multiple 

starting points, and multiple endpoints. Chen Y et al. 

proposed a method minimizing the number of paths with 

a length of 0 in a given graph and proved that the 

problem can be addressed in polynomial time. 

Meanwhile, further experiments demonstrated another 

variant that minimized the total number of paths with  

 

 

lengths of 0 and 1 was also polynomial time solvable 

[6]. Hu H et al. proposed a method based on multi-agent 

deep deterministic policy gradient and discretized the 

scene generated by the node network. By constructing a 

node network model, they analyzed the situations of 

opposing conflicts and same-point occupancy conflicts 

and established an integer programming model for 

solving the shortest path [7]. Li P et al. proposed a 

priority-free Ant Colony Optimization (ACO) 

algorithm. They also proposed energy-constrained ACO 

for single-robot energy optimal path planning by 

modeling unstructured rough terrain through dual-

resolution grid maps [8]. Ren Z et al. proposed a 

conflict-based multi-objective search method, which 

utilized conflict-based search algorithms and the 

principle of superiority in multi-objective optimization 

to address the curse of search space dimensions caused 

by the increase in the number of agents [9]. 

The main objective of Vehicle Routing Problem (VRP) 

is usually to reduce transportation costs, decrease the 

required number of vehicles, or optimize delivery 

efficiency. Zhao N et al. designed an aircraft taxiing 

Path Planning Method (PPM) based on a spatiotemporal 

network model and dynamic programming algorithm. 

They constructed a 2D-directed graph of airport network 

nodes and combined it with Dijkstra's algorithm to plan 

the shortest taxiing distance path for the aircraft [10]. He 
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K et al. proposed an enhanced fast random exploration 

tree algorithm based on clustering and pre-search. This 

algorithm constructed an undirected graph using 

Markov clustering techniques and employs Dijkstra's 

algorithm for pre-search [11]. Pan Y proposed an 

autonomous PPM based on intelligent optical sensors 

and an ACO algorithm. It was found that the new model 

improved by an average of about 17.8% in four 

evaluation indicators [12]. Zhang Z et al. proposed a 

general robust Reference Path Selection Method. This 

method maintained a dynamic path array containing 

newly discovered paths, historical optimal paths, and 

local trajectories, and selected the path with the lowest 

cost through unified criteria evaluation [13]. 

At the same time, many scholars have conducted in-

depth research in areas such as path optimization, target 

detection, and autonomous capability enhancement. 

Yang X et al. proposed an anchor-free and efficient real-

time damage detection method YOLOv6s-GRE and 

combined it with re-parameterization optimization and 

quantization technology to improve the detection 

efficiency and energy consumption performance [14]. 

Tyagi S et al. discussed the cutting-edge applications of 

deep reinforcement learning in drone tactical 

deployment. The study highlighted the advancement of 

drone intelligence in surveillance and defense and 

looked forward to the potential of deep reinforcement 

learning in enhancing drone autonomy [15]. Liu Z et al. 

proposed a lightweight and memory-efficient target 

detection model to meet the real-time and accuracy 

requirements of target detection of UAVs in traffic 

systems. The model combined the FasterNet-16 

backbone network and multi-scale feature fusion 

technology to achieve high-quality target detection [16]. 

Table 1 summarizes the related research, highlighting 

the methods, datasets, and key results. 

 

 

Table 1: Comparison of related works 

References Method Dataset Key Results 

Chen Y [6] 
Minimum nontrivial path cover 

algorithm 
Conflict graph 

Proved that multiple variations of the path 

cover problem are polynomial-time solvable. 

Hu H [7] 
MADDPG (Multi-Agent Deep 

Deterministic Policy Gradient) 

Automated container 

terminal scenarios 

Solved conflict issues through a node 

network model. 

Li J [8] 
PFACO (Priority-Free ACO 

Algorithm) 

Dual-Resolution grid 

data 

Reduced multi-robot motion costs in rough 

terrain. 

Ma H [9] MO-CBS and its variants 
Simulated multi-agent 

scenarios 

Computed Pareto optimal solutions for multi-

agent path planning problems. 

Wang Y [10] 
Combines time-space network with 

the Dijkstra 

Six planes at Xi 'an 

Xianyang Airport 
Effectively planned conflict-free paths. 

Zhang T [11] 
ERCP (Enhanced RRT* with 

clustering and pre-searching) 
Unspecified 

Achieved a good balance between path 

quality and search efficiency. 

Liu Y [12] 

Autonomous path planning with 

intelligent optical sensors and 

ACO 

Industrial AGV scenarios 
Performance indicators improved by 

approximately 17.8%. 

Kim S [13] 
RPSM (Robust Reference Path 

Selection Method) 
Unspecified 

Reduced trajectory distance, direction 

changes, and execution time. 

Yang X [14] YOLOv6s-GRE 
Concrete bridge damage 

dataset 

Increased detection speed by 83.5%, saved 

79.7% energy. 

Tyagi S [15] Deep Reinforcement Learning Unspecified Enhanced UAV autonomy. 

Liu Z [16] 
Memory-efficient lightweight 

object-detection algorithm 

VisDrone, COCO, 

Traffic-Net 
Improved real-time object detection accuracy. 

