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Water quality—defined through its physical, chemical, and biological parameters—is essential for critical
applications such as drinking and irrigation. Among these parameters, pH plays a significant role by
influencing metal solubility and nutrient availability, thereby impacting aquatic ecosystems. In this study,
Support Vector Classifier (SVC) and Extra Trees Classifier (ETC) were employed to classify water quality
based on pH values. To boost classification accuracy, the models were hybridized using two advanced
metaheuristic algorithms: Transit Search Optimization Algorithm (TSOA) and Chaos Game Optimization
(CGO), resulting in hybrid variants ETTS, ETCG, SVTS, and SVCG. Comprehensive experiments were
conducted using standard evaluation metrics. The ETTS model achieved the best performance, with
training accuracy of 0.910 and testing accuracy of 0.778, along with a precision of 0.911, recall of 0.910,
and F1 score of 0.910 in training. In contrast, the base ETC model recorded training and testing
accuracies of 0.881 and 0.750, respectively. Similarly, SVTS and SVCG outperformed the base SVC
model, with SVTS achieving training and testing accuracies of 0.894 and 0.760, compared to SVC'’s 0.850
and 0.745. The proposed hybrid framework outperforms traditional SVC and ETC models and
demonstrates superior classification performance compared to standard non-optimized baselines. This
underscores the value of integrating advanced optimization techniques with machine learning for robust
and reliable water quality assessment. The framework is a promising tool for environmental monitoring,
promoting sustainable water resource management and public health protection.

Povzetek: Studija je razvila hibridne modele strojnega ucenja za klasifikacijo kakovosti vode na podlagi
pH-vrednosti. Kombinacija klasifikatorjev Extra Trees (ETC) in Support Vector Classifier (SVC) z
metahevristicnimi algoritmi TSOA in CGO (npr. ETTS, SVTS) je izboljsala klasifikacijo. Model ETTS je

dosegel najboljso zmogljivost, kar potrjuje prednost hibridnega okvira za okoljsko spremljanje.

1 Introduction

1.1 Background

Water is as familiar a material as air, earth and concrete,
Water is necessary for life for humans and other forms of
life, much like the other three materials—well, maybe
with exception of concrete. It is voluminous: about 3.5 %
of the land area is permanently flooded, whereas two
thirds of the world is under the oceans. About the
hydrosphere, water is continuously evaporating from the
Earth's surface into condensing in the atmosphere,
reappearing as liquid. Earth's supply of water is now at an
all-time high and will never be depleted [1]. Although
abundant, the water resources distributed unevenly in
different regions in some serious respects impede certain
regions. As the population rises, industrialization
increases, and even more factors such as climate change

enhance problems relating to water shortages or pollution.
Efficiency in water management and water quality
prediction plays an important role in ensuring safety and
sustainability in the use of water [2]. These are some of
the issues that emanate from a lack of adequate
hydrological cycles, methods of water management, and
knowledge concerning the various human activities
impacting catchments of water. To this end, technological
and policy development remains highly critical to ensure
the sustainability of the use and delivery of water,
protection of public health, and economic development
[3].

Water quality is basically related to its physical,
chemical, and biological characteristics, making it suitable
for various purposes, such as drinking, gardening, and
leisure activities. During any water quality assessment,
turbidity, the microbiological content, and concentrations
of both organic and inorganic compounds are amongst the
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more commonly measured parameters [4]. The
degradation of water quality is a consequence of the
current process of urbanization, agricultural runoff, and
industrial wastes. Some contaminants such as heavy
metals, pesticides, and viruses may result in serious
human health hazards and ecosystem health. Good water
grading control will require technological advancement,
community participation, and regulatory mechanisms. The
implementation of best practices in pollution prevention,
wastewater treatment, and watershed management will
ensure the sustainability of water resources through better
maintenance of their quality [5].

One of the factors influencing the pH of water and
hence its chemical behavior and its biological availability
is the concentration of hydrogen ions in it. Basically, pH
is the measure of the concentration of hydrogen ions in
water. It runs on a scale from 0 to 14, with 7 to 8 being
considered neutral, 0 to 7 considered acidic, and 8 to 14
considered basic. PH influences the solubility of metals
and nutrients' availability, along with activity concerning
aquatic organisms.

Machine learning, as a multidisciplinary subset of
artificial intelligence, develops algorithms with which
computers can evaluate, comprehend, and predict data [6—
9]. It has powerful capabilities for identification, data
analysis, and decision making and has already revamped
many disciplines. The application of machine learning
techniques is on the increase in environmental research to
enhance our understanding and management through the
modeling of environmental processes, analysis of large-
scale information, and predictions of future conditions
[10]. The most promising application would, therefore, be
in the monitoring of water quality through management
using machine learning. With the derivation of large data
sets from sensors and satellite images, coupled with
historical records, it will be possible for machine learning
models to develop leading trends, anomalies, and
predictions of water quality parameters with high accuracy
[11] [12]. These capabilities enable more proactive and
effective water management strategies, reducing
pollution, optimizing resource allocation, and protecting
public health. The integration of machine learning into the
water quality monitoring system is one of the huge leaps
forward in environmental science and technology [13]
[14].

1.2 Research gaps and objectives

Despite the increasing application of ML in water quality
prediction, significant challenges persist. Traditional
approaches often struggle with the nonlinearity and
complex variability of environmental data, which limits
their predictive accuracy and generalizability across
diverse contexts. Furthermore, while various studies have
employed models like MLR, ANN, and SVM, many lack
the integration of robust optimization algorithms to fine-
tune model parameters and enhance performance.
Another notable gap is the underutilization of
ensemble tree-based methods such as the ETC, which are
known for their resilience to noise and their ability to
capture intricate relationships within high-dimensional

X. Lietal.

datasets. Additionally, real-time pH prediction, a critical
parameter in assessing water quality, has not been
extensively explored using hybrid ML-optimization
techniques, especially in scenarios where both historical
and real-time data are available.

To address these gaps, this study proposes a novel
framework that integrates SVM, ETC, TSOA and CGO.
These techniques are applied to predict and classify water
pH levels using historical and sensor-based real-time
datasets. The objectives of this research are:

e To develop and compare ML models capable of
accurately predicting water pH levels using both
historical and real-time input data;

e To optimize model performance using the Chaos
Game Optimization algorithm, ensuring more
reliable and efficient learning from complex
datasets;

e To evaluate the classification capabilities of the
Extra Trees Classifier and SVM in distinguishing
water quality categories based on pH thresholds;

e To demonstrate the feasibility of a hybrid ML-
optimization approach for proactive and
sustainable water quality monitoring.

