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The prevalence of hate speech on digital platforms presents significant challenges, particularly in 

multilingual communities where code-mixing complicates detection. This study explores the use of XLM-

RoBERTa, a transformer-based model with robust multilingual capabilities, to detect hate speech 

within code-mixed texts, focusing on Indonesian-English code-mixing. Traditional hate speech detection 

models rely on single-language datasets, limiting their effectiveness in such environments. We employ a 

dataset consisting of Indonesian, English, and code-mixed Indonesian-English texts to evaluate XLM-

RoBERTa's performance. The dataset comprises 24,844 training samples, 2,760 test samples, and an 

additional 100 supplementary samples. Key hyperparameters included a batch size of 16 and 32, with a 

learning rate ranging from 1e-5 to 5e-5. The model achieved near-perfect accuracy (99.6%) on the 

primary test set and demonstrated strong generalization across realistic supplementary data, achieving 

an F1-score of 90.94%. These findings underscore the model's potential for application in complex 

linguistic contexts, contributing to the development of effective code-mixed hate speech detection. 

Povzetek: Raziskana je uporaba modela XLM-RoBERTa za zaznavanje sovražnega govora v besedilih z 

mešanjem indonezijskega in angleškega jezika, kar izboljša kvaliteto zaznavanja v večjezičnih okoljih. 

 

1 Introduction 
The rapid growth of social media and online 

communication platforms has significantly transformed 

global interactions, allowing for exchanging ideas across 

diverse linguistic and cultural boundaries. However, this 

interconnectedness has also contributed to the 

proliferation of harmful content, such as hate speech, 

which presents considerable social and ethical challenges. 

Detecting and moderating hate speech is essential for 

fostering a safe and inclusive digital environment [1], [2].  

The task becomes increasingly complex in code-

mixed texts, where users frequently switch between 

languages within a single conversation or incorporate 

terms from multiple languages [2]. Code-mixing is 

prevalent in multilingual communities and among 

bilingual individuals. Traditional hate speech detection 

systems, which primarily rely on single-language datasets 

and algorithms, struggle to identify harmful content 

effectively in these contexts. Most conventional 

approaches employ supervised machine learning models 

or rule-based systems that require extensive language-

specific resources, such as labeled datasets and lexicons 

[3].  

Code-mixed datasets are particularly challenging to 

obtain, as many publicly available datasets focus on 

individual languages, given that most people typically 

communicate in one language at a time. Code-mixing is 

more common in specific domains or platforms, such as 

social media and multilingual communities. While these 

platforms are invaluable for collecting code-mixed data,  

 

the informal and inconsistent nature of the content— 

characterized by acronyms, emojis, and spelling 

variations—adds complexity to dataset curation [4]. 

Moreover, linguistic diversity within such datasets is often 

limited to specific language pairs, further restricting their 

practical utility. 

Despite the growing interest in hate speech detection, 

research focusing on code-mixed datasets remains limited. 

Transformer-based methods, particularly BERT-based 

models, have demonstrated superior accuracy in hate 

speech detection [5]. This study aims to address this gap 

by exploring the application of the XLM-RoBERTa model 

for detecting hate speech in code-mixed contexts, 

specifically in Indonesian and English. By leveraging 

XLM-RoBERTa’s multilingual capabilities, this approach 

seeks to enhance the detection of harmful content in 

environments where language boundaries are increasingly 

blurred. The model's effectiveness will be evaluated using 

accuracy and F1-score metrics, contributing valuable 

insights to the development of robust hate speech 

detection systems in multilingual settings. 

The remainder of this paper is organized as follows: 

Chapter 2 surveys related works; Chapter 3 presents the 

preliminaries; Chapter 4 outlines the methods; Chapter 5 

discusses the results, contributions, and limitations; and 

Chapter 6 concludes the study with suggestions for future 

research. 
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2 Related works 
XLM-RoBERTa has been applied to detect hate speech in 

code-mixed datasets. Tita et al. [6] compared the 

performance of mBERT and XLM-RoBERTa in detecting 

hate speech in English and French, including code-mixed 

contexts. The evaluation results show that XLM-

RoBERTa achieves a higher macro-average score of 0.51, 

outperforming mBERT, which obtained 0.41, in English-

French code-mixed scenarios. 

Wang et al. [7] tested XLM-RoBERTa for offensive 

language detection in English, Turkish, Arabic, Danish, 

and Greek. The model achieved the average F1-scores of 

0.9255, 0.8224, 0.9015, 0.8136, and 0.8392 for each 

language, respectively. 

