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Water quality—defined through its physical, chemical, and biological parameters—is essential for critical 

applications such as drinking and irrigation. Among these parameters, pH plays a significant role by 

influencing metal solubility and nutrient availability, thereby impacting aquatic ecosystems. In this study, 

Support Vector Classifier (SVC) and Extra Trees Classifier (ETC) were employed to classify water quality 

based on pH values. To boost classification accuracy, the models were hybridized using two advanced 

metaheuristic algorithms: Transit Search Optimization Algorithm (TSOA) and Chaos Game Optimization 

(CGO), resulting in hybrid variants ETTS, ETCG, SVTS, and SVCG. Comprehensive experiments were 

conducted using standard evaluation metrics. The ETTS model achieved the best performance, with 

training accuracy of 0.910 and testing accuracy of 0.778, along with a precision of 0.911, recall of 0.910, 

and F1 score of 0.910 in training. In contrast, the base ETC model recorded training and testing 

accuracies of 0.881 and 0.750, respectively. Similarly, SVTS and SVCG outperformed the base SVC 

model, with SVTS achieving training and testing accuracies of 0.894 and 0.760, compared to SVC’s 0.850 

and 0.745. The proposed hybrid framework outperforms traditional SVC and ETC models and 

demonstrates superior classification performance compared to standard non-optimized baselines. This 

underscores the value of integrating advanced optimization techniques with machine learning for robust 

and reliable water quality assessment. The framework is a promising tool for environmental monitoring, 

promoting sustainable water resource management and public health protection. 

Povzetek: Študija je razvila hibridne modele strojnega učenja za klasifikacijo kakovosti vode na podlagi 

pH-vrednosti. Kombinacija klasifikatorjev Extra Trees (ETC) in Support Vector Classifier (SVC) z 

metahevrističnimi algoritmi TSOA in CGO (npr. ETTS, SVTS) je izboljšala klasifikacijo. Model ETTS je 

dosegel najboljšo zmogljivost, kar potrjuje prednost hibridnega okvira za okoljsko spremljanje. 

 

1 Introduction 

1.1 Background 

Water is as familiar a material as air, earth and concrete, 

Water is necessary for life for humans and other forms of 

life, much like the other three materials—well, maybe 

with exception of concrete. It is voluminous: about 3.5 % 

of the land area is permanently flooded, whereas two 

thirds of the world is under the oceans. About the 

hydrosphere, water is continuously evaporating from the 

Earth's surface into condensing in the atmosphere, 

reappearing as liquid. Earth's supply of water is now at an 

all-time high and will never be depleted [1]. Although 

abundant, the water resources distributed unevenly in 

different regions in some serious respects impede certain 

regions. As the population rises, industrialization 

increases, and even more factors such as climate change  

 

enhance problems relating to water shortages or pollution. 

Efficiency in water management and water quality 

prediction plays an important role in ensuring safety and  

sustainability in the use of water [2]. These are some of 

the issues that emanate from a lack of adequate 

hydrological cycles, methods of water management, and 

knowledge concerning the various human activities 

impacting catchments of water. To this end, technological 

and policy development remains highly critical to ensure 

the sustainability of the use and delivery of water, 

protection of public health, and economic development 

[3].  

Water quality is basically related to its physical, 

chemical, and biological characteristics, making it suitable 

for various purposes, such as drinking, gardening, and 

leisure activities. During any water quality assessment, 

turbidity, the microbiological content, and concentrations 

of both organic and inorganic compounds are amongst the 

mailto:lxl123101321@163.com


282   Informatica 49 (2025) 281–298                                                                                                                                     X. Li et al. 

more commonly measured parameters [4]. The 

degradation of water quality is a consequence of the 

current process of urbanization, agricultural runoff, and 

industrial wastes. Some contaminants such as heavy 

metals, pesticides, and viruses may result in serious 

human health hazards and ecosystem health. Good water 

grading control will require technological advancement, 

community participation, and regulatory mechanisms. The 

implementation of best practices in pollution prevention, 

wastewater treatment, and watershed management will 

ensure the sustainability of water resources through better 

maintenance of their quality [5]. 

One of the factors influencing the 𝑝𝐻 of water and 

hence its chemical behavior and its biological availability 

is the concentration of hydrogen ions in it. Basically, 𝑝𝐻 

is the measure of the concentration of hydrogen ions in 

water. It runs on a scale from 0 to 14, with 7 to 8 being 

considered neutral, 0 to 7 considered acidic, and 8 to 14 

considered basic. 𝑃𝐻 influences the solubility of metals 

and nutrients' availability, along with activity concerning 

aquatic organisms.  

Machine learning, as a multidisciplinary subset of 

artificial intelligence, develops algorithms with which 

computers can evaluate, comprehend, and predict data [6–

9]. It has powerful capabilities for identification, data 

analysis, and decision making and has already revamped 

many disciplines. The application of machine learning 

techniques is on the increase in environmental research to 

enhance our understanding and management through the 

modeling of environmental processes, analysis of large-

scale information, and predictions of future conditions 

[10]. The most promising application would, therefore, be 

in the monitoring of water quality through management 

using machine learning. With the derivation of large data 

sets from sensors and satellite images, coupled with 

historical records, it will be possible for machine learning 

models to develop leading trends, anomalies, and 

predictions of water quality parameters with high accuracy 

[11] [12]. These capabilities enable more proactive and 

effective water management strategies, reducing 

pollution, optimizing resource allocation, and protecting 

public health. The integration of machine learning into the 

water quality monitoring system is one of the huge leaps 

forward in environmental science and technology [13] 

[14]. 

1.2 Research gaps and objectives 

Despite the increasing application of ML in water quality 

prediction, significant challenges persist. Traditional 

approaches often struggle with the nonlinearity and 

complex variability of environmental data, which limits 

their predictive accuracy and generalizability across 

diverse contexts. Furthermore, while various studies have 

employed models like MLR, ANN, and SVM, many lack 

the integration of robust optimization algorithms to fine-

tune model parameters and enhance performance. 

Another notable gap is the underutilization of 

ensemble tree-based methods such as the ETC, which are 

known for their resilience to noise and their ability to 

capture intricate relationships within high-dimensional 

datasets. Additionally, real-time pH prediction, a critical 

parameter in assessing water quality, has not been 

extensively explored using hybrid ML-optimization 

techniques, especially in scenarios where both historical 

and real-time data are available. 

To address these gaps, this study proposes a novel 

framework that integrates SVM, ETC, TSOA and CGO. 

These techniques are applied to predict and classify water 

pH levels using historical and sensor-based real-time 

datasets. The objectives of this research are: 

• To develop and compare ML models capable of 

accurately predicting water pH levels using both 

historical and real-time input data; 

• To optimize model performance using the Chaos 

Game Optimization algorithm, ensuring more 

reliable and efficient learning from complex 

datasets; 

• To evaluate the classification capabilities of the 

Extra Trees Classifier and SVM in distinguishing 

water quality categories based on pH thresholds; 

• To demonstrate the feasibility of a hybrid ML-

optimization approach for proactive and 

sustainable water quality monitoring. 

2 Related works 
Idroes et al. [15] conducted a study to predict urban air 

quality in DKI Jakarta, Indonesia, using the CATBoost 

machine learning algorithm, which is known for handling 

categorical features effectively, managing missing values, 

and reducing the risk of overfitting. The research utilized 

air quality data collected from Jakarta's monitoring 

stations over the period of 2010 to 2021. The dataset 

included five key pollutants: PM₁₀, SO₂, CO, O₃, and NO₂. 

After a preprocessing stage that involved data cleaning 

and normalization, the authors split the dataset into 

training (80%) and testing (20%) subsets. The CATBoost 

model was trained and evaluated using standard 

performance metrics, where it achieved high accuracy 

(0.9781), precision (0.9722), and recall (0.9728). A 

feature importance analysis revealed that ozone (O₃) was 

the most significant contributor to air quality variation, 

followed by PM₁₀. Sasmita et al. [16] investigated the 

classification of air quality levels in Indonesia using the 

Plume Air Quality Index (PAQI), which incorporates 

pollutant concentrations such as PM₂.₅, PM₁₀, NO₂, and 

O₃. The study focused on evaluating classification 

performance using Decision Tree and K-Nearest Neighbor 

(k-NN) algorithms, applied to secondary data collected 

from 33 provincial capitals between July 1 and December 

31, 2022. Unlike prior studies that typically assessed 

model performance solely based on accuracy, this 

research adopted a more comprehensive evaluation 

approach by incorporating precision, recall, and F1-score 

alongside accuracy. The results demonstrated that the 

Decision Tree classifier outperformed k-NN, achieving 

performance scores of 90.67% accuracy, 90.61% 

precision, 90.67% recall, and 90.63% F1-score. These 

findings suggest that tree-based models can provide robust 

classification capabilities for air quality indexing, 

supporting more reliable monitoring and decision-making 
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regarding urban environmental health. Putra et al. [17] 

addressed the critical issue of deteriorating air quality in 

Indonesia’s major cities, with a focus on Jakarta, where 

urbanization and anthropogenic activities such as 

vehicular emissions, industrialization, and waste 

accumulation have significantly impacted atmospheric 

conditions. Their study aimed to classify daily air quality 

using machine learning algorithms—specifically the C5.0 

algorithm and Random Forest—based on the Air Pollution 

Standard Index (ISPU). These models were applied to 

datasets from 2017 and 2018, consisting of pollutant 

parameters including CO, NO₂, SO₂, PM, O₃, and NO. 