 

As illustrated in Table 1, the process of planning the 

routes of UEVs in complex airport environments 

presents numerous challenges. These include the 

efficient management of path conflicts among multiple 

vehicles dispatched concurrently, the optimization of 

path length under conditions of multiple starting points 

and multiple endpoints, and the prompt response to 

emergencies in dynamic environments. Although many 

studies attempt to improve the accuracy and efficiency 

of path planning by introducing graph theory and path 

planning algorithms, conflict avoidance mechanisms, 

and intelligent optimization methods. However, there 

are still problems such as unsatisfactory avoidance of 

path conflicts, insufficient global search capability of 

algorithms, and low computational efficiency. 

Given this, this study proposes a two-level dynamic path 

planning optimization algorithm based on graph theory 

and conflict avoidance. The research innovation is 

mainly reflected in the following points: First, 

topological modeling based on graph theory optimizes 

the expression of path nodes and edges, and improves 

modeling efficiency and accuracy. Secondly, the 

Dijkstra algorithm is improved and an Adaptive Path 

Search Dijkstra Algorithm (APSDA) is proposed. The 

dynamic planning strategy is used to reduce redundant 

node access and calculation, thereby improving the path 

planning efficiency. Finally, conflict avoidance and 
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dynamic time period optimization strategies are 

introduced into the Genetic Algorithm (GA), and a 

Dynamic Adaptive Genetic Algorithm (DAGA) is 

proposed, which enhances the path conflict avoidance 

capability and global optimization effect. The 

combination of APSDA and DAGA forms a two-layer 

dynamic path optimization framework. It has achieved a 

comprehensive improvement in path planning efficiency 

and safety. 

2 Methods and materials 

2.1 Airport VRP modeling based on graph 

theory 

To meet different ground service needs, the airport uses 

various types of UEVs. These vehicles possess 

autonomous driving capabilities and can perform 

various specific ground support tasks, including 

passenger transportation, luggage handling, and aircraft 

maintenance [17-18]. Figure 1 shows a common 

classification of airport ground support vehicles.
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Figure 1: Airport ground support vehicle structure. 

Figure 1 shows the classification of airport ground 

support vehicles, covering aircraft support equipment, 

passenger transportation equipment, and baggage and 

cargo transportation equipment. The study's objective is 

to analyze the key supporting roles of seven frequently 

used vehicles in passenger transportation, fuel supply, 

and baggage transfer. The vehicles selected for the study 

include shuttle buses, refueling trucks, water supply 

trucks, baggage transfer trucks, airline food trucks, health 

service trucks, and tractors. The path optimization and 

conflict avoidance capabilities of these vehicles directly 

affect the overall operational efficiency and safety of the 

airport. Low-frequency equipment such as de-icing trucks 

and sewage treatment trucks are not included in the 

research scope due to their limited usage scenarios. 

Focusing on these high-frequency vehicles can 

effectively solve path planning and scheduling problems 

in complex airport environments and help the unmanned 

development of smart airports. 

Subsequently, this study adopts a PPM based on graph 

theory, abstracting the traffic paths within the airport into 

nodes and edges by constructing the topological structure 

of airport roads. This facilitates global optimization and 

conflict avoidance of the vehicle's driving route, 

improving overall operational efficiency. The route 

diagram and stopping node positions are shown in Figure 

2. 
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Figure 2: Schematic diagram of routes and stop nodes. 

 

Figure 2 (a) shows the topological structure of the 

airport ground path. It abstracts the main traffic paths 

within the airport as a network model in graph theory 

through nodes and edges. Figure 2 (b) shows the 
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distribution of operational positions of different types of 

airports special UEVs near aircraft, illustrating the 

specific parking and service areas of the vehicles. To 

balance the rationality of the vehicle path planning 

model with the complexity of practical application, the 

following assumptions are made: (1) The road is 

bidirectional, which complies with the common rules of 

airport design. (2) The vehicle speed is constant, which 

simplifies the model calculation and is consistent with 

the internal speed limit regulations of the airport. (3) All 

roads are available without obstacles or traffic 

interruptions, which is used to analyze the performance 

of the algorithm under ideal conditions. (4) The vehicle 

travel time is an integer, and the calculation efficiency is 

improved by rounding without affecting the accuracy of 

the results. (5) Low-priority vehicles give way to high-

priority vehicles based on the urgency of the task and 

flight demand. This assumption complies with the 

scheduling rules of airport operations and achieves 

conflict avoidance through a priority scheduling 

mechanism. (6) Vehicles must comply with time 

window constraints to ensure task timeliness. (7) 

Vehicles have the ability to detect and avoid conflicts 

and avoid conflicts by waiting or re-planning the path. 

The conflict resolution is displayed in Figure 3.
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Figure 3: Vehicle conflict resolution diagram. 