Suhartono et al. [8] performed a comparison study of 

how mBERT and XLM-RoBERTa works on classifying 

fake Indonesian news. The proposed model is proven to 

be successful with results of accuracy, precision, recall, 

and F1 of 0.9051, 0.9515, 0.8233, and 0.8828 respectively 

for the mBERT model with 10 topic words and 0.8935, 

0.8818, 0.8712, and 0.8765 for the XLM-R model with 10 

topic words. Table 1 presents the performance of XLM-

RoBERTa in each language based on findings from the 

previous related works mentioned. 

 

Table 1: XLM-RoBERTa performance across languages. 

Works Model Dataset Result 

(2022) Suhartono 

et al. [8] 

XLM-

RoBERTa 

 

Indonesian The model achieves accuracy of 89.35%, precision of 88.18%, 

recall of 87.12%, and f1-score of 87.65% 

 

mBERT The model achieves accuracy of 90.51%, precision of 95.15%, 

recall of 82.33%, and f1-score of 88.28% 

(2021) Tita et al. 

[6] 

XLM-

RoBERTa 

English-

French 

The model achieves macro average of 51% 

English The model achieves macro average of 44% 

French The model achieves macro average of 32% 

mBERT English-

French 

The model achieves macro average of 41% 

English The model achieves macro average of 71% 

French The model achieves macro average of 66% 

(2020) Wang et al. 

[7] 

XLM-

RoBERTa 

English The model achieves f1-score of 92.55% 

Turkish The model achieves f1-score of 82.24% 

Arabic The model achieves f1-score of 90.15% 

Danish The model achieves f1-score of 81.36% 

Greek The model achieves f1-score of 83.92% 

 

Existing studies on XLM-RoBERTa and mBERT 

largely focus on other languages, often overlooking code-

mixed contexts. Even when code-mixed scenarios are 

considered, the reported metric scores remain relatively 

low, indicating room for improvement. Notably, XLM-

RoBERTa has demonstrated a strong ability to capture 

contextual nuances, including in code-mixed settings, 

particularly for high-resource languages like English. 

Bahasa Indonesia, also considered a high-resource 

language for XLM-RoBERTa, has approximately 22.704 

million tokens compared to English’s 55.608 million [9], 

making it significantly better represented than most 

languages. This reinforces XLM-RoBERTa’s potential 

effectiveness in addressing code-mixed contexts, such as 

hate speech detection. 

Since code-mixed resources are often limited or 

impractical to use, Large Language Models (LLMs) can 

also be leveraged to generate datasets for hate speech 

identification. Terblanche et al. [4] demonstrated the use 

of GPT-3.5 to generate code-mixed sentences in 

Afrikaans-English and Yoruba-English. Their findings 

showed that the generated data—written using the English 

alphabet and Latin script—was of high quality, with only 

minor grammatical errors that did not significantly affect 

meaning. This success suggests an opportunity to refine 

prompting guidelines to improve data quality, further 

supported by the fact that XLM-RoBERTa has been 

trained on a substantial amount of data in both Indonesian 

and English. 

3 Preliminaries 
XLM-RoBERTa (Cross-lingual Robustly Optimized 

Bidirectional Encoder Representations from Transformers 

Approach) is a transformer-based language model which 

enhances the state-of-the-art on mixedmultilingual 

understanding tasks through the joint pretraining large 

transformer models across diverse languages. This model 

is built upon the advancements of the RoBERTa model, 

an optimized version of BERT with dynamic masking, 

removal of next sentence prediction (NSP), larger mini-

batches, and byte-level Byte Pair Encoding (BPE) 

tokenizer which relies on subword units and makes it 

possible to learn a subword vocabulary that can still 

encode any input text without introducing any 

unrecognizable tokens, ensuring success interpretation on 

new or unseen terms. The model training leveraged SPM-

preprocessed text data from CommonCrawl scaled to 

cover 100 languages to handle diverse linguistic structures 

[9], [10].  
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The model is built on top of transformer and MLM 

(Masked Language Model) architecture, which excels at 

processing sequential data such as text by utilizing 

bidirectional self-attention layers [11] which helps on 

capturing the contextual relationship between words 

regardless of the language. Bidirectional pre-training 

mechanism allows the model to achieve state-of-the-art 

performance which reduces the need for various heavily-

tuned task-specific architecture, and also predict or learn 

bidirectional context by predicting missing words to better 

understand hidden or implied subtle relationships and 

context. XLM-RoBERTa variant specifically applies 

subword tokenization directly on raw text data and 

utilizing sample batches from diverse languages using the 

same sampling distribution. This model additionally does 

not implement language embeddings which results in 

improved performance when dealing with code-mixed 

contexts,  enabling it to learn complex patterns and 

structures in multiple languages, especially for mixed-

code hate speech detection [12]. 