Their classification approach emphasized the importance 

of accurately identifying air quality categories to support 

policy-making. The models demonstrated high predictive 

accuracy, with C5.0 and Random Forest achieving 

99.74%, 99.22%, and 99.97% accuracy on the 2017 

dataset and 98.28%, 98.85%, and 97.42% on the 2018 

dataset, respectively. The analysis identified O₃ (ozone) as 

the most influential factor in classifying air quality, with 

most days falling under the "Moderate" ISPU category. 

This work highlights the potential of decision tree-based 

algorithms in supporting urban air quality management 

through accurate pollutant classification. Saxena and 

Shekhawat [18] proposed a novel mathematical 

framework to compute a Cumulative Index (CI) for air 

quality classification based on the concentrations of four 

major pollutants: SO₂, NO₂, PM2.5, and PM10. This CI 

served as a compact, interpretable metric reflecting the 

combined impact of pollutants on air quality. Using these 

CI values as input features, they developed a two-class 

Support Vector Machine (SVM) model to classify air 

quality as either good or harmful. To optimize the 

performance of the SVM, the authors employed the Grey 

Wolf Optimizer (GWO) for parameter tuning, aiming to 

maximize classification accuracy. The methodology was 

tested on real datasets from three major Indian cities—

Delhi, Bhopal, and Kolkata. The results indicated that the 

proposed classifier effectively distinguished between the 

two air quality categories, with high classification 

performance across all test locations. The study concluded 

that the CI-based classification framework was both 

computationally efficient and aligned well with actual air 

quality data, making it a promising tool for public health 

and environmental monitoring. The summary of the 

previous studies reported in Table 1. 

Table 1: The summary of the related works. 

Study Methodology Dataset Metrics’ results Key Findings 

Idroes et al. 

[15] 

CATBoost machine 

learning for air quality 

prediction. 

Air quality data from 

Jakarta monitoring 

stations (2010-2021). 

Pollutants: PM₁₀, SO₂, 

CO, O₃, NO₂. 

Accuracy: 0.9781, 

Precision: 0.9722, 

Recall: 0.9728 

Ozone (O₃) and PM₁₀ 

most significant 

pollutants. 

Sasmita et 

al. [16] 

Classification using 

Decision Tree and k-NN 

algorithms. 

Secondary data from 

33 provincial capitals 

in Indonesia (2022). 

Pollutants: PM₂.₅, 

PM₁₀, NO₂, O₃. 

Accuracy: 90.67%, 

Precision: 90.61%, 

Recall: 90.67%, F1: 

90.63% 

Decision Tree 

outperformed k-NN 

for classification 

tasks. 

Putra et al. 

[17] 

Classification using C5.0 

and Random Forest 

algorithms. 

Air quality data (2017-

2018). Pollutants: CO, 

NO₂, SO₂, PM, O₃, NO. 

C5.0: 99.74% 

(2017), 98.28% 

(2018), RF: 99.22% 

(2017), 98.85% 

(2018) 

Ozone (O₃) as the 

most influential 

factor in classifying 

air quality. 

Saxena and 

Shekhawat 

[18] 

Support Vector Machine 

(SVM) classification with 

Grey Wolf Optimizer 

(GWO) for parameter 

tuning. 

Real datasets from 

three Indian cities 

(Delhi, Bhopal, 

Kolkata). Pollutants: 

SO₂, NO₂, PM₂.₅, PM₁₀. 

Classification 

performance: High 

accuracy for all test 

locations 

CI-based 

classification 

framework is 

computationally 

efficient. 

 

3 Materials and methodology   

3.1 Data gathering 

Water quality data were collected in a systematic manner 

and analyzed for different environmental parameters and 

their relations to 𝑝𝐻 values. The dataset used in the present 

study derived from [19] incorporates 1320 records in 

total, and each of the following input parameters has been 

included in the dataset: Date, Salinity, Dissolved Oxygen, 

Secchi Depth, Water Depth, Water Temperature, and Air 

Temperature. The output variable analyzed here is the 𝑝𝐻 

level of the water, whether it be basic, alkaline, or acidic. 

Data recording over some period gathered daily data on 

water quality. In this case, the 'Date' variable provides for 

the exact day  (a day in every two weeks) certain data was 

taken and offers a time-series track showing 

environmental change over time. Salinity, representing the 

concentration of dissolved salts in water, can directly 

influence pH levels by altering the ionic balance and 

buffering capacity of the water body. Variations in salinity 

may therefore contribute to shifts in pH, particularly in 

estuarine and coastal environments. Dissolved oxygen 

(DO), essential for aquatic life, can also impact pH 

through biological processes such as respiration and 
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photosynthesis, which either consume or release CO₂, 

thereby influencing acidity. Secchi Depth, a measure of 

water transparency determined by noting the depth at 

which a Secchi disk disappears, can serve as an indirect 

indicator of photosynthetic activity, which affects CO₂ 

levels and thus the pH. Water Depth at the sampling 

location affects both light availability and thermal 

stratification, which can influence biological activity and 

chemical reactions that regulate pH. Water Temperature 

and Air Temperature offer insight into thermal conditions 

that affect metabolic rates of organisms and chemical 

equilibria, both of which can influence pH values. The 

primary focus of this study was on pH levels, a key 

parameter in assessing water quality. In the dataset, pH 

values were categorized and analyzed as follows: Acidic 

(pH < 7) with 433 instances, Neutral (pH = 7) with 617 

instances, and Basic (pH > 7) with 280 instances. Each of 

the variables was examined in relation to these pH 

categories to explore their predictive relevance. 

Figure 1. consists of several parallel plots, the 𝑥 −
𝑎𝑥𝑖𝑠 in each plot represents the total number of samples, 

providing a consistent framework for comparing the 

distribution of each parameter. 𝑇ℎ𝑒 𝑦 − 𝑎𝑥𝑖𝑠, 𝑣𝑎𝑟𝑖𝑒𝑠 

according to the parameter being measured, showing the 

specific quantity for each sample. The red dots effectively 

illustrate the range and concentration of values for each 

parameter, offering an unambiguous graphic depiction of 

the data's distribution. For instance, the clustering of red 

dots below 0.4 meters for water depth highlights that most 

water samples were taken from shallow depths, with 

deeper samples being rare. The output 𝑝𝐻 plot illustrates 

the red dots form distinct horizontal bands, suggesting that 

𝑝𝐻 measurements are discrete rather than continuous. 

This discrete distribution is crucial for classifying water 

quality based on 𝑝𝐻 levels. 

To support the development and execution of the 

proposed models, a high-performance desktop 

workstation was utilized. This system is equipped with an 

Intel® Core™ i7-3770K processor clocked at 3.50 GHz 

and complemented by 16 GB of RAM, ensuring efficient 

processing and multitasking capabilities. The operating 

system used was Windows 11 Pro (64-bit), running on an 

x64-based architecture. Visual computations and 

graphical rendering were handled by an NVIDIA GeForce 

GT 640 graphics card, which contributed to a responsive 

and stable graphical environment. A 1 TB internal hard 

disk served as the primary storage medium, providing 

ample space for managing datasets and associated files. 

All programming tasks were conducted using Python. 

The scikit-learn library formed the foundation for building 

and assessing machine learning algorithms. Data 

preparation and numerical analysis were facilitated by 

Pandas and NumPy, respectively. To aid in visual 

interpretation of results, Matplotlib was employed, 

enabling clear and informative graphical outputs 

throughout the analysis process. 

 

Figure 1: The parallel plot of the inputs and outputs variables 
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3.2 Support vector classification 

Support Vector Classification (SVC) is a supervised 

learning algorithm rooted in the structural risk 

minimization principle of Support Vector Machines 

(SVM) [20]. It operates by mapping input features into a 

higher-dimensional space through non-linear kernel 

transformations, enabling the separation of data that is not 

linearly separable in the original feature space. In this 

transformed space, SVC constructs an optimal hyperplane 

that maximizes the margin — defined as the distance 

between the hyperplane and the closest data points from 

each class, known as support vectors — while 

simultaneously minimizing classification errors [21]. This 

balance between margin maximization and error 

minimization contributes to the model’s generalization 

capability and robustness. 

𝑚𝑖𝑛𝑤,𝑏,∈

‖𝑊‖2

2
+ 𝐶𝑠𝑣𝑐 ∑ ∈𝑖

𝑁

𝑖=1

 (1) 

𝑦𝑖(𝑤
𝑇 . ∅(𝑥𝑖) + 𝑏) ≥ 1 −∈𝑖           𝑖 = 1, . . . , 𝑁 (2) 

∈𝑖≥ 0                                               𝑖 = 1, . . . , 𝑁 (3) 

The function ∅(𝑥𝑖) represents a nonlinear mapping 

that projects each input observation 𝑥𝑖, defined by its 

explanatory variables, into a higher-dimensional feature 

space where linear separation of classes becomes more 

feasible. Within this space, 𝑤 denotes the weight vector 

that defines the orientation of the separating hyperplane, 

while 𝑏 is the bias term that shifts the hyperplane to 

achieve optimal separation. The parameter 𝐶𝑠𝑣𝑐 serves as 

a regularization factor that balances the trade-off between 

maximizing the margin and minimizing classification 

errors. The slack variables ∈𝑖 quantify the degree to which 

individual observations violate the margin constraints, 

allowing for soft-margin classification to accommodate 

misclassified or non-linearly separable data points. 

Determining the optimal hyperplane, as formulated in 

Eq. (4), entails maximizing the margin between classes in 

the high-dimensional feature space. This objective is 

mathematically achieved by minimizing the Euclidean 

norm of the weight vector, which directly corresponds to 

maximizing the margin width. Simultaneously, the model 

incorporates a penalty for misclassified instances to ensure 

a balance between model complexity and classification 

accuracy. Ultimately, the predicted output labels indicate 

the class membership of each sample, based on their 

position relative to the decision boundary. 

𝐷(𝑥𝑖) = 𝑊𝑇𝜑(𝑥𝑖) + 𝑏  (4) 

The computational complexity of the primal 

formulation is primarily dependent on the number of input 

features (dimensionality), whereas the dual formulation's 

complexity scales with the number of training samples. 

Therefore, in scenarios involving high-dimensional 

feature spaces, it is often more computationally efficient 

and advantageous to employ the dual form of the model, 

as outlined in Eqs. (5–7). 

𝑚𝑎𝑥𝑎 ∑ 𝑎𝑖

𝑁

𝑖=1

−
1

2
∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)

𝑁

𝑖=1

 (5) 

∑𝑎𝑖𝑦𝑖

𝑁

𝑖=1

= 0 (6) 

0 ≤ 𝑎𝑖 ≤ 𝐶𝑠𝑣𝑐                                  𝑖 = 1, . . . , 𝑁 (7) 

A kernel function, denoted as 𝐾(𝑥𝑖 , 𝑥𝑗), computes the 

inner product between pairs of input samples implicitly 

mapped into a high-dimensional feature space, enabling 

nonlinear classification without explicitly performing the 

transformation. Common kernel types include linear, 

polynomial, radial basis function (RBF), and sigmoidal 

kernels, among others. For a kernel to be valid, it must 

satisfy Mercer's conditions—specifically, it must be 

symmetric and positive semi-definite. Extensive studies 

have shown that the RBF kernel, formally defined in Eq. 

(8), is particularly effective for classification problems 

due to its localized response and flexibility. Accordingly, 

the RBF kernel is adopted in our methodology, where the 

hyperparameter 𝛾 governs the inverse of the squared 

radius of influence of the support vectors, effectively 

controlling the decision boundary's smoothness and 

sensitivity to individual data points. 

𝐾(𝑥𝑖 , 𝑥𝑗) = ∅(𝑥𝑖)
𝑅∅(𝑥𝑗) 

= 𝑒𝑥𝑝(−𝛾‖𝑥𝑗 − 𝑥𝑖‖) 
(8) 

Once the optimization process is completed and the 

optimal weight vector and bias term are obtained, the 

trained model can be used to generate predictions for 

unseen samples by evaluating the decision function as 

defined in Eq. (9). 

𝑆𝑉𝐶     𝑦𝑖 = {
−1 𝑖𝑓 𝑤𝑇∅(𝑥𝑖) + 𝑏 ≤ 0

1 𝑖𝑓 𝑤𝑇∅(𝑥𝑖) + 𝑏 > 0
 (9) 

3.3 Extra trees classifier 

The Extra trees classifier, proposed by Geurts et al. [22], 

represents an advanced ensemble learning technique that 

builds upon and extends the Random Forest framework. 

Unlike traditional ensemble methods that rely on 

bootstrapped datasets and deterministic split criteria, Extra 

Trees introduces two levels of randomness to enhance 

model diversity and generalization. First, it selects split 

thresholds at random rather than searching for the most 

optimal ones. Second, instead of using bootstrap 

sampling, it grows each decision or regression tree using 

the entire training dataset. This approach not only 

accelerates the training process but also reduces variance, 

making Extra Trees particularly effective for high-

dimensional and noisy datasets. 

Extra Trees operates by introducing controlled 

randomness into the decision tree construction process, 

particularly for numerical features. At each node, the 

algorithm selects K random features and determines split 

thresholds uniformly at random, rather than through 

traditional optimization. The minimum number of samples 

required to allow further splitting is defined by 𝑛𝑚𝑖𝑛, 

ensuring regularization. Unlike methods that rely on 

bootstrap resampling, Extra Trees trains each of its 𝑀 trees 

on the entire original dataset, promoting stability and 

minimizing bias. For prediction, the ensemble outputs are 

combined using majority voting in classification tasks or 

averaged in regression settings. This explicit 
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randomization strategy—both in attribute selection and 

cut-point determination—significantly reduces variance 

and enhances generalization performance, especially in 

high-dimensional and noisy contexts. Although the 

algorithm exhibits a time complexity of 𝑁 log𝑁, its 

computational efficiency is bolstered by the lightweight 

nature of the node-splitting process. The key 

hyperparameters—𝐾, 𝑛𝑚𝑖𝑛, and 𝑀—govern the diversity 

of splits, regularization, and ensemble size, respectively. 

While the algorithm supports fine-tuning, default 

parameter configurations often yield strong performance, 

making Extra Trees both effective and computationally 

autonomous. 

3.4 Chaos game optimization 

The amalgamation of basic principles of chaotic games 

and fractals provide a mathematical model for the 

algorithm 𝐶𝐺𝑂 [23]. The 𝐶𝐺𝑂 algorithm examines several 

potential solutions (𝑋) for this goal, that depicts a few 

suitable seeds within a sierpinski triangle, so that a group 

of answers that have developed by chance and selection 

changes is maintained by many natural evolution 

algorithms. According to this technique, a few chosen 

variables (𝑥𝑖,𝑗) reflect where these eligible seeds are 

located inside the triangle formed by sierpinski. with every 

potential solution (𝑋𝑖). 

𝑋 =

[
 
 
 
 
 
𝑋1

𝑋2

⋮
𝑋𝑖

⋮
𝑋𝑛]

 
 
 
 
 

=

[
 
 
 
 
 
 𝑥1

1 𝑥1
2 ⋯ 𝑥1

𝑗
⋯ 𝑥1

𝑑

𝑥2
1 𝑥2

2 ⋯ 𝑥2
𝑗

⋯ 𝑥2
𝑑

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑥𝑖
1 𝑥𝑖

2 ⋯ 𝑥𝑖
𝑗

⋯ 𝑥𝑖
𝑑

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑛

1 𝑥𝑛
2 ⋯ 𝑥𝑛

𝑗
⋯ 𝑥𝑛

𝑑]
 
 
 
 
 
 

 (10) 

According to the sierpinski triangle, where 𝑛 is the 

number of eligible seeds and 𝑑 is the seed's dimension. 

Based on random starting positions, these qualifying seeds 

are arranged in the search space. 

𝑥𝑗
𝑗(0) = 𝑥𝑖,𝑚𝑖𝑛

𝑗
+ 𝑟𝑎𝑛𝑑. (𝑥𝑖,𝑚𝑎𝑥

𝑗

− 𝑥𝑖,𝑚𝑖𝑛
𝑗

),     {
𝑖 = 1, 2, … , 𝑛.
𝑗 = 1, 2, … , 𝑑.

 
(11) 

In this approach,  𝑥𝑗
𝑗(0) represents the initial position 

of qualified seeds. The values 𝑥𝑖,𝑚𝑖𝑛
𝑗

 and  𝑥𝑖,𝑚𝑎𝑥
𝑗

 define the 

lower and upper bounds for the jth decision variable of the 

ith candidate. A random number between 0 and 1 guides 

the movement direction. 

Qualified seeds symbolize core concepts from chaos 

theory. These seeds represent candidate solutions in an 

optimization problem, where higher and lower fitness 

values indicate better and worse suitability, respectively. 