 

In Figure 3, two vehicles C1 and C2 have potential 

conflicts at the passing nodes (E3, N1), and the vehicles 

use corresponding conflict avoidance mechanisms to 

avoid them. C1 is a higher-priority vehicle, and its 

arrival time is t1. C2 is a lower-priority vehicle, and its 

arrival time is t2. According to the model constraints, 

when the arrival time difference (t2 minus t1) of the two 

vehicles is less than the safe time interval, the vehicles 

cannot pass through node N2 at the same time. To avoid 

conflicts, a priority scheduling mechanism is adopted, 

and vehicle C2 gives way or changes its driving path to 

allow vehicle C1 with higher priority to pass first. The 

road system of the airport is abstracted as an undirected 

graph ( , )G V E= , which includes a set of nodes 

 1 2, ,..., nV v v v=  and a set of edges  ,ijE e i j V=  . 

Each edge 
ije  has a weight 

ijd , representing the distance 

or time traveled by the vehicle on this path. Next, the 

objective function is defined as minimizing the total 

distance traveled by all vehicles, expressed as equation 

(1). 

1 1 1

min
m n n

ijk ij

k i j

X d
= = =

                          (1) 

In equation (1), k  represents the vehicle number, and its 

range is 1 k m  , where m  is the total number of 

vehicles. i  and j  represent the node numbers, and their 

value ranges are 1 i  and j n , where n  is the total 

number of nodes. The starting conditions for summation 

are 1k = , 1i = , and 1j = . ijkX  is a 0-1 decision 

variable, with a value of 1 indicating that vehicle k  

travels from node i  to j , and vice versa, it is 0. ijd  is 

the time it takes for i  to travel to j . The path integrity 

constraint of the model is shown in equation (2). 

1 1

11
,

0,0,

n n
fs

ijk ijk

j i fs

j Pi P
X X

i Pi P= =

== 
= = 

 
 

，，
     (2) 

In equation (2), SP  and fP  represent the starting point 

and the end point, respectively. Each vehicle must start 

from the designated starting point SP  and conserve the 

flow of other nodes. Each vehicle must reach the 

designated end point fP  while ensuring the 

conservation of the path flow of all vehicles. The 

vehicle must remain unobstructed during operation and 

should not stop prematurely before reaching the finish 

line, as shown in equation (3). 

1 1

1,

1,

0,

sn n

ijk ijk f

j j

i P

X X i P

otherwise
= =

=


− = − =



 
     (3) 

Equation (3) ensures that the inflow and outflow of the 

path at all nodes are conserved. The net outflow of the 

starting point is 1, the net inflow of the end point is 1, 

and the net change of the flow at the intermediate node 

is 0, thus ensuring the connectivity of the path. The 

conflict avoidance constraint is shown in equation (4). 
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1 21 ,ikat jkatX X t k k+               (4) 

In equation (4), ikatX  is a binary decision variable, 

indicating whether the vehicle k  occupies the node i  at 

the time step t . The value is 1 for occupied and 0 for 

unoccupied. t  represents the discrete time step. 1k  and 

2k  are vehicle numbers, and 1 2k k  indicates that the 

constraint acts on different vehicles. This constraint 

ensures that at any time step t , the same node can only 

be occupied by one vehicle at most, avoiding conflicts 

between vehicles. A value of 1 represents the physical 

upper limit of the node's occupancy, which is applicable 

to high-density traffic scenarios. The vehicle priority 

constraint is shown in equation (5). 

1 1 1

1, ,
m n n

ijk

k i j

X k j N
= = =

=                       (5) 

In equation (5), N  is the node set. By constraining ijkX , 

it is ensured that each vehicle meets the uniqueness of 

node arrival in the entire path planning, and at the same 

time provides a basis for the subsequent path flow 

conservation. 

2.2 Design of a dual-layer dynamic path 

planning algorithm integrating APSDA and 

DAGA 

After completing the modeling of the path optimization 

problem, the study designs an adaptive path 

optimization algorithm for dual-layer conflict resolution. 

In the first layer, the improved Dijkstra algorithm 

(APSDA) is used to quickly calculate the local shortest 

path. The shortest path between any two points is 

calculated and stored in the path library, providing a 

good initial solution for the subsequent solution and 

accelerating convergence. For complex global 

optimization problems involving path conflicts and 

dynamic environmental changes, the second layer 

utilizes GA's global search capability for path 

optimization. The shortest path calculated in the first 

layer is utilized as the initial solution for further 

optimization operations to handle complex multi-

constraint optimization problems. The combination of 

the two ensures optimal scheduling and conflict 

avoidance of vehicle paths in dynamic environments. 

Dijkstra's algorithm begins from the starting node and 

gradually extends to all other nodes, updating the path 

length. The purpose is to ensure that the current shortest 

path is selected for expansion each time until the 

shortest path from the starting point to all nodes is found 

[19-20]. In response to the problem of high 

computational time complexity, this study combines 

dynamic programming ideas to update the set of non-

shortest path nodes and improve efficiency. Firstly, the 

expression for updating the shortest distance of non-

shortest path nodes is shown in equation (6). 

( , ) min{ ( , ), ( , ) ( , )}d u v d u v d u h w h v= +            (6) 

In equation (6), u  and v  are common node numbers. h  

is the intermediate node number. ( , )d u v  is the shortest 

distance from node u  to node v . ( , )w h v  is the edge 

weight from node h  to node v . The core of the 

recursive update is to gradually optimize the path by 

introducing intermediate nodes, compare the direct path 

( , )d u v  and the path through the intermediate node 

( , )d u h  plus the weight ( , )w h v , and select the 

minimum value to update the global shortest path. 