Figure 1 illustrates transformer encoder architecture 

while Figure 2 represents the multilingual MLM 

architecture. Both figures provide an overview of XLM-

RoBERTa architecture, which utilizes transformer 

encoder model [9], [11]. In this model, inputs are 

preprocessed through the MLM which is specifically pre-

trained for transformer encoder. Afterwards, the MLM 

predicts the original content of input tokens based on the 

remaining bidirectional contexts from randomly masked 

portions of the input [13]. 

 

 
Figure 1: Transformer encoder architecture. Source: [14]. 

 

 
Figure 2: MLM architecture on XLM-RoBERTa. Source: [15]. 

4 Methods 

4.1 Data collection and generation 

Data collection utilizes variants of the GPT-4 large 

language model (LLM), including GPT-4o and GPT-4o 

mini, which are used interchangeably across a total of 600 

prompt executions. The prompt is carefully designed with 

multiple detailed examples of real-life sentence scenarios  

 

 

to enhance contextual relevance. To ensure diversity, each 

execution features unique topics such as politics, religion, 

sports, gaming, and other common aspects of daily life. 

Additionally, the model’s memory is periodically reset 

after several prompts to minimize redundancy and prevent 

duplicate outputs. After data generation, the dataset 

undergoes filtering to remove any duplicate content. 

Figure 3 illustrates the prompt used for data generation. 
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Figure 3: Prompt for data generation. 

The Indonesian dataset consists of 9,783 entries, with 

4,911 (50.2%) categorized as hate speech and 4,872 

(49.8%) as non-hate speech. The English dataset includes 

9,968 entries, with 4,973 (49.9%) labeled as hate speech 

and 4,995 (50.1%) as non-hate speech. Additionally, the 

code-mixed dataset contains 7,835 entries, of which 3,951 

(50.4%) are designated as hate speech and 3,884 (49.6%) 

as non-hate speech. These figures represent the final 

number of data entries after the removal of duplicates to 

ensure data quality and consistency. 

The code-mixed dataset could be retrieved from 

specific platforms, such as social media, which reflect 

real-world scenarios. Social media platforms are 

invaluable for gathering code-mixed data due to the 

extensive and diverse linguistic expressions they contain. 

However, the informal nature of the content, often 

characterized by acronyms, emojis, and spelling mistakes, 

presents significant challenges for effective processing 

[4].  

Using generated data, such as datasets created with 

GPT, in hate speech detection introduces important ethical 

implications and potential biases that must be addressed. 

First, GPT-based models may inadvertently reproduce 

biases present in their training data, leading to the 

propagation of stereotypes or inequities in the generated 

dataset. This can result in a biased hate speech detection 

model that disproportionately misclassifies or overlooks 

hate speech targeting certain groups, potentially 

reinforcing societal prejudices. However, this bias may be 

intentionally leveraged to ensure the model detects 

specific patterns, aligning with the main objective of hate 

speech identification. Second, the synthetic nature of the 

data might lack the nuanced and context-specific 

complexity of real-world hate speech, which could reduce 

the model's effectiveness in handling real-world scenarios. 

Therefore, rigorous manual evaluation, curation, and 

refinement of the generated dataset—such as self-
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embedding hate keywords in certain datasets—are 

essential to ensure its quality, fairness, and relevance. 

4.2 Data preprocessing 

Figure 4 illustrates the complete sequence of 

preprocessing steps involved in preparing the data for 

model input. This process includes cleansing the raw text, 

tokenizing it into distinct tokens, and applying padding 

and truncation based on the 95th percentile of sequence 

lengths in the dataset. Finally, masking is applied to 

differentiate between empty and non-empty tokens, aiding 

the model in processing the text effectively. 

 

 
Figure 4: Data preprocessing steps. 

 

Figure 4 outlines the data preprocessing pipeline for 

training XLM-RoBERTa in the context of hate speech 

detection for Indonesian-English code-mixed text. The 

process begins with contraction handling, where common 

abbreviations and informal contractions (e.g., "don't" → 

"do not", "gak" → "tidak") are expanded to their standard 

forms, ensuring better text representation. Next, 

whitespace normalization standardizes spaces and 

removes unnecessary gaps, followed by special character 

removal to eliminate symbols, emojis, or non-text 

elements that do not contribute to meaning. 