To explore the search space, qualified seeds are used 

to construct a Sierpinski triangle—a structure made from 

three points: the current candidate (𝑋𝑖), the group mean 

(𝑀𝐺𝑖), and the global best (GB). This triangle is a basis 

for generating new seeds using a chaos game approach. 

Each triangle uses a virtual die with green and red 

faces to decide movement: green directs the seed toward 

the global best (GB), and red toward the group mean 

(𝑀𝐺𝑖). A random binary value (0 or 1) determines the face. 

This process allows seeds to move stochastically within 

the search space, with randomness and minimal 

movement controlled using factorial-based adjustments. 

𝑆𝑒𝑒𝑑𝑖
1 = 𝑥𝑖 + 𝛼𝑖 × (𝛽𝑖 × 𝐺𝐵 − 𝑀𝐺𝑖),     𝑖 

= 1, 2, … , 𝑛. 
(12) 

Assuming that 𝑋𝑖 represents theith potential solution 

and the randomly generated factorial used to describe 

the limitations of seeds on movement is called 𝛼𝑖. To 

simulate the potential to roll a pair of dice 𝛽𝑖 and 𝛾𝑖 stand 

for a random number of 0 𝑜𝑟 1.  

𝑆𝑒𝑒𝑑𝑖
2 = 𝐺𝐵 + 𝛼𝑖 × (𝛽𝑖 × 𝑋𝑖 − 𝛾𝑖 × 𝑀𝐺𝑖) (13) 

𝑆𝑒𝑒𝑑𝑖
3 = 𝑀𝐺𝑖 + 𝛼𝑖 × (𝛽𝑖 × 𝑋𝑖 − 𝛾𝑖 × 𝐺𝐵),   

𝑖 = 1, 2, … , 𝑛.   
(14) 

A fourth seed is produced by using an additional 

technique to carry out the mutation phase in the search 

space's position updates of the qualified seeds. This update 

of the seed's position is based on arbitrary modifications 

to the choice variables chosen at random. 

𝑆𝑒𝑒𝑑𝑖
4 = 𝑋𝑖(𝑥𝑖

𝑘 = 𝑥𝑖
𝑘 + 𝑅),     𝑘 = [1, 2, … , 𝑑]. (15) 

A random integer in the interval [1, 𝑑] is denoted by 

𝑘, and 𝑅 is a uniformly distributed random number in the 

region [0,1]. 
The 𝐶𝐺𝑂 algorithm's exploration and exploitation rate 

can be controlled and modified by varying the movement 

limits of the seeds, represented by four different 

formulations for 𝛼𝑖. 

𝛼𝑖 = {

𝑅𝑎𝑛𝑑
2 × 𝑅𝑎𝑛𝑑

(𝛿 × 𝑅𝑎𝑛𝑑) + 1
(𝜀 × 𝑅𝑎𝑛𝑑) + (∼ 𝜀)

 (16) 

In this case, 𝛿 and 𝜀 are random integers Rand is a 

random number with a uniform distribution in the interval 

[0,1].  
The process involves evaluating new seeds against 

existing ones to determine their eligibility for inclusion 

within the area used for searching. The new solution 

candidates' quality is evaluated, with better candidates 

retained and seeds with low fitness values removed. The 

replacement procedure is employed to simplify the 

mathematical model and ensure a more efficient 

mathematical method.  

3.5 Transit search algorithm 

Host star number (𝑛𝑠) and the definition of signal-to-noise 

ratio (𝑆𝑁) is algorithm structure. The transit model 

determines 𝑆𝑁 Standard deviation of measurements made 

outside of transit is used to estimate noise. There is always 

noise in photons received from stars. The starting 

population for 𝑇𝑆 is equal to the product of 𝑛𝑠 and 𝑆𝑁 

[24].  

• Galaxy phase 

After identifying habitable zones, the program 

chooses a galactic center at random from the search space. 

The optimal stellar systems are found by evaluating 

random regions 𝐿𝑅. With the capacity to support life, the 

regions that have been identified with the best fitness are 

chosen, and the algorithm starts with these regions. 

𝐿𝑅,𝑙 = 𝐿𝐺𝑎𝑙𝑎𝑥𝑦 + 𝐷 − 𝑁𝑜𝑖𝑠𝑒    

 𝑙 = 1, … , (𝑛𝑠 × 𝑆𝑁) 
(17) 
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𝐷 = {
𝑐1𝐿𝐺𝑎𝑙𝑎𝑥𝑦 − 𝐿𝑟   𝑖𝑓     𝑧 = 1   (𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑔𝑖𝑜𝑛)

𝑐1𝐿𝐺𝑎𝑙𝑎𝑥𝑦 + 𝐿𝑟   𝑖𝑓     𝑧 = 2   (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑒𝑔𝑖𝑜𝑛)   
 (18) 

𝑁𝑜𝑖𝑠𝑒 = (𝑐2)
3𝐿𝑟 (19) 

𝐿𝐺𝑎𝑙𝑎𝑥𝑦 denotes where the center of the galaxy is 

located, and in the optimization problem, two coefficients 

are present ranging from 𝑧𝑒𝑟𝑜 to 𝑜𝑛𝑒, denoting an 

accidental integer 𝑐1 and an accidental vector 

𝑐2 representing the number of variables. To demonstrate 

the variation in the research area's situation, one definition 

of parameter 𝐷 is the difference between the galaxy's 

center and its present condition. This region may be found 

either on the back of the galaxy or in the front (positive 

portion) of its middle area. Here, parameter zone (𝑧) is a 

randomly generated number that is either one or two. The 

𝑁𝑜𝑖𝑠𝑒 parameter is used to eliminate noise from received 

signals to improve location accuracy. To minimize 

computational value, the coefficient 𝑐2 with a power of 3 

is used, as noise cannot noticeably deviate from desired 

situations. 

𝐿𝑠,𝑖 = 𝐿𝑅,𝑖 + 𝐷 − 𝑁𝑜𝑖𝑠𝑒     𝑖 = 1, … , 𝑛𝑠 (20) 

𝐷

= {
𝑐4𝐿𝑅,𝑖 − 𝑐3𝐿𝑟    𝑖𝑓   𝑧 = 1    (𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑔𝑖𝑜𝑛)

𝑐4𝐿𝑅,𝑖 − 𝑐3𝐿𝑟    𝑖𝑓   𝑧 = 2    (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑒𝑔𝑖𝑜𝑛)  
 

(21) 

𝑁𝑜𝑖𝑠𝑒 = (𝑐5)
3𝐿𝑟 (22) 

The next stage involves utilizing Eq. (20) to (22) to 

choose a star from each of the areas that have been chosen 

to belong to a stellar system. 𝐿𝑠 indicates where the stars 

are located. 

In addition to the coefficient 𝑐5, which is a random vector 

between 0 and 1, the coefficients 𝑐3 and 𝑐4 are random 

values between 0 and 1.  

Before beginning iterations, the suggested method 

executes the galaxy phase once to choose appropriate 

situations for the primary stages (2– 5). 

• Transit Phase 

To identify the transit, a re-measurement of the light 

received from the beginning is required to identify any 

potential decrease in the received light signals. 𝐿𝑆 and its 

corresponding fitness 𝑓𝑆 have two meanings (𝑀1 and 𝑀2). 

The light spectrum (star class) that the telescope 

receives and the star's distance from the observer may be 

used to determine the luminosity of the star. It is evident 

that a short distance results in a higher photon count. The 

star's luminosity is acquired by: 

𝐿𝑖 =

𝑅𝑖

𝑛𝑠

(𝑑𝑖)
2

     𝑖 = 1, … , 𝑛𝑠     𝑅𝑖 ∈ {1, … , 𝑛𝑠} 
(23) 

𝑑𝑖 = √(𝐿𝑠 − 𝐿𝑇)
2       𝑖 = 1, … , 𝑛𝑠 (24) 

Here, Star I's luminance and rank are depicted by the 

variables 𝐿𝑖 and 𝑅𝑖. Additionally, the space between the 

star I and the telescope are covered by 𝑑𝑖 . Since it is 

chosen at random at the beginning of the method, the 

location of the telescope 𝐿𝑇 remains constant throughout 

the optimization. 

𝐿𝑆,𝑛𝑒𝑤,𝑖 = 𝐿𝑆,𝑖 + 𝐷 − 𝑁𝑜𝑖𝑠𝑒      𝑖 = 1, … , 𝑛𝑠 (25) 

𝐷 = 𝑐6𝐿𝑆,𝑖 (26) 

𝑁𝑜𝑖𝑠𝑒 = (𝑐7)
3𝐿𝑆 (27) 

The coefficients 𝑐6 and 𝑐7 are a random vector from 0 

to 1 and a random integer from −1 to 1. The amount of 

new luminosity, 𝐿𝑖,𝑛𝑒𝑤  is determined by: 

𝐿𝑖,𝑛𝑒𝑤 =

𝑅
𝑖,
𝑛𝑒𝑤
𝑛𝑠

(𝑑𝑖,𝑛𝑒𝑤)
2            𝑖 = 1, … , 𝑛𝑠 (28) 

The new 𝐿𝑆 and the position of the telescope may be 

used to compute the parameter 𝑑𝑖,𝑛𝑒𝑤 . It is possible to 

assess the possibility of transit by comparing 𝐿𝑖 and 𝐿𝑖,𝑛𝑒𝑤. 