2 Related works

Idroes et al. [15] conducted a study to predict urban air
quality in DKI Jakarta, Indonesia, using the CATBoost
machine learning algorithm, which is known for handling
categorical features effectively, managing missing values,
and reducing the risk of overfitting. The research utilized
air quality data collected from Jakarta's monitoring
stations over the period of 2010 to 2021. The dataset
included five key pollutants: PMio, SO2, CO, Os, and NOs.
After a preprocessing stage that involved data cleaning
and normalization, the authors split the dataset into
training (80%) and testing (20%) subsets. The CATBoost
model was trained and evaluated using standard
performance metrics, where it achieved high accuracy
(0.9781), precision (0.9722), and recall (0.9728). A
feature importance analysis revealed that ozone (Os) was
the most significant contributor to air quality variation,
followed by PMio. Sasmita et al. [16] investigated the
classification of air quality levels in Indonesia using the
Plume Air Quality Index (PAQI), which incorporates
pollutant concentrations such as PMa.s, PMio, NO:, and
0s. The study focused on evaluating classification
performance using Decision Tree and K-Nearest Neighbor
(k-NN) algorithms, applied to secondary data collected
from 33 provincial capitals between July 1 and December
31, 2022. Unlike prior studies that typically assessed
model performance solely based on accuracy, this
research adopted a more comprehensive evaluation
approach by incorporating precision, recall, and F1-score
alongside accuracy. The results demonstrated that the
Decision Tree classifier outperformed k-NN, achieving
performance scores of 90.67% accuracy, 90.61%
precision, 90.67% recall, and 90.63% F1-score. These
findings suggest that tree-based models can provide robust
classification capabilities for air quality indexing,
supporting more reliable monitoring and decision-making
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regarding urban environmental health. Putra et al. [17]
addressed the critical issue of deteriorating air quality in
Indonesia’s major cities, with a focus on Jakarta, where
urbanization and anthropogenic activities such as
vehicular emissions, industrialization, and waste
accumulation have significantly impacted atmospheric
conditions. Their study aimed to classify daily air quality
using machine learning algorithms—specifically the C5.0
algorithm and Random Forest—based on the Air Pollution
Standard Index (ISPU). These models were applied to
datasets from 2017 and 2018, consisting of pollutant
parameters including CO, NO:, SO:, PM, O, and NO.
Their classification approach emphasized the importance
of accurately identifying air quality categories to support
policy-making. The models demonstrated high predictive
accuracy, with C5.0 and Random Forest achieving
99.74%, 99.22%, and 99.97% accuracy on the 2017
dataset and 98.28%, 98.85%, and 97.42% on the 2018
dataset, respectively. The analysis identified Os (ozone) as
the most influential factor in classifying air quality, with
most days falling under the "Moderate™ ISPU category.
This work highlights the potential of decision tree-based
algorithms in supporting urban air quality management
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through accurate pollutant classification. Saxena and
Shekhawat [18] proposed a novel mathematical
framework to compute a Cumulative Index (CI) for air
quality classification based on the concentrations of four
major pollutants: SOz, NO2, PM2.5, and PM10. This CI
served as a compact, interpretable metric reflecting the
combined impact of pollutants on air quality. Using these
Cl values as input features, they developed a two-class
Support Vector Machine (SVM) model to classify air
quality as either good or harmful. To optimize the
performance of the SVM, the authors employed the Grey
Wolf Optimizer (GWO) for parameter tuning, aiming to
maximize classification accuracy. The methodology was
tested on real datasets from three major Indian cities—
Delhi, Bhopal, and Kolkata. The results indicated that the
proposed classifier effectively distinguished between the
two air quality categories, with high classification
performance across all test locations. The study concluded
that the Cl-based classification framework was both
computationally efficient and aligned well with actual air
quality data, making it a promising tool for public health
and environmental monitoring. The summary of the
previous studies reported in Table 1.

Table 1: The summary of the related works.

Study Methodology Dataset Metrics’ results Key Findings
Idroes et al. | CATBoost machine | Air quality data from | Accuracy: 0.9781, | Ozone (Os) and PMio
[15] learning for air quality | Jakarta monitoring | Precision:  0.9722, | most significant
prediction. stations  (2010-2021). | Recall: 0.9728 pollutants.
Pollutants: PMio, SO2,
CO, 03, NOs.
Sasmita et | Classification using | Secondary data from | Accuracy: 90.67%, | Decision Tree
al. [16] Decision Tree and k-NN | 33 provincial capitals | Precision: 90.61%, | outperformed Kk-NN
algorithms. in Indonesia (2022). | Recall: 90.67%, F1: | for classification
Pollutants: PM..s, | 90.63% tasks.
PMo, NO, Os.
Putra et al. | Classification using C5.0 | Air quality data (2017- | C5.0: 99.74% | Ozone (Os) as the
[17] and Random  Forest | 2018). Pollutants: CO, | (2017), 98.28% | most influential
algorithms. NO2, SOz, PM, O3, NO. | (2018), RF: 99.22% | factor in classifying
(2017), 98.85% | air quality.
(2018)
Saxena and | Support Vector Machine | Real datasets from | Classification Cl-based
Shekhawat | (SVM) classification with | three  Indian cities | performance: High | classification
[18] Grey Wolf Optimizer | (Delhi, Bhopal, | accuracy for all test | framework is
(GWO) for parameter | Kolkata). Pollutants: | locations computationally
tuning. SOz, NO2, PMz.s, PMo. efficient.

3 Materials and methodology

3.1 Data gathering

Water quality data were collected in a systematic manner
and analyzed for different environmental parameters and
their relations to pH values. The dataset used in the present
study derived from [19] incorporates 1320 records in
total, and each of the following input parameters has been
included in the dataset: Date, Salinity, Dissolved Oxygen,
Secchi Depth, Water Depth, Water Temperature, and Air
Temperature. The output variable analyzed here is the pH

level of the water, whether it be basic, alkaline, or acidic.
Data recording over some period gathered daily data on
water quality. In this case, the 'Date’ variable provides for
the exact day (a day in every two weeks) certain data was
taken and offers a time-series track showing
environmental change over time. Salinity, representing the
concentration of dissolved salts in water, can directly
influence pH levels by altering the ionic balance and
buffering capacity of the water body. Variations in salinity
may therefore contribute to shifts in pH, particularly in
estuarine and coastal environments. Dissolved oxygen
(DO), essential for aquatic life, can also impact pH
through biological processes such as respiration and
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photosynthesis, which either consume or release COs,
thereby influencing acidity. Secchi Depth, a measure of
water transparency determined by noting the depth at
which a Secchi disk disappears, can serve as an indirect
indicator of photosynthetic activity, which affects CO:
levels and thus the pH. Water Depth at the sampling
location affects both light availability and thermal
stratification, which can influence biological activity and
chemical reactions that regulate pH. Water Temperature
and Air Temperature offer insight into thermal conditions
that affect metabolic rates of organisms and chemical
equilibria, both of which can influence pH values. The
primary focus of this study was on pH levels, a key
parameter in assessing water quality. In the dataset, pH
values were categorized and analyzed as follows: Acidic
(pH < 7) with 433 instances, Neutral (pH = 7) with 617
instances, and Basic (pH > 7) with 280 instances. Each of
the variables was examined in relation to these pH
categories to explore their predictive relevance.

Figure 1. consists of several parallel plots, the x —
axis in each plot represents the total number of samples,
providing a consistent framework for comparing the
distribution of each parameter. The y — axis, varies
according to the parameter being measured, showing the
specific quantity for each sample. The red dots effectively
illustrate the range and concentration of values for each
parameter, offering an unambiguous graphic depiction of
the data's distribution. For instance, the clustering of red
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dots below 0.4 meters for water depth highlights that most
water samples were taken from shallow depths, with
deeper samples being rare. The output pH plot illustrates
the red dots form distinct horizontal bands, suggesting that
pH measurements are discrete rather than continuous.
This discrete distribution is crucial for classifying water
quality based on pH levels.

To support the development and execution of the
proposed models, a high-performance desktop
workstation was utilized. This system is equipped with an
Intel® Core™ i7-3770K processor clocked at 3.50 GHz
and complemented by 16 GB of RAM, ensuring efficient
processing and multitasking capabilities. The operating
system used was Windows 11 Pro (64-bit), running on an
x64-based architecture. Visual computations and
graphical rendering were handled by an NVIDIA GeForce
GT 640 graphics card, which contributed to a responsive
and stable graphical environment. A 1 TB internal hard
disk served as the primary storage medium, providing
ample space for managing datasets and associated files.

All programming tasks were conducted using Python.
The scikit-learn library formed the foundation for building
and assessing machine learning algorithms. Data
preparation and numerical analysis were facilitated by
Pandas and NumPy, respectively. To aid in visual
interpretation of results, Matplotlib was employed,
enabling clear and informative graphical outputs
throughout the analysis process.

° 1.2 = SecchiDepth (m)
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Figure 1: The parallel plot of the inputs and outputs variables
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3.2 Support vector classification

Support Vector Classification (SVC) is a supervised
learning algorithm rooted in the structural risk
minimization principle of Support Vector Machines
(SVM) [20]. It operates by mapping input features into a
higher-dimensional space through non-linear kernel
transformations, enabling the separation of data that is not
linearly separable in the original feature space. In this
transformed space, SVC constructs an optimal hyperplane
that maximizes the margin — defined as the distance
between the hyperplane and the closest data points from
each class, known as support vectors — while
simultaneously minimizing classification errors [21]. This
balance between margin maximization and error
minimization contributes to the model’s generalization
capability and robustness.

N
. w12
mlnw,b,ET + Csvc €; (1)
i=1
yl(WTw(xl)‘Fb)Z 1_EI, i = 1,,N (2)
€>0 i=1,...,N ©)

The function @(x;) represents a nonlinear mapping
that projects each input observation x;, defined by its
explanatory variables, into a higher-dimensional feature
space where linear separation of classes becomes more
feasible. Within this space, w denotes the weight vector
that defines the orientation of the separating hyperplane,
while b is the bias term that shifts the hyperplane to
achieve optimal separation. The parameter Cg,. serves as
a regularization factor that balances the trade-off between
maximizing the margin and minimizing classification
errors. The slack variables €; quantify the degree to which
individual observations violate the margin constraints,
allowing for soft-margin classification to accommodate
misclassified or non-linearly separable data points.

Determining the optimal hyperplane, as formulated in
Eqg. (4), entails maximizing the margin between classes in
the high-dimensional feature space. This objective is
mathematically achieved by minimizing the Euclidean
norm of the weight vector, which directly corresponds to
maximizing the margin width. Simultaneously, the model
incorporates a penalty for misclassified instances to ensure
a balance between model complexity and classification
accuracy. Ultimately, the predicted output labels indicate
the class membership of each sample, based on their
position relative to the decision boundary.

D(x) =WT"p(x;) +b 4

The computational complexity of the primal
formulation is primarily dependent on the number of input
features (dimensionality), whereas the dual formulation's
complexity scales with the number of training samples.
Therefore, in scenarios involving high-dimensional
feature spaces, it is often more computationally efficient
and advantageous to employ the dual form of the model,
as outlined in Egs. (5-7).

N N

1
max, Z a; — EZ a;a;y;y;iK (x;, %) )

i=1 i=1
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N

Z a;y; =0 (6)

i=1
0 < a; < Cype i=1,..,N (7
A kernel function, denoted as K (x;, x;), computes the
inner product between pairs of input samples implicitly
mapped into a high-dimensional feature space, enabling
nonlinear classification without explicitly performing the
transformation. Common kernel types include linear,
polynomial, radial basis function (RBF), and sigmoidal
kernels, among others. For a kernel to be valid, it must
satisfy Mercer's conditions—specifically, it must be
symmetric and positive semi-definite. Extensive studies
have shown that the RBF kernel, formally defined in Eq.
(8), is particularly effective for classification problems
due to its localized response and flexibility. Accordingly,
the RBF kernel is adopted in our methodology, where the
hyperparameter y governs the inverse of the squared
radius of influence of the support vectors, effectively
controlling the decision boundary's smoothness and
sensitivity to individual data points.
K(x, %) = 0(x)"0(x) ®)
= exp(~y||x — x|
Once the optimization process is completed and the
optimal weight vector and bias term are obtained, the
trained model can be used to generate predictions for
unseen samples by evaluating the decision function as
defined in Eq. (9).
—-1if wTd(x))+b <0
sve y‘_{1ifwT¢(xi)+b >0 ©

3.3 Extra trees classifier

The Extra trees classifier, proposed by Geurts et al. [22],
represents an advanced ensemble learning technique that
builds upon and extends the Random Forest framework.
Unlike traditional ensemble methods that rely on
bootstrapped datasets and deterministic split criteria, Extra
Trees introduces two levels of randomness to enhance
model diversity and generalization. First, it selects split
thresholds at random rather than searching for the most
optimal ones. Second, instead of using bootstrap
sampling, it grows each decision or regression tree using
the entire training dataset. This approach not only
accelerates the training process but also reduces variance,
making Extra Trees particularly effective for high-
dimensional and noisy datasets.

Extra Trees operates by introducing controlled
randomness into the decision tree construction process,
particularly for numerical features. At each node, the
algorithm selects K random features and determines split
thresholds uniformly at random, rather than through
traditional optimization. The minimum number of samples
required to allow further splitting is defined by n,,;,,
ensuring regularization. Unlike methods that rely on
bootstrap resampling, Extra Trees trains each of its M trees
on the entire original dataset, promoting stability and
minimizing bias. For prediction, the ensemble outputs are
combined using majority voting in classification tasks or
averaged in regression settings. This explicit
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randomization strategy—both in attribute selection and
cut-point determination—significantly reduces variance
and enhances generalization performance, especially in
high-dimensional and noisy contexts. Although the
algorithm exhibits a time complexity of NlogN, its
computational efficiency is bolstered by the lightweight
nature of the node-splitting process. The key
hyperparameters—K, n,,;,, and M—govern the diversity
of splits, regularization, and ensemble size, respectively.
While the algorithm supports fine-tuning, default
parameter configurations often yield strong performance,
making Extra Trees both effective and computationally
autonomous.

3.4 Chaos game optimization

The amalgamation of basic principles of chaotic games
and fractals provide a mathematical model for the
algorithm CGO [23]. The CGO algorithm examines several
potential solutions (X) for this goal, that depicts a few
suitable seeds within a sierpinski triangle, so that a group
of answers that have developed by chance and selection
changes is maintained by many natural evolution
algorithms. According to this technique, a few chosen
variables (x;;) reflect where these eligible seeds are
located inside the triangle formed by sierpinski. with every
potential solution (X;).

M1 2 J <
X X
)(1 1 1 X1 X
1 2 j
X2 X5 X5 x2] Xg
x=|:]= A 10
Xi x.1 x.z X] xd ( )
. i l i i
Xn i
1 2 J
_xn xn “ee xn cee xg_

According to the sierpinski triangle, where n is the
number of eligible seeds and d is the seed's dimension.
Based on random starting positions, these qualifying seeds
are arranged in the search space.

J — J
X 0) = Ximin T rand. (xi,max

i i=12,..,n
= Ximin)» L =12, ..,d.

In this approach, x]-] (0) represents the initial position
of qualified seeds. The values x{, ., and x/ .. define the
lower and upper bounds for the jth decision variable of the
ith candidate. A random number between 0 and 1 guides
the movement direction.

Qualified seeds symbolize core concepts from chaos
theory. These seeds represent candidate solutions in an
optimization problem, where higher and lower fitness
values indicate better and worse suitability, respectively.

To explore the search space, qualified seeds are used
to construct a Sierpinski triangle—a structure made from
three points: the current candidate (X;), the group mean
(MG;), and the global best (GB). This triangle is a basis
for generating new seeds using a chaos game approach.

Each triangle uses a virtual die with green and red
faces to decide movement: green directs the seed toward
the global best (GB), and red toward the group mean
(MG;). Arandom binary value (0 or 1) determines the face.
This process allows seeds to move stochastically within

(11)
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the search space, with randomness and minimal
movement controlled using factorial-based adjustments.
Seed! = x; + a; X (B; X GB — MG;), i
(12)
=12, ..,n

Assuming that X; represents theith potential solution
and the randomly generated factorial used to describe
the limitations of seeds on movement is called a;. To
simulate the potential to roll a pair of dice g; and y; stand
for a random number of 0 or 1.

Seed? = GB + a; X (B; X X; —yi X MG;) (13)
Seed? = MG; + a; X (B; X X; —y; X GB),

: (14)
i=1,2,..,n

A fourth seed is produced by using an additional
technique to carry out the mutation phase in the search
space's position updates of the qualified seeds. This update
of the seed's position is based on arbitrary madifications
to the choice variables chosen at random.

Seed! = X;(x¥ =xF+R), k=1[1,2..,d]. (15)

A random integer in the interval [1, d] is denoted by
k, and R is a uniformly distributed random number in the
region [0,1].

The CGO algorithm's exploration and exploitation rate
can be controlled and modified by varying the movement
limits of the seeds, represented by four different
formulations for «;.

Rand
2 X Rand
(6 X Rand) + 1
(e X Rand) + (~ ¢)

In this case, 6 and € are random integers Rand is a
random number with a uniform distribution in the interval
[0,1].

The process involves evaluating new seeds against
existing ones to determine their eligibility for inclusion
within the area used for searching. The new solution
candidates' quality is evaluated, with better candidates
retained and seeds with low fitness values removed. The
replacement procedure is employed to simplify the
mathematical model and ensure a more efficient
mathematical method.

a; = (16)

3.5 Transit search algorithm

Host star number (n) and the definition of signal-to-noise
ratio (SN) is algorithm structure. The transit model
determines SN Standard deviation of measurements made
outside of transit is used to estimate noise. There is always
noise in photons received from stars. The starting
population for TS is equal to the product of n, and SN
[24].

e Galaxy phase

After identifying habitable zones, the program
chooses a galactic center at random from the search space.
The optimal stellar systems are found by evaluating
random regions Lg. With the capacity to support life, the
regions that have been identified with the best fitness are
chosen, and the algorithm starts with these regions.

Lgi = Lgaiaxy + D — Noise

l=1,..,(n, X SN) (17)
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_ (c1lgaiaxy —Lr if z=1 (Negative Region) 18
" \ealeataxy + Ly if z=2 (Positive Region) (18)
Noise = (c,)3L, (19)

LGaiaxy denotes where the center of the galaxy is
located, and in the optimization problem, two coefficients
are present ranging from zero to one, denoting an
accidental integerc; and an accidental vector
c, representing the number of variables. To demonstrate
the variation in the research area's situation, one definition
of parameter D is the difference between the galaxy's
center and its present condition. This region may be found
either on the back of the galaxy or in the front (positive
portion) of its middle area. Here, parameter zone (z) is a
randomly generated number that is either one or two. The
Noise parameter is used to eliminate noise from received
signals to improve location accuracy. To minimize
computational value, the coefficient ¢, with a power of 3
is used, as noise cannot noticeably deviate from desired
situations.

Ls;j=Lp;+D—Noise i=1,..,n; (20)

The light spectrum (star class) that the telescope
receives and the star's distance from the observer may be
used to determine the luminosity of the star. It is evident
that a short distance results in a higher photon count. The
star's luminosity is acquired by:

i

ng . 23
L= (dis)Z i=1,..,ns R;€{l,..ng @3)
di=J(Us—Lp)? i=1,..,ns (24)

Here, Star I's luminance and rank are depicted by the
variables L; and R;. Additionally, the space between the
star | and the telescope are covered by d;. Since it is
chosen at random at the beginning of the method, the
location of the telescope L, remains constant throughout
the optimization.

Lsnewi = Ls; + D — Noise i=1,..,n; (25)
D= C6LS,i (26)
Noise = (¢;)3Lg 27)

The coefficients ¢, and ¢, are arandom vector from 0
to 1 and a random integer from —1 to 1. The amount of
new luminosity, L; ,,,, is determined by:

Ri.ﬂ
% i=1,..,ns (28)
(di,new)

The new Lg and the position of the telescope may be
used to compute the parameter d; .. It is possible to
assess the possibility of transit by comparing L; and L; ;¢
If T =1, the phase of the planet is utilized; if not, the
phase of the neighbor e is used in this iteration.

If Linew <L; Pr=1 (Transit) (29)
If Linew = L; Pr=0 (NoTtansit)

This probability P; is represented by the numbersO
(non-transit) and 1 (probability of transit). If P, =1, if
the planet phase cannot be used, this iteration uses the
neighbor phase.

e Planet Phase

Initially, at this stage, the discovered initial position
of planet is identified. The quantity of light that the
telescope receives decreases during a planet's transit

Linew =
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D

_ (cslpi—csly if z=1 (Negative Region) (21)
" \ealgi — 3Ly if z=2 (Positive Region)

Noise = (¢s)3L, (22)

The next stage involves utilizing Eq. (20) to (22) to
choose a star from each of the areas that have been chosen
to belong to a stellar system. L, indicates where the stars
are located.
In addition to the coefficient cs, which is a random vector
between 0 and 1, the coefficients c¢; and c, are random
values between 0 and 1.

Before beginning iterations, the suggested method
executes the galaxy phase once to choose appropriate
situations for the primary stages (2-5).

e Transit Phase

To identify the transit, a re-measurement of the light
received from the beginning is required to identify any
potential decrease in the received light signals. Lgand its
corresponding fitness f; have two meanings (M, and M,).

between the telescope and the star since the light comes
from the star.
cglr + Ry Lg;
z = , 2
Snew,i
R, ===
U Lg
The planet's original position upon detection is
demonstrated by L, and luminance ratio is determined by
R; . Also, cg has a random value between 0 and 1.

L,

i=1,..,ng (30)

(1)

L,+cl, if z=1 /@3
={L,—c)l, if z=2 j=1,..,SN fc2)
LZ + ClOLT if zZ = 3
L, = }?le’mj (3
PTTSN 3)

To validate travel and reducing the noise's influence,
one of the most crucial factors is SNThe planet's position
inside its star system is specified by analyzing the quantity
of signals received, which is derived from the planet's
estimated position. Several SN signals are taken into
account for this reason in the TS algorithm Eq. (32). The
coefficient ¢4 is an accidental number ranging from —1 to
1. ¢y is a random vector with values in the range of —1 to
1. Once signals L,, have been determined, the average
of SN signals are used to adjust the detected final planet
position Lp. The terms Aphelion and Perihelion refer to
the relative furthest and closest distances, in astronomy,
between a planet (such as Earth) and the Sun or another
host star. Three zones—Aphelion, Perihelion, and Neutral
regions (the area between Aphelion and Perihelion areas),
Eq. (32), are affected by the TS technique, which estimates
the planet's orbital location using the zone parameter (z)
in the planet phase.

e Neighbor Phase

In this phase, the present planet of the star will take its
position whether the neighbor has superior circumstances
compared to the current planet.

_ (C11Ls,new + C12Lr)

> (34)

L,
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Ly
L, —ci3L, if z=1 for Aphelionregion (35)
=<L,+c13L, if z=2 forPerihelionregion
L, +cy Lk, if z=3 for Neutral region
SN Ly
L, =<=J/=1™"J (36)
N SN

Eq. (34) is used to estimate the neighbor L,
beginning position Considering its host star L ,,,, and an
accidental place Lg. Ly determines the neighbor planet’s
ultimate position planets Eq. (35) and (36). The
coefficients ¢;, and ¢, in Eq. (41) handle a randomized
integer in the range of 0 to 1. Moreover, the
coefficients ¢;5 and ¢, represent a vector with a random
number and a range of —1 to 1, respectively.

e Exploitation phase

The ideal planet for every star is identified in the
earlier stages. Finding a planet by itself is meaningless.
Understanding the features of the planet and the
circumstances that support life is essential. This is carried
out during the TS algorithm's Exploitation step. This stage
expresses a revised definition of the Lp. L in the present
phase Lg alludes to the features of the planet. Using Eq.
(37),(38), the planet’s ultimate properties are adjusted
SN times (j = 1, ...,SN) by adding new knowledge (K).
15 IS an accidental number ranging from zero to two,
and ¢y IS an accidental number ranging from zero to
one. ¢, is an accidental vector ranging from zero to one.
The knowledge index is represented by the random
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number c,, which can be 1,2, 3, or 4. A random power
between 1 and (ng * SN) is represented by P.

C16Lp + ClSk lf Cp = 1 (State 1)
_ ) ci6lp —c15k if c¢,=2 (State?2)
Lgj= Lp —cisK if ¢=3 (State3) @37
Lp + c15K if =4 (State 4)
K = (c17)"L, (38)

3.6 K-Fold Cross validation

K-fold cross-validation is a widely utilized and reliable
approach for evaluating and selecting models, especially
in classification and regression tasks. This technique
involves dividing the dataset into k equally sized subsets
(folds). During each iteration, one-fold is reserved for
validation while the remaining k—1 folds are used for
training. This process is repeated k times, ensuring that
every subset serves once as the validation set. In this study,
a 5-fold cross-validation scheme (k = 5) was adopted to
thoroughly evaluate the proposed models and improve
their generalization capability by systematically rotating
the training and testing partitions. As illustrated in Fig. 2,
the Support Vector Classifier (SVC) model demonstrated
its peak performance during Fold 5, achieving a maximum
Accuracy of 0.82. Similarly, the Extra Trees Classifier
(ETC) also recorded its highest accuracy in Fold 5, with
an Accuracy of 0.846, indicating consistent model
performance across folds.
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Figure 2: The results of 5-Fold Cross validation.

3.7 Evaluation metrics

The evaluation metrics of the classification models
provide a quantitative measure of the performance of the
models [25]. In this study, four fundamental evaluation
metrics were employed to assess the performance of the
classification models: Accuracy, Precision, Recall, and
Fl-score. These metrics provide a comprehensive
understanding of model performance, especially in the
context of imbalanced or complex classification problems.

e Accuracy

Accuracy is the ratio of correctly predicted
observations to the total observations. It is a general
measure of a model’s effectiveness.

Accuracy serves as a baseline metric to understand the
overall performance of the model. However, it may be
misleading when dealing with imbalanced datasets, which
is why complementary metrics are also considered.
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e Precision

Precision is the ratio of correctly predicted positive
observations to the total predicted positives. It reflects
how well the model avoids false positives.

Precision is particularly valuable in scenarios were
predicting a false positive may lead to unnecessary actions
or costs.

o Recall (Sensitivity)

Recall is the ratio of correctly predicted positive
observations to all actual positives. It shows how well the
model detects actual positive cases. Recall is emphasized
when it is more critical to identify all positive cases, even
at the cost of some false positives.

e Fl-score

The F1-score is the harmonic mean of Precision and
Recall. It provides a single metric that balances both
concerns, particularly useful when class distribution is
uneven. The F1-score provides a consolidated metric for
overall classification performance, particularly useful
when neither precision nor recall alone is sufficient for
model evaluation.
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in environmental science are helpful and important to
predict occurrences such as the spread of pollution,
climate change, and water resource availability. The
models are helpful in supporting sustainability
management and conservation. Water quality prediction
grounded on models such as ETC and SVC is among the
most vital inputs into the planning and regulation of water
quality.