Subsequently, to calculate the total distance of the 

optimized path, all intermediate node paths are 

accumulated. The calculation logic of the total path 

distance is as shown in equation (7). 

( , ) ( , ) ( , )
h Path

dist u v dist u h dist h v


= +      (7) 

 

In equation (7), Path  represents a path collection. 

( , )dist u v  represents the total path distance from node 
u  to node v . By recursively accumulating the 

intermediate node paths, the overall length of the path is 

dynamically optimized, and finally the global optimal 

path is formed. Therefore, the APSDA process is shown 

in Figure 4. 
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Figure 4: Improved Dijkstra process. 

 

In Figure 4, the first step is to initialize the variables. 

Step 2 is to set the initial value of the intermediate node 

h  to 1, indicating that the insertion optimization of the 

intermediate node starts from the first node. Then, the 

path of each pair of nodes is updated according to the 

state transfer equation, and the intermediate nodes are 

gradually inserted. When h  increases to less than the 

total number of nodes N , update is continued, 

otherwise the algorithm ends. 

GA simulates the selection, crossover, mutation and 

other operations in the process of biological evolution, 
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iteratively generating better solutions to achieve global 

optimization [21-22]. To avoid competition among 

multiple vehicles for the same node, this study 

introduces a path conflict recognition and avoidance 

mechanism and proposes a DAGA. The initialization 

phase adopts real number encoding to improve search 

efficiency. Real number coding directly represents key 

parameters in the path (such as node order and path 

length), avoiding decoding information loss, and 

improving search accuracy and population diversity. 

The initial population is generated by combining the 

APSDA path library with random perturbations. This 

combination ensures high-quality initial solutions and 

expands the solution space. The path library solutions 

are stored in the form of linked lists, supporting 

dynamic updates and conflict detection of paths. The 

combination of linked lists and real number coding can 

quickly adjust paths, reduce redundant operations, and 

improve the efficiency of genetic operations. The 

generation of initial chromosomes first relies on 

improving the offline path table generated by Dijkstra to 

ensure that the path of the first chromosome is an 

optimized feasible solution. The remaining paths are 

generated through random search, and task numbers are 

stored in linked list order. Subsequently, to 

comprehensively consider the total time of vehicle travel 

path and node service time to avoid resource waste 

caused by time conflicts, an objective function is 

established to evaluate the advantages and 

disadvantages of path planning schemes. The expression 

of the total time consumption is shown in equation (8). 

( , )

( )kuv uv u k k

k K u v A

f X t w T P 
 

= + +  +          (8) 

In equation (8), 
( , )

( )kuv uv u

k K u v A

X t w
 

+   is the total path 

time. kT   is the time conflict penalty, which optimizes 

the scheduling efficiency by the penalty item exceeding 

the time window. kP   is the priority weighted item, 

which ensures that high-priority vehicles are given 

priority in scheduling. K  is the set of tasks. A  is the 

set of all edges in the graph. uvt  is the travel time from 

u  to v . uw  is the service time of node u .   and   

are weight parameters, which are used to balance the 

importance of time conflict and priority in the objective 

function. kT  is the time conflict penalty item of the 

vehicle, (0, )k k kT max t ty= − . kt  represent the actual 

arrival time of the vehicle, and kty  represents the upper 

limit of the time to leave the port. kP  is the priority of 

the vehicle, 1 2k k kP U D =  +  , which is calculated 

by the urgency of the task kU  and the scheduling 

demand kD . 

Furthermore, to enhance the quality of the solution, 

the crossover and mutation operators incorporating the 

elite retention strategy are illustrated in Figure 5.
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Figure 5: GA crossover and mutation diagram. 

Figure 5 shows the crossover and mutation process in 

the GA. The introduction of the elite retention strategy 

is to solve the problem that crossover and mutation may 

lead to the loss of excellent solutions. Specifically, in 

each round of iteration, the solution with the highest 

fitness in the population will be directly retained by the 

next generation. This strategy guarantees that 

chromosomes with high fitness will not undergo 

degeneration following crossover and mutation 

operations. Consequently, it stabilizes the optimization 

direction and accelerates convergence. In Figure 5 (a), 

specific segments of the P1 and P2 chromosomes 

remain unchanged during the crossover operation. This 

process involves the preservation of partial fragments of 

the current optimal solution to guarantee the 

transmission of superior genes to the subsequent 

generation. Concurrently, new chromosomes E1 and E2 

are generated. In Figure 5 (b), some key segments of 

chromosome P1 are not altered during the mutation 

operation, and only the remaining parts are mutated, 

resulting in a new chromosome P1' that still retains the 

best genetic information. While retaining key fragments, 

non-key genes are perturbed to increase the diversity of 

solutions, thereby achieving a balance between 

protecting high-quality solutions and maintaining 

population diversity. Finally, to achieve dynamic 

scheduling and control in complex environments, a 

dynamic time period optimization strategy is introduced, 

as shown in Figure 6. 
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Figure 6: Dynamic time period optimization strategy.

In Figure 6, during each time period, the control 

decision is first generated based on the path information 

of the current time period, and then the time window is 

pushed forward by half a time to recalculate the path 

optimization scheme. This process continues to roll until 

all time periods are covered and completed. Each rolling 

period will continuously update the optimal path of the 

vehicle based on the current path and future predictions. 

Finally, to ensure the re-producibility of the algorithm, 

detailed pseudo codes of APSDA and DAGA are 

provided, as shown in Figure 7. 

Algorithm: Adaptive Path Search Dijkstra Algorithm 

(APSDA)

Input: Graph \(G = (V, E)\), source node \(s\)

Output: Shortest path distances from \(s\) to all nodes

1. Initialize:

   a. Set \(dist[v] = \infty\) for all \(v \in V\), \(dist[s] = 0\)

   b. Create a priority queue \(Q\), push \((0, s)\)

2. While \(Q\) is not empty:

   a. Extract node \(u\) with minimum distance from \(Q\)

   b. For each neighbor \(v\) of \(u\):

      i. If \(dist[v] > dist[u] + c(u, v)\): 

         - Update \(dist[v] = dist[u] + c(u, v)\)

         - Push \((dist[v], v)\) into \(Q\)

   c. Update the shortest path using intermediate nodes 

recursively:

      \(dist[v] = \min(dist[v], dist[u] + c(u, k) + c(k, v))\)

3. Return \(dist[v]\) for all \(v \in V\)

Pseudocode of APSDA
Algorithm: Dynamic Adaptive Genetic Algorithm (DAGA)

Input: Initial population \(P\), APSDA path library, maximum 

iterations \(MaxIter\)

Output: Optimized paths for all vehicles

1. Initialize:

   a. Generate initial population \(P\) from APSDA paths and 

random perturbations

   b. Evaluate fitness of each chromosome in \(P\)

2. While iteration < \(MaxIter\):

   a. Selection:

      i. Select parent chromosomes based on fitness

   b. Crossover:

      i. Perform crossover with probability \(p_c\)

      ii. Apply elite retention strategy to preserve top solutions

   c. Mutation:

      i. Mutate genes with probability \(p_m\)

      ii. Dynamically adjust \(p_c\) and \(p_m\) based on fitness 

variance

   d. Update population \(P\):

      i. Replace worst chromosomes with new offspring

   e. Evaluate fitness of updated \(P\)

   

3. Output the best chromosome as the optimal solution

Pseudocode of DAGA

(a) Pseudocode of APSDA (b) Pseudocode of DAGA  

Figure 7: Pseudocode of APSDA and DAGA algorithms 

As shown in Figures 7(a) and (b), APSDA realizes 

recursive optimization of paths through dynamic 

programming strategies, which is suitable for fast path 

search in high-density nodes and dynamic environments. 

DAGA integrates path conflict detection and dynamic 

parameter adjustment mechanisms, thereby achieving an 

effective balance between the efficiency of path 

planning and conflict avoidance requirements. This is 

accomplished through the global optimization capability 

of GAs. 

3 Results 

3.1 Performance testing of double-layer 

dynamic path planning optimization 

algorithm 

The experiment is run on the Windows 10 operating 

system, with an Intel Core i7 processor, NVIDIA 

GeForce graphics card, 64GB of memory, and Matlab 

platform for algorithm implementation. Firstly, the 

experiment tests APSDA to verify the effectiveness of 

its improvements, selecting Dijkstra, A-star Algorithm 

(A*), and Shortest Path First (SPF) as comparison 

algorithms. The dataset uses OpenStreetMap, a global 

open-source map database that covers more than 6 

million kilometers of road data, including a variety of 

network types from highways to airport roads. 5,000 
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airport road networks are extracted to truly reflect the 

diversity and complexity of the global airport 

environment. The performance test results of each 

model are shown in Figure 8. 
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Figure 8: Runtime and edge number test results.

Figure 8 shows the running time and edge count test 

results of Dijkstra, A*, SPF, and APSDA. When the 

number of nodes is 300, the runtime of the four 

algorithms are 992ms, 834ms, 671ms, and 513ms, and 

the number of edges is 715, 681, 631, and 643. The 

reduction of APSDA operation time directly reduces the 

response time of ground equipment and improves the 

overall efficiency of airport operations, especially in 

multi-task scheduling. APSDA reduces the access 

frequency of non-shortest path nodes by optimizing the 

node update process, thereby reducing the computation 

time and memory usage. Furthermore, APSDA employs 

a pre-generated path library to enhance the efficiency of 

multiple path queries, thereby optimizing performance 

in high-density scenarios. Specifically, the heuristic 

function of A* fails to effectively constrain the search 

scope in the airport road scenario, resulting in a 

significant increase in the number of visited nodes and 

edges. 

Subsequently, in the DAGA test, to verify the impact of 

crossover rate and mutation rate on DAGA performance, 

parameter tuning experiments are conducted. The results 

are shown in Table 2. 

Table 2: Parameter tuning experiment. 

Crossover rate Mutation rate Average fitness value 
Convergence 

iterations 
Variance 

0.6 0.05 0.82 463 0.014 

0.6 0.10 0.85 447 0.011 

0.6 0.15 0.86 453 0.017 

0.6 0.20 0.83 468 0.019 

0.8 0.05 0.86 401 0.01 

0.8 0.10 0.90 387 0.009 

0.8 0.15 0.88 394 0.012 

0.8 0.20 0.85 412 0.014 

0.9 0.05 0.84 418 0.012 

0.9 0.10 0.88 404 0.01 

0.9 0.15 0.89 389 0.011 

0.9 0.20 0.86 416 0.013 

 

The results show that when the crossover rate is 0.8 and 

the mutation rate is 0.10, the average fitness value 

reaches the highest value of 0.90, and the number of 

convergence iterations is 387 times, showing the best 

convergence speed and global optimization ability. 

Therefore, the crossover rate of 0.8 and the mutation 

rate of 0.10 are selected as the parameters of DAGA. 

Subsequently, the DAGA test selects GA, ACO, and the 

improved Differential Evolution Genetic Algorithm 

(DEGA) for comparison. The dataset is TSPLIB, which 

is a standard benchmark dataset widely used in path 

planning research. It contains examples of various 

vehicle scheduling problems and helps to compare the 

performance of optimization algorithms. The test results 

are shown in Figure 9. 
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Figure 9: Fitness value and variance test results. 

In Figure 9(a), when the number of iterations reaches 

500, the final fitness value of GA is 0.89, and the 

optimization ability is weak. The final fitness value of 

ACO is 0.92, the fitness improvement is limited in the 

later stage because it is easy to fall into the local 

optimum. The final fitness value of DEGA is 0.94, and 

the global search capability of genetic optimization 

makes the fitness improvement more significant. The 

final fitness value of DAGA is 0.97, and its dynamic 

adaptive mechanism effectively avoids the problem of 

premature population while maintaining the diversity of 

knowledge. In Figure 9(b), when the number of iterations 

reaches 500, the final variance of GA is 0.015, ACO is 

0.007, DEGA is 0.008, and DAGA is 0.005. 

Finally, in OpenStreetMap, approximately 2,000 

networks with 50-100 nodes are selected. Each 

experiment is repeated ten times, and the ablation test 

results obtained are exhibited in Table 3. 

Table 3: Performance comparison of two-layer dynamic path planning algorithm under different ablation conditions. 

Metrics APSDA+DAGA DAGA APSDA Dijkstra+GA 

Path smoothness /Angle Std. Dev. 5.32° 6.68° 8.47° 7.95° 

Path length /m 1203.5 1301.7 1395.4 1356.8 

Computation time /ms 401.8 354.6 451.3 490.5 

Nodes visited /times 54.7 45.2 70.9 67.4 

Memory usage /MB 44.6 34.8 39.7 42.5 

Convergence speed /Iterations/fitness 500/0.971 500/0.923 / 500/0.897 

Robustness /Variance 0.0052 0.0071 0.0156 0.0118 

Failure rate /% 0% 3.27% 4.94% 4.31% 

 

In Table 3, the convergence speed, iterations, and fitness 

indicate the final fitness value reaches by each algorithm 

after a fixed 500 iterations. It is used to evaluate the 

convergence efficiency of the algorithm, that is, the 

optimization effect achieved under fixed resource 

constraints (number of iterations). Robustness and 

Variance measure the fluctuation of the fitness value of 

the algorithm in 10 independent runs. The smaller the 

variance, the more consistent the results of the algorithm 

under different operating conditions and the higher the 

robustness. 

The algorithm combined with APSDA+DAGA performs 

the best in multiple indicators, especially path 

smoothness of 5.32 ° , path length of 1203.5m and 

variance of 0.0052. This reduces the number of vehicles 

turns and fuel consumption, thereby lowering operating 

costs and improving dispatch safety. APSDA provides 

adaptive path search capabilities, while DAGA optimizes 

the fitness of the global path, making the final path 

smoother and more optimized. In contrast, DAGA after 

removing APSDA can provide better global optimization, 

but the path smoothness and path length performance are 

reduced. APSDA has the longest path length due to the 

lack of global optimization capabilities. 

These indicators directly reflect the ability of the 

algorithm to solve the path planning problem in the actual 

airport scenario. Path length and smoothness are directly 

related to vehicle operation efficiency and safety. The 

path length of 22.8 meters and smoothness of 98.7% 

generated by APSDA+DAGA are better than other 

algorithms, indicating its advantages in optimization 

ability. At the same time, the calculation time of 421 ms 

and the number of node visits of 157 verify its 

applicability in real-time path planning, and the lowest 

variance of 0.0052 substantiates the high stability of the 

results. 
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3.2 Special UEVs path optimization 

simulation testing 

Under the same experimental environment, Simulated 

Annealing Genetic Algorithm (SAGA), Multi-Objective 

Genetic Algorithm (MOGA), and DEGA are used as 

comparative models. Firstly, simulation tests are 

conducted using flight operation data from 8:00 to 12:00 

on a certain day in May at a large airport. The 

information of various special UEVs obtained is listed in 

Table 4. 

 

Table 4: Basic information of the seven types of airports special UEVs involved in the experiment. 

Vehicle Type 
Average Service Time 

/min 
Total Dispatches Total Vehicles Speed /km/h 

Shuttle Bus 15 5 20 40 

Refueling Truck 5 28 30 40 

Potable Water Truck 6 23 25 40 

Baggage Transfer Tractor 16 16 20 40 

Catering Truck 5 18 20 40 

Cleaning Vehicle 8 18 20 40 

Towing Tractor 10 20 20 40 

 

Table 4 provides basic information on 7 types of airports 

specific UEVs. In the experiment, the number of 

parking lots is set to 1, and the number of waiting 

service stands is 15. Taking the drinking water supply 

vehicle as an example, there are a total of 6 drinking 

water supply vehicles. The optimal planning path results 

obtained by running each model ten times are shown in 

Figure 10. 

Figures 10 (a) to (d) show the results of path planning 

for drinking water supply vehicles using SAGA, 

MOGA, DEGA, and research models. The purple square 

is the departure parking lot, the triangle is the waiting 

service position, and the triangles served by each supply 

vehicle are marked with the corresponding vehicle 

color. The total path lengths of the algorithms are 

25,000 meters for SAGA, 25,400 meters for MOGA, 

25,000 meters for DEGA, and 24,000 meters for the 

proposed model. The research model reduces the 

phenomenon of vehicle detours, especially in densely 

populated areas, by introducing a dynamic path conflict 

avoidance mechanism. In contrast, SAGA is constrained 

by insufficient global optimization, and vehicles 3 and 6 

still have unnecessary direction changes. MOGA's 

design based on multi-objective optimization, exhibits 

particular strengths in achieving balance among multiple 

objectives. However, its global path conflict avoidance 

capabilities are deemed inadequate, and vehicle 4 has 

been configured with redundant and superfluous 

detours. Table 5 presents information on path planning 

for 7 types of specialized UEVs. 
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Figure 10: Path planning results of drinking water supply vehicle. 
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Table 5: Performance comparison of 7 types of airport service vehicles. 

Vehicle Type Metrics SAGA MOGA DEGA Proposed model 

Shuttle Bus 

Path length (in meters)/m 1532.3 1601.9 1589.4 1450.8 

Fuel consumption (in liters)/L 6.2 6.5 6.4 5.6 

Computation time (in 

milliseconds)/ms 
452.1 471.3 443.7 410.3 

Refueling Truck 

Path length (in meters)/m 1257.4 1324.1 1307.5 1203.2 

Fuel consumption (in liters)/L 4.1 4.3 4.2 3.8 

Computation time (in 

milliseconds)/ms 
423.5 460.2 440.8 395.7 

Potable Water 

Truck 

Path length (in meters)/m 1411.6 1472.4 1456.8 1354.9 

Fuel consumption (in liters)/L 5.0 5.3 5.1 4.4 

Computation time (in 

milliseconds)/ms 
439.2 455.6 428.4 408.1 

Baggage 

Transfer 

Tractor 

Path length (in meters)/m 1187.2 1250.3 1221.9 1130.4 

Fuel consumption (in liters)/L 3.5 3.9 3.6 3.1 

Computation time (in 

milliseconds)/ms 
432 448.9 424.1 402.9 

Catering Truck 

Path length (in meters)/m 1314.5 1380.6 1367.4 1267.7 

Fuel consumption (in liters)/L 4.6 5.0 4.8 4.2 

Computation time (in 

milliseconds)/ms 
443.8 461.5 438.2 405.3 

Cleaning Vehicle 

Path length (in meters)/m 1461.7 1523.3 1499.5 1397.2 

Fuel consumption (in liters)/L 5.2 5.5 5.4 4.8 

Computation time (in 

milliseconds)/ms 
450.5 468.1 446.3 409.7 

Towing Tractor 

Path length (in meters)/m 1156.4 1223.7 1197.2 1101.6 

Fuel consumption (in liters)/L 3.4 3.7 3.5 3.0 

Computation time (in 

milliseconds)/ms 
421.3 444.7 432.1 399.1 

 

In Table 5, the research model shows obvious 

advantages in all aspects of performance. For example, 

the path length of the tractor is 1101.6 m. Fuel 

consumption is only 3.0 liters, which is 11.8% and 

18.9% less than SAGA and MOGA, respectively. The 

path length and fuel consumption of the drinking water 

truck are also optimized, reaching 1,354.9 meters and 

4.4 liters, respectively. SAGA adopts a global 

optimization strategy, but it is easy to fall into local 

optimal in high-density node areas, resulting in 

increased path detours and high fuel consumption. 

MOGA attempts to balance multiple indicators through 

multi-objective optimization, but the path length and 

computation time increase due to insufficient path 

conflict avoidance capabilities and inefficient resource 

allocation. 

Finally, Heathrow Airport Layout is selected as the 

dataset, which has a complex real airport layout with a 

variety of path densities and conflicts. The experiment 

designs four environmental conditions, which are 

quantified by the combination of the number of vehicles 

and the frequency of conflicts, including low density (10 

vehicles) and high density (50 vehicles), as well as low 

frequency (the frequency of conflicts is once every 10 

seconds) and high frequency (the frequency of conflicts 
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is once every 2 seconds). The test results are shown in 

Table 6. 

 

Table 6: Performance comparison of different 

algorithms under different density and frequency 

conditions. 

Environ

ment 

conditio

ns 

Algorith

m 

Succ

ess 

rate 

(%) 

Throug

hput 

(tasks/

hour) 

Resou

rce 

utiliza

tion 

(KB/N

ode) 

Statisti

cal 

signific

ance 

(P-

value) 

Low 

Density 

- low 

frequen

cy 

SAGA 88.2 144 3.2 0.05 

MOGA 90.7 152 2.9 0.03 

DEGA 92.6 163 2.7 0.02 

APSDA+

DAGA 
96.9 181 2.3 <0.01 

Low 

Density 

- high 

frequen

cy 

SAGA 81.3 123 3.7 0.04 

MOGA 83.8 134 3.4 0.03 

DEGA 87.4 147 3.1 0.02 

APSDA+

DAGA 
92.5 169 2.8 <0.01 

High 

Density 

- low 

frequen

cy 

SAGA 84.5 117 4.1 0.05 

MOGA 86.9 126 3.8 0.04 

DEGA 89.2 139 3.5 0.01 

APSDA+

DAGA 
94.3 158 3.0 <0.01 

High 

density 

- High 

frequen

cy 

SAGA 75.6 92 4.6 0.07 

MOGA 78.2 107 4.2 0.05 

DEGA 82.9 119 3.9 0.03 

APSDA+

DAGA 
90.1 138 3.4 <0.01 

 

In Table 6, the success rate of the proposed model 

reaches 96.9% in a low-density - low-frequency 

environment, which is 8.7% higher than SAGA. The 

throughput is 181 tasks/hour, and the resource 

utilization rate is reduced to 2.3 KB/Node. Statistical 

analysis shows that the improvement in success rate and 

throughput of the proposed model has significant 

differences (P<0.01). In a high-density - high-frequency 

environment, the success rate of the proposed model 

remains at 90.1%, which is 11.9% and 7.2% higher than 

MOGA and DEGA, respectively, and the throughput 

reaches 138 tasks/hour. 

 

4   Discussion 
To improve the performance of traditional path planning 

algorithms in high-density and dynamically changing 

airport scheduling scenarios, a dual-layer path planning 

model combining APSDA and DAGA was designed. 

Compared with the improved A* algorithm proposed by 

Dong L in reference [4], although the improved A* 

performs well in low-density environments, it has 

problems with poor path smoothness and long 

calculation time in high-density and dynamically 

changing airport scheduling scenarios. Performance 

tests showed that when the number of nodes was 300, 

the running time and number of edges of APSDA were 

513ms and 64, respectively, which effectively reduced 

unnecessary node access and calculation. 

APSDA+DAGA effectively improved path smoothness 

and calculation efficiency through adaptive path search 

and dynamic adjustment mechanism, especially in 

frequent conflicts and complex traffic conditions. 

In addition, although the GA-A* algorithm proposed by 

Shi D et al. reference [5] has made some contributions 

to multi-objective optimization, it has a long path length 

and lacks a dynamic conflict avoidance mechanism in 

high-density and high-frequency conflict scenarios, 

resulting in a long calculation time. In the simulation 

test, the path length of the proposed model for the 

shuttle bus model was only 1450.8 meters, the fuel 

consumption was 5.6L, and the computation time was 

410.3 ms. APSDA+DAGA not only optimized the path 

smoothness, but also effectively avoided path conflicts 

through a dynamic adjustment mechanism and improved 

the calculation efficiency. The experimental results 

showed that in a high-density and high-frequency 

conflict environment, the success rate of 

APSDA+DAGA reached 90.1%, and the throughput 

was 138 tasks/hour. 

In summary, the proposed dual-layer path planning 

model optimizes path smoothness, path length, and 

calculation efficiency by combining adaptive path 

search and dynamic GA, and shows certain advantages 

in complex airport scheduling scenarios. 

 

5   Conclusion 
To address the conflict issues in airport ground UEVs 

path planning, this study developed a dual-layer 

dynamic path optimization algorithm combining 

APSDA and DAGA. The research results showed that 

the proposed dual-layer path optimization algorithm had 

certain advantages in path planning efficiency and path 

conflict avoidance. 

However, there are still shortcomings in this study. First, 

although the algorithm's computing time has been 

optimized, its improvement may not be enough in 

extreme environments or large-scale scheduling 

problems with higher real-time requirements. Second, 

the research was based on static topology modeling and 

did not fully consider real-time dynamic factors (such as 

vehicle priority changes or sudden tasks), which may 

limit its performance in dynamic scenarios. 

Future research can optimize the above problems. First, 

by introducing parallel computing or distributed 

optimization methods, the computing time can be 

further reduced. Second, by combining real-time 

dynamic variables, such as traffic flow prediction or 

dynamic priority adjustment, the adaptability and 

robustness of the model can be improved. Third, the 

performance of the algorithm in more complex airport 

scenarios and large-scale scheduling tasks can be tested 

to improve its generalization ability and practical 

application value. These directions will provide 

important support for further improving the 
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computational efficiency and practicality of the 

algorithm. 
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