The text is then lowercased to ensure consistency, 

especially for models that are case-sensitive. Tokenization 

follows, where the text is split into subword units using 

SentencePiece, the tokenization method employed by 

XLM-RoBERTa, enabling better handling of multilingual 

and code-mixed text. Subsequently, padding and 

truncation are applied to standardize sequence lengths, 

preventing excessive memory usage and maintaining 

uniform input dimensions. Masking is performed as part 

of the Masked Language Model (MLM) objective, where 

certain tokens are randomly replaced with a mask token, 

helping the model learn contextual relationships. Finally, 

the processed data is fed into the model for training and 

evaluation. 

This preprocessing pipeline ensures that XLM-

RoBERTa effectively learns language patterns in code-

mixed Indonesian-English text, improving its ability to 

detect hate speech accurately while handling the linguistic 

variations commonly present in informal online discourse. 

By standardizing the text and preparing it for optimal 

processing, each step contributes to the model’s enhanced 

understanding of both the individual languages involved 

and their intermingling in code-mixed contexts. As a 

result, the model is better equipped to identify subtle 

patterns and nuances in the text, making it more effective 

for real-world hate speech detection tasks. 

4.3 Hyperparameter tuning 

The pre-trained XLM-RoBERTa-Base model undergoes 

fine-tuning with variations in key hyperparameters to 

optimize performance by implementing grid search. 

Specifically, the batch size is tested with values of 16 and 

32, while the learning rate is adjusted within the range of 

1e-5 to 5e-5. With 10 parameter combinations (2 batch 

sizes × 5 learning rates), the grid search achieved efficient 

coverage of the hyperparameter space, providing an 

effective yet computationally feasible approach to 

optimizing the model for the task.  

The selection of hyperparameter ranges for fine-

tuning the XLM-RoBERTa-Base model is guided by the 

need to balance computational efficiency and performance 

optimization. Batch sizes of 16 and 32 are chosen to 

examine the trade-off between gradient update precision 

and memory consumption. Smaller batch sizes provide 

more precise updates but require a greater number of 

iterations, whereas larger batch sizes accelerate training at 

the potential cost of less precise convergence. The 

learning rate range of 1e-5 to 5e-5 is selected based on best 

practices for transformer-based models, ensuring stable 

convergence at lower rates while allowing faster training 

at higher rates without overshooting the optimal minima. 

This approach strikes a balance between preserving pre-

trained weights and adapting to the hate speech detection 

task, where capturing subtle linguistic nuances is crucial.   

An early stopping mechanism with checkpointing is 

implemented to prevent overfitting and enhance 

generalization. This mechanism monitors validation loss 

over five epochs and restores the best-performing weights, 

ensuring optimal model performance without excessive 

computational overhead. The number of training epochs is 

also tuned through an adaptive monitoring process. 

Training begins with a minimum of five epochs, and if 

validation loss does not decrease after five additional 

epochs beyond the current best checkpoint, the model 

reverts to the last optimal weights. If validation loss 

improves, the new epoch is designated as the best 

checkpoint, and monitoring restarts. This tuning strategy 

achieves an optimal balance between convergence speed 

and model stability, ensuring efficient adaptation of the 

XLM-RoBERTa-Base model to the task of mixed-code 

hate speech detection.  

The chosen hyperparameter combinations were 

validated by calculating performance metrics, including 

F1-score and accuracy, for each configuration (learning 

rates ranging from 1e-5 to 5e-5 and batch sizes of 16 and 

32) on the validation set. These metrics were evaluated 

across multiple training runs to account for variability 

introduced by random initialization and data splits. 

Table 2 demonstrates that the optimal model 

configuration is achieved with a learning rate of 2e-5, a 

batch size of 16, and at epoch 8, resulting in a validation 

loss of 0.0355. This configuration also yields high 
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validation accuracy of 99.23%, validation precision of 

99.23%, validation recall of 99.23%, and validation F1 

score of 99.23%, indicating strong model performance 

across multiple metrics. Minimizing validation loss is 

crucial as it reflects the model's capacity to generalize 

effectively to unseen data, thus mitigating overfitting and 

ensuring robust performance beyond the training dataset.  

Generally, models with lower validation loss are 

associated with better generalization, making it a reliable 

criterion for model selection. Additionally, the results 

indicate that a lower learning rate of 1e-5, 2e-5, and 3e-5 

outperforms higher rates such as 4e-5 and 5e-5, where 

smaller batch sizes showing a slight advantage in this 

context, as seen in the top-performing models. This 

outcome is attributed to the fact that lower learning rates 

enable gradual and precise convergence, minimizing the 

risk of overshooting optimal solution which is a common 

issue with higher learning rates. High learning rates can 

lead to unstable training dynamics, as evidenced by 

increased losses for both training and validation at 

learning rates of 4e-5 and 5e-5.  