Most advanced optimization techniques, such as
TSOA and CGO, have been employed in the enforcement
of SVC and ETC for the much more improved
classification of water quality according to pH. As a
result, the base models ETC and SVC are involving the
application of optimizers to constitute hybrid models such
as ETTS, ETCG, SVTS, and SVCG. Performance checking
of the derived hybrid models is to be done for water
quality prediction with respect to the pH level.

e Hyperparameters’ results

In machine learning, hyperparameters are essential
settings defined prior to training that influence model
performance and learning behavior. Unlike trainable

Accuracy = TP +TN (39) parameters, hyperparameters must be optimized to

TP+ FP +TN + FN achieve the best results. In this study, random search was

Precision = TP (40) used to tune the hyperparameters of the proposed SVC-
TP + FP and ETC-based hybrid models.

Recall = — L2 (41) _As shown in Tables 2 and 3, ETC-based models were

TP + FN optimized using parameters such as n_estimators,

F1 — score = 2.Tp (42)  max_depth, min_samples_split, min_samples_leaf, and

2.TP+FP+FN

4 Result and riscussion

Prediction is actually something quite central to scientific
research and practical decision-making, dealing with the
estimation of the future state or event given current and
historical data. Precise predictions are important in diverse
fields such as meteorology to finance, for which the
information furnished stands useful in planning, risk
management, and policy development. Predictive models

max_leaf_nodes. For example, ETTS used n_estimators =
143 and max_leaf _nodes = 1431, while ETCG had higher
values like n_estimators = 1805 and max_leaf _nodes =
17090.

SVC-based models were tuned with C and gamma.
SVTS used C = 103.098, gamma = 138.373, while SVCG
had C = 679.000, gamma = 111.500. The base SVC and
ETC models retained simpler, default configurations. This
tuning improved accuracy and computational efficiency
across all hybrid models.

Table 2: The results of Hyperparameters for ETC-based hybrid models.

Models Hyperparameter
n_estimators max_depth min_samples _split | min_samples leaf | max_leaf nodes
ETTS 143 143 0.001 0.000 1431
ETCG 1805 142 0.972 0.500 17090
ETC 100 None 2.000 1.000 None

Table 3: The results of Hyperparameters for SVC-based hybrid models.

Models Hyperparameter
C gamma
SVTS 103.098 138.373
SVCG 679.000 111.500
SVvC 1.000 scale

e Conve rgence curves

successive iterations, with the y-axis representing model

Figure 3 illustrates the convergence curves of the
proposed hybrid models, which combine machine learning
classifiers (SVC and ETC) with metaheuristic
optimization algorithms (TSOA and CGO). The figure
captures the progression of classification accuracy across

accuracy and the x-axis denoting the number of iterations.

The convergence behavior varies notably across the
hybrid configurations. The SVTS model (SVC optimized
by TSOA) exhibits a steady, linear improvement in
accuracy, reflecting a stable convergence pattern. In
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contrast, the SVCG model (SVC optimized by CGO)
demonstrates a less consistent trajectory, with noticeable
fluctuations in accuracy, though an overall upward trend
is still evident.

Similarly, the ETTS model (ETC optimized by
TSOA) shows a smooth and consistent increase in
accuracy, indicating robust convergence characteristics.
The ETCG model (ETC optimized by CGO) achieves a

X. Lietal.

sharper rise in accuracy, ultimately reaching a highly
competitive performance level.

Among all models, ETTS achieved the highest final
accuracy of 0.84, showcasing the effectiveness of the
TSOA optimizer with the ETC classifier. Conversely,
SVCG attained the lowest peak accuracy of approximately
0.77, suggesting less stable convergence when SVC is
paired with CGO.

Figure 3: The convergence curve of the four presented hybrid models

Table 4 presents the performance metrics—Accuracy,
Precision, Recall, and F1 Score—for both the training and
testing phases of the base classifiers (ETC and SVC) and
their corresponding hybrid variants (ETTS, ETCG, SVTS,
and SVCG). Additionally, Figure 4 complements these
results with 3D bar plots that provide a visual
representation of the metric distributions for each model,
highlighting comparative strengths in both learning and
generalization capabilities.

Comparing the base model ETC with its hybrids,
ETTS and ETCG, it is evident that both optimized variants
consistently outperform the base model in both training
and testing phases. For example, in the training stage,
ETTS achieved the highest accuracy (0.910), followed
closely by ETCG (0.897), while ETC lagged at 0.881.
Similar trends are observed across Precision, Recall, and
F1 Score. These performance gains continue in the testing
phase, where ETTS and ETCG maintained superior
generalization, with accuracies of 0.778 and 0.770,
respectively, compared to ETC’s 0.750.

Likewise, for the SVC-based models, both SVTS and
SVCG outperformed the baseline SVC during training.
SVTS achieved an accuracy of 0.894, and SVCG recorded
0.879, compared to SVC’s 0.850. Performance

enhancements are also visible in Precision, Recall, and F1
Score. During testing, although the performance gap
slightly narrows, SVTS still outpaces the base model with
an accuracy of 0.760, whereas SVCG and SVC followed
at 0.755 and 0.745, respectively.

The visualized results in Figure 4 reinforces these
findings. The 3D bar plots clearly illustrate the consistent
superiority of hybrid models, particularly ETTS, across all
evaluation metrics. The visual spacing between the bars
reflects the degree of improvement, emphasizing how
optimization algorithms—especially TSOA—enhance
both model learning (training performance) and
generalization (testing performance). The graphics also
highlight that the ETTS model maintains the most
balanced and highest-performing profile among all tested
classifiers.

In summary, the combination of numerical evidence
from Table 4 and graphical insights from Figure 4
confirms that hybrid models deliver significantly
improved performance over their base classifiers. ETTS
stands out as the most effective model, demonstrating the
highest overall accuracy and stability across all metrics in
both training and testing phases.
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Table 4; ETC and SVC bhase models achieved results through the performance evaluators

. Metrics
Section Model Accuracy Precision Recall F1 Score
ETTS 0.910 0.911 0.910 0.910
ETCG 0.897 0.901 0.897 0.897
Trainin ETC 0.881 0.888 0.881 0.880
g SVTS 0.894 0.894 0.894 0.894
SVCG 0.879 0.879 0.879 0.879
SVC 0.850 0.850 0.850 0.849
ETTS 0.778 0.781 0.778 0.778
ETCG 0.770 0.780 0.770 0.769
Testin ETC 0.750 0.762 0.750 0.749
g SVTS 0.760 0.764 0.760 0.760
SVCG 0.755 0.757 0.755 0.755
SVC 0.745 0.746 0.745 0.745
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Figure 4: 3D bar plot for the performance of the models in train and test phases.

