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Cardiovascular disease (CVD) is a prominent cause of death worldwide. This alarming need requires an 

accurate prediction model using machine learning that can detect and help prevent or mitigate the risk. 

This study focuses on this issue and has come up with new dimensional capabilities to enhance the K-

Nearest Neighbors (KNN) algorithm to predict cardiovascular diseases at an early stage by incorporating 

various techniques for data preprocessing and feature selection thereby improving the efficiency of the 

model. The proposed model identifies the most relevant features using Principal Component Analysis.  

The main innovation revolves around fine tuning the hyperparameter of K-Nearest Neighbors, specifically 

the choice of neighbors (K), using a data driven approach to ensure accuracy across different datasets. 

The performance of the optimized K-Nearest Neighbors algorithm is evaluated using the Framingham 

heart disease dataset. This model achieved an impressive prediction accuracy of 92.46% and 

outperformed methods that solely rely on traditional K-Nearest Neighbors. As machine learning 

techniques plays an important role in the development of prediction models for early detection and 

prevention of cardiovascular disease, this model can be considered as a valuable tool for healthcare 

professionals and researchers. The core contribution of this study lies in offering a comprehensive 

optimization of the traditional K-Nearest Neighbors (KNN) algorithm. This includes robust data 

preprocessing using the Hampel filter for outlier removal, feature selection through Principal Component 

Analysis (PCA), and performance enhancement using grid search for hyperparameter tuning combined 

with 10-fold cross-validation. Unlike prior studies that apply KNN with minimal adjustments, this research 

emphasizes the importance of an end-to-end machine learning pipeline. This holistic refinement 

significantly improves the predictive performance and reliability of KNN for cardiovascular disease 

prediction, achieving 92.46% accuracy on the Framingham dataset. 

Povzetek: Raziskava predstavlja optimiziran KNN-algoritem za napoved srčno-žilnih bolezni, ki s PCA, 

čiščenjem podatkov in 10-kratno validacijo doseže zelo kvalitetno delovanje. 

 

1 Introduction 

With a huge impact on global death rates, cardiovascular 

disease continues to be a major health concern [1], [2]. To 

mitigate the risk factors associated with cardiovascular 

disease, early and accurate prediction models are required. 

Due to the technological advancements and increase in 

electronic health records, machine learning has become a 

viable tool for predictive analytics in the healthcare sector 

[3].   

According to the World Health Organization, 

cardiovascular disease (CVD) accounts for approximately 

17.9 million deaths annually, constituting about 32% of all 

global deaths. The economic impact is equally staggering, 

with estimated global costs projected to surpass $1 trillion 

by 2030. While machine learning techniques such as K-

Nearest Neighbors (KNN) have been explored for disease 

prediction, their application to CVD data presents unique 

challenges. Traditional KNN models often suffer from 

high sensitivity to noisy data, computational inefficiency 

with large datasets, and reduced accuracy in high-

dimensional spaces—limitations particularly evident 

when applied to complex medical datasets like the 
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Framingham Heart Study. This study seeks to overcome 

these challenges by proposing a fully optimized KNN 

pipeline tailored for CVD prediction. By integrating 

outlier removal using the Hampel filter, dimensionality 

reduction through PCA, and hyperparameter tuning with 

grid search and k-fold validation, this work fills a crucial 

gap in the literature where previous models lacked end-to-

end optimization. The proposed enhancements are not 

generic but specifically address the data quality, 

dimensional complexity, and class imbalance issues 

inherent in the Framingham dataset, resulting in a 

significantly improved accuracy of 92.46%. This provides 

a strong foundation for clinical decision support tools and 

highlights the practical value of optimized KNN in real-

world healthcare applications. 

The K Nearest Neighbors algorithm is a type of 

supervised machine learning technique that involves 

dividing a dataset into groups or clusters based on the 

distances between data points. It has become quite popular 

because it is simple and has the capability to carry out 

classifications effectively [4].  Its effectiveness has been 

acknowledged in situations where there is a connection, 

between the variables or when the data cannot be easily 

divided in a linear manner. However, because it relies on 

the dataset it can be computationally expensive, especially 

when working with large datasets and it may also be 

affected by the challenge posed by high dimensional data. 

[5].  

The main objective of this study is to create a model 

that can accurately identify the risk of heart disease. To 

achieve this, the K Nearest Neighbors (KNN) algorithm in 

enhanced by incorporating different optimization 

techniques. These techniques include data preparation 

methods such as outlier detection, dimensionality 

reduction using Principal Component Analysis (PCA), 

tuning hyperparameters through grid search and 

implementing k fold cross validation. This research 

focuses on assessing the practicality of using an optimized 

K Nearest Neighbors (KNN) model to predict heart 

disease. It evaluates performance metrics, like F1 score, 

recall, accuracy and precision. The study primarily 

concentrates on implementing an enhanced KNN 

algorithm that has shown promising advancements in 

predicting diseases. The goal of this approach is to provide 

accurate risk assessments that are relevant, to clinical 

settings. By overcoming the limitations of KNN models 

our aim is to improve treatment and reduce the healthcare 

costs and burdens associated with cardiovascular diseases. 

This study is organized into different sections. The review 

of literature provides a comprehensive summary and 

analysis of existing research and literature. The applied 

methodology is explained in the materials and methods. 

The next section discusses the data preprocessing steps. 

Then the optimized KNN algorithm is demonstrated and 

finally, the study spotlights the exploratory data analysis 

and results. 

While previous research has shown moderate success 

using KNN for CVD prediction, this study distinguishes 

itself by addressing key limitations through systematic 

enhancements across the entire predictive pipeline. 

Specifically, this includes (1) handling missing values and 

outliers using robust statistical techniques like the Hampel 

filter; (2) applying PCA to reduce dimensionality and 

improve learning efficiency; and (3) optimizing the model 

via grid search with k-fold cross-validation to ensure 

generalizability. These components, when integrated, 

offer a fine-tuned and scalable approach that improves 

upon standard KNN performance, making it a practical 

solution for clinical use. 

2 Review of literature 

Machine learning algorithms have been used more 

frequently in a variety of healthcare applications, 

particularly in cardiology. In areas with limited healthcare 

resources, advanced prediction algorithms are especially 

important for identifying individuals at risk of heart failure 

and one of the main causes of death worldwide is heart 

failure [6], [7]. The study by Nagavallika discusses the 

prediction of heart disease using machine learning 

techniques, specifically the use of a hybrid random forest 

with a linear model (HRFLM) that achieves an accuracy 

of 88.7% [8]. Dimopoulos et al. assessed K-Nearest 

Neighbor, Random Forest, and Decision Tree, three well-

liked machine learning models, using the ATTICA dataset. 

Results show that the Random Forest model performs 

much better than HellenicSCORE. It also demonstrated 

the model's accuracy in smaller datasets and its ability to 

comprehend the nuances of traits associated with CVD 

even with a lesser number of data points [9]. Another study 

discusses the use of machine learning algorithms such as 

SVM, KNN, RF, J.48, and MLP for predicting heart 

disease. It also mentions the importance of balancing the 

dataset for accurate prediction [10].  

K-Nearest Neighbors (KNN) has been widely 

recognized for its simplicity, non-parametric nature, and 

interpretability, which are valuable in medical 

applications. Its ability to function without making prior 

assumptions about data distribution makes it particularly 

suitable for heterogeneous healthcare datasets. However, 

KNN also presents notable limitations. Its sensitivity to 

irrelevant features and outliers, along with computational 

inefficiency in high-dimensional datasets, can hinder 

performance—especially in complex medical data such as 

the Framingham Heart Study. These limitations motivate 

the need for preprocessing, feature reduction, and 

hyperparameter optimization. 
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Jin B et al. used sequential modelling with neural networks 

to create an electronic health record model that captured 

the sequential nature of healthcare data, including changes 

in lifestyle across time. With the use of word vectors and 

one-hot encoding, the method looks promising for heart 

failure prediction by looking for sequential patterns in 

medical data and producing diagnostic scenarios [11]. In 

this paper, the authors used machine learning methods and 

Python programming to study heart disease prediction 

using a dataset consisting of 12 parameters as well as 

70000 unique data values, and the main goal of this study 

is to increase the accuracy of heart disease detection by 

using algorithms where the target output determines 

whether the subject has heart disease. From the study, it is 

concluded that, decision trees can lead to inaccurate 

results when applied to small datasets. Naive Bayes is 

more accurate and can be combined with K-means for 

better accuracy [12].  

Previous studies using KNN for cardiovascular disease 

(CVD) prediction have shown mixed results. For example, 

some reported accuracy near 84% to 90%, yet lacked 

advanced preprocessing techniques such as normalization, 

outlier handling, or feature selection. Many of these 

models used default K values and did not tune 

hyperparameters or validate results through cross-

validation, limiting their generalizability. This 

underscores the need for a more systematic and optimized 

application of KNN for robust medical predictions. 

In a study by Shah et al., the classification algorithms 

like random forest, decision trees, K-nearest neighbor 

(KNN), and Naive Bayes were experimented on a dataset 

of 303 samples having 17 attributes and the KNN model 

achieved the highest accuracy of 90.8% [13]. Boosted 

decision tree algorithms have shown promise in 

correlating patient characteristics with mortality risk, 

achieving an AUC of 0.88 [14]. Pires et al. explored 

various machine learning methods, achieving a maximum 

accuracy of 87.69% for heart disease prediction [15]. 

However, the study’s validity was constrained by the 

limited sample size. Ali et al. reported a 100% accuracy 

using Random Forest, Decision Trees, and KNN 

algorithms, albeit focusing on optimal cross-validation 

results rather than robust, conclusive findings [16]. A heart 

disease profiling model were developed Kahramanli et al. 

by using a hybrid artificial neural network with fuzzy 

logic. While models that incorporate both neural networks 

and fuzzy logic concepts have achieved an 86.8% 

accuracy rate, none have been permanently validated for 

other diseases like diabetes. They have used k-fold cross-

validation for the classification purpose and also tried this 

model on the diabetes dataset, achieving a performance of 

84.24% [17]. Faiayaz et al. improved the accuracy of KNN 

by 5.68%, and a hybrid Random Forest and Linear Model 

technique reached an 88.7% precision on a dataset of 297 

records [18], [19].  

The issue of high dimensionality in health data has 

been addressed by employing Principal Component 

Analysis (PCA) for dimensionality reduction, retaining 

significant variance within fewer components. PCA's 

effectiveness was further corroborated by a study using it 

alongside unsupervised learning techniques, with NN 

classifiers, achieving a high F1 score in classifying cardiac 

arrhythmia with minimal components, indicating PCA's 

robustness in feature extraction [20], [21]. Additionally, 

the PCA-KNN method has been applied to medical 

imaging, resulting in significant accuracy for scaling 

diverse medical images, underscoring the adaptability of 

PCA in medical diagnostics [22], [23]. A deep learning 

technique that applies an artificial neural network 

algorithm with a hidden layer technique in making a heart 

disease prediction model was proposed by Yuda Syahidin 

et al., which yielded 90% accuracy [24]. Wang et al. 

mentioned about the center loss to enable the neural 

network to learn discriminative features and separate 

samples from different categories, which can effectively 

improve heart disease prediction [25]. 

Hybrid models, integrating the power of multiple 

machine learning algorithms, have also demonstrated 

significant performance.  Sharanyaa  et  al. proved  the  

higher  performance  of  a hybrid method  that  combines 

Support  Vector  Machines (SVM) and Naive Bayes [26]. 

Moreover, in diagnosing heart disease, ensemble methods 

have generally better performance. It is a combination of 

various machine learning algorithms set up for this 

purpose. In another study, ensemble model, comprising 

multiple machine learning techniques, showed improved 

effectiveness [27].  Studies comparing ML classifiers like 

Sequential minimal optimization (SMO), naïve Bayes, 

and J48 decision trees in cardiovascular risk prediction 

found SMO to be the most accurate, suggesting its 

robustness [28]. Deep learning applications, including 

Convolutional Neural Networks (CNNs) for early heart 

failure detection via ECGs, have achieved a 0.78 AUC 

[29] and adaptive multi-layer networks have outperformed 

classical and hybrid models [30].  

Advancements in medical imaging for brain tumor 

detection involve combining CNN with auto-context 

techniques, using multi-dimensional image patches for 

improved accuracy [31]. The Intelligent Deep Residual 

Network based Brain Tumor Detection and Classification 

(IDRN-BTCC) method, a novel approach for brain tumor 

classification using residual networks and multilayer 
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perceptron, has shown efficacy, enhanced by chicken 

swarm optimization [32]. Shankar et al.'s convolutional 

neural network algorithm, using structured and 

unstructured patient data, predicts heart disease risk with 

85 to 88% accuracy [33]. Dutt et al. developed a CNN for 

class-imbalanced datasets, classifying 77% of positive 

cases and 81.8% of negative cases accurately 

[34]. Another study presents an Integrated Deep Learning 

Model with Convolution Neural Network (IDLM CNN) 

for heart disease prediction using various medical data 

sets. This model convolves the features of lungs and 

combines with other features to compute Disease Prone 

weight towards cardiac disease and the proposed model 

improves heart disease prediction accuracy. The False 

ratio is reduced with the integrated model [35]. 

Table 1 provides a comprehensive overview of the 

data sets, attributes, machine learning methods, and 

corresponding accuracy values employed in historical and 

contemporary heart disease prediction research. While 

ensemble and deep learning approaches offer high 

accuracy, they often sacrifice transparency, scalability, or 

require significant computational resources. Our study 

presents an optimized KNN framework that preserves 

simplicity while achieving competitive performance. By 

integrating PCA for dimensionality reduction, Hampel 

filtering for outlier removal, and grid search with k-fold 

cross-validation for tuning, we address known limitations 

of traditional KNN and demonstrate its practical value in 

clinical decision-making contexts.  

In summary, this study addresses key limitations in the 

existing literature, especially the under-optimized use of 

KNN in CVD prediction. By implementing a robust end-

to-end pipeline—from data cleaning and feature selection 

to hyperparameter tuning—our model not only improves 

prediction accuracy but also contributes a reproducible 

methodology for medical risk assessment. The following 

section elaborates on our methodological framework, 

which is tailored to overcome the gaps identified in prior 

research.

 

Table 1: Comprehensive summary of datasets, attributes, machine learning algorithms, and accuracy values in heart 

disease prediction research over time 

Research 

Article 

Algorithm 

Used 

Dataset Used Attributes 

/Parameters 

Accuracy Novelty / Limitations 

[36] Multilayer 
Perceptron 

Multiple Datasets 

(Cleveland, 

Hungarian, 

Switzerland, Long 
Beach, StatLog) 

Infinite Feature 
Selection 

87.70% The study proposes a novel heart 

disease prediction model using 

adaptive infinite feature selection with 

deep neural networks to enhance 

precision and sensitivity, though its 

accuracy (87.7%) is limited by small, 
diverse datasets and potential 
overfitting. 

[37] Sequential 

Minimal 

Optimization 
(SMO) 

Cleveland heart dataset Full Set and 

Optimized 
Attribute Set 

85.148% using the 

full set of attributes 

and 86.468% using 
the optimal attribute 

set 

The study combines multiple machine 

learning classifiers with attribute 

evaluators and hyperparameter tuning 
to improve heart disease prediction, but 

its accuracy remains moderate at 

86.468% and is limited by reliance on 
a single dataset. 

[38] Logistic 
Regression, 

SVM, KNN, 

GNB, MNB, 
DT 

Self-Augmented 
Datasets of Heart 

Patients (UCI Dataset 
and Local Dataset) 

Anaemia, 
Diabetes, 

High_blood_pres
sure, 

Sex, Smoking, 

Time (Follow-up 
period), 

Death_event 

Logistic regression 
(82.76%), SVM 

(67.24%), KNN 

(60.34 %), GNB 
(79.31 %), MNB 

(72.41%), ET 

(70.31%), RF 

(87.03%), GBC 

(86.21%), XGB 

(84.48%) LGBM 
(86.21%)  

The study uses a self-augmented 
dataset approach—expanding heart 

disease data synthetically—and applies 

multiple ML models, improving 
prediction accuracy through enhanced 

data diversity. The effectiveness of 

synthetic data may not generalize well 

to real-world scenarios, and the study 

lacks external validation on 
independent datasets. 

[39] Logistic 

Regression 
with PCA and 

Ensemble 
Classifiers 

Cleveland Heart 
Disease Dataset 

Complete Set 

and Optimized 
Attribute Set 

85.8% The study improves heart disease 

prediction by applying Principal 
Component Analysis with machine 

learning models, achieving 85.8% 

accuracy, but its reliance on 
transformed features and a limited 

dataset reduces interpretability and 
generalizability. 
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[40] Hybrid 
Random 

Forest with 
Linear Model 

(HRFLM) 

UCI Cleveland dataset 13 clinical 
features 

88.7% The study enhances heart disease 
prediction by using a hybrid model 

combining random forest and linear 
models, achieving 88.7% accuracy, but 

its performance may be limited by 

dataset scope and lack of external 
validation. 

[41] Voting 
Ensemble 

UCI Dataset Optimal set of 
attributes 

91.96% The study proposes an ensemble model 

using stacking and voting techniques 
for heart disease prediction, achieving 

high accuracy (91.96%) and F1 score 

(91.69%) on the UCI dataset, though it 
performs less effectively on the 

Framingham dataset, indicating 
limited generalizability. 

[42] SVM Framingham Heart 
Study 

 six highly 

correlated 

features 

67% The study develops a heart disease 

prediction model using correlation-

based feature selection and achieves 

67% accuracy with SVM on 

oversampled Framingham data, though 
the modest performance suggests 

limitations due to dataset imbalance 

and limited predictive power of 
selected features. 

[43] Logistic 
Regression 

Framingham Heart 
Study 

Complete set of 
attributes 

85.063% The study compares machine learning 

and deep learning models for 
predicting 10-year coronary heart 

disease risk using the Framingham 
dataset, with logistic regression 

achieving the best accuracy (85.06%), 

though performance differences across 
models were minimal and 

generalizability was not validated 
externally. 

[44] Auto 

Encoder-

Based Kernel 
SVM 

Framingham Heart 
Study 

Complete set of 
attributes 

87.14% The study introduces an IoT-based 

RHMIoT framework combining deep 

learning and autoencoder-based ML to 
monitor and predict cardiovascular 

disease severity, achieving 87.14% 

accuracy, though performance may 
vary due to dependence on a single 

dataset (Framingham) and limited real-
world testing. 

[45] Gradient 

Boosting 
Classifier 

(GBC) 

Framingham Heart 
Study 

Optimal set of 
attributes 

87.61% The study improves heart disease 

prediction by applying p-value-based 
backward feature elimination with 

several ML algorithms, achieving 

87.61% accuracy using gradient 
boosting, though limited to a single 

dataset and potentially impacted by 
reduced feature interpretability. 
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3 Materials and methods 
The methodology adopted in this study follows a 

structured and modular flow encompassing key stages: 

data acquisition, preprocessing (including missing value 

treatment and outlier handling), feature normalization and 

dimensionality reduction, classification using the KNN 

algorithm, and evaluation using standard performance 

metrics. Each of these stages is described in detail in the 

following subsections, with a flowchart summarizing the 

process in Figure 1.

The proposed methodology used in this study is 

demonstrated in Figure 1. The proposed model consists of 

a number of rigorous steps including data acquisition, 

preprocessing, dimensionality reduction and feature 

scaling, application of optimized KNN algorithm and 

performance evaluation. The Kaggle repository is used to 

acquire the famous publicly available Framingham heart 

disease dataset that is used for evaluating the effectiveness 

of the optimized KNN algorithm. The dataset is cleaned 

and transformed data preprocessing for making it suitable 

for further analysis. The missing values are handled using 

mean imputation technique that replaces them with the 

attribute mean. The Hampel filter, based on the Median 

Absolute Deviation, is then used to handle outliers to 

minimize the probability that outliers could skew the 

results. Feature scaling is done using the min-max 

normalization technique which maintains the range of data 

points in the dataset. Principal component analysis (PCA) 

is performed for dimensionality reduction. PCA reduces 

the dataset to its most significant components by 

preserving as much of the original data variation as is 

possible. The amount of computational overhead for 

handling the dataset in the next machine- learning phases 

can be minimized through this process. 

After data preprocessing, the study optimizes the 

traditional KNN algorithm and changes can boost 

processing capacity or forecast precision.  The KNN 

algorithm clusters data points together in the feature space 

using the characteristics of their nearest neighbors. 

Finally, the success of the model is assessed in 

performance evaluation. The dataset is split into test and 

training sets in order to evaluate the model's predictive 

capacity for patient heart disease. Following its 

application to the test set, the model is assessed using 

pertinent metrics, including recall, accuracy, precision, F1 

score, and others. The research leveraged the 

functionalities of RStudio and the R programming 

language. 

 

Figure 1: Proposed methodology.

4 About the dataset 

The "Framingham" heart disease dataset contains more 

than 4,240 entries, with 16 columns and 15 characteristics. 

It aims to forecast whether a patient is at risk of developing 

coronary heart disease (CHD) within the next ten years. 

Each attribute within the dataset represents a potential risk 

factor, spanning various demographic, behavioral, and 

medical factors. The Framingham Heart Study is a long-

term cardiovascular cohort study initiated in 1948 in 

Framingham, Massachusetts, involving over 5,000 men 

and women aged 30–62. It aimed to investigate factors 

contributing to cardiovascular disease development. 

While it has generated valuable clinical insights, the 

dataset is predominantly composed of white, middle-class 

individuals, which may limit its generalizability to diverse 

populations. However, its depth, quality, and widespread 

use make it a reliable benchmark for model evaluation. 

Although other datasets such as the UCI Cleveland dataset 

are available, they are smaller and less comprehensive, 

justifying the use of the Framingham dataset in this study. 

Attributes: 

Demographic: 

▪ Gender: Categorized as either male or female 

(Nominal) 
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▪ Age: Represents the individual's age, considered 

a continuous variable (Even though ages are 

rounded to the nearest whole number, age itself 

is continuous) 

▪ Education: Specific details about education are 

not provided. 

Behavioral: 

▪ Current Smoker: This variable denotes whether 

the patient is currently engaged in smoking 

(Categorical). 

▪ Cigarettes Per Day: This variable quantifies the 

average number of cigarettes an individual 

smoke daily. (Treated as continuous since it can 

encompass any numerical value, including 

fractional quantities.) 

Information on medical history: 

▪ BP Meds: Shows whether the patient is currently 

using medication for controlling blood pressure 

or not (Categorical) 

▪ Prevalent Stroke: Indicates whether the patient 

has a history of stroke (Categorical) 

▪ Prevalent Hyp: Indicates whether the patient has 

been diagnosed with hypertension (Categorical) 

▪ Diabetes: Indicates whether the patient has been 

diagnosed with diabetes (Categorical) 

Information about the patient's current health status: 

▪ Total Cholesterol (Tot Chol): This represents the 

continuous measurement of the total cholesterol 

level. 

▪ Systolic Blood Pressure (Sys BP): This indicates 

the continuous measurement of systolic blood 

pressure. 

▪ Diastolic Blood Pressure (Dia BP): This records 

the continuous measurement of diastolic blood 

pressure. 

▪ Body Mass Index (BMI): BMI is calculated and 

measured as a continuous variable, reflecting the 

patient's body mass in relation to their height. 

▪ Heart Rate: The heart rate is recorded as a 

continuous variable, acknowledging its wide 

range of potential values in medical studies. 

▪ Glucose: The continual monitoring of the 

patient's glucose levels in their healthcare 

records. 

Target variable: 

The target variable portrays the ten-year likelihood of 

cardiovascular disease and it is represented in binary 

notation. A value of 0 implies a negative risk and a value 

of one a positive risk. 

5 Data preprocessing  

In data preprocessing, the raw data is cleansed and 

transformed into information that is useful for model 

training, and it is a pivotal step before using machine 

learning techniques. Data preprocessing has to be done 

carefully because  it has adverse effects on the 

performance and calibre of the machine learning models. 

5.1 Handling missing values 
Missing values in a dataset may produce biased reults and 

it has adverse impact on the performance and reliability of 

machine learning models.Therefore, handling missing 

values is considered as an essential step in the data 

preprocessing pipeline. The renowned Framingham 

dataset has 4,240 records with 15 distinct features that are 

often utilized in cardiovascular research. The analysis 

revealed that 645 records were incomplete, indicating 

missing values within the data. Figure 2 presents a 

meticulous mapping of these gaps, shedding light on the 

magnitude and pattern of the missing information across 

various attributes. Attributes such as 'TenYearCHD,' 

'diaBP,' 'sysBP,' 'diabetes,' 'prevalentHyp,' 

'prevalentStroke,' 'currentSmoker,' 'age,' and 'gender' 

exhibit complete data (0% missing entries). The 

'heartRate' attribute shows an insignificantly small 

fraction of missing data, at 0.02%. Other attributes like 

'BMI,' 'cigsPerDay,' 'totChol,' and 'BPMeds' show a larger 

incidence of missing data, between 0.45% and 1.25%. The 

'education' attribute has 2.48% of its values missing. 

Notably, the 'glucose' feature experiences the highest level 

of missing entries, standing at 9.15%. To address these 

gaps in the dataset, multiple techniques are available. For 

this study, the strategy of mean imputation has been 

applied. Mean imputation is a statistical technique used to 

fill in missing values in a dataset by replacing them with 

the mean (average) of the available values for a specific 

variable. Figure 3 shows all features having 0% missing 

data, which suggests that mean imputation has been used 

to fill in all the missing values for each feature with the 

mean value of that feature. The result is a dataset with no 

apparent missing data. Mean imputation was chosen for its 

simplicity and effectiveness in cases of low missingness, 

particularly where the feature distribution is symmetric or 

approximately normal. Although methods like KNN 

imputation or multiple imputation offer more 

sophistication, they are computationally intensive and less 

suitable when missingness is minimal. For instance, 

attributes such as glucose (9.15% missing) and education 
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(2.48%) were imputed using the mean to preserve sample 

size while avoiding bias. 

 

Figure 2: Visual representation of missing values in 

various features of the Framingham dataset 

 

Figure 3: Visual representation of missing values after 

performing mean imputation. 

5.2 Handling outliers 
Addressing outliers in the data is crucial as they can 

considerably influence the outcomes and effectiveness of 

both statistical analyses and machine learning models. 

Outliers refer to data points that deviate substantially from 

the majority of the dataset.  

Figure 4 shows a box plot of six variables: sysBP, 

totChol, diaBP, BMI, heartRate, and glucose. The variable 

sysBP (Systolic Blood Pressure) has a wide interquartile 

range (IQR), the distance between the first and third 

quartiles, indicating variability in the data. Several outliers 

above the upper whisker suggest that some individuals 

have unusually high systolic blood pressure readings. The 

total cholesterol (totChol) levels also display a relatively 

wide IQR, suggesting variability. There are outliers on 

both ends, indicating that there are individuals with 

unusually high and low cholesterol levels. The diastolic 

blood pressure (diaBP) levels show a smaller IQR 

compared to systolic blood pressure, indicating less 

variability. There are a few outliers, particularly on the 

higher end. The BMI box plot shows a moderate IQR. 

There are several outliers on the upper side, indicating that 

there are individuals with a BMI much higher than the 

average. When compared with sysBP and diaBP, the 

attrbute "heartRate" has a lower IQR. Although, there 

exist outliers,they are not very noticable. The values of 

glucose are closer to the median thereby indicating the 

smallest IQR. But there exist number of high outliers 

showcasing the elevated sugar levels. There is notable 

variance in the total cholestrol, systolic blood pressure and 

diastolic blood pressure.  

In this study, outliers are identified and removed using 

the famous statistical approach called Hampel filter based 

on the Median Absolute Deviation (MAD). When 

compared to the standard deviation, MAD is less prone to 

outliers. So, it is  especially helpful when dealing with data 

that may not be regularly distributed or in situations where 

the existence of outliers might cause the standard 

deviation to be skewed.  The Hampel filter was selected 

over traditional z-score methods due to its robustness 

against non-normal data distributions, which are common 

in medical datasets. An outlier was defined as any data 

point beyond ±3 times the median absolute deviation 

(MAD) from the median. Rather than removing these 

values, we clipped them to the calculated bounds to 

prevent loss of potentially valuable information and 

maintain the dataset's integrity. 

The steps that are performed during this method 

include: 

▪ Sliding Window: For every data points of 

interest, the hampel filter select a window of data 

points around them. The sliding window is 

normally symmetric and contains many data 

points before and after the current point. 

▪ Calculation of the Median: The filter calculates 

the median of the data points within this window. 

▪ Calculation of the MAD: The absolute 

differences between the values of an attribute and 

the median of that attribute is detemined for the 

calculation of MAD. 

▪ Setting the Bounds: The range of data variation 

that is considered as normal is defined  by setting 

the upper and lower boundaries. The bounds are 

set at three times the MAD below and above the 

median. The lower bound is calculated as the 

median minus three times the MAD. The upper 

bound is the median plus three times the MAD. 

▪ Identification of Outliers: It identifies which 

attribute values fall outside these bounds. 
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▪ Replacement of Outliers: It replaces the attribute 

values identified as outliers with the nearest 

boundary value. 

This MAD-based method is a good choice for outlier 

detection when the data may not be normally distributed 

because it is based on the median, which is a robust 

measure of central tendency that is not affected by extreme 

values as much as the mean. 

Figure 5 shows a grid of six histograms, each depicting 

the distribution of values for a different biomedical metric. 

These histograms are useful for identifying the range of 

values and potential outliers within each category. The 

categories presented are BMI, diaBP (diastolic blood 

pressure), glucose, heartRate, sysBP (systolic blood 

pressure), and totChol (total cholesterol). The 

observations based on the histograms are: 

▪ BMI: The distribution is somewhat right-skewed, 

indicating that most individuals have a BMI 

within the normal to overweight range, but there 

are some with high BMIs indicative of obesity. 

▪ Diastolic Blood Pressure (diaBP): The 

distribution appears approximately normally 

distributed, with most values centering around 

the median. There are a few potential outliers on 

the higher end. 

▪ Glucose: This histogram is heavily right-skewed, 

with most individuals having glucose levels in 

the normal range, but there is a long tail to the 

right, indicating some individuals with very high 

glucose levels, which may suggest diabetes or 

other metabolic disorders. 

▪ Heart Rate (heartRate): Most of the heart rate 

values are clustered in the middle range. The 

distribution is almost normal with a slight right 

skew. 

▪ Systolic Blood Pressure (sysBP): The 

distribution is right-skewed, with a peak in what 

might be considered the high-normal range and 

some individuals with particularly high systolic 

blood pressure values, potentially indicating 

hypertension. 

▪ Total Cholesterol (totChol): This distribution is 

roughly normal but with a slight right skew, 

suggesting that while most individuals have 

cholesterol levels within the normal range, there 

are some with high cholesterol levels. 

 

 

Each histogram is labeled with "count" on the y-axis, 

representing the number of observations within each bin 

of the histogram, and "Value" on the x-axis, representing 

the range of values for the metric in question. These 

visualizations help in understanding the overall health 

profile of a population or a sample of individuals, 

particularly in pinpointing common ranges for these health 

metrics and identifying outliers that might warrant further 

investigation or intervention. 

The outlier handling procedure has determined 

specific lower and upper bounds for key variables in the 

dataset. For "totChol," the calculated bounds are 150 as 

the lower limit and 318 as the upper limit. Similarly, for 

"sysBP," the lower bound is set at 89, while the upper 

bound is established at 167. The variable "diaBP" is 

subject to lower and upper bounds of 59.5 and 104.5, 

respectively. "BMI" adheres to limits of 17.94 as the lower 

bound and 32.88 as the upper bound. The heart rate 

variable, denoted as "heartRate," is constrained between 

54 and 96. Finally, "glucose" follows boundaries of 59 

(lower limit) and 101 (upper limit). These bounds serve as 

thresholds for identifying and handling outliers in the 

respective variables, contributing to the robustness of data 

analysis and model building. 

The updated box plots in Figure 6 show that the 

outliers have been handled, as there are no longer points 

beyond the whiskers. The scale of the y-axis has changed 

for some metrics, indicating that the maximum values are 

lower, which is consistent with the removal of high 

outliers. 

 

Figure 4: Box Plot before handling outliers in the dataset 
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Figure 5: Histogram visualization of outliers 

 

Figure 6: Box plot after handling outliers in the data 

5.3 Normalization 

Normalization serves as a data preprocessing method 

aimed at scaling and standardizing the features or 

variables within a dataset. Its primary objective is to place 

all variables on a uniform scale, facilitating comparisons 

and frequently enhancing the performance of machine 

learning algorithms. Min-Max normalization, often called 

feature scaling or min-max scaling, is employed in this 

study and using this method, the values of numerical 

variables are converted into a predetermined range, 

usually between 0 and 1. By reducing the influence of 

outliers, Min-Max normalization helps to make data more 

comparable by guaranteeing that different variables have 

an identical scale. For normalizing a single variable, the 

following formula is used: 

Xnormalized = (X-Xmin)/(Xmax-Xmin) 

Where: 

Xnormalized indicates the normalized value of the variable X. 

X is the original value of the variable. 

Xmin denotes the minimal value of the variable X in the 

dataset. 

Xmax denotes the maximal value of the variable X in the 

dataset. 

After applying Min-Max normalisation, the 

transformed values will lie between 0 and 1, where 0 

denotes the variable's lowest value in the dataset and 1 its 

highest value. The relative positions of each data point 

inside the initial range are represented by values ranging 

from zero to one. Figure 7 shows box plots for six 

biomedical metrics before and after normalization. After 

normalization, all values are adjusted to fit within a similar 

scale, between 0 and 1. Min-max normalization was 

preferred over standardization (z-score normalization) 

because it preserves the original distribution shape and 

maps features to a common scale [0,1], which is 

particularly advantageous for distance-based algorithms 

like KNN. It helps prevent features with larger numeric 

ranges from dominating the distance calculations, thereby 

improving classification accuracy. 

 

Figure 7: Dataset before and after normalization 

5.4 Principal component analysis 

Principal Component Analysis (PCA) is a crucial method 

in both data analysis and machine learning, designed to 

reduce the dimensionality of datasets with numerous 

variables. It achieves this by identifying orthogonal axes, 

termed principal components, which effectively capture 

the primary sources of variation in the data. The first 

principal component accounts for the highest variance, the 

second for the second-highest, and so forth. PCA proves 

valuable in streamlining data, facilitating visualization and 

processing, and is frequently employed as a preprocessing 

measure to improve the efficacy of machine learning 

models.  

The dataset originally consisted of 15 attributes, but 

the 'education' column was excluded on the grounds that it 

has no impact on heart disease. Following the application 

of Principal Component Analysis (PCA) and the 

determination of PCA scores, eight attributes were chosen. 

The output of PCA shows the loadings (also known as 



Visualizing the Full Spectrum Optimization of K-Nearest Neighbors… Informatica 49 (2025) 355–374 365 

 

 

eigenvectors) for each principal component. Loadings are 

coefficients that represent how much weight each original 

variable contributes to each principal component. PC1 to 

PC8 are the principal components. Within Principal 

Component Analysis (PCA), the initial principal 

component (PC1) captures the highest variance present in 

the data, and each succeeding component captures the 

majority of the remaining variance while maintaining 

orthogonality to the preceding components. In this study, 

cigsPerDay, BPMeds, totChol, sysBP, diaBP, BMI, 

heartRate, and glucose are the original variables that have 

been transformed into principal components.  

In PC1, "cigsPerDay" exhibits a notable positive 

loading, indicating a significant impact, while "sysBP" 

and "diaBP" contribute negatively. Compared to positive 

loadings from "glucose" and "totChol," PC2 is mostly 

affected by negative loadings from "heartRate" and 

"cigsPerDay." The PC3 loadings for "totChol" and 

"cigsPerDay" are positive, whereas "glucose" has a 

notable negative loading. The loadings from "sysBP" and 

"diaBP" are positive; however, "BPMeds" significantly 

decreases PC4. While "glucose" and "totChol" exhibit 

negative loadings in PC5, "cigsPerDay" and "BMI" have 

positive loadings. Positive loadings from "heartRate" and 

"cigsPerDay" are positively correlated with PC6, whereas 

negative loadings from "glucose" and "BMI" stabilise the 

situation. PC7 shows positive loadings from "cigsPerDay" 

and "sysBP," in addition to negative loadings from 

"heartRate" and "BMI." Finally, a notable negative 

loading from "sysBP", predominating PC8, contrasts with 

a strong positive loading from "diaBP". The 

aforementioned analysis offers insights into the key 

elements that contribute to each principal component, 

which aids in the understanding of the deeper trends and 

patterns in the dataset. PCA was used to retain eight 

components which collectively explain over 97.3% of the 

variance in the dataset, as shown in Table 2 and the 

accompanying bi plot (Figure 8). The retained components 

capture most of the essential variability while reducing 

redundancy and noise. PCA was selected over feature 

selection methods like decision tree-based importance due 

to its ability to decorrelate variables and improve 

computational efficiency in high-dimensional data. 

 

 

 

 

 

 

 

Detailed information on the significance of the 

principal components is provided in Table 2. For every 

principal component, it reveals the variation in proportion, 

cumulative variance proportion, and standard deviation. 

The standard deviation, which expresses the variance that 

each main component captures, is the square root of its 

eigenvalue. If a component has a larger standard deviation, 

it is considered to account for more volatility in the 

dataset. Variance is the proportion of the total variance of 

the dataset that each primary component explains. It is 

calculated by squaring the component's standard deviation 

and dividing the result by the total of all the eigenvalues. 

Cumulative Proportion is the total variance captured by all 

the principal components up to and including the current 

one. It is a running total of the 'Proportion of Variance' and 

shows how much of the total variance is explained by the 

combined effect of all the principal components up to that 

point. PC1 captures the most variance by far, with about 

28.41% of the variance. This is a significant amount, 

suggesting that PC1 represents a meaningful underlying 

pattern in the data. PC2 accounts for an additional 13.77% 

of the variance, bringing the cumulative total to 42.18%. 

PC3 adds another 13.08% of the variance, resulting in a 

cumulative proportion of 55.25%. PC4 through PC7 

gradually contribute less and less, with PC4 adding 

11.46%, PC5 adding 11.38%, PC6 adding 10.19%, and 

PC7 adding 9.092% of the variance, respectively. PC8 

contributes the least to the variance (2.631%), and it is 

often the case that later components account for less 

variance as the most significant patterns are captured by 

the initial components. 

Each principal component comprises a combination of 

attributes contributing to cardiovascular risk. For 

example, PC1 is significantly influenced by cigarette 

consumption and blood pressure, which are known 

predictors of heart disease. Descriptive statistics such as 

variance, standard deviation, and range for each attribute 

are provided in Table 2, offering insights into their original 

distributions. 
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Table 2: Importance of Principal Components 

   PC1  PC2  PC3  PC4  PC5  PC6  PC7  PC8 

Standard deviation      1.5076 1.0495 1.0228 0.9574 0.9539 0.9029 0.85284 0.45882 

Proportion of Variance  0.2841 0.1377 0.1308 0.1146 0.1138 0.1019 0.09092 0.02631 

Cumulative Proportion  0.2841 0.4218 0.5525 0.6671 0.7809 0.8828 0.97369 1.00000 

Figure 8 shows a Bi plot representing the distribution 

of data after Principal Component Analysis (PCA) has 

been conducted. In the scatter plot, the axes are labeled 

`PC1` and `PC2`, which stand for Principal Component 1 

and Principal Component 2, respectively. These two 

principal components are the new axes in a two-

dimensional feature space onto which the original data has 

been projected. The points on the plot represent individual 

data items in terms of their `PC1` and `PC2` scores, which 

are the coordinates of each point in the new feature space. 

Red lines emanating from the origin point to the position 

of the original variables (like `cigsPerDay`, `BPMeds`, 

`totChol`, `sysBP`, `diaBP`, `BMI`, `heartRate`, 

`glucose`) on this plane. The direction and length of these 

lines indicate how each variable correlates with the 

principal components: the longer the line, the more the 

variable influences that principal component. The angle 

between the lines suggests whether the correlation 

between variables is positive (lines more closely directed), 

negative (lines more divergent), or neutral (lines are 

perpendicular).  

 

Figure 8: Biplot of PCA 

6 Classification using optimized K-

Nearest Neighbors (KNN) algorithm 

The novelty of this study does not rest solely on the use of 

the KNN algorithm, which is a well-established 

classification method, but on how the algorithm has been 

carefully adapted and optimized for medical data. The 

proposed model systematically incorporates advanced 

preprocessing techniques, such as Hampel filter-based 

outlier removal, Min-Max normalization, and PCA for 

dimensionality reduction. Moreover, the study introduces 

a grid search-based strategy for hyperparameter tuning, 

complemented by 10-fold cross-validation, to empirically 

identify the most effective K value. These innovations 

collectively enhance both the accuracy and interpretability 

of the KNN model in cardiovascular disease prediction. 

The K-Nearest Neighbors (KNN) algorithm is a 

straightforward and easy-to-understand machine-learning 

classification method suitable for both supervised and 

unsupervised tasks. Operating as a non-parametric and 

instance-based learning approach, KNN refrains from 

assuming any specific characteristics about the data 

distribution, relying on predictions derived from the 

similarity between data points. The key steps involved in 

the optimized KNN classification algorithm are: 

▪ Loading the Data set: Load the dataset for data 

analysis, visualization, and modeling. 

▪ Handling Missing Data: Identify missing values 

in the dataset and impute missing values for the 

columns by replacing them with their mean. 

▪ Outlier Detection and Handling: Apply the 

Hampel Filter and median absolute deviation 

(MAD) to detect outliers in each variable and 

subsequently bound these outliers with the 

calculated Lower and Upper bound values for 

outlier handling. 

▪ Normalization: Normalize the dataset using Min-

Max normalization to bring all variables to a 

common scale. 

▪ Feature Selection using Principal Component 

Analysis (PCA): Apply Principal Component 

Analysis (PCA) for feature selection and 
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understand the importance of each principal 

component. 

▪ K-Nearest Neighbors (KNN) Classification: 

Split the dataset into training and testing sets in 

the ratio 60:40, then train the KNN model on the 

training set using hyperparameter tuning, 

considering k values ranging from 1 to 20, and 

determine the optimal value of k through 10-fold 

cross-validation. 

▪ Evaluate KNN Model: After training the K-

nearest neighbors (KNN) model on the testing 

set, predict the accuracy and subsequently 

compute and present the evaluation metrics, 

including the confusion matrix, precision, recall, 

and F1-score. 

KNN utilizes a distance metric to gauge the 

resemblance between data points by calculating the 

distance of each data point in the dataset to the point 

intended for classification. This study employed the 

Euclidean distance metric, defined as the square root 

of the sum of squared differences between 

corresponding feature values. Euclidean distance is 

commonly used in KNN due to its simplicity and 

effectiveness on normalized, continuous data. 

Alternative metrics like Manhattan or Minkowski 

distance were considered, but Euclidean showed 

more stable results across cross-validation folds. The 

choice of distance metric directly influences the 

neighborhood formation and thus affects model 

accuracy. Following this, the algorithm proceeds to 

find the K Nearest Neighbors, pinpointing the K data 

points with the smallest distances to the target point, 

constituting the "nearest neighbors. To accomplish 

classification tasks, the algorithm tallies the 

occurrences of each class and subsequently conducts 

a majority vote among neighboring instances. This 

process allows for the consideration of weighted 

voting or tie-breaking methods. The class with the 

highest count is determined to be the anticipated class 

at the target point. For making predictions, the 

procedure associates the anticipated class with the 

target point by considering the majority class that 

occurs most often among its K nearest neighbors. To 

evaluate the effectiveness of the algorithm, the dataset 

is often divided into two separate sets, including a 

training set and a testing set. Subsequently, KNN is 

applied to the testing set, and its accuracy and other 

pertinent metrics are assessed to determine the 

algorithm's effectiveness. 'K,' or the optimal 

parameter, has to be identified for performance 

optimisation to be effective. This implies that K's 

value must be adjusted throughout the evaluation 

process. One hyperparameter that must be set before 

the algorithm begins is the number of nearest 

neighbors considered for predictions, represented by 

the selected value of K. Remarkably, the choice of K 

has an enormous effect on the performance of the 

algorithm. A popular approach for determining K is to 

compute the square root of the total number of 

observations in the training dataset. This technique 

yields an accuracy of 85.08% (K=65) and gives an 

initial estimate; however, the best value for "K" will 

vary depending on the specific dataset and should be 

discovered by the method termed as hyperparameter 

tuning. Hyperparameter tuning involves selecting the 

set of optimal hyperparameters for a learning 

algorithm. For KNN, the primary hyperparameter is 

the number of neighbors (K). The study utilized the 

Grid Search method, a more systematic approach that 

defines a grid of hyperparameters and exhaustively 

tries all combinations. For KNN, this study combined 

grid search with cross-validation, and the steps are: 

▪ Define Parameter Grid: Create a grid of 

'K' values you want to explore. 

▪ Cross-Validation: Use k-fold cross-

validation to estimate the effectiveness 

of each 'K.' This involves splitting your 

training set into 'k' smaller sets (folds), 

then training the model 'k' times, each 

time using a different fold as the 

validation set and the remaining as the 

training set. This study used 10-fold 

cross-validation.  

▪ Search: Apply grid search to 

systematically work through the grid of 

'K' values, training and validating the 

model for each. 

▪ Best Model: The grid search process 

keeps track of the performance for each 

'K' value and ultimately selects the one 

with the best cross-validated 

performance. 

6.1 Hyperparameter tuning: K-Selection 

process 

Hyperparameter tuning, especially the selection of the 

optimal number of neighbors (K), is critical in improving 

the performance of the K-Nearest Neighbors (KNN) 

algorithm. In this study, a data-driven approach was 

implemented to select the most suitable K value. The 

selection process involved evaluating multiple K values 



368 Informatica 49 (2025) 355–374 J. Joseph et al. 

 

based on their predictive performance using 10-fold cross-

validation. We considered values of K ranging from 1 to 

25, to strike a balance between underfitting and 

overfitting. Each value was assessed by measuring the 

average accuracy across 10 cross-validation folds on the 

training data. The model with the highest average cross-

validation accuracy was selected as optimal. This method 

ensures better generalizability and avoids bias due to any 

single train-test split. Though computationally more 

intensive than a single evaluation, the use of cross-

validation provides a more reliable estimate of model 

performance. Given the modest size of the Framingham 

dataset (4,240 instances), the grid search over K values 

was completed efficiently within seconds using RStudio, 

making this approach practical for real-world medical 

datasets. The complete step-by-step procedure for 

selecting the optimal K using grid search and 10-fold 

cross-validation is: 

▪ Step 1: Split dataset D into training (60%) and 

testing (40%) sets. 

▪ Step 2: For each K in range [1 to 25]: 

▪ Initialize accuracy list Acc = [] 

▪ Perform 10-fold cross-validation: 

▪ Divide training data into 10 folds. 

▪ For each fold: 

o Train KNN on 9 folds. 

o Validate on the remaining fold. 

o Record the accuracy and append to Acc. 

▪ Compute average accuracy AvgAcc(K) = mean 

(Acc) 

▪ Step 3: Select K with the highest AvgAcc(K) as 

the optimal K. 

▪ Step 4: Train the final KNN model using the full 

training set and optimal K. 

▪ Step 5: Evaluate the model on the test set. 

The average cross-validation accuracies for each K 

value in the range of 1 to 25 are summarized in Table 3, 

highlighting the performance trend and identifying the 

optimal K. 

 

 

 

Table 3: Hyperparameter tuning results for K 

K Value Average Cross-Validation 

Accuracy (%) 

1 86.02 

2 86.9 

3 88.12 

4 88.95 

5 89.91 

6 90.18 

7 90.45 

8 90.89 

9 91.05 

10 91.12 

11 91.26 

12 91.4 

13 91.3 

14 91.72 

15 91.85 

16 91.93 

17 92.03 

18 92.15 

19 92.36 

20 92.46 

21 92.4 

22 92.32 

23 92.1 

24 91.87 

25 91.65 

The implementation of the proposed solution was 

carried out using R programming language in RStudio. A 

range of libraries were utilized to perform specific tasks: 

tidyverse for data manipulation, DataExplorer for 

exploratory data analysis and visualization of missing 

values, psych and lattice for descriptive statistics, car for 

boxplot visualization, caret for model training and 

evaluation, caTools for dataset splitting, and class for 

applying the K-Nearest Neighbors (KNN) algorithm. For 

performance evaluation, metrics such as accuracy, 

precision, recall, F1-score, and AUC were computed using 

the pROC and caret packages. Principal Component 

Analysis (PCA) was conducted using the base prcomp () 

function. This structured pipeline ensures transparency, 

reproducibility, and scientific rigor in the analysis. 

7 Results and discussion  

Heart disease prediction using the K-nearest neighbor 

(KNN) algorithm has been extensively studied in the 

literature. Figure 9 is a violin plot that provides a more 

detailed representation of the distribution of the accuracy 

of different machine learning algorithms in predicting 

cardiovascular diseases in the scientific literature and the 

optimized KNN algorithm.  
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Similar to a box plot, the violin plot provides a detailed 

view of the accuracy distribution of several algorithms by 

including markers for the mean and median. Garg et 

al., examined the diagnosis of cardiovascular diseases by 

the application of machine learning (ML) methods, such 

as K-Nearest Neighbor (KNN) and Random Forest. For 

cardiovascular disease, the two models' respective 

prediction accuracy was 86.885% and 81.967% [46]. In a 

study of supervised machine learning algorithms for 

predicting and diagnosing heart disease, the random forest 

technique beats the other four algorithms—decision tree, 

logistic regression, KNN, and random forest—when 

applied to a 70,000 sample dataset from Kaggle, with a 

92% F1 score and a 95% AUC ROC [47]. In another study, 

Poojitha et al. examine the K Nearest Neighbor and Novel 

Random Forest methodologies to see the extent to which 

data mining algorithms predict heart disease. With a 

90.16% success rate for forecasting cardiovascular disease 

compared to 67.21% for K Nearest Neighbor, it is 

concluded that the Novel Random Forest approach 

performs much better in terms of accuracy [48].  

The following machine learning methods for 

classification revealed the following accuracies in an 

investigation using the Framingham dataset of 4240 

observations: Random Forest (RF) leading with an 

accuracy of 85.05%, K-Nearest Neighbors (KNN) at 

83.95%, Support Vector Machine (SVM) at 84.5%, 

Decision Tree (DT) at 84.82%, and Logistic Regression 

(LR) at 84.89% [49].  Using a common dataset, Aviral 

Chanchal et al. investigate the predictive power of many 

machines learning models for cardiovascular disorders, 

contrasting the performance of Decision Tree, KNN, 

Naïve Bayes, SVM, XGBoost, and Random Forest. 

Despite having lower accuracy percentages, Naïve Bayes, 

XGBoost, and Random Forest beat the other models in 

predicting cardiac illnesses. This was discovered by a 

deeper study utilizing the ROC curve and AUC values, 

even though KNN, SVM, and RFC exhibited high 

accuracy scores (85.33%) [50]. Ahmed et al. utilized 

algorithms such as KNN and SVM, demonstrating that 

KNN and SVM individually achieved accuracies of 

approximately 75% and 76%, respectively; a hybrid 

model integrating both algorithms significantly improved 

accuracy to 81%. This increase highlights the potential of 

hybrid machine-learning models in enhancing diagnostic 

precision in medical applications [51].  

Pallathadka et al. emphasize the importance of 

developing accurate heart disease prediction models using 

data mining methods like ANN, KNN, and CNN and 

report that CNNs have shown the most promise in terms 

of utility and consistency in predicting CHD using the UCI 

Cleveland database [52]. A study by Gupta et al. explores 

the application of supervised machine-learning 

techniques, with Logistic Regression emerging as the 

superior model in terms of performance metrics, boasting 

the highest accuracy of 92.30% and lower false negatives 

compared to other classifiers, demonstrating its potential 

for prompt disease management. Apart from the higher 

performance of Logistic Regression, the research also 

shows that K-Nearest Neighbor (KNN) achieved 

competitive accuracy rates, with k values of 7 and 14 

obtaining around 86.81% and 90.11%, correspondingly 

[53]. Multi-layer perceptron (MLP) and K-nearest 

neighbor (K-NN) machine learning techniques were 

assessed for the prediction of cardiovascular disease 

(CVD) in research by Pal et al. Both diagnosis rate 

(86.41%) and accuracy (82.47%) were better with MLP 

than with K-NN (73.77%) [54]. Bhatt et al. investigated 

several machine learning techniques and presented a 

model employing k-modes clustering with Huang 

initialization using a real-world dataset of 70,000 cases 

from Kaggle. Combining the multilayer perceptron with 

cross-validation yielded the most accurate result, 

outperforming previous approaches with an accuracy of 

87.28% [55]. 

The optimized KNN model works exceptionally well 

for predicting cardiovascular disease (CVD), having been 

improved and verified for this purpose. The model 

achieves 0.9246 and 0.9608 F1-score metrics and 

accuracy with a strategically selected hyperparameter, 

k=20. With an overall accuracy of 92.46%, the 

classification model produced promising outcomes. The 

outcome has a greater impact on the elements crucial for 

minimizing the risk of CVD. The positive predictive value 

(precision) was 92.46%, indicating the proportion of 

predicted cases that were correctly classified.  
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Figure 9: Violin plot showcasing the distribution of 

accuracies of different machine learning algorithms in 

predicting heart disease in the scientific literature and 

optimized KNN. 

 

Figure 10: Receiver Operating Characteristic 

(ROC) Curve 

Figure 10 illustrates the ROