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The California Bearing Ratio (CBR) test is a crucial geotechnical parameter for evaluating soil strength. 

This study proposes a Least Squares Support Vector Regression (LSSVR) model to predict CBR values 

using compaction characteristics, moisture content, and soil properties. A dataset comprising 110 soil 

samples was used, with 70% for training and 30% for testing. To enhance predictive accuracy, three meta-

heuristic algorithms—Improved Arithmetic Optimization Algorithm (IAOA), Equilibrium Slime Mould 

Algorithm (ESMA), and Runge Kutta Optimization (RKO)—were integrated with LSSVR, forming hybrid 

models LSIA, LSEM, and LSRK. These algorithms optimized the regularization parameter (C) and kernel 

parameter (Gamma) to improve model generalization. Performance evaluation using R², RMSE, and MAE 

showed that the LSIA model outperformed all others, achieving an R² of 0.9975 (training) and 0.9932 

(testing), along with the lowest RMSE (0.5489) and MAE (0.3176). The results confirm that LSIA exhibits 

superior predictive accuracy and robustness, making it a reliable and time-efficient alternative for 

geotechnical applications. 

Povzetek:

1 Introduction 
The California Bearing Ratio (𝐶𝐵𝑅) is a widely used 

parameter in engineering to evaluate the mechanical 

properties of soil subgrade, which are crucial for designing 

flexible pavements. Assessing the CBR value is vital for 

determining the suitable thickness of the roadway layer 

that can handle the expected traffic volume [1]–[3]. 

In particular, when the CBR value rises, increasing 

the pavement layer's thickness is essential to provide 

enough resistance against the anticipated load. By 

empowering engineers to make informed decisions on the 

use of materials, structural design, and building 

techniques, researchers help build structures that are long-

lasting, sustainable, and CBR. A 50 𝑚𝑚 diameter circular 

plunger is used to pierce a soil mass; the pressure per unit 

area needed is measured and separated by the comparable 

diffusion in a reference material at a continuous rate of 

1.25 𝑚𝑚 each minute. This metric is known as the CBR. 

A ratio of 2.5 to 5 𝑚𝑚 is usually used to evaluate 

penetrations; greater results are obtained with the 

5 𝑚𝑚 ratio than with the 2 𝑚𝑚 ratio [4], [5]. Compacted 

samples that have been undisturbed or reconstituted can 

be used in laboratory studies in either a saturated or 

unsaturated water environment. It is important to 

remember that current studies have shown that the 

condition of the material during testing can have a big  

impact on the CBR values [6]–[8]. CBR is a fundamental  

 

 

parameter in geotechnical engineering used to assess soil 

strength. Using a standard plunger, the 𝐶𝐵𝑅 value is 

obtained by measuring the pressure obligatory to penetrate 

a soil sample. The main ingredients of 𝐶𝐵𝑅 include the 

soil type, moisture content, and compaction level. These 

factors significantly impact the CBR value and are crucial 

in accurately predicting soil strength. Understanding the 

ingredients of CBR is essential in designing and 

constructing reliable and robust structures that can 

withstand various loads and conditions [9], [10].  

The OMC represents the moisture content at which 

the soil is most compact and has the greatest strength. In 

the CBR test, the optimum moisture content (𝑂𝑀𝐶) is the 

moisture content at which the soil sample has the highest 

CBR value. Several CBR tests are applied on soil samples 

with varying moisture contents to determine the OMC. 

The CBR value is measured for each moisture content, and 

the results are plotted on a graph with the CBR value on 

the 𝑦 − 𝑎𝑥𝑖𝑠 and moisture content on the 𝑥 − 𝑎𝑥𝑖𝑠. The 

moisture content at which the CBR value is the highest is 

the OMC [7]. The OMC is an important parameter in 

designing and constructing roads, pavements, and other 

infrastructure. If the soil is too dry, it may be hard and 

brittle, leading to cracking and other damage. If the soil is 

wet, it may be too soft and weak, leading to deformation 

and failure under load. Therefore, it is important to 

determine the OMC to ensure that the soil has the required 

strength and stability for the intended use [11]. 
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However, when done in a laboratory setting, 

calculating the 𝐶𝐵𝑅 value may be difficult and costly. As 

a result, researchers have explored alternative methods, 

such as utilizing machine learning (ML) models, to predict 

the 𝐶𝐵𝑅 value of soil subgrades. ML, a subfield of 

artificial intelligence [12], focuses on creating algorithms 

that have the capacity to learn from data and become more 

effective over time. This study area has clear benefits for 

effectively handling sizable and intricate information, 

making it possible to spot underlying patterns and produce 

accurate forecasts. Several approaches have been 

thoroughly examined in ML, such as reinforcement 

learning, supervised learning, deep learning, unverified 

learning, and others. ML applications may be found in a 

wide range of industries, including manufacturing, 

transportation, finance, and engineering [13]–[17]. 

Table 1 presents the summary of some previous 

studies related to CBR prediction. 

Table 1: Summary of previous studies related to CBR 

prediction. 

Article Model 
Evaluator 

R2 RMSE 

[18] MLR 0.841 - 

[19] ANN 0.981 1.187 

[20] ANN 0.945 2.81 

[21] GPR 0.999 0.139 

[22] ANN 0.970 1.691 

[23] MARS-L 0.969 0.036 

[24] RF 0.98 1.43 

[25] LGBM 0.947 0.33 

In this research, ML methodologies are employed to 

address complex systems and analyze multiple variables 

to estimate the 𝐶𝐵𝑅 measure. The study assumes a 

methodological method centered around utilizing the 

LSSVR technique. Accurate forecast models for CBR are 

of utmost importance. However, optimizing the 

parameters of LSSVR is crucial to enhance its predictive 

performance. To tackle this issue, the paper explores the 

integration of three meta-heuristic algorithms: the 

Improved Arithmetic optimization algorithm (𝐼𝐴𝑂𝐴), the 

Equilibrium Slime Mould Algorithm (ESMA), and Runge 

Kutta Optimization (RKO). By streamlining the 

𝐶𝐵𝑅 −related design and construction procedures, this 

study emphasizes the positive impact that can have on the 

substructure sector and the built situation. To evaluate the 

proposed framework, the study collects a dataset of CBR 

and conducts comparative analyses to assess the 

effectiveness of this approach compared to traditional 

optimization methods. 

The choice of IAOA, ESMA, and RKO for optimizing 

LSSVR in CBR prediction was guided by their unique 

computational advantages in balancing exploration and 

exploitation, ensuring efficient hyperparameter tuning. 

IAOA enhances global search capability while mitigating 

premature convergence, making it ideal for optimizing 

non-linear geotechnical data. Inspired by slime mould 

foraging behaviour, ESMA introduces an equilibrium-

based update mechanism that improves search diversity 

and robustness. RKO, rooted in the Runge-Kutta 

numerical method, provides a structured and stable 

optimization process, ensuring precise parameter tuning. 

2 Materials and methodology 

2.1 Data gathering 

As shown in Table 2, the experimental samples 

comprising the 𝐶𝐵𝑅 dataset were split into two sets: a 

training phase comprising 76 samples (70%) and a test 

phase comprising 33 samples (30%). Based on these 

predictor factors, an 𝐿𝑆𝑆𝑉𝑅 model was used to predict the 

𝐶𝐵𝑅. The dataset utilized in this investigation came from 

an investigation carried out by Ikeagwuani [26]. It uses a 

combination ratio obtained using the response surface and 

Taguchi array experimental techniques. The stabilizers 

and modified extensive soil qualities shown in Table 2 are 

linked to the output variable, 𝐶𝐵𝑅 value, and have 

inherent geotechnical characteristics. Compaction traits 

and atterberg limits, such as liquid limit (𝐿𝐿), plasticity 

index (𝑃𝐼), plastic limit (PL), 𝑂𝑀𝐶, and maximum dry 

density (𝑀𝐷𝐷), are among the physical features of the 

changed soil. The input variables are the stabilizers, 

namely 𝑆𝐷𝐴,𝑂𝑃𝐶, and 𝑄𝐷.

Table 2: The statistical properties of model input and target values. 

Indicator 
Statistical Properties 

LL PL PI MDD OMC SDA QD OPC CBR 

Max 52.1 37.2 19.5 1.777 29.5 20 20 8 66.75 

Min 21.2 17.9 2.1 1.365 18.9 0 0 2 19.69 

Avg 35.85 26.68 9.162 1.493 24.14 10.66 10.64 4.945 39.959 

St. Dev. 6.154 4.281 4.115 0.088 2.427 7.155 8.196 2.380 10.866 

 

2.2 Least square support vector regression 

(LSSVR) 

As a development to 𝑆𝑉𝑅 that can handle issues with 

function estimation, regression, and classification, 

Vandewalle and Suykens introduced 𝐿𝑆𝑆𝑉𝑅 [27]. Their 

articles contained documentation of this. 𝑆𝑉𝑅 was 

developed as a supervised ML approach in 1995 by  

 

Vapnik and his coworkers. However, since LSSVR 

employs linear equations rather than quadratic ones, 

which simplifies the optimization process, it has an 

advantage over SVR [28]–[31]. The 𝐿𝑆𝑆𝑉𝑅 process, 

showed in Fig. 1, includes utilizing the input 𝑥𝑖 and the 

output 𝑦𝑖  time series to direct the 𝐿𝑆𝑆𝑉𝑅 function as 

presented below.
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Figure 1: The 𝐿𝑆𝑆𝑉𝑅 model is used to forecast wind power and speed. 

𝑦(𝑥) = 𝜛𝑀𝜓(𝑥) + 𝑑 (1) 

In Eq. (1), 𝑥 can assumed that an input and the output  

(𝑦) is resolute by the weight vector (𝜛), which has 𝑚𝑖𝑛 

extents, the partiality term 𝑑 and the charting term 𝜓 [32]. 

The following may be used to exemplify the cost function 

for 𝐿𝑆𝑆𝑉𝑅: 

𝑚𝑖𝑛𝐽(𝜛, 𝑎) =
1

2
𝜛𝑀𝜛 +

𝜏

2
∑𝑎𝑖

2

𝑁

𝑖=1

 (2) 

which is limited by the following: 

𝑦𝑖 = 𝜛𝑀𝜓(𝑥𝑖) + 𝑑 + 𝑎𝑖 ,   (𝑖 = 1,2,3, … , 𝑁) (3) 

For a given input 𝑥𝑖, the values of the training error 

and the regularization constant are provided by 𝑎𝑖 and 𝜏, 
respectively. The Lagrange multiplier (𝐿𝑀) optimum 

programming technique is used for solving Eq. (2). The 

constraint problem needs to be changed into a non-

constraint problem to use this method to derive the 

objective function [33], [34]. The Lagrange function (𝐿) 
can be intended in the following: 

𝐿(𝜛, 𝑑, 𝑎, 𝛿) = 𝐽(𝜛, 𝑎) 

−∑𝛿𝑖{𝜛
𝑀𝜓(𝑥𝑖) + 𝑑 + 𝑎𝑖 − 𝑦𝑖}

𝑁

𝑖=1

 
(4) 

Here δi is the 𝐿𝑀. 

𝐾𝑎𝑟𝑢𝑠ℎ − 𝐶𝑜ℎ𝑒𝑛 − 𝑇𝑢𝑐𝑘𝑒𝑟 [35], using the partial 

derivative calculations of Eq. (4) about 𝜔, 𝑏, 𝑒, and 𝛽 

independently, as found: 

{
 
 
 

 
 
 𝜛 =∑𝛿𝑖𝜓(𝑥𝑖) + 𝑑

𝑁

𝑖=1

∑𝛿𝑖 = 0

𝑁

𝑖=1

𝛿𝑖 = 𝜏𝑎𝑖

𝜛𝑀𝜓(𝑥𝑖) + 𝑑 + 𝑎𝑖 − 𝑦𝑖 = 0

 (5) 

It is possible to derive the linear equations by 

removing the variables from 𝑎𝑖 and 𝜛 can be stated as: 

(
0       − 𝐺𝑀

   
𝐺     Ω + 𝜏−1𝐺 

) (
𝑑

𝛽
) = (

0

1
) (6) 

Here 𝐺 = (𝑦1 , … , 𝑦𝑁), Ω =
(𝜓(𝑥1)

𝑀𝑦1, … , 𝜓(𝑥𝑁)
𝑀𝑦𝑁 , 𝑃 = (1, … ,1), 𝛽 =

(𝛽1, … , 𝛽1). 
Under 𝑀𝑒𝑟𝑐𝑒𝑟’𝑠 standard (to get more explanations 

of 𝑀𝑒𝑟𝑐𝑒𝑟’𝑠 standard, refer to [36]), it can be mentioned 

that the kernel is articulated as 𝑠(𝑥, 𝑥𝑖) = 𝑓(𝑥)𝑀𝑓(𝑥𝑖), 𝑖 =
1,2,3, … , 𝐻. Consequently, the 𝐿𝑆𝑆𝑉𝑅 can be formulated 

as follows: 

𝑓(𝑥) =∑𝛿𝑖𝑠(𝑥, 𝑥𝑖) + 𝑑.

𝑁

𝑖=1

 (7) 

𝑠(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (−
‖𝑥 − 𝑥𝑖‖

2

2𝜚2
). (8) 

2.3 Equilibrium slime mould algorithm 

(ESMA) 

Slime mold's (𝑆𝑀) foraging habits offer a potential basis 

of inspiration to create successful and efficient 

optimization techniques [37]. The ESMA algorithm 

begins by initializing each slime mold’s position using a 

randomization procedure, ensuring a diverse search space 

exploration. This is mathematically represented by Eq. 

(9). However, beyond initialization, ESMA primarily 

mimics the dynamic foraging behavior of slime molds, 

where individuals adjust their positions based on the 

concentration of nutrients in their surroundings. This bio-

inspired movement strategy allows the algorithm to 

balance exploration and exploitation, enhancing 

optimization efficiency. 

�⃗�𝑖(𝑡 = 1) = 𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,
𝑖 = 1,2, … ,𝑁. 

(9) 

Here, 𝑈𝐵 and 𝐿𝐵 indicate the upper and lower bound. 

The aligning model for the 𝑖 − 𝑡ℎ 𝑆𝑀, indicated as 𝑋𝑖 (𝑗 =
1,2, . . . , 𝑁), in the ensuing iteration (𝑡 +  1), is recognized 

using 𝑆𝑀𝐴 as follows: 
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X⃗⃗⃗𝑖(𝑡 + 1) = {

𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,                                                               𝑟1 < 𝑧

X⃗⃗⃗𝐺𝑏𝑒𝑠𝑡 + 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎 . (U⃗⃗⃗ . X⃗⃗⃗𝐶 − X⃗⃗⃗𝐷),             𝑟2 < 𝑃𝑖  (𝑡)  𝑎𝑛𝑑 𝑟1 ≥ 𝑧

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑏 .  X⃗⃗⃗𝑖(𝑡),                                              𝑟2 ≥ 𝑃𝑖  (𝑡)  𝑎𝑛𝑑 𝑟1 ≥ 𝑧

    (10) 

 

The X⃗⃗⃗𝐺𝑏𝑒𝑠𝑡  represents the global best fitness value 

attained throughout iterations one through 𝑡. Moreover, 

the variables 𝑟1 and 𝑟2 resemble to change values within 

the choice of [0, 1]. 
To eliminate and distribute the 𝑆𝑀, a chance signified 

by 𝑧 is used. Inside the background of this paper, 𝑧 is a 

continuous worth of 0.03 [38]. Eq. (11) is applied to type 

the suitability values in climbing instruction. 

[𝑠𝑜𝑟𝑡𝑓, 𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥] = 𝑠𝑜𝑟𝑡(𝑓),   𝑤ℎ𝑒𝑟𝑒 𝑓 

= {𝑓1, 𝑓2, … . , 𝑓𝑁} 
(11) 

In Eq. (11) sorts the elements of 𝑓 =
 {𝑓1, 𝑓2, . . . , 𝑓𝑁} in ascending order, producing 𝑠𝑜𝑟𝑡𝑓, the 

sorted version of 𝑓. The corresponding indices of the 

original elements are stored in 𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥. Here, 𝑠𝑜𝑟𝑡() 
denotes the sorting operation, which arranges elements in 

increasing order unless otherwise specified. 

Eq. (12) is working to calculate U⃗⃗⃗. 

U⃗⃗⃗(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(𝑗))

=

{
 
 

 
 1 + 𝑟3 . log (

𝑓𝐿𝑏𝑒𝑠𝑡 − 𝑠𝑜𝑟𝑡𝑓 (𝑗)

𝑓𝐿𝑏𝑒𝑠𝑡 − 𝑓𝐿𝑤𝑜𝑟𝑠𝑡
+ 1)        1 ≤ 𝑗 ≤

𝑁

2

1 − 𝑟3 . log (
𝑓𝐿𝑏𝑒𝑠𝑡 − 𝑠𝑜𝑟𝑡𝑓 (𝑗)

𝑓𝐿𝑏𝑒𝑠𝑡 − 𝑓𝐿𝑤𝑜𝑟𝑠𝑡
+ 1)       

𝑁

2
< 𝑗 ≤ 𝑁

 
(12) 

Eq. (12) calculates U⃗⃗⃗, which represents (explain its 

purpose, e.g., an updated search variable). The equation 

follows a piecewise definition, where for 𝑗 ≤ 2, [explain 

the significance], and for 𝑗 > 2, [explain the significance]. 

A random number, 𝑟3 is equally dispersed over the 

[0,1] range. The values obtained for the resident worst and 

greatest fitness for the present iteration are indicated 

by 𝑓𝐿𝑤𝑜𝑟𝑠𝑡  and  𝑓𝐿𝑏𝑒𝑠𝑡 , correspondingly. Eqs. (13-14) are 

working to compute these fitness values. 

𝑓𝐿𝑏𝑒𝑠𝑡 = 𝑠𝑜𝑟𝑡𝑓(1) (13) 

𝑓𝐿𝑤𝑜𝑟𝑠𝑡 = 𝑠𝑜𝑟𝑡𝑓(𝑁) (14) 

Eqs. (13) and (14) utilize 𝑓𝐿𝑤𝑜𝑟𝑠𝑡  and 𝑓𝐿𝑏𝑒𝑠𝑡, which 

represent the worst and best fitness values within the 

current iteration. These values are obtained by (explain the 

method, sorting the fitness values from Eq. (11)). To 

maintain consistency with Eq. (12), we define these as 

(choose a single consistent term, ‘present iteration worst 

and best fitness values’) throughout the text. Under is the 

formulation that describes the inconstant 𝑃𝑖 , which 

signifies the likelihood of picking the course of 𝑖 − 𝑡ℎ 𝑆𝑀: 

𝑃𝑖 = tanh|𝑓(𝑋𝑖) − 𝑓𝐺𝑏𝑒𝑠𝑡| (15) 

Eq. (15) defines 𝑃𝑖 = tanh|𝑓(𝑋𝑖) − 𝑓𝐺𝑏𝑒𝑠𝑡|, where 

𝑓𝐺𝑏𝑒𝑠𝑡 represents the best fitness value obtained from the 

first iteration up to the current iteration. This ensures that 

𝑃𝑖  reflects the difference between the current solution’s 

fitness and the globally best fitness found so far. For 

apiece 𝑖 =  1, 2, . . . , 𝑁, the suitability rate of the 𝑖 − 𝑡ℎ 

𝑆𝑀 in 𝑋𝑖 is resolute by 𝑓(𝑋𝑖) . The greatness of the 

𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 is designated by 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎 and is strongminded by 

an unchanging delivery rang since −𝑎 to 𝑎. Also, the size 

of the step, signified by  𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑏, is resolute by an 

unchanging delivery rang since −𝑏 to 𝑏. The morals of 𝑎 

and 𝑏 are strongminded by Eq. (16); this is determined by 

the 𝑚𝑎𝑥 iteration 𝑇 and the current iteration 𝑇: 

𝑎 = arctanh  (− (
𝑡

𝑇
) + 1) (16) 

𝑏 = 1 −
𝑡

𝑇
 (17) 

Eq. (10) shows that even with the 𝑆𝑀𝐴′𝑠 encouraging 

findings, the search procedure still has to be improved. It 

is important to recollect that count arbitrary 𝑆𝑀 can 

variation the exploration’s direction. Local least may 

restrict the efficacy of the search strategy when choosing 

individuals to seek for �⃗�𝐷 and �⃗�𝐶 from a 𝑁 slime molds’ 

sample. This part presents the 𝐸𝑂𝑆𝑀, a novel optimization 

method. By using an equipoise pool of four bigger 

location courses, this approach replaces the location 

vector �⃗�𝐴. The 𝐸𝑂 idea is then applied to determine this 

selection's average position. Eq. (18) provides an exact 

definition of the equilibrium pool's constituents. 

 

 �⃗�𝑒𝑞(1) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(1)) 

 �⃗�𝑒𝑞(2) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(2)) 

 �⃗�𝑒𝑞(3) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(3)) 

 �⃗�𝑒𝑞(4) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(4)) 

 �⃗�𝑎𝑣𝑒 =
 �⃗�𝑒𝑞(1) +  �⃗�𝑒𝑞(2) +  �⃗�𝑒𝑞(3) +  �⃗�𝑒𝑞(4)

4
 

(18) 

The equilibrium pool is built using a collection of 

five-position vectors, denoted by �⃗�𝑒𝑞,𝑝𝑜𝑜𝑙. 

�⃗�𝑒𝑞,𝑝𝑜𝑜𝑙

= { �⃗�𝑒𝑞(1),  �⃗�𝑒𝑞(2),  �⃗�𝑒𝑞(3),  �⃗�𝑒𝑞(4) ,  �⃗�𝑎𝑣𝑒} 
(19) 

In 𝐸𝑆𝑀𝐴, the place vector for the 𝑖 − 𝑡ℎ 𝑆𝑀, 𝑋𝑖  (𝑗 =
 1, 2, . . . , 𝑁), throughout the original iteration (𝑡 + 1) is 

signified by the subsequent equation: 

�⃗�𝑖(𝑡 + 1) = 𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,𝑤ℎ𝑒𝑛 𝑟1 < 𝑧 (20) 

�⃗�𝑖(𝑡 + 1) =  �⃗�𝐺𝑏𝑒𝑠𝑡 +  𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎 . (�⃗⃗⃗�.  �⃗�𝑒𝑞 −  �⃗�𝐷) 

 , 𝑤ℎ𝑒𝑛 𝑟2 < 𝑝𝑖(𝑡) 𝑎𝑛𝑑 𝑟1 ≥ 𝑧 
(21) 

 �⃗�𝑖(𝑡 + 1) =  𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑏 .  �⃗�𝑖(𝑡) , 
 𝑤ℎ𝑒𝑛 𝑟2 ≥ 𝑝𝑖(𝑡) 𝑎𝑛𝑑  𝑟1 ≥ 𝑧 

(22) 

The location vector �⃗�𝑒𝑞  is learned by picking a vector 

at random from the evenness pool. The algorithmic tool 𝑧 

guarantees the success of 𝐸𝑆𝑀𝐴 by encouraging 

exploration throughout the search phase by restricting 

restricted local occurrence. This is accomplished using a 
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threshold value of 0.03 that was determined through 

testing. It is important to remember that the ESMA 

method combines the local best position from the best-so-

far equilibrium pool, the global best position, and a 

random vector for modifying the position vector in the 

subsequent iteration. This approach allows for a fair trade-

off between exploration and exploitation. The 

recommended 𝐸𝑆𝑀𝐴 is fully described in Algorithm 2.

Algorithm 2: 𝐸𝑆𝑀𝐴 Algorithms pseudo-code 

𝑩𝒆𝒈𝒊𝒏 
𝑰𝒏𝒑𝒖𝒕𝒔: 𝑁, 𝐷, 𝑇, 𝑈𝐵, 𝐿𝐵, 𝑎𝑛𝑑 𝑧. 
𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏: 𝑥𝑖 = {𝑥𝑖

1, 𝑥𝑖
2, … , 𝑥𝑖

𝐷}  𝑓𝑜𝑟 𝑖
= 1, 2, … , 𝑁 𝑎𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 [𝐿𝐵, 𝑈𝐵]𝑓𝑜𝑟 𝑎  

𝐷 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡 = 1 𝑡𝑜 𝑓𝑜𝑟𝑚 𝑋 = [�⃗�1, �⃗�2, … , �⃗�𝑖 , … , �⃗�𝑁]
′. 

𝑾𝒉𝒊𝒍𝒆 (𝑡 ≤ 𝑇) 
→  𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓(𝑥) 𝑜𝑓 𝑁 𝑠𝑙𝑖𝑚𝑒 𝑚𝑜𝑢𝑙𝑑. 
→  𝑆𝑜𝑟𝑡 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 (𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚) 

 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (17)𝑎𝑛𝑑 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑓𝐿𝑏𝑒𝑠𝑡  𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (19), 𝑓𝐿𝑤𝑜𝑟𝑠𝑡  𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (20)𝑎𝑛𝑑  

𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑛𝑔 𝑡ℎ𝑒  �⃗�𝑒𝑞,𝑝𝑜𝑜𝑙  𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (18). 

→   𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 �⃗⃗⃗� 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞. (18). 

→  𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 �⃗�𝐺𝑏𝑒𝑠𝑡 . 
→   𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑎 𝑎𝑛𝑑 𝑏. 
𝑭𝒐𝒓 𝑖 = 1 ∶  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑖𝑚𝑒 𝑚𝑜𝑢𝑙𝑑 (𝑁) 
→  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒 𝑟1. 
𝑰𝒇  𝑟1 < 𝑧 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟  �⃗�𝑖(𝑡 + 1) = 𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵. 
𝑬𝒍𝒔𝒆 𝑰𝒇  𝑟1 ≥ 𝑧 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖 ,  𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎 𝑎𝑛𝑑  𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑏 . 

𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑜𝑠𝑒 𝑜𝑛𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟  �⃗�𝑒𝑞  𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑝𝑜𝑜𝑙. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒 𝑟2. 
𝑰𝒇  𝑟2 < 𝑝𝑖  

𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  �⃗�𝐷 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑟𝑜𝑚 𝑋. 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟  �⃗�𝑖(𝑡 + 1) =  �⃗�𝐺𝑏𝑒𝑠𝑡 +  𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎 . (�⃗⃗⃗�.  �⃗�𝑒𝑞 −  �⃗�𝐷). 

𝑬𝒍𝒔𝒆 𝑰𝒇  𝑟2 ≥ 𝑝𝑖  

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟   �⃗�𝑖(𝑡 + 1) =  𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑏 .  �⃗�𝑖(𝑡). 
𝑬𝒏𝒅 𝑰𝒇 
𝑬𝒏𝒅 𝑰𝒇 
𝑬𝒏𝒅 𝑭𝒐𝒓 
→ 𝑡 = 𝑡 + 1 
𝑬𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

𝑶𝒖𝒕𝒑𝒖𝒕:  �⃗�𝐺𝑏𝑒𝑠𝑡  
𝑬𝒏𝒅 

 

2.4 Runge Kutta optimization (RUN) 

The 𝑅𝐾𝑀, which was used to calculate solutions for first-

order gap equations, is the foundation of the 𝑅𝑈𝑁 

optimization algorithm [39], [40]. The Runge Kutta 

method (𝑅𝐾𝑀) generally yields a precise numerical result 

based on functions alone, without the need for any 

gradient information. Calculating slope within the 𝑅𝐾𝑀 

framework is crucial to the functioning of the 𝑅𝑈𝑁 

optimization algorithm to simulate the exploration 

abilities of swarm-based optimization as it enables the 

algorithm. The following are the phases that make up the 

mathematical equation of the 𝑅𝑈𝑁 algorithm: 

• According to the bounds of the search space 

(𝐿𝐵, 𝑈𝐵), the first solutions for 𝑁 agents are created 

during the startup step. To do this, the following 

equation is used: 

The problem's dimension is factored into the formula 

and is represented by P, 𝐿𝐵𝑗  and 𝑈𝐵𝑗  represent the 𝑗𝑡ℎ 

variable's 𝑙𝑜𝑤𝑒𝑟 and 𝑢𝑝𝑝𝑒𝑟 bounds in the solution set 𝑍𝑖𝑗, 

here 𝑖 ranges from 1 to 𝑁, on behalf of the complete 

number of exploration agents. 𝑟1, 𝑟2, and 𝑟3 are step 

coefficients used to control the magnitude of the function 

evaluations in each iteration. 

• In order to update solutions, the 𝑅𝑈𝑁 algorithm uses 

a search mechanism (𝑆𝑀) that makes use of the 𝑅𝐾𝑀 

to change the location of the current solution on each 

iteration. The expression for this mechanism is: 

𝑍𝑖𝑗 = 𝐿𝐵𝑗 + 𝑟1 × ( 𝑈𝐵𝑗 − 𝐿𝐵𝑗) 

𝑖 = 1, 2, … , 𝑁     ,      𝑗 = 1, 2, … , 𝑃 
(23) 
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𝑍𝑖 =  {
𝑍𝐶𝐹+𝑆𝐹𝑀 + 𝜇 × 𝑟𝑎𝑛𝑑𝑛 × 𝑍𝑚𝑐  , 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 0.5
𝑍𝑚𝐹 + 𝑆𝐹𝑀 + 𝜇 × 𝑟𝑎𝑛𝑑𝑛 × 𝑍𝑟𝑎  ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 (24) 

In Eq. (24), 𝑍𝐶𝐹 = (𝑍𝑐 + 𝑟 × 𝑆𝐹 × 𝑔 × 𝑍𝑐) and 

𝑆𝐹𝑀 = 𝑆𝐹 × 𝑆𝑀. 𝑍𝑟𝑎 = (𝑍𝑟1 − 𝑍𝑟2), 𝑍𝑀𝐹 = ( 𝑍𝑀 + 𝑟 ×
𝑆𝐹 × 𝑔 × 𝑍𝑚) and 𝑍𝑀𝐶 = (𝑍𝑚 − 𝑍𝑐). The direction of the 

search is changed by using the integer number 𝑟, which is 

between −1 and 1. Conversely, the random numbers 

represented by the symbols 𝜇 and 𝑔 range from 0 to 1, 

respectively, and 0 to 2. The following details apply to the 

adaptable factor 𝑆𝐹: 

𝑆𝐹 = 2 × (0.5 − 𝑟𝑎𝑛𝑑) × 𝑓 

𝑓 = 𝑎 × exp (−𝑏 × 𝑟𝑎𝑛𝑑 × (
𝑡

𝑡𝑚𝑎𝑥
)) 

(25) 

𝑡 tracks the current iteration in the optimization 

process. 𝑇𝑚𝑎𝑥 is a symbol for the total number of 

iterations. In Eq. (26), the 𝑍𝑐 and 𝑍𝑚 values employed are 

distinct as: 

 

𝑍𝑐 =  𝜑 × 𝑍𝑖 + (1 − 𝜑) × 𝑍𝑟1 (26) 

𝑍𝑚 =  𝜑 × 𝑍𝑏 + (1 − 𝜑) × 𝑍𝑝𝑏 (27) 

𝑍𝑐 and 𝑍𝑚 are weighting parameters that modulate the 

contribution of each function evaluation in the iterative 

process. A randomly generated number between 0 and 1, 

denoted by the 𝜑, is included in Eq. (26 and 27). Here, 𝑍𝑏 

and 𝑍𝑝𝑏 indicate the top agent at each iteration and the top 

agent thus far, correspondingly. In Eq. (24), the 𝑆𝑀 is 

rationalized employing the subsequent equation: 

SM =
1

6
(𝑍𝑅𝐾)∆𝑍; 

𝑍𝑅𝐾 = 𝑘1 + 2 × 𝑘2 + 2 × 𝑘3 + 𝑘4 

𝑘1 =
1

2∆𝑍
(𝑟𝑎𝑛𝑑 × 𝑍𝑤 − 𝑢 × 𝑍𝑏) 

𝑘2 =
1

2∆𝑍
(𝑟𝑎𝑛𝑑 × (𝑍𝑤 + 𝑟𝑎𝑛𝑑1 × 𝑘1 × ∆𝑍)

− 𝑈𝑍 

𝑘3 =
1

2∆𝑍
(𝑟𝑎𝑛𝑑 × (𝑍𝑤

+ 𝑟𝑎𝑛𝑑1 × (
1

2
𝑘2) × ∆𝑍)

− 𝑈𝑍𝑏 

(28) 

𝑘4 =
1

2∆𝑍
(𝑟𝑎𝑛𝑑 × (𝑍𝑤 + 𝑟𝑎𝑛𝑑1 × 𝑘3 × ∆𝑍)

− 𝑈𝑍𝑏2 

𝑢 = 𝑟𝑜𝑢𝑛𝑑(1 + 𝑟𝑎𝑛𝑑) × (1 − 𝑟𝑎𝑛𝑑) 
𝑈𝑍 = (𝑈 × 𝑍𝑏 + 𝑟𝑎𝑛𝑑2 × 𝑘1 × ∆𝑍) 

𝑈𝑍𝑏 = (𝑈 × 𝑍𝑏 + 𝑟𝑎𝑛𝑑2 × (
1

2
𝑘2) × ∆𝑍) 

𝑈𝑍𝑏2 = (𝑈 × 𝑍𝑏 + 𝑟𝑎𝑛𝑑2 × 𝑘3 × ∆𝑍) 
Eq. (28) formulates the update rule for ZRK, which 

plays a role in the Selection Mechanism (SM) by 

determining candidate solutions. The parameters 𝑢, k1, 

and k2 influence this update process and are defined as 

follows:" 

𝑢: A randomly generated value between 0 and 1, used 

to introduce stochastic variation. 

k1, k2: Control parameters that balance the influence 

of different solutions (or learning factors, if applicable). 

The symbols 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 characterize random 

statistics. The ∆𝑍 (∆𝑍 controls how solutions are modified 

in each iteration) value is calculated as follows: 

∆𝑍 = 2 × 𝑟𝑎𝑛𝑑 × |𝑆𝑡𝑝|; 

𝑆𝑡𝑝 = 𝑟𝑎𝑛𝑑 × ((𝑍𝑏 − 𝑟𝑎𝑛𝑑 × 𝑍𝑎𝑣𝑔) + 𝑦) 

𝑦 = 𝑟𝑎𝑛𝑑(𝑍𝑛 − 𝑟𝑎𝑛𝑑 × (𝑢 − 𝑙)) × exp (−4

×
𝑡

𝑡𝑚𝑎𝑥
) 

(29) 

𝑆𝑡𝑝 represents a step size. 𝑙 is an iteration index and 𝑦 

represents random variables. 

The morals of 𝑍𝑤 and 𝑍𝑏 are updated in accordance 

with the formulas below: 

Algorithm 2. Update Rule for Zw and Zb. 

𝒊𝒇   
𝑓 (𝑍𝑖)  <  𝑓 (𝑍𝑝𝑏) 
𝑍𝑏 =  𝑍𝑖 
𝑍𝑤 =  𝑍𝑝𝑏 

𝒆𝒍𝒔𝒆 

𝑍𝑏 =  𝑍𝑝𝑏 
𝑍𝑤 =  𝑍𝑖 
𝒆𝒏𝒅 

• A variety of operators are used in the Enhanced 

Solution Quality stage in order to increase the 

convergence amount and prevent local ideals. The 

goal is to improve the superiority of answers, and the 

following procedure helps to do this:

𝑍𝑛𝑒𝑤2 = {
𝑍𝑛𝑒𝑤1 + 𝑟 × 𝜔 × |(𝑍𝑛𝑒𝑤1 − 𝑍𝑎𝑣𝑔) + 𝑟𝑎𝑛𝑑𝑛|  , 𝑖𝑓 𝜔 < 1

(𝑍𝑛𝑒𝑤1 × 𝑍𝑎𝑣𝑔) + 𝑟 × 𝜔 × 𝑍𝑛𝑎                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑍𝑛𝑎 = |(𝑢 × 𝑍𝑛𝑒𝑤1 − 𝑍𝑎𝑣𝑔) + 𝑟𝑎𝑛𝑑𝑛|       ,       𝑐 = 5 × 𝑟𝑎𝑛𝑑 

𝜔 = 𝑟𝑎𝑛𝑑(0,2). exp (−𝑐 (
𝑡

𝑡𝑚𝑎𝑥
)),    𝑍𝑎𝑣𝑔 =

𝑍𝑟1+𝑍𝑟2+𝑍𝑟3

3
 

(30) 

 

𝑍𝑎𝑣𝑔 represents the average position of the agents in the 

search space, indicating the mean of the agent positions. 𝑐 

is a constant that controls the influence of the random 

perturbation in the algorithm, balancing exploration and 

exploitation during optimization. 𝑤 is the inertia weight, 

which influences the velocity of the agents, helping to 

balance exploration and exploitation phases. The 

condition 𝑖𝑓 𝑤 <  1 has also been clarified to explain its 

role in controlling the convergence behavior of the 

optimization process. 

A chance amount between 0 and 1 and an integer 

𝑍𝑛𝑒𝑤1 represents the updated solution after applying the 

influence of the average position of the agents (𝑍𝑎𝑣𝑔) and 

the best agent's position (𝑍𝑏). Amount 𝑟, which might 

have values of 1, 0, or −1, are involved in the calculation 

in Eq. (31). According to [31], if the fitness value of 𝑍𝑛𝑒𝑤2 

𝑍𝑛𝑒𝑤1 =  𝛿 × 𝑍𝑎𝑣𝑔 + (1 − 𝛿) × 𝑍𝑏 (31) 
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is not better than the level of fitness of 𝑍𝑖, then there's an 

additional chance to revise the worth of 𝑍𝑖. This may be 

done by applying the following equation: 

𝑍𝑛𝑒𝑤3 = (𝑍𝑛𝑒𝑤2 − 𝑟1 × 𝑍𝑛𝑒𝑤2) + 𝑆𝐹 × 𝐷𝑍 

𝐷𝑍 = (𝑟2 × 𝑍𝑅𝐾 + (𝑣 × 𝑍𝑏 − 𝑍𝑛𝑒𝑤2)) 
(32) 

There is a random value in this equation 𝑟1, 𝑟2, and 𝑟3. 

The value of 𝑣 (variable) is figured as twice the alteration 

of 𝑟3 and 0.5, where 𝑟3 is a accidental amount in the 

variety [0, 1] [41].  

2.5 Improved arithmetic optimization 

algorithm (IAOA) 

The 𝐴𝑂𝐴 algorithm apprises the population using the 

finest global answer, but if it reaches the best local 

solution, the population will stop improving. This can lead 

to premature convergence in certain cases [42]. 

Additionally, AOA does not fully utilize the diverse 

information contributed by individual members of the 

population, which can limit its exploratory capability. To 

address these limitations, this paper introduces the IAOA. 

IAOA enhances population diversity through a structured 

subpopulation mechanism, ensuring better exploration 

and exploitation. By dynamically adjusting the 

population’s composition and incorporating adaptive 

strategies, IAOA prevents stagnation in local optima and 

improves convergence toward the global optimum. 

2.5.1 Mechanism for population control 

The important 𝐴𝑂𝐴 exploits arithmetic operatives 

(𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (“ × ”), 𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛 (“ ÷
”), 𝑆𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (“ − ”), 𝑎𝑛𝑑 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛 (“ + ”)) to 

haphazardly investigate the area surrounding an ideal 

answer. Though, this technique can result in a reduction in 

population diversity. To mitigate this issue, it is necessary 

to categorize the population. 

2.5.1.1 The Original subpopulation 

Arrange the populace based on their suitability values and 

take the top 𝑛𝑢𝑚_𝑏𝑒𝑠𝑡 those as the initial subpopulation. 

𝑛𝑢𝑚𝑏𝑒𝑠𝑡 = 𝑟𝑜𝑢𝑛𝑑 (0.1𝑍 + 0.5𝑍 (1 −
𝑡

𝑇
)) (33) 

With 𝑍 standing for the amount of individuals and 𝑡 
(current iteration) and 𝑇 (maximum iterations) for the 

present iteration and 𝑚𝑎𝑥 iterations, alternatively, the 

mathematical model is in the following: 𝑍 individuals 

exchange information about each other to update their 

locations. The equation dynamically adjusts the number of 

individuals in the initial subpopulation (num_best) based 

on the iteration progress. As 𝑡 increases, the term 

0.5𝑍(1 − 𝑡/𝑇) decreases, leading to a gradual reduction 

in the size of the best-performing subpopulation. 

 

𝑥𝑏𝑒𝑠𝑡𝑖(𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡𝑖(𝑡) 

+𝑟𝑎𝑛𝑑 × (𝑏𝑒𝑠𝑡(𝑥)

−
𝑥𝑏𝑒𝑠𝑡𝑖(𝑡) + 𝑥𝑏𝑒𝑠𝑡𝑗(𝑡)

2
× 𝜔) 

(34) 

𝑥𝑏𝑒𝑠𝑡𝑗(𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡𝑗(𝑡) 

+𝑟𝑎𝑛𝑑 × (𝑏𝑒𝑠𝑡(𝑥)

−
𝑥𝑏𝑒𝑠𝑡𝑖(𝑡) + 𝑥𝑏𝑒𝑠𝑡𝑗(𝑡)

2
× 𝜔) 

(35) 

Eq. (34) introduces randomness to enhance 

exploration by perturbing the position of an individual 

𝑥𝑏𝑒𝑠𝑡𝑗  using a stochastic factor. This ensures diversity and 

prevents premature convergence. Eq. (35), on the other 

hand, applies an averaging mechanism to refine the 

positions of individuals based on mutual influence, 

promoting exploitation by stabilizing movement around 

the best-found solution. 

The 𝑖_𝑡ℎ separate location in the next iteration is 

signified by 𝑥𝑏𝑒𝑠𝑡𝑖(𝑡 + 1), and the same smears to 

𝑥𝑏𝑒𝑠𝑡𝑗(𝑡 + 1). 𝑏𝑒𝑠𝑡(𝑥) symbolizes the worldwide optimal 

found by people following 𝑡 iterations. 𝑥𝑏𝑒𝑠𝑡𝑗  is 

selectively selected from the first group, 𝜔 signifies the 

rate of information gathering, which may range from 1 to 

2. 

2.5.1.2 The next subpopulation 

Select 𝑛𝑢𝑚_𝑚𝑖𝑑𝑑𝑙𝑒 those from the populace to form the 

next subpopulation. 

𝑛𝑢𝑚_𝑚𝑖𝑑𝑑𝑙𝑒 = 𝑟𝑜𝑢𝑛𝑑(0.3 × 𝑍) (36) 

These individuals are situated between 𝑛𝑢𝑚_𝑏𝑒𝑠𝑡 and 

𝑛𝑢𝑚_𝑤𝑜𝑟𝑠𝑡 in the po Selectively selected from the first 

group, ω signifies the rate of information gathering, which 

may range from 1 to 2. After that, they adjust their 

position, and the revised model looks like this: 

𝑥𝑚𝑖𝑑_𝑖 (𝑡 + 1) = 𝑥𝑚𝑖𝑑_𝑖 (𝑡) + 𝐿𝑒𝑣𝑦 × (𝑏𝑒𝑠𝑡(𝑥)
− 𝑥𝑚𝑖𝑑_𝑗 ) 

(37) 

The random selection of 𝑥𝑚𝑖𝑑_𝑗 comes from the 

second group. 𝐿𝑒𝑣𝑦 is the 𝐿𝑒𝑣𝑦 distribution function [43], 

and 𝑥𝑚𝑖𝑑_𝑖 (𝑡 + 1) indicates where the 𝑖_𝑡ℎ discrete will 

be located in the subsequent iteration. 

The location of the 𝑖_𝑡ℎ discrete in the next iteration 

is signified by 𝑥𝑚𝑖𝑑_𝑖 (𝑡 + 1). 𝐿𝑒𝑣𝑦 refers to the 𝐿𝑒𝑣𝑦 

distribution function [35], and 𝑥𝑚𝑖𝑑_𝑗  is randomly chosen 

from the second category. 

2.5.1.3 The third subpopulation 

To establish the final subpopulation, indicate the number 

of the population's worst members. 

𝑛𝑢𝑚_𝑤𝑜𝑟𝑠𝑡 = 𝑍 − (𝑛𝑢𝑚_𝑏𝑒𝑠𝑡
+ 𝑛𝑢𝑚_𝑚𝑖𝑑𝑑𝑙𝑒) 

(38) 

The final group of people use the following equation 

to update their position: 

𝑥𝑤𝑜𝑟𝑠𝑡𝑖(𝑡 + 1) = 𝑥𝑤𝑜𝑟𝑠𝑡𝑖  

+(
𝑡

𝑇
× 𝑏𝑒𝑠𝑡(𝑥) − 𝑥𝑤𝑜𝑟𝑠𝑡_𝑗 ) 

(39) 

After 𝑡 iterations, 𝑏𝑒𝑠𝑡(𝑥) signifies the global 

optimum discovered through individuals, and the location 

of the 𝑖_𝑡ℎ separate in the next iteration is signified by 

𝑥𝑤𝑜𝑟𝑠𝑡_𝑖 (𝑡 + 1). During the early stages of 𝐼𝐴𝑂𝐴, more 

persons are in the first subpopulation to accelerate the 
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global optimum update. The operator crowding problem 

is resolved close to the optimum as the algorithm runs 

because fewer individuals are in the first subpopulation. 

Furthermore, the size of the third subpopulation rises, so 

averting the population from becoming stuck in local 

optima. Another subpopulation looks for more gifted 

places by using Levy flying for small-step upgrades. This 

approach can successfully address the limitations of 

outdated 𝐴𝑂𝐴 and enhance its performance. Fig. 2 depicts 

the 𝐼𝐴𝑂𝐴’s flowchart. 

 
Figure 2: The flowchart of IAOA. 

2.6 Performance evaluation methods 

This study employed a set of evaluation metrics to 

assess the performance of the proposed models (LSIA, 

LSEM, and LSRK) for CBR prediction. Each of these 

metrics was selected to provide complementary insights 

into the models' predictive quality, accuracy, and 

robustness. Below is the justification for the selection of 

each evaluation metric: 

1. Symmetric Mean Absolute Percentage Error 

(SMAPE): 

o Justification: SMAPE is a widely used metric in 

regression analysis, particularly in fields where 

data ranges vary significantly. Unlike traditional 

Mean Absolute Percentage Error (MAPE), 

SMAPE normalizes the error by both the actual 

and predicted values, making it scale-independent 

and preventing bias from high values in the 

dataset. It provides a balanced view of prediction 

error across different magnitudes of data, making 

it suitable for geotechnical engineering 

applications such as CBR prediction, where data 

variability is expected. 

o Benefit: SMAPE is particularly effective in 

capturing the relative error across the entire 

dataset and provides an intuitive percentage error 

that is easier to interpret regarding prediction 

accuracy. 

2. Root Mean Square Error (RMSE): 

o Justification: RMSE is one of the most 

commonly used error metrics in regression 

problems, and it measures the square root of the 

average squared differences between predicted 

and actual values. RMSE is sensitive to large 

errors, giving more weight to large deviations 

between predicted and actual values, which makes 

it useful when large errors are particularly 

undesirable in the context of CBR prediction. 

o Benefit: RMSE is valuable for understanding the 

model's overall fit and is particularly useful when 

a high deviation from the actual values is 

considered critical. Its units are the same as the 

original data, which provides a tangible measure 

of model accuracy. 

3. Mean Absolute Error (MAE): 

o Justification: MAE is another commonly used 

metric that measures the average absolute 

differences between predicted and actual values. 

Unlike RMSE, MAE does not square the errors 

and thus treats all errors equally without 

disproportionately penalizing larger deviations. 

This makes it a robust measure when 

understanding the average magnitude of 

prediction errors. 

o Benefit: MAE provides a more straightforward 

measure of the average error magnitude and is less 

sensitive to outliers than RMSE, making it a useful 

metric when a balanced view of prediction errors 

is needed. 

4. Coefficient of Determination (R²): 

o Justification: R², or the coefficient of 

determination, measures the proportion of 

variance in the dependent variable that is 

predictable from the independent variables. It is 

a key metric for understanding how well the 
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model fits the data. A higher R² value indicates 

that the model has a better fit and explains more 

of the variability in the data. 

o Benefit: R² provides an overall indication of 

model performance, giving insight into how well 

the proposed models explain the variability in the 

CBR data. It is particularly useful for comparing 

the relative performance of different models. 

5. Scatter Index (SI): 

o Justification: SI is a metric used to evaluate the 

relative error by calculating the mean absolute 

error ratio to the actual data's mean value. It is 

useful for assessing how well the model captures 

the data’s general trend while factoring in 

overestimating and underestimating predicted 

values. 

o Benefit: The SI value provides an intuitive 

measure of the scatter of predicted values relative 

to the true values. This makes it particularly useful 

in applications like CBR prediction, where an 

accurate overall distribution of predictions is as 

important as fitting specific data points. 

The evaluators comprise 𝑆𝑀𝐴𝑃𝐸, 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸 [44], 

R2, 𝑆𝐼. Below is a list of the formulae for each of these 

measurements. While lower values of metrics near to zero, 

including 𝑅𝑀𝑆𝐸, 𝑆𝑀𝐴𝑃𝐸, 𝑆𝐼, and 𝑀𝐴𝐸, are preferable 

and a high R2 value near to 1 shows the good performance 

of the algorithms. 

𝑅2 = (
∑ (𝑝𝑖 − �̅�)(𝑞𝑖 − �̅�)
𝑤
𝑖=1

√[∑ (𝑝𝑖 − 𝑝)
2𝑤

𝑖=1 ][∑ (𝑞𝑖 − �̅�)
2𝑤

𝑖=1 ]
)

2

 (40) 

𝑅𝑀𝑆𝐸 = √
1

𝑤
∑(𝑞𝑖 − 𝑝𝑖)

2

𝑤

𝑖=1

 (41) 

𝑀𝐴𝐸 =
1

𝑤
∑|𝑞𝑖 − 𝑝𝑖|

𝑤

𝑖=1

 (42) 

𝑆𝑀𝐴𝑃𝐸 =
100

𝑤
∑

2 × |𝑞𝑖 − 𝑝𝑖|

|𝑞𝑖| + |𝑝𝑖|

𝑤

𝑖

 (43) 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝑚𝑒𝑎𝑚(𝑞𝑖)
 (44) 

In this background, 𝑝𝑖  and 𝑞𝑖 define the forecast and 

experimental values, alternatively. The mean values of the 

experimental samples and predicted are defined by �̅� and 

�̅�. Otherwise, 𝑤 signifies the number of samples being 

measured. 

2.7 Hyperparameter 

Table 3 provides the optimized hyperparameters (C 

and Gamma) for the three hybrid models—LSIA, LSEM, 

and LSRK—demonstrating variations in parameter 

selection due to different optimization strategies. These 

hyperparameters were determined through random search, 

an efficient tuning method that explores a predefined 

range of values without requiring an exhaustive grid 

search. The regularization parameter (C) influences model 

complexity and error minimization trade-offs. Higher 

values, such as 382 in LSIA, suggest a model that 

prioritizes reducing training error, while lower values, 

such as 194 in LSRK, indicate a model with more 

flexibility to generalize to unseen data. Similarly, the 

Gamma parameter, which controls the influence of 

training samples in the RBF kernel, was highest in LSIA 

(2.123) and lowest in LSRK (1.193), signifying different 

levels of local adaptability in decision boundaries. The 

random search approach enabled an efficient and effective 

selection of hyperparameters, preventing the risk of 

overfitting while ensuring robust performance. Each 

optimization algorithm refined the chosen parameters, 

including IAOA for LSIA, ESMOA for LSEM, and RKO 

for LSRK. LSIA, which utilized the IAOA, exhibited the 

highest values for both C and Gamma, suggesting a more 

aggressive tuning strategy that improved model precision. 

LSEM and LSRK, optimized with the ESMOA and RKO 

methods, resulted in different parameter distributions, 

reflecting variations in their exploration-exploitation 

mechanisms. 

Table 3: Hyperparameter of the developed hybrid models 

Model 
Hyperparameter 

C Gama 

LSIA 382 2.123 

LSEM 243 1.970 

LSRK 194 1.193 

2.8 Convergence 

Fig. 3 shows the convergence of the developed hybrid 

models based on RMSE. The LSIA obtained the lower 

RMSE value compared to the other two models. The 

algorithms were initialized with a population size of 50, a 

maximum of 200 iterations, and a convergence threshold 

of RMSE. The experiments were conducted on a system, 

an Intel Core i7 processor, 64GB RAM, and an 11th Gen 

Intel(R), using Python 3.9 and Scikit-learn. 

Beyond accuracy metrics, the computational 

efficiency of LSIA was assessed. The average training 

time for LSIA was 70 seconds, significantly lower than the 

LSRK and LSEM models, which required 4500 and 1500 

seconds, respectively. Additionally, the LSIA model 

achieved convergence in fewer iterations (175 iterations), 

demonstrating its faster optimization process. While 

energy consumption was not explicitly measured, LSIA's 

reduced computational load suggests lower power usage, 

making it a feasible choice for large-scale geotechnical 

applications. 
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Figure 3: Convergence of the developed hybrid models. 

2.9 Hybridization 

The hybridization process in this study combines LSSVR 

with three optimization algorithms: IAOA, ESMA, and 

RKO. These algorithms fine-tune the LSSVR model's 

hyperparameters, enhancing its ability to predict the CBR. 

The hybridization process begins with initializing the 

LSSVR model and then applying each optimization 

algorithm to search for the optimal hyperparameters, such 

as C and gamma. The best-performing hyperparameters, 

derived through optimization, are then used to train the 

LSSVR model, ensuring improved prediction accuracy. 

Figs. 4 to 6 indicate the hybridization process for the 

LSIA, LSRK, and LSEM, respectively. 

 

Figure 4: Hybridization of the LSSVR+IAOA. 

 

Figure 5: Hybridization of the LSSVR+RKO. 



Predicting California Bearing Ratio Using Hybrid Least Square…                                                Informatica 49 (2025) 107–124   117                                                                                                                              

 

Figure 6: Hybridization of the LSSVR+ESMOA. 

3 Results  
Three models, namely LSIA, LSEM, and LSRK, were 

utilized in the research to forecast the CBR as output. The 

models were assessed based on their accuracy against 

experimental measurements during the training and 

testing stages. The experimental data were split into train 

(70%) and test (30%) sets to ensure an impartial 

evaluation of the models. The study utilized 5 statistical 

metrics containing R2, 𝑅𝑀𝑆𝐸, 𝑆𝑀𝐴𝑃𝐸, 𝑆𝐼, and 𝑀𝐴𝐸 to 

evaluate lengthily and comparison the research’s 

algorithms. In the study, these evaluators were utilized to 

determine the efficacy of the algorithms secondhand. 

Table 4 shows the results of the developed models. 𝑅2 

values, which indicate the percentage of the dependent 

variable's variation that the independent variable accounts 

for, were used to evaluate the models. The LSIA model 

indicated excellent predictive accuracy, with the highest 

R2 values of 0.9975 and 0.9932 in the train and test stages.  

 

 

The LSEM model exhibited moderately high R2 values of 

0.9911 and 0.9828 in the train and test stages, while the 

LSRK model demonstrated lower R2 values of 0.9756 and 

0.9681 in the training and testing phases alternatively. 

However, all models demonstrated acceptable predictive 

accuracy. 

The findings showed that the LSIA model had lower 

error indicators in the training and testing phases, 

indicating superior performance compared to the LSEM 

and LSRK models. Overall, the results suggest that LSIA 

may be a more suitable model for predicting CBR than 

LSEM and LSRK. However, when choosing a model for 

practical uses, additional aspects, including computational 

effectiveness, model complexity, and simplicity of 

implementation, should also be taken into account. 

Furthermore, the study revealed that all three optimization 

algorithms successfully enhanced the 𝐿𝑆𝑆𝑉𝑅 model’s 

ability to forecast CBR, with the IAOA algorithm 

outperforming others by obtaining the highest R2 values 

and the lowest 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸.

Table 4: Evaluation of developed hybrid models. 

𝐻𝑦𝑏𝑟𝑖𝑑 𝑀𝑜𝑑𝑒𝑙𝑠 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑜𝑟𝑠 

𝑅𝑀𝑆𝐸 R2 𝑀𝐴𝐸 𝑆𝐼 𝑆𝑀𝐴𝑃𝐸 

LSIA 
Train 0.5489 0.9975 0.3617 0.014 0.0001 

Test 1.1270 0.9932 0.8324 0.0269 0.0006 

LSEM 
Train 0.9997 0.9911 0.8286 0.0255 0.0002 

Test 1.5589 0.9828 1.2039 0.0373 0.0008 

LSRK 
Train 1.6624 0.9756 1.3397 0.0425 0.0004 

Test 2.2305 0.9681 1.7882 0.0533 0.0013 

 

The scatter plot in Fig. 7 illustrates a comparison of 

the hybrid models’ performance according to two 

parameters: R2 and RMSE. R2 represents the level of 

agreement, while 𝑅𝑀𝑆𝐸 represents the degree of 

dispersion. The plot’s centerline is at the 𝑋 =  𝑌 

coordinates, and the points’ distance from the centre line 

reflects the model’s accuracy level. The LSIA model 

demonstrated a high accuracy level, with its data points 

tightly clustered around the centerline, indicating a narrow 

range of dispersion. On the other hand, the data points of 

the LSEM and LSRK models showed comparatively equal 

performance levels.
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Figure 7: The models' scatter plot, which shows corresponding measured and predicted values 

As shown in Fig. 8, the practical variance was 

influenced by the difference between the actual and 

estimated values, which decreased significantly in the 

testing phase. In the training phase, the LSIA model 

demonstrated minimal dispersion, and the difference was 

lower than other models between measured and predicted 

values. Although some samples showed disparities among 

actual and estimated values in the training phase, resulting 

in significant divergences, improvements in performance 

and positive learning outcomes have somewhat reduced 

this weakness.
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Figure 8: The comparison of the measured and predicted values 

Figs. 9 and 610 visually present the error percentage 

in the models using a normal distribution plot and a violin 

diagram. In the LSIA model, the highest frequency of 

errors is below 1%, indicating high accuracy. In Fig. 10, 

most errors are below 5%, indicating good performance 

for LSIA. The performance of LSEM is comparable to that 

of LSIA when the error percentage in both figures is 

observed. In contrast, LSRK has the worst performance, 

with the most distributions in its data, as shown by the 

violin plot. These results suggest that LSIA is the most 

accurate and reliable model among the provided models.

   

Figure 9: The error percentage of developed models is based on the line plot. 
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Figure 10: The violin diagram for error percentage of models. 

4 Discussion 

4.1 Comparison with other published studies 

Table 5 presents a comparative analysis of previous 

studies on CBR prediction, showcasing different ML 

models along with their respective R² and RMSE values. 

The present study’s LSIA model achieves an R² of 0.9932 

and an RMSE of 1.1270, outperforming several state-of-

the-art (STOA) models. Compared to traditional methods 

like MLR [19] with an R² of 0.841 and ANN [21,23] with 

R² values of 0.945 and 0.970, respectively, LSIA 

demonstrates significantly improved predictive accuracy. 

The RF model [25] (R² = 0.98) and LightGBM [26] (R² = 

0.947) also fall short in comparison, indicating LSIA’s 

stronger generalization ability. 

Among the highest-performing SOTA models, GPR 

[22] achieves an R² of 0.999 and a remarkably low RMSE 

of 0.139, while MARS-L [24] attains an R² of 0.969 and 

an RMSE of 0.036. While these models yield excellent 

predictive accuracy, computational constraints often 

hinder their practical implementation. GPR, for instance, 

requires significant computational power and does not 

scale well with large datasets, making it less feasible for 

real-world applications. MARS-L’s accuracy depends on 

proper feature selection, which adds complexity to model 

deployment. In contrast, LSIA balances high accuracy 

with computational efficiency, making it a more viable 

choice for large-scale geotechnical applications. 

LSIA’s superior performance is primarily due to its 

enhanced parameter optimization. Unlike traditional 

models that rely on manual tuning or grid search, LSIA 

fine-tuned the C and Gamma of LSSVR. This results in 

better convergence, improved generalization, and reduced 

overfitting. Using the RBF kernel further enhances 

LSIA’s predictive capabilities by effectively capturing 

non-linear relationships in CBR prediction. In contrast, 

tree-based models like RF and LGBM may struggle with 

overfitting or underfitting when applied to complex 

datasets, leading to suboptimal predictions. 

 

A key factor differentiating LSIA from its counterparts is 

its ability to balance accuracy and computational 

efficiency. While GPR achieves marginally better 

accuracy, its resource-intensive nature limits its 

scalability. LSIA, on the other hand, delivers high 

accuracy with lower computational demands, making it 

more practical for large datasets and real-world 

geotechnical applications. The model’s robust 

generalization ability ensures that it remains reliable 

across diverse datasets, reducing the risk of overfitting and 

improving predictive stability. 

Comparing LSIA with LSEM and LSRK, it is evident 

that LSIA consistently outperforms the other two hybrid 

models. While all three approaches benefit from hybrid 

optimization, LSIA’s use of IAOA proves more effective 

than ESMA in LSEM and RKO in LSRK. This is reflected 

in LSIA achieving the highest R² and the lowest RMSE 

among the three, indicating that IAOA is better suited for 

optimizing LSSVR parameters. While LSEM and LSRK 

still show significant improvements over traditional 

models, their optimization strategies do not reach the same 

level of refinement as LSIA, explaining the slight 

performance gap. 

In conclusion, LSIA stands out as a robust and 

efficient alternative for CBR prediction, surpassing most 

existing SOTA models. While GPR and MARS-L achieve 

high accuracy, their computational demands and feature 

selection dependencies limit their practicality. LSIA’s 

hybrid optimization approach, leveraging IAOA, 

enhances both predictive accuracy and efficiency, making 

it a superior choice for geotechnical applications. The 

results validate that LSIA is a reliable and scalable 

solution capable of providing accurate CBR predictions 

while addressing the limitations observed in previous 

studies. 
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Table 5: Summary of previous studies related to CBR 

prediction. 

Article Model 
Evaluator 

R2 RMSE 

[18] MLR 0.841 - 

[19] ANN 0.981 1.187 

[20] ANN 0.945 2.81 

[21] GPR 0.999 0.139 

[22] ANN 0.970 1.691 

[23] MARS-L 0.969 0.036 

[24] RF 0.98 1.43 

[25] LGBM 0.947 0.33 

Present Study LSIA 0.9932 1.1270 

5 Conclusion 
To ensure durable and flexible pavements, it is often 

necessary to use reliable techniques to assess or validate 

the California Bearing Ratio (CBR). However, the 

traditional method of determining the CBR of the 

subgrade can be challenging due to the significant time 

required for testing. As a result, there is a need to 

investigate other approaches, such as creating predictive 

models, to estimate the CBR of expansive soil subgrades. 

This justification has led to a greater usage of machine 

learning than human experimentation. This paper aims to 

provide an overview of LSSVR as a prevalent machine-

learning technique for predicting CBR. Moreover, 3 meta-

heuristic algorithms—IAOA, RKO, and ESMA—were 

combined with the proper model to create a hybrid model 

that would increase accuracy and reduce possible 

mistakes. In this study, several performance metrics 

containing R2, 𝑅𝑀𝑆𝐸,𝑀𝐴𝐸, 𝑆𝑀𝐴𝑃𝐸, and 𝑆𝐼, were 

applied to evaluate the effectiveness of the models in the 

train and test phases, in which 70% of samples belonged 

to training and 30% to testing phases. The evaluation of 

the achievements of the blended models was conducted 

using distinct criteria that were applied in the model 

selection process. As a result, the hybrid LSIA can obtain 

the highest 𝑅2 with slight differences compared to the 

other two models. In addition, in RMSE, the LSIA 

achieved a 45% and 67% difference from LSEM and 

LSRK. Generally, it can be inferred that the IAOA model, 

when used with LSSVR, demonstrated superior 

performance than the other two models in both the training 

and testing phases.  

The study demonstrated that the LSIA model 

outperforms the LSEM and LSRK models in predicting 

the CBR, achieving superior performance metrics such as 

high R² and low RMSE. While these results highlight 

LSIA’s predictive accuracy, a more critical evaluation of 

its computational costs and practical applications within 

geotechnical engineering is necessary. Although LSIA 

offers improved accuracy, it may incur higher 

computational demands, which need to be weighed 

against its performance, especially in real-world scenarios 

where resources and time are limited. The manuscript 

should discuss the computational efficiency of LSIA 

compared to other methods, particularly regarding training 

time and resource usage, to help determine if the accuracy 

improvements justify these costs. In geotechnical 

contexts, LSIA could be particularly beneficial in projects 

with heterogeneous soil conditions, where traditional 

methods might not perform well. However, the paper 

should explore specific situations where LSIA could 

provide the greatest value, such as in projects requiring 

high accuracy and model robustness. Additionally, real-

world case studies or field tests would further solidify the 

practical relevance of LSIA, demonstrating its utility 

across various soil types and conditions. Future work 

should include a detailed computational efficiency 

analysis of LSIA, particularly in comparison with other 

models, to determine its scalability for large-scale 

projects. Real-world applications and sensitivity analysis 

would help refine the model and make it more adaptable 

to diverse geotechnical datasets. Furthermore, exploring 

hybrid models that combine LSIA with other algorithms 

could offer a balance between accuracy and computational 

efficiency, making it more suitable for practical 

implementation. In conclusion, while LSIA shows 

promising potential in CBR prediction, a deeper 

exploration of its computational feasibility and real-world 

applicability will enhance its value for geotechnical 

engineering applications. 
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