Table 4 outlines the performance metrics of base
models and hybrid models. In a similar manner, Table 5
present the models' precision, Recall, and F1 score butin
a more detailed breakdown of machine learning models
that applied to water quality classification based on pH
levels and categorized into Acidic, Basic, and Neutral
conditions. The performance comparison of ETC with
ETTS reveals significant improvements across all pH
conditions. For the Acidic condition, ETC displays an
F1score of 0.842, recall of 0.804, and precision of
0.883, whereas ETTS improves these metrics to 0.874 in
precision, 0.868 in recall, and 0.871 in F1 score. In the
Basic condition, with a precision of 0.919, recall of 0.732,
and F1 score of 0.815, ETC trails behind ETTS, which
performs better with a precision of 0.890, recall of 0.807,
and F1score of 0.846. ETC reports an F1 score of
0.852, recall of 0.919, and precision of 0.794 for the

Neutral condition. Whereas ETTS achieves higher scores
with 0.860 in precision, 0.901 in recall, and 0.880 in
F1lscore. These numbers highlight the enhanced
performance of ETTS, particularly in recall and
F1lscores, demonstrating the effectiveness of
optimization. Both ETC and SVC show substantial
improvements in precision, recall, and F1 scores when
optimized with TSOA and CGO, respectively. For
instance, in the acidic condition, SV C achieves a precision
of 0.800 while SVTS outperforms SVC by improvement
in precision to 0.865. The optimized models demonstrate
superior capability in accurately classifying water quality,
with ETTS and ETCG performing notably well in various
metrics. Among all the models evaluated, the ETTS model
emerges as the best performer, achieving the highest
overall accuracy in pH —based water quality
classification.

Table 5: Model performance in the three different conditions

Model Condition Metric P-value
precision recall f1-Score
Acidic 0.874 0.868 0.871 0.032
ETTS Basic (alkaline) 0.890 0.807 0.846 0.027
Neutral 0.860 0.901 0.880 0.018
Acidic 0.887 0.834 0.860 0.04
ETCG Basic (alkaline) 0.922 0.764 0.836 0.035
Neutral 0.821 0.921 0.868 0.022
ETC Acidic 0.883 0.804 0.842 0.045
Basic (alkaline) 0.919 0.732 0.815 0.039
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Neutral 0.794 0.919 0.852 0.025
Acidic 0.865 0.841 0.853 0.048
SVTS Basic (alkaline) 0.841 0.811 0.826 0.041
Neutral 0.852 0.883 0.867 0.029
Acidic 0.840 0.825 0.832 0.052
SVCG Basic (alkaline) 0.827 0.804 0.815 0.047
Neutral 0.849 0.872 0.860 0.031
Acidic 0.800 0.801 0.801 0.059
SvC Basic (alkaline) 0.814 0.764 0.788 0.053
Neutral 0.833 0.855 0.844 0.010

Figure 5 depicts a line plot illustrating the numerical
differences in how well different machine learning models
perform when used to classify water quality based on pH.
This figure's main purpose is to compare various models'
efficaciousness visually. Particularly focusing on the
performance improvements achieved by incorporating
sophisticated optimization algorithms. ETC and its hybrid
version, ETTS, show distinct differences. ETC correctly

predicts 558, 348, and 205 samples in neutral, acidic, and
alkaline groups. While ETTS improves upon this with a
predicted value of 547, 376, and 226 samples in neutral,
acidic, and alkaline, indicating an enhancement in
accuracy. This improvement is quantified as a percentage
difference in the accuracy of the models, with ETTS, in
general, showing lower percentage differences compared
to ETC, highlighting its enhanced predictive capability.
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Figure 5: Line plot representing the number of correct predictions by ETC-based models

A comprehensive evaluation of each model's accuracy
can be done thanks to the confusion matrix, which is
depicted in Figure 6 and compares actual and predicted
classifications. An illustration of the confusion matrix
created by different machine-learning models for
determining the pH-level-based classification of water
quality is shown in Figure 6. Each model's accuracy can
be thoroughly evaluated thanks to the confusion matrix,
which displays actual versus predicted classifications.
ETC predicts acidic samples with 348 correct, three
misclassified as alkaline, and 82 as neutral. For alkaline
samples, it predicts 205 samples correctly, with 12
samples misclassified as acidic and 63 samples as neutral.
Neutral samples are predicted, with 558 samples
correctly, 34 as acidic, and 15 as alkaline. When
optimized using the Transit Search Optimization
Algorithm, the hybrid model (ETTS) shows improved

performance. ETTS predicts acidic samples with
376 correct, seven misclassified as alkaline, and 50 as
neutral. For alkaline samples, ETTS predicts
226 correctly, with 15 misclassified as acidic and 39 as
neutral. Neutral samples are predicted with 547 correctly,
39 as acidic, and 21 as alkaline. Comparatively, the ETTS
model outperforms its base model ETC, especially in
predicting neutral samples with significantly higher
accuracy. In acidic classification, ETTS shows slight
improvement with fewer misclassifications. For alkaline
predictions, both models show comparable performance,
though ETTS has a marginally better accuracy. Among all
models, the best performance is observed in the ETTS
model, indicating its superior capability in accurate pH —
based water quality classification.



294 Informatica 49 (2025) 281298

Acidic  Alkaline  Neutral
Acidic 376 @ 7 @ so
Aalkaline @ 15 226 @ 39
Neutral @ 39 [ 21 [J547
ETTS
Acidic
Acidic [ 348
Aalkaline [ 12
Neutral [ 34

@ 3
[ 205
8 15

X. Lietal.
Acidic Alkaline  Neutral
Acidic 361 @ 4 @ 68
Aalkaline @ 12 214 @ 54
Neutral @ 34 @ 14 |£)559
ETCG
Alkaline  Neutral

0 a2
B 63
[ 558
ETC

Figure 6: Confusion matrix for the accuracy of each model.

To evaluate the classification performance of the
models in predicting pH-based water quality, the Receiver
Operating Characteristic (ROC) curves in Figure 7 are
analyzed. These curves illustrate the trade-off between the
true positive rate and the false positive rate at various
threshold settings, providing a visual assessment of each
model's diagnostic ability.

The micro-average ROC curve (green dashed line)
aggregates the contributions of all classes, treating each
prediction equally. It reflects the classifier's overall ability
across all samples. The curve’s steep initial rise indicates
strong overall performance, with high sensitivity achieved
at low false positive rates.

The macro-average ROC curve (red dashed line)
calculates the average performance across classes by
assigning equal weight to each one, regardless of class
imbalance. It provides a balanced view of performance
and shows a smoother increase in true positive rate
compared to the micro-average.

Performance across specific pH categories is also
shown:

e The acidic class (brown line) demonstrates
moderate sensitivity at the outset, improving with
higher false positive rates.

e The basic (alkaline) class (cyan line) exhibits the
most favorable curve, with a sharp ascent
indicating excellent classification performance at
low false positive rates.

e The neutral class (purple line) shows a more
gradual increase, reflecting a balanced but less
pronounced trade-off between true and false
positives.

Overall, the cyan curve representing basic pH
conditions shows the highest classification accuracy,
while the green micro-average curve confirms the
robustness of the models in handling all classes
collectively.
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Figure 7: The ROC curves for the performance of the most efficient hybrid models

e Wilcoxon test

Figure 8 presents a radar plot of the Wilcoxon test

statistics for all single and hybrid models: SVC, SVTS,

SVCG, ETC, ETTS, and ETCG. The plotted values reflect

the Wilcoxon test statistic for each model when compared
pairwise, quantifying relative performance in terms of
statistical ranking.

From the figure:
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e SVC records the highest Wilcoxon statistic
(13,521), indicating that its performance
significantly differs—statistically outperforming
or underperforming—relative to others.

e ETTS also scores high (12,648.5), suggesting a
strong and consistent performance validated by
statistical evidence.

e In contrast, SVTS and SVCG have lower
statistics (9313 and 10,945.5, respectively),
pointing to less statistical dominance or more
variability across comparisons.
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e ETCG and ETC show intermediate values (7725
and 10,063.5), reflecting moderate performance
consistency.

The shaded blue region visually represents the
distribution and spreads of the Wilcoxon test statistics
across all models. A wider area suggests higher variability
in model ranks, while more compact regions suggest more
stability.

Overall, the Wilcoxon analysis complements
accuracy-based evaluation by statistically confirming the
comparative significance of the observed model
performance differences.

:l stat
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Figure 8: The results of Wilcoxon test for models’ performance.

5 Discussion

5.1 Limitations of the study

While the proposed hybrid models (ETTS, ETCG, SVTS,
and SVCG) demonstrated superior classification
performance over their baseline counterparts, the study
presents several limitations that warrant attention. First,
the dataset used for model training and evaluation
comprises only 1,320 daily records, which may limit the
generalizability of the models across diverse geographical
regions or seasonal variations. A larger and more
heterogeneous dataset could improve robustness and
reduce the risk of overfitting. Secondly, the models focus
solely on pH as the output classification parameter,
potentially neglecting the complex interactions of other
water quality indicators (e.g., turbidity, nitrate levels) that
may jointly influence classification outcomes.

5.2 Potential future studies

Building upon the promising results of this study, future
research can explore several enhancements. One key
direction is the expansion of the dataset, both temporally
and spatially, to include diverse water bodies, seasonal
dynamics, and additional environmental indicators. This
would allow for the training of more generalizable models

applicable to broader real-world conditions. Additionally,
the integration of deep learning architectures—such as
recurrent neural networks (RNNSs) or convolutional neural
networks (CNNs)—can be investigated for their potential
to capture temporal or spatial correlations in water quality
trends. Furthermore, an ensemble framework combining
multiple hybrid models could be tested using voting or
stacking strategies to further improve classification
performance.

5.3 Practical implications of the study

The findings of this study highlight the practical viability
of hybrid machine learning and optimization frameworks
in environmental monitoring applications. By accurately
classifying water quality based on pH levels, the proposed
models can assist water resource managers, environmental
agencies, and public health officials in making informed
decisions regarding water treatment and ecosystem
preservation. The enhanced predictive accuracy of the
hybrid models ensures timely identification of acidic or
alkaline deviations, which are critical for preventing metal
toxicity, preserving aquatic biodiversity, and maintaining
water usability for irrigation and drinking purposes.
Moreover, the lightweight nature of the models (especially
ETC and SVC) makes them suitable for deployment in
embedded or real-time monitoring systems, offering
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scalable solutions for smart water quality surveillance in
both urban and rural settings.

5.4 Comparison between the results of
present study and previous works

Table 6 presents a comparative analysis between the
proposed hybrid model (ETC+TSOA) from the present
study and several existing state-of-the-art methods in the
domain of water quality classification. The comparison is
based on classification accuracy, which is a key
performance metric. Among the referenced studies, Putra
et al. [17] achieved the highest accuracy (0.9828) using a
Random Forest Regressor (RFR), followed closely by
Idroes et al. [15] with a CATBoost model (0.9781).
Sasmita et al. [16] employed a K-Nearest Neighbors
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(KNN) classifier and reported an accuracy of 0.9067. In
contrast, the present study's ETC+TSOA model attained
an accuracy of 0.91, outperforming the KNN-based model
and demonstrating competitive results relative to more
complex ensemble methods.

While the accuracy of the ETC+TSOA model is
slightly lower than that of RFR and CATBoost, it is
important to note that the proposed model leverages
advanced metaheuristic optimization to enhance model
performance while maintaining a balance between
interpretability, computational efficiency, and
generalization capability. This underscores the value of
hybrid machine learning and optimization approaches,
especially in  resource-constrained or real-time
environmental monitoring contexts.

Table 6: The Comparison between the results of present study and previous works.

Article Reference Model Metrics
Accuracy
Idroes et al. [15] CATBoost 0.9781
Sasmita et al. [16] KNN 0.9067
Putra et al. [17] RFR 0.9828
Present study - ETC+TSOA 0.91

6 Conclusion

Water quality is a very important aspect in which
environmental health and safety can be ensured. For
understanding aquatic ecosystems for the purpose of
monitoring and management, proper classification of
water quality is required, mainly based on their pH levels.
This research article applied various methods of artificial
intelligence and optimization algorithms for the
categorization of the quality of water based on pH levels,
hence providing a robust framework for environmental
monitoring. In this research, the dataset used contains
1320 records in total; each record has information on the
following input parameters: Date, Salinity, Dissolved
Oxygen, secchi Depth, Water Depth, Water Temperature,
and Air Temperature. The output parameter in this
analysis is pH, or the level of acidity, alkalinity, and
neutrality indicative of water. These are daily records;
hence, they provide a holistic view of how the respective
environmental matters are changing from day to day.

In the presented study, SVC and ETC were used for
water quality prediction by considering pH as one of the
main influential parameters. In the present study, a more
advanced class of optimizers in the form of the Transit
Search Optimization Algorithm and Chaos Game
Optimization were coupled with the svcand ETC to
improve their corresponding predictive accuracies. The
obtained results reflected that the hybrid models ETTS,
ETCG, SVTS, and SVCG outperformed their base model
with a significant difference in performance.

Comparing ETTS, when all models are taken into
consideration against the ETC base model, it improves
Accuracy by 3.73%, with increased Precision by 2.49%,
boosted Recall by 3.73%, and increased F1 Score by
3.87%. On the other hand, ETCG outperforms ETC with

improved Precision by 2.36%, increased Accuracy and
Recall by 2.67%, and a better F1 Score by 2.67% also.
For SVC models, SVTS increased Accuracy and Recall by
2.01%, increased Precision by 2.41%, and also increased
the F1 Score by 2.01% from the base SVC. Similarly,
SVCG also outperformed SV C, with increases of 1.34% in
Accuracy and Recall, and it boosted Precision by 1.47%.
ETTS turned out to be the best improvement among all,
with the highest scores on all metrics.

High capability of hybrid models to provide more
reliable and accurate pH-based water quality prediction
underlines the potential for such advanced techniques in
environmental monitoring and management. These results
demonstrate how combining machine learning with
advanced optimization algorithms yields significantly
higher predictive accuracy and reliability for pH-based
water quality classification. The usefulness of hybrid
models in these applications, due to their increased
accuracy, makes them very handy tools in the prediction
of water quality, therefore helping in water body
management and conservation.
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