If 𝑇 = 1, the phase of the planet is utilized; if not, the 

phase of the neighbor e is used in this iteration.  

𝐼𝑓 𝐿𝑖,𝑛𝑒𝑤 < 𝐿𝑖      𝑃𝑇 = 1     (𝑇𝑟𝑎𝑛𝑠𝑖𝑡) 

𝐼𝑓 𝐿𝑖,𝑛𝑒𝑤 ≥ 𝐿𝑖      𝑃𝑇 = 0     (𝑁𝑜 𝑇𝑡𝑎𝑛𝑠𝑖𝑡) 
(29) 

This probability 𝑃𝑇 is represented by the numbers0 

(non-transit) and 1 (probability of transit).  If 𝑃𝑇 = 1, if 

the planet phase cannot be used, this iteration uses the 

neighbor phase. 

• Planet Phase 

Initially, at this stage, the discovered initial position 

of planet is identified. The quantity of light that the 

telescope receives decreases during a planet's transit 

between the telescope and the star since the light comes 

from the star.  

𝐿𝑧 =
𝑐8𝐿𝑇 + 𝑅𝐿𝐿𝑆,𝑖

2
     𝑖 = 1, … , 𝑛𝑠 (30) 

𝑅𝐿 =
𝐿𝑆,𝑛𝑒𝑤,𝑖

𝐿𝑆,𝑖

 (31) 

The planet's original position upon detection is 

demonstrated by 𝐿𝑧 and luminance ratio is determined by 

𝑅𝐿. Also, 𝑐8 has a random value between 0 and 1. 

𝐿𝑚,𝑗

= {

𝐿𝑧 + 𝑐9𝐿𝑟      𝑖𝑓   𝑧 = 1                                          𝑓𝑜𝑟 𝐴𝑝ℎ𝑒𝑙𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 
𝐿𝑧 − 𝑐9𝐿𝑟      𝑖𝑓   𝑧 = 2     𝑗 = 1, … , 𝑆𝑁            𝑓𝑜𝑟 𝑃𝑒𝑟𝑖ℎ𝑒𝑙𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

𝐿𝑧 + 𝑐10𝐿𝑟     𝑖𝑓   𝑧 = 3                                            𝑓𝑜𝑟 𝑁𝑒𝑢𝑡𝑟𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛
 

(3

2) 

𝐿𝑃 =
∑ 𝐿 𝑚𝑗

𝑆𝑁
𝑗=1

𝑆𝑁
 

(3

3) 

To validate travel and reducing the noise's influence, 

one of the most crucial factors is 𝑆𝑁The planet's position 

inside its star system is specified by analyzing the quantity 

of signals received, which is derived from the planet's 

estimated position. Several 𝑆𝑁 signals are taken into 

account for this reason in the 𝑇𝑆 algorithm Eq. (32). The 

coefficient 𝑐9 is an accidental number ranging from −1 to 

1. 𝑐10 is a random vector with values in the range of −1 to 

1. Once signals 𝐿𝑚  have been determined, the average 

of 𝑆𝑁 signals are used to adjust the detected final planet 

position 𝐿𝑃. The terms Aphelion and Perihelion refer to 

the relative furthest and closest distances, in astronomy, 

between a planet (such as Earth) and the Sun or another 

host star. Three zones—Aphelion, Perihelion, and Neutral 

regions (the area between Aphelion and Perihelion areas), 

Eq. (32), are affected by the TS technique, which estimates 

the planet's orbital location using the zone parameter (𝑧) 

in the planet phase. 

• Neighbor Phase 

In this phase, the present planet of the star will take its 

position whether the neighbor has superior circumstances 

compared to the current planet. 

𝐿𝑧 =
(𝑐11𝐿𝑠,𝑛𝑒𝑤 + 𝑐12𝐿𝑟)

2
 (34) 
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𝐿𝑛,𝑗

= {

𝐿𝑧 − 𝑐13𝐿𝑟     𝑖𝑓     𝑧 = 1  𝑓𝑜𝑟 𝐴𝑝ℎ𝑒𝑙𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛
𝐿𝑧 + 𝑐13𝐿𝑟      𝑖𝑓     𝑧 = 2  𝑓𝑜𝑟 𝑃𝑒𝑟𝑖ℎ𝑒𝑙𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛
𝐿𝑧 + 𝑐14𝐿𝑟     𝑖𝑓     𝑧 = 3   𝑓𝑜𝑟 𝑁𝑒𝑢𝑡𝑟𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛

 
(35) 

𝐿𝑁,𝑖 =
∑ 𝐿𝑛.𝑗

𝑆𝑁
𝑗=1

𝑆𝑁
 (36) 

Eq. (34) is used to estimate the neighbor  𝐿𝑧  

beginning position Considering its host star 𝐿𝑠,𝑛𝑒𝑤 and an 

accidental place 𝐿𝑅. 𝐿𝑁 determines the neighbor planet’s 

ultimate position planets Eq. (35) and (36). The 

coefficients 𝑐11 and 𝑐12 in Eq. (41) handle a randomized 

integer in the range of 0 to 1. Moreover, the 

coefficients  𝑐13 and 𝑐14 represent a vector with a random 

number and a range of −1 to 1, respectively.   

• Exploitation phase 

The ideal planet for every star is identified in the 

earlier stages. Finding a planet by itself is meaningless. 

Understanding the features of the planet and the 

circumstances that support life is essential. This is carried 

out during the TS algorithm's Exploitation step. This stage 

expresses a revised definition of the 𝐿𝑃. 𝐿𝑃 in the present 

phase 𝐿𝐸  alludes to the features of the planet. Using Eq. 
(37), (38), the planet’s ultimate properties are adjusted 

𝑆𝑁 times (𝑗 = 1,… , 𝑆𝑁) by adding new knowledge (𝐾). 

𝑐15 is an accidental number ranging from zero 𝑡𝑜 𝑡𝑤𝑜, 

and 𝑐16  is an accidental number ranging from 𝑧𝑒𝑟𝑜 to 

𝑜𝑛𝑒. 𝑐17 is an accidental vector ranging from zero to one. 

The knowledge index is represented by the random 

number 𝑐𝑘, which can be 1, 2, 3, or 4. A random power 

between 1 and (𝑛𝑠 ∗ 𝑆𝑁) is represented by 𝑃. 

𝐿𝐸,𝑗 = {

𝑐16𝐿𝑃 + 𝑐15𝑘          𝑖𝑓    𝑐𝑘 = 1      (𝑆𝑡𝑎𝑡𝑒 1)
𝑐16𝐿𝑃 − 𝑐15𝑘         𝑖𝑓    𝑐𝑘 = 2       (𝑆𝑡𝑎𝑡𝑒 2)
𝐿𝑃 − 𝑐15𝐾              𝑖𝑓    𝑐𝑘 = 3        (𝑆𝑡𝑎𝑡𝑒 3)

𝐿𝑃 + 𝑐15𝐾             𝑖𝑓     𝑐𝑘 = 4         (𝑆𝑡𝑎𝑡𝑒 4)

 (37) 

𝐾 = (𝑐17)
𝑃𝐿𝑟  (38) 

3.6 K-Fold Cross validation 

K-fold cross-validation is a widely utilized and reliable 

approach for evaluating and selecting models, especially 

in classification and regression tasks. This technique 

involves dividing the dataset into k equally sized subsets 

(folds). During each iteration, one-fold is reserved for 

validation while the remaining k−1 folds are used for 

training. This process is repeated k times, ensuring that 

every subset serves once as the validation set. In this study, 

a 5-fold cross-validation scheme (k = 5) was adopted to 

thoroughly evaluate the proposed models and improve 

their generalization capability by systematically rotating 

the training and testing partitions. As illustrated in Fig. 2, 

the Support Vector Classifier (SVC) model demonstrated 

its peak performance during Fold 5, achieving a maximum 

Accuracy of 0.82. Similarly, the Extra Trees Classifier 

(ETC) also recorded its highest accuracy in Fold 5, with 

an Accuracy of 0.846, indicating consistent model 

performance across folds.

  

Figure 2: The results of 5-Fold Cross validation. 