In conclusion, a low learning rate contributes to stable 

training, reducing both training and validation losses, 

thereby enhancing the model's overall performance and 

generalization capability. Table 3 shows training and 

validation progress over epochs for the chosen model. 

 

 

 

 

Table 2: Hyperparameter tuning results ranked by validation loss.

Learning 

Rate 

Batch 

Size 

Best  

Epoch 

Train 

Loss 

Validation 

Loss 

Train 

Accuracy 

Validation 

Accuracy 

Train 

Precision 

Validation 

Precision 

Training 

Recall 

Validation 

Recall 

Training 

F1 Score 

Validation 

F1 Score 

2e-5 16 8 0.0547 0.0355 0.9926 0.9923 0.9916 0.9923 0.9925 0.9923 0.9920 0.9923 

1e-5 16 6 0.0549 0.0360 0.9909 0.9928 0.9917 0.9943 0.9883 0.9918 0.9900 0.9930 

1e-5 32 18 0.0395 0.0552 0.9933 0.9919 0.9938 0.9923 0.9922 0.9911 0.9910 0.9917 

2e-5 32 5 0.1708 0.0830 0.9716 0.9882 0.9710 0.9878 0.9596 0.9886 0.9653 0.9882 

3e-5 16 5 0.2033 0.1236 0.9588 0.9852 0.9624 0.9849 0.9390 0.9857 0.9506 0.9853 

3e-5 32 9 0.2632 0.1561 0.9593 0.9556 0.9594 0.9602 0.9592 0.9502 0.9593 0.9552 

4e-5 32 5 0.7210 0.6838 0.5677 0.5093 0.5467 0.5093 0.5274 0.5093 0.5369 0.5093 

4e-5 16 7 0.7067 0.6870 0.5029 0.6393 0.5008 0.5335 0.4827 0.9123 0.4916 0.6733 

5e-5 16 11 1.3632 0.6955 0.5007 0.5093 0.5013 0.500 0.5458 1.000 0.5226 0.6667 

5e-5 32 5 4.1957 4.2744 0.5016 0.4907 0.5053 0.4907 0.2449 0.4907 0.3299 0.4907 

 

Table 3: Performance metrics over epochs. 

Epoch Train 

Loss 

Validation 

Loss 

Train 

Accuracy 

Validation 

Accuracy 

Train 

Precision 

Validation 

Precision 

Training 

Recall 

Validation 

Recall 

Training 

F1 Score 

Validation F1 

Score 

1 0.3068 0.1222 0.9464 0.9867 0.9490 0.9870 0.8871 0.9869 0.9170 0.9869 

2 0.1364 0.0619 0.9785 0.9902 0.9802 0.9921 0.9765 0.9891 0.9783 0.9906 

3 0.0858 0.0704 0.9846 0.9913 0.9849 0.9926 0.9827 0.9891 0.9838 0.9908 

4 0.0921 0.0972 0.9876 0.9899 0.9874 0.9889 0.9866 0.9909 0.9870 0.9899 

5 0.0669 0.0673 0.9898 0.9913 0.9910 0.9934 0.9883 0.9902 0.9896 0.9918 

6 0.1053 0.0575 0.9842 0.9929 0.9851 0.9929 0.9809 0.9929 0.9830 0.9929 

7 0.0798 0.0444 0.9887 0.9929 0.9877 0.9933 0.9880 0.9921 0.9878 0.9927 

8 0.0547 0.0356 0.9926 0.9923 0.9916 0.9923 0.9925 0.9923 0.9920 0.9923 

9 0.0504 0.0862 0.9867 0.9837 0.9860 0.9835 0.9895 0.9842 0.9877 0.9838 

10 0.0785 0.0590 0.9876 0.9931 0.9859 0.9923 0.9882 0.9938 0.9870 0.9930 
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11 0.0490 0.0541 0.9915 0.9938 0.9913 0.9926 0.9907 0.9943 0.9910 0.9934 

12 0.0886 0.1376 0.9892 0.9650 0.9908 0.9665 0.9815 0.9625 0.9861 0.9645 

13 0.0764 0.0798 0.9708 0.9867 0.9781 0.9874 0.9744 0.9860 0.9762 0.9867 

 

 
Figure 5: Training & validation loss over epochs. 

 

 
Figure 6: Training & validation accuracy over epochs. 

  

 
Figure 7: Training & validation precision over epochs. 

 

 
Figure 8: Training & validation recall over epochs. 

 

 
Figure 9: Training & validation f1-score over epochs. 

 

Figures 5–9 illustrate the training and validation 

performance trends over 13 epochs across multiple 

evaluation metrics. Figure 5 shows a sharp decline in 

training loss during the initial epochs, followed by 

stabilization with minor fluctuations, while validation loss 

remains consistently lower, with a slight increase around 

epoch 12, suggesting minor variations in generalization. 

Figure 6 highlights the accuracy progression, where both 

training and validation accuracy rapidly exceed 0.98 and 

remain stable, indicating strong generalization.  

Figure 7 presents precision trends, with training 

precision surpassing 0.98 early and stabilizing near 0.99, 

while validation precision remains consistently high with 

slight fluctuations. Figure 8 illustrates recall performance, 

where both training and validation recall remain around 

0.99, with a minor dip at epoch 12, reinforcing the model’s 

ability to minimize false negatives. Figure 9 depicts F1-

score trends, showing a rapid increase followed by 

stabilization near 0.99 for both training and validation 

sets, ensuring a balanced precision-recall trade-off. 

Overall, these results indicate that the model effectively 

generalizes while maintaining high performance across all 

key metrics, with only minor variations observed in the 

later epochs. 
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4.4 Further evaluation 

The validation of the chosen hyperparameter 

combinations involved calculating performance metrics, 

such as F1-score and accuracy, for each configuration 

(learning rates ranging from 1e-5 to 5e-5 and batch sizes 

of 16 and 32) on the validation set. These metrics were 

evaluated across multiple training runs to account for 

variability introduced by random initialization and data 

splits. 

5 Results and analysis 
Table 2 shows that lower learning rates, such as 2e-5 and 

1e-5 perform better in tasks like hate speech detection 

involving complex, code-mixed datasets due to their 

ability to ensure stable convergence and precise weight 

updates. These rates allow the model to better capture 

subtle linguistic patterns and reduce the risk of overfitting, 

as evidenced by lower validation loss and higher 

validation metrics (accuracy, precision, recall, and F1-

score) compared to higher learning rates. Furthermore, the 

gradual optimization enabled by lower learning rates 

allows the model to benefit from longer training durations 

(e.g., 8 or 18 epochs), refining its performance without 

plateauing or diverging. This makes lower learning rates 

particularly effective for nuanced tasks requiring high 

precision and generalization.  

Lower batch sizes, such as 16, tend to perform better 

in the top 4 models because they allow the model to 

capture more detailed gradients during training, which is 

particularly advantageous in tasks like hate speech 

detection involving nuanced and diverse data. With 

smaller batches, the model processes fewer samples at a 

time, enabling it to better adapt to subtle patterns in the 

data, such as code-mixed contexts or cultural nuances. 

This precision helps reduce the risk of oversmoothing the 

gradients, which can occur with larger batch sizes like 32, 

where updates may generalize too broadly and miss finer 

details. Additionally, smaller batch sizes improve 

generalization, as the model sees a wider range of gradient 

variations during training, which is reflected in the lower 

validation loss and consistently higher metrics (accuracy, 

precision, recall, and F1-score) observed for batch size 16 

in the top-performing models. These benefits make lower 

batch sizes more suitable for fine-tuned hate speech 

detection tasks where context sensitivity is critical. 

The model was evaluated on a dedicated test set, 

comprising 10% portion of the whole dataset. The model 

achieved a near-perfect accuracy of 99.60%, false positive 

rate of 0.67% and false negative rate of 0.136%,  reflecting 

high rate of correct predictions. With a precision of 

99.60%, the model effectively minimized false positive 

predictions, while a recall of 99.60% exhibited the model 

capability on reducing false negatives. Additionally, the 

F1-score of 99.60% further demonstrates the model’s 

balance between precision and recall which indicates 

excellent performance on both types of classification 

errors. Figure 10 presents the confusion matrix generated 

from the test set inference results. 

 
Figure 10: Primary test set confusion matrix. 

 

Upon testing the supplementary test set, the model 

exhibited excellent performance, achieving 91.00% 

accuracy, 92.40% precision, 91.00% recall, and an F1-

score of 90.94%. The false positive rate is approximately 

17.6%, while the false negative rate is 0%. These results 

indicates that the trained model effectively manages 

outlier cases that reflect real-life scenarios, where 

sentence structures may be unpredictable and vary widely. 

Figure 11 shows the confusion matrix from the 

supplementary test set. 

 

 
Figure 11: Supplementary test set confusion matrix. 

 

Table 4 shows the false predictions from the model. 

The observed false positives in the model can be attributed 

to several factors that affect the model's ability to 

accurately classify sentiment. Firstly, the abbreviation of 

words that sometimes include number which are common 

in informal communication (e.g., "klo" for "kalau" and 

“bisa2” for “bisa-bisa”), may not consistently align with 

the model's learned patterns, leading to misinterpretations.  
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Table 4: Primary test set false prediction samples 

Text Type 

“this health advice in the comments 

is really practical, informasi yang 

berguna! 

False Positive 

“organizing a book club in a cozy 

cafe promotes community, 

mempromosikan komunitas!” 

False Positive 

“golfers di sini terlalu angkuh, 

mental miskin!” 

 

False Positive 

“emission control technology is 

state-of-the-art, teknologi kontrol 

emisi sangat canggih.” 

False Positive 

“recommending the park's features 

to friends promotes 

information_technology usage, 

mendorong penggunaannya!” 

False Positive 

“menjelajahi stasiun luar angkasa 

itu feels like angstrom real 

adventure, sungguh menakjubkan!” 

False Positive 

“the noise from aircraft itu 

unbearable, they should ban them 

from cities!” 

False Positive 

“every time a pet is brought here, 

it’s a gamble with their health, 

berjudi dengan kesehatan hewan!” 

False Positive 

“great command! your tactics are 

impressive, komando yang hebat! 

taktikmu mengesankan!” 

False Positive 

“the observatory fails to engage 

with the global scientific community, 

gagal berinteraksi dengan 

komunitas ilmiah global!” 

False Positive 

“why are you indians still here if you 

don’t support the cause? kenapa 

masih di sini?” 

False Negative 

“exploring this aquarium is never 

educational and fun, dasar jewish!” 

False Negative 

 

Furthermore, the presence of unknown keywords and 

emojis, such as internet slang or culturally specific terms 

(e.g., "wkwk"), which the model was not trained on, may 

contribute to confusion during classification. Lastly, the 

ambiguity of certain words—like "sumpah" (swear), 

"kelewatan" (gone too far), and phrases like "I cannot 

stand"—which may carry negative connotations but do 

not explicitly convey hate speech, poses challenges for the 

model. These are the reasons that likely caused slight 

performance evaluation drop on the supplementary test. 

These components also highlight the complexities 

involved in accurately interpreting code-mixed sentiment, 

underscoring the need for improved training data and 

contextual understanding by wider keyword enrichment 

including outlier vocabularies. 

 

Table 5: Supplementary test set false prediction samples. 

Text Type 

“Nggak tau sih soalnya lucu juga ya 

klo dipikir2 wkwk” 

False Positive 

“Aduh cape banget gw kerja sm 

orang sumpah” 

False Positive 

“Kenapa ya orang-orang tu 

bisa2nya jahat bgt?” 

False Positive 

“Gak mau jadi politikus gue; 

tekanannya psti gede bgt!           ” 

False Positive 

“Sumpah kesel bgt gw sama temen 

lo!” 

False Positive 

“Kamu mau gak jadi pacar aku?” False Positive 

Apakah kamu bidadari? Soalnya 

cantiknya kelewatan                     ” 

False Positive 

“I can't stand harga dri produk ini; 

mahal bgt!         ” 

False Positive 

“Kerja kerasmu tidak akan sia-sia, 

keep going!      ” 

False Positive 

 

Table 5 shows false positive predictions on the 

supplementary test set where the model incorrectly 

classified non-hateful texts as hate speech. The examples 

contain informal language, humor, slang, emojis, and 

exaggerations, which may have caused misclassification. 

The model likely struggles with contextual understanding, 

misinterpreting harmless expressions as offensive. 

False positives and false negatives in hate speech 

detection have critical implications, both ethically and 

practically. False positives occur when non-hateful 

content is incorrectly classified as hate speech. This can 

suppress legitimate expression, create a chilling effect on 

free speech, and harm users who may feel unfairly 

censored or misjudged. Conversely, false negatives, where 

actual hate speech is not detected, allow harmful content 

to persist. This can perpetuate harm to targeted individuals 

or communities and undermine trust in the detection 

system. Failure to address false negatives can have serious 

societal impacts, such as the normalization of offensive 

language or inadequate protection for marginalized 

groups. 

We apply several strategies in the hate speech 

detection system to mitigate the errors. First, enhancing 

the quality of training data is essential. This involves 

enriching datasets with diverse examples of internet slang, 

culturally specific terms, and nuanced expressions to 

improve the model’s ability to capture contextual 

subtleties on real world examples. Second, employing 

context-aware models or fine-tuning pre-trained models 

like XLM-RoBERTa with additional layers designed for 

better contextual understanding can significantly improve 

classification accuracy. These strategies collectively 

enhance the robustness, fairness, and reliability of hate 

speech detection systems in practical applications. Table 

6 shows common errors in hate speech detection along 

with examples and potential causes
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Table 6: Common errors in hate speech detection. 

Category Example Potential Cause 

Lexical Ambiguity “sumpah” (swear) The model struggles to differentiate 

context-specific meanings without 

additional contextual cues. 

Cultural Nuances “wkwk” (Indonesia’s slang for laughter) 

“ashiap” (Indonesia’s slang for saying 

“yes”) 

Limited representation of culturally specific 

terms in the training dataset, leading to 

misclassification. 

Implicit Hate Speech “Gak mungkin banget sih someone from 

***** bisa sepinter itu” 

The model struggles with identifying hate 

speech when explicit offensive keywords 

are absent. 

False Positive "I don't agree, tapi nggak apa-apa sih." Neutral or positive statements incorrectly 

classified as hate speech due to negative 

sentiment keywords. 

False Negative "Go back to your own country!" Inadequate coverage of explicit hate speech 

examples or poor generalization from 

training data. 

Out-of-Vocabulary 

Terms 

"Sumpah itu tadi orang noob banget." 

“Bruh konser tadi, absolutely lit sih bro” 

“Cmon fam!” 

The model's tokenizer or vocabulary does 

not include these terms, leading to 

incomplete representation. 

 We assessed the generalization capability of our fine-

tuned XLM-RoBERTa model for mixed-code hate speech 

detection using a post-hoc 5-fold stratified cross-

validation strategy, with the best-performing model fine-

tuned at a learning rate of 2e-5 and a batch size of 16. The 

dataset was divided into five stratified folds, ensuring 

balanced representation of hate speech and non-hate 

speech instances across each split. For each fold, the 

model was evaluated on the held-out validation set 

without further training, utilizing the Hugging Face 

Transformers library. The model achieved an average 

evaluation loss of 0.0342, with minimal variation across 

folds (ranging from 0.0322 to 0.0356), indicating strong 

and consistent performance. 

We quantified the uncertainty in the model’s 

generalization performance by computing a 95% 

confidence interval (CI) for the mean evaluation loss. This 

CI provides a range in which the true mean loss is 

expected to fall with 95% confidence. Applying the 

standard normal approximation method, we obtained a 

95% CI of (0.0327, 0.0356). The narrow interval suggests 

that the model’s performance is statistically stable, with 

low variance across different validation sets. The small 

margin of error highlights the model’s high reliability, 

confirming its strong generalization ability and robustness 

to minor variations in the dataset. These results further 

emphasize the effectiveness of the fine-tuned XLM-

RoBERTa model for mixed-code hate speech detection. 

The results indicate that XLM-RoBERTa achieves 

exceptional performance when properly fine-tuned and 

trained with a substantial number of tokens. The model 

consistently outperforms those used in related studies 

across multiple multilingual hate speech detection tasks. 

As shown in Table 1, prior implementations of XLM-

RoBERTa and its variations yielded F1-scores ranging 

from 32% to 92.55%, depending on the dataset and 

language pair. In contrast, the proposed model achieves an 

F1-score of 99.60% on the primary test set and 90.94% on 

the supplementary test set. Furthermore, while earlier 

studies reported relatively low precision and recall, the 

model maintains high precision (99.60% and 92.40%) and 

recall (99.60% and 91.00%), ensuring balanced 

classification performance. Error analysis reveals that the 

model effectively minimizes false negatives, with a false 

negative rate of 0.136% on the primary test set and 0% on 

the supplementary test set. Given these results, the model 

not only surpasses previous approaches in overall 

performance but also demonstrates robustness in handling 

linguistic variations and outlier cases, making it highly 

effective for mixed-code hate speech detection. Future 

research on multilingual hate speech detection could 

further benefit from incorporating additional training data 

tailored to specific language requirements. 

6 Conclusion 
This study demonstrates the effectiveness of XLM-

RoBERTa in detecting hate speech within code-mixed 

texts, particularly in Indonesian-English code-mixed 

contexts. The model achieved a high level of accuracy 

(99.6%) on the primary test set and maintained strong 

generalization across realistic supplementary data on 91% 

accuracy, reflecting its robustness in handling varied 

linguistic inputs. These results highlight the importance of 

multilingual adaptability in hate speech detection, 

particularly for complex online environments where 

language boundaries are fluid. Future research could 

enhance these outcomes by incorporating additional real-

world linguistic variations and expanding to other 

language pairs, contributing to safer and more inclusive 

digital spaces on broader language scopes. 
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