3.7 Evaluation metrics 

The evaluation metrics of the classification models 

provide a quantitative measure of the performance of the 

models [25]. In this study, four fundamental evaluation 

metrics were employed to assess the performance of the 

classification models: Accuracy, Precision, Recall, and 

F1-score. These metrics provide a comprehensive 

understanding of model performance, especially in the 

context of imbalanced or complex classification problems. 

 

 

 

• Accuracy 

Accuracy is the ratio of correctly predicted 

observations to the total observations. It is a general 

measure of a model’s effectiveness. 

Accuracy serves as a baseline metric to understand the 

overall performance of the model. However, it may be 

misleading when dealing with imbalanced datasets, which 

is why complementary metrics are also considered. 
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• Precision 

Precision is the ratio of correctly predicted positive 

observations to the total predicted positives. It reflects 

how well the model avoids false positives. 

Precision is particularly valuable in scenarios were 

predicting a false positive may lead to unnecessary actions 

or costs. 

• Recall (Sensitivity) 

Recall is the ratio of correctly predicted positive 

observations to all actual positives. It shows how well the 

model detects actual positive cases. Recall is emphasized 

when it is more critical to identify all positive cases, even 

at the cost of some false positives. 

• F1-score 

The F1-score is the harmonic mean of Precision and 

Recall. It provides a single metric that balances both 

concerns, particularly useful when class distribution is 

uneven. The F1-score provides a consolidated metric for 

overall classification performance, particularly useful 

when neither precision nor recall alone is sufficient for 

model evaluation. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (39) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (40) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (41) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2. 𝑇𝑃

2. 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (42) 

4 Result and riscussion  
Prediction is actually something quite central to scientific 

research and practical decision-making, dealing with the 

estimation of the future state or event given current and 

historical data. Precise predictions are important in diverse 

fields such as meteorology to finance, for which the 

information furnished stands useful in planning, risk 

management, and policy development. Predictive models 

in environmental science are helpful and important to 

predict occurrences such as the spread of pollution, 

climate change, and water resource availability. The 

models are helpful in supporting sustainability 

management and conservation. Water quality prediction 

grounded on models such as 𝐸𝑇𝐶 and 𝑆𝑉𝐶 is among the 

most vital inputs into the planning and regulation of water 

quality. 

Most advanced optimization techniques, such as 

𝑇𝑆𝑂𝐴 and 𝐶𝐺𝑂, have been employed in the enforcement 

of 𝑆𝑉𝐶 and 𝐸𝑇𝐶 for the much more improved 

classification of water quality according to 𝑝𝐻. As a 

result, the base models 𝐸𝑇𝐶 and 𝑆𝑉𝐶 are involving the 

application of optimizers to constitute hybrid models such 

as 𝐸𝑇𝑇𝑆, 𝐸𝑇𝐶𝐺, 𝑆𝑉𝑇𝑆, and 𝑆𝑉𝐶𝐺. Performance checking 

of the derived hybrid models is to be done for water 

quality prediction with respect to the 𝑝𝐻 level. 

• Hyperparameters’ results 

In machine learning, hyperparameters are essential 

settings defined prior to training that influence model 

performance and learning behavior. Unlike trainable 

parameters, hyperparameters must be optimized to 

achieve the best results. In this study, random search was 

used to tune the hyperparameters of the proposed SVC- 

and ETC-based hybrid models. 

As shown in Tables 2 and 3, ETC-based models were 

optimized using parameters such as n_estimators, 

max_depth, min_samples_split, min_samples_leaf, and 

max_leaf_nodes. For example, ETTS used n_estimators = 

143 and max_leaf_nodes = 1431, while ETCG had higher 

values like n_estimators = 1805 and max_leaf_nodes = 

17090. 

SVC-based models were tuned with C and gamma. 

SVTS used C = 103.098, gamma = 138.373, while SVCG 

had C = 679.000, gamma = 111.500. The base SVC and 

ETC models retained simpler, default configurations. This 

tuning improved accuracy and computational efficiency 

across all hybrid models.

Table 2: The results of Hyperparameters for ETC-based hybrid models. 

Models 
Hyperparameter 

n_estimators max_depth min_samples_split min_samples_leaf max_leaf_nodes 

ETTS 143 143 0.001 0.000 1431 

ETCG 1805 142 0.972 0.500 17090 

ETC 100 None 2.000 1.000 None 

Table 3: The results of Hyperparameters for SVC-based hybrid models. 

Models 
Hyperparameter 

C gamma 

SVTS 103.098 138.373 

SVCG 679.000 111.500 

SVC 1.000 scale 

 

• Convergence curves 

Figure 3 illustrates the convergence curves of the 

proposed hybrid models, which combine machine learning 

classifiers (SVC and ETC) with metaheuristic 

optimization algorithms (TSOA and CGO). The figure 

captures the progression of classification accuracy across 

successive iterations, with the y-axis representing model 

accuracy and the x-axis denoting the number of iterations. 

The convergence behavior varies notably across the 

hybrid configurations. The SVTS model (SVC optimized 

by TSOA) exhibits a steady, linear improvement in 

accuracy, reflecting a stable convergence pattern. In 



290   Informatica 49 (2025) 281–298                                                                                                                                     X. Li et al. 

contrast, the SVCG model (SVC optimized by CGO) 

demonstrates a less consistent trajectory, with noticeable 

fluctuations in accuracy, though an overall upward trend 

is still evident. 

Similarly, the ETTS model (ETC optimized by 

TSOA) shows a smooth and consistent increase in 

accuracy, indicating robust convergence characteristics. 

The ETCG model (ETC optimized by CGO) achieves a 

sharper rise in accuracy, ultimately reaching a highly 

competitive performance level. 

Among all models, ETTS achieved the highest final 

accuracy of 0.84, showcasing the effectiveness of the 

TSOA optimizer with the ETC classifier. Conversely, 

SVCG attained the lowest peak accuracy of approximately 

0.77, suggesting less stable convergence when SVC is 

paired with CGO. 

Figure 3: The convergence curve of the four presented hybrid models 

Table 4 presents the performance metrics—Accuracy, 

Precision, Recall, and F1 Score—for both the training and 

testing phases of the base classifiers (ETC and SVC) and 

their corresponding hybrid variants (ETTS, ETCG, SVTS, 

and SVCG). Additionally, Figure 4 complements these 

results with 3D bar plots that provide a visual 

representation of the metric distributions for each model, 

highlighting comparative strengths in both learning and 

generalization capabilities. 

Comparing the base model ETC with its hybrids, 

ETTS and ETCG, it is evident that both optimized variants 

consistently outperform the base model in both training 

and testing phases. For example, in the training stage, 

ETTS achieved the highest accuracy (0.910), followed 

closely by ETCG (0.897), while ETC lagged at 0.881. 

Similar trends are observed across Precision, Recall, and 

F1 Score. These performance gains continue in the testing 

phase, where ETTS and ETCG maintained superior 

generalization, with accuracies of 0.778 and 0.770, 

respectively, compared to ETC’s 0.750. 

Likewise, for the SVC-based models, both SVTS and 

SVCG outperformed the baseline SVC during training. 

SVTS achieved an accuracy of 0.894, and SVCG recorded 

0.879, compared to SVC’s 0.850. Performance 

enhancements are also visible in Precision, Recall, and F1 

Score. During testing, although the performance gap 

slightly narrows, SVTS still outpaces the base model with 

an accuracy of 0.760, whereas SVCG and SVC followed 

at 0.755 and 0.745, respectively. 

The visualized results in Figure 4 reinforces these 

findings. The 3D bar plots clearly illustrate the consistent 

superiority of hybrid models, particularly ETTS, across all 

evaluation metrics. The visual spacing between the bars 

reflects the degree of improvement, emphasizing how 

optimization algorithms—especially TSOA—enhance 

both model learning (training performance) and 

generalization (testing performance). The graphics also 

highlight that the ETTS model maintains the most 

balanced and highest-performing profile among all tested 

classifiers. 

In summary, the combination of numerical evidence 

from Table 4 and graphical insights from Figure 4 

confirms that hybrid models deliver significantly 

improved performance over their base classifiers. ETTS 

stands out as the most effective model, demonstrating the 

highest overall accuracy and stability across all metrics in 

both training and testing phases. 
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Table 4: ETC and SVC base models achieved results through the performance evaluators 

Section Model 
Metrics 

Accuracy Precision Recall F1 _Score 

Training 

ETTS 0.910 0.911 0.910 0.910 

ETCG 0.897 0.901 0.897 0.897 

ETC 0.881 0.888 0.881 0.880 

SVTS 0.894 0.894 0.894 0.894 

SVCG 0.879 0.879 0.879 0.879 

SVC 0.850 0.850 0.850 0.849 

Testing 

ETTS 0.778 0.781 0.778 0.778 

ETCG 0.770 0.780 0.770 0.769 

ETC 0.750 0.762 0.750 0.749 

SVTS 0.760 0.764 0.760 0.760 

SVCG 0.755 0.757 0.755 0.755 

SVC 0.745 0.746 0.745 0.745 
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Figure 4: 3D bar plot for the performance of the models in train and test phases. 

Table 4 outlines the performance metrics of base 

models and hybrid models. In a similar manner, Table 5 

present the models' precision, Recall, and 𝐹1 𝑠𝑐𝑜𝑟𝑒 but in 

a more detailed breakdown of machine learning models 

that applied to water quality classification based on pH 

levels and categorized into Acidic, Basic, and Neutral 

conditions. The performance comparison of 𝐸𝑇𝐶 with 

𝐸𝑇𝑇𝑆 reveals significant improvements across all 𝑝𝐻 

conditions. For the Acidic condition, 𝐸𝑇𝐶 displays an 

𝐹1 𝑠𝑐𝑜𝑟𝑒 of 0.842, recall of 0.804, and precision of 

0.883 , whereas 𝐸𝑇𝑇𝑆 improves these metrics to 0.874 in 

precision, 0.868 in recall, and 0.871 in 𝐹1 𝑠𝑐𝑜𝑟𝑒. In the 

Basic condition, with a precision of 0.919, recall of 0.732, 

and 𝐹1 𝑠𝑐𝑜𝑟𝑒 of 0.815, 𝐸𝑇𝐶 trails behind 𝐸𝑇𝑇𝑆, which 

performs better with a precision of 0.890, recall of 0.807, 

and 𝐹1 𝑠𝑐𝑜𝑟𝑒 of 0.846. 𝐸𝑇𝐶 reports an 𝐹1 𝑠𝑐𝑜𝑟𝑒 of 

0.852, recall of 0.919, and precision of 0.794 for the 

Neutral condition. Whereas 𝐸𝑇𝑇𝑆 achieves higher scores 

with 0.860 in precision, 0.901 in recall, and 0.880 in 

𝐹1 𝑠𝑐𝑜𝑟𝑒. These numbers highlight the enhanced 

performance of 𝐸𝑇𝑇𝑆, particularly in recall and 

𝐹1 𝑠𝑐𝑜𝑟𝑒𝑠, demonstrating the effectiveness of 

optimization. Both 𝐸𝑇𝐶 and 𝑆𝑉𝐶 show substantial 

improvements in precision, recall, and 𝐹1 𝑠𝑐𝑜𝑟𝑒𝑠 when 

optimized with 𝑇𝑆𝑂𝐴 and 𝐶𝐺𝑂, respectively. For 

instance, in the acidic condition, 𝑆𝑉𝐶 achieves a precision 

of 0.800 while 𝑆𝑉𝑇𝑆 outperforms 𝑆𝑉𝐶 by improvement 

in precision to 0.865. The optimized models demonstrate 

superior capability in accurately classifying water quality, 

with 𝐸𝑇𝑇𝑆 and 𝐸𝑇𝐶𝐺 performing notably well in various 

metrics. Among all the models evaluated, the 𝐸𝑇𝑇𝑆 model 

emerges as the best performer, achieving the highest 

overall accuracy in 𝑝𝐻 − 𝑏𝑎𝑠𝑒𝑑 water quality 

classification.

Table 5: Model performance in the three different conditions 

Model Condition 
Metric 

P-value 
precision recall f1-Score 

ETTS 

Acidic 0.874 0.868 0.871 0.032 

Basic (alkaline) 0.890 0.807 0.846 0.027 

Neutral 0.860 0.901 0.880 0.018 

ETCG 

Acidic 0.887 0.834 0.860 0.04 

Basic (alkaline) 0.922 0.764 0.836 0.035 

Neutral 0.821 0.921 0.868 0.022 

ETC 
Acidic 0.883 0.804 0.842 0.045 

Basic (alkaline) 0.919 0.732 0.815 0.039 
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Neutral 0.794 0.919 0.852 0.025 

SVTS 

Acidic 0.865 0.841 0.853 0.048 

Basic (alkaline) 0.841 0.811 0.826 0.041 

Neutral 0.852 0.883 0.867 0.029 

SVCG 

Acidic 0.840 0.825 0.832 0.052 

Basic (alkaline) 0.827 0.804 0.815 0.047 

Neutral 0.849 0.872 0.860 0.031 

SVC 

Acidic 0.800 0.801 0.801 0.059 

Basic (alkaline) 0.814 0.764 0.788 0.053 

Neutral 0.833 0.855 0.844 0.010 

Figure 5 depicts a line plot illustrating the numerical 

differences in how well different machine learning models 

perform when used to classify water quality based on 𝑝𝐻. 

This figure's main purpose is to compare various models' 

efficaciousness visually. Particularly focusing on the 

performance improvements achieved by incorporating 

sophisticated optimization algorithms. 𝐸𝑇𝐶 and its hybrid 

version,  𝐸𝑇𝑇𝑆, show distinct differences. 𝐸𝑇𝐶 correctly 

predicts 558, 348, and 205 samples in neutral, acidic, and 

alkaline groups. While 𝐸𝑇𝑇𝑆 improves upon this with a 

predicted value of 547, 376, and 226 samples in neutral, 

acidic, and alkaline, indicating an enhancement in 

accuracy. This improvement is quantified as a percentage 

difference in the accuracy of the models, with 𝐸𝑇𝑇𝑆, in 

general, showing lower percentage differences compared 

to 𝐸𝑇𝐶, highlighting its enhanced predictive capability.

   

Figure 5: Line plot representing the number of correct predictions by ETC-based models 

A comprehensive evaluation of each model's accuracy 

can be done thanks to the confusion matrix, which is 

depicted in Figure 6 and compares actual and predicted 

classifications. An illustration of the confusion matrix 

created by different machine-learning models for 

determining the pH-level-𝑏𝑎𝑠𝑒𝑑 classification of water 

quality is shown in Figure 6. Each model's accuracy can 

be thoroughly evaluated thanks to the confusion matrix, 

which displays actual versus predicted classifications. 

𝐸𝑇𝐶 predicts acidic samples with 348 correct, three 

misclassified as alkaline, and 82 as neutral. For alkaline 

samples, it predicts 205 samples correctly, with 12 

samples misclassified as acidic and 63 samples as neutral. 

Neutral samples are predicted, with 558 samples 

correctly, 34 as acidic, and 15 as alkaline. When 

optimized using the Transit Search Optimization 

Algorithm, the hybrid model (𝐸𝑇𝑇𝑆) shows improved 

performance. 𝐸𝑇𝑇𝑆 predicts acidic samples with 

376 correct, seven misclassified as alkaline, and 50 as 

neutral. For alkaline samples, 𝐸𝑇𝑇𝑆 predicts 

226 correctly, with 15 misclassified as acidic and 39 as 

neutral. Neutral samples are predicted with 547 correctly, 

39 as acidic, and 21 as alkaline. Comparatively, the 𝐸𝑇𝑇𝑆 

model outperforms its base model 𝐸𝑇𝐶, especially in 

predicting neutral samples with significantly higher 

accuracy. In acidic classification, 𝐸𝑇𝑇𝑆 shows slight 

improvement with fewer misclassifications. For alkaline 

predictions, both models show comparable performance, 

though 𝐸𝑇𝑇𝑆 has a marginally better accuracy. Among all 

models, the best performance is observed in the 𝐸𝑇𝑇𝑆 

model, indicating its superior capability in accurate 𝑝𝐻 −
𝑏𝑎𝑠𝑒𝑑 water quality classification. 
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Acidic Alkaline Neutral

Acidic 376 7 50

Aalkaline 15 226 39

Neutral 39 21 547

ETTS  

Acidic Alkaline Neutral

Acidic 361 4 68

Aalkaline 12 214 54

Neutral 34 14 559

ETCG  

Acidic Alkaline Neutral

Acidic 348 3 82

Aalkaline 12 205 63

Neutral 34 15 558

ETC  
 

Figure 6: Confusion matrix for the accuracy of each model. 

To evaluate the classification performance of the 

models in predicting pH-based water quality, the Receiver 

Operating Characteristic (ROC) curves in Figure 7 are 

analyzed. These curves illustrate the trade-off between the 

true positive rate and the false positive rate at various 

threshold settings, providing a visual assessment of each 

model's diagnostic ability. 

The micro-average ROC curve (green dashed line) 

aggregates the contributions of all classes, treating each 

prediction equally. It reflects the classifier's overall ability 

across all samples. The curve’s steep initial rise indicates 

strong overall performance, with high sensitivity achieved 

at low false positive rates. 

The macro-average ROC curve (red dashed line) 

calculates the average performance across classes by 

assigning equal weight to each one, regardless of class 

imbalance. It provides a balanced view of performance 

and shows a smoother increase in true positive rate 

compared to the micro-average. 

Performance across specific pH categories is also 

shown: 

• The acidic class (brown line) demonstrates 

moderate sensitivity at the outset, improving with 

higher false positive rates. 

• The basic (alkaline) class (cyan line) exhibits the 

most favorable curve, with a sharp ascent 

indicating excellent classification performance at 

low false positive rates. 

• The neutral class (purple line) shows a more 

gradual increase, reflecting a balanced but less 

pronounced trade-off between true and false 

positives. 

Overall, the cyan curve representing basic pH 

conditions shows the highest classification accuracy, 

while the green micro-average curve confirms the 

robustness of the models in handling all classes 

collectively. 

 

Figure 7: The ROC curves for the performance of the most efficient hybrid models 

• Wilcoxon test 

Figure 8 presents a radar plot of the Wilcoxon test 

statistics for all single and hybrid models: SVC, SVTS, 

SVCG, ETC, ETTS, and ETCG. The plotted values reflect 

the Wilcoxon test statistic for each model when compared 

pairwise, quantifying relative performance in terms of 

statistical ranking. 

From the figure: 
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• SVC records the highest Wilcoxon statistic 

(13,521), indicating that its performance 

significantly differs—statistically outperforming 

or underperforming—relative to others. 

• ETTS also scores high (12,648.5), suggesting a 

strong and consistent performance validated by 

statistical evidence. 

• In contrast, SVTS and SVCG have lower 

statistics (9313 and 10,945.5, respectively), 

pointing to less statistical dominance or more 

variability across comparisons. 

• ETCG and ETC show intermediate values (7725 

and 10,063.5), reflecting moderate performance 

consistency. 

The shaded blue region visually represents the 

distribution and spreads of the Wilcoxon test statistics 

across all models. A wider area suggests higher variability 

in model ranks, while more compact regions suggest more 

stability. 

Overall, the Wilcoxon analysis complements 

accuracy-based evaluation by statistically confirming the 

comparative significance of the observed model 

performance differences. 

 

Figure 8: The results of Wilcoxon test for models’ performance. 

5 Discussion 

5.1 Limitations of the study 

While the proposed hybrid models (ETTS, ETCG, SVTS, 

and SVCG) demonstrated superior classification 

performance over their baseline counterparts, the study 

presents several limitations that warrant attention. First, 

the dataset used for model training and evaluation 

comprises only 1,320 daily records, which may limit the 

generalizability of the models across diverse geographical 

regions or seasonal variations. A larger and more 

heterogeneous dataset could improve robustness and 

reduce the risk of overfitting. Secondly, the models focus 

solely on pH as the output classification parameter, 

potentially neglecting the complex interactions of other 

water quality indicators (e.g., turbidity, nitrate levels) that 

may jointly influence classification outcomes.  

5.2 Potential future studies 

Building upon the promising results of this study, future 

research can explore several enhancements. One key 

direction is the expansion of the dataset, both temporally 

and spatially, to include diverse water bodies, seasonal 

dynamics, and additional environmental indicators. This 

would allow for the training of more generalizable models 

applicable to broader real-world conditions. Additionally, 

the integration of deep learning architectures—such as 

recurrent neural networks (RNNs) or convolutional neural 

networks (CNNs)—can be investigated for their potential 

to capture temporal or spatial correlations in water quality 

trends. Furthermore, an ensemble framework combining 

multiple hybrid models could be tested using voting or 

stacking strategies to further improve classification 

performance.  

5.3 Practical implications of the study 

The findings of this study highlight the practical viability 

of hybrid machine learning and optimization frameworks 

in environmental monitoring applications. By accurately 

classifying water quality based on pH levels, the proposed 

models can assist water resource managers, environmental 

agencies, and public health officials in making informed 

decisions regarding water treatment and ecosystem 

preservation. The enhanced predictive accuracy of the 

hybrid models ensures timely identification of acidic or 

alkaline deviations, which are critical for preventing metal 

toxicity, preserving aquatic biodiversity, and maintaining 

water usability for irrigation and drinking purposes. 

Moreover, the lightweight nature of the models (especially 

ETC and SVC) makes them suitable for deployment in 

embedded or real-time monitoring systems, offering 
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scalable solutions for smart water quality surveillance in 

both urban and rural settings. 

5.4 Comparison between the results of 

present study and previous works 

Table 6 presents a comparative analysis between the 

proposed hybrid model (ETC+TSOA) from the present 

study and several existing state-of-the-art methods in the 

domain of water quality classification. The comparison is 

based on classification accuracy, which is a key 

performance metric. Among the referenced studies, Putra 

et al. [17] achieved the highest accuracy (0.9828) using a 

Random Forest Regressor (RFR), followed closely by 

Idroes et al. [15] with a CATBoost model (0.9781). 

Sasmita et al. [16] employed a K-Nearest Neighbors 

(KNN) classifier and reported an accuracy of 0.9067. In 

contrast, the present study's ETC+TSOA model attained 

an accuracy of 0.91, outperforming the KNN-based model 

and demonstrating competitive results relative to more 

complex ensemble methods. 

While the accuracy of the ETC+TSOA model is 

slightly lower than that of RFR and CATBoost, it is 

important to note that the proposed model leverages 

advanced metaheuristic optimization to enhance model 

performance while maintaining a balance between 

interpretability, computational efficiency, and 

generalization capability. This underscores the value of 

hybrid machine learning and optimization approaches, 

especially in resource-constrained or real-time 

environmental monitoring contexts. 

 

Table 6: The Comparison between the results of present study and previous works. 
Article Reference Model Metrics 

Accuracy 

Idroes et al. [15] CATBoost 0.9781 

Sasmita et al. [16] KNN 0.9067 

Putra et al. [17] RFR 0.9828 

Present study - ETC+TSOA 0.91 

6 Conclusion  
Water quality is a very important aspect in which 

environmental health and safety can be ensured. For 

understanding aquatic ecosystems for the purpose of 

monitoring and management, proper classification of 

water quality is required, mainly based on their 𝑝𝐻 levels. 

This research article applied various methods of artificial 

intelligence and optimization algorithms for the 

categorization of the quality of water based on pH levels, 

hence providing a robust framework for environmental 

monitoring. In this research, the dataset used contains 

1320 records in total; each record has information on the 

following input parameters: Date, Salinity, Dissolved 

Oxygen, secchi Depth, Water Depth, Water Temperature, 

and Air Temperature. The output parameter in this 

analysis is 𝑝𝐻, or the level of acidity, alkalinity, and 

neutrality indicative of water. These are daily records; 

hence, they provide a holistic view of how the respective 

environmental matters are changing from day to day. 

In the presented study, SVC and 𝐸𝑇𝐶 were used for 

water quality prediction by considering pH as one of the 

main influential parameters. In the present study, a more 

advanced class of optimizers in the form of the Transit 

Search Optimization Algorithm and Chaos Game 

Optimization were coupled with the svcand 𝐸𝑇𝐶 to 

improve their corresponding predictive accuracies. The 

obtained results reflected that the hybrid models 𝐸𝑇𝑇𝑆, 

𝐸𝑇𝐶𝐺, 𝑆𝑉𝑇𝑆, and 𝑆𝑉𝐶𝐺 outperformed their base model 

with a significant difference in performance. 

Comparing 𝐸𝑇𝑇𝑆, when all models are taken into 

consideration against the 𝐸𝑇𝐶 base model, it improves 

Accuracy by 3.73%, with increased Precision by 2.49%, 

boosted Recall by 3.73%, and increased 𝐹1 𝑆𝑐𝑜𝑟𝑒 by 

3.87%. On the other hand, 𝐸𝑇𝐶𝐺 outperforms 𝐸𝑇𝐶 with 

improved Precision by 2.36%, increased Accuracy and 

Recall by 2.67%, and a better 𝐹1 𝑆𝑐𝑜𝑟𝑒 by 2.67% also. 

For 𝑆𝑉𝐶 models, 𝑆𝑉𝑇𝑆 increased Accuracy and Recall by 

2.01%, increased Precision by 2.41%, and also increased 

the 𝐹1 𝑆𝑐𝑜𝑟𝑒 by 2.01% from the base 𝑆𝑉𝐶. Similarly, 

𝑆𝑉𝐶𝐺 also outperformed 𝑆𝑉𝐶, with increases of 1.34% in 

Accuracy and Recall, and it boosted Precision by 1.47%. 
𝐸𝑇𝑇𝑆 turned out to be the best improvement among all, 

with the highest scores on all metrics. 

High capability of hybrid models to provide more 

reliable and accurate pH-based water quality prediction 

underlines the potential for such advanced techniques in 

environmental monitoring and management. These results 

demonstrate how combining machine learning with 

advanced optimization algorithms yields significantly 

higher predictive accuracy and reliability for 𝑝𝐻-based 

water quality classification. The usefulness of hybrid 

models in these applications, due to their increased 

accuracy, makes them very handy tools in the prediction 

of water quality, therefore helping in water body 

management and conservation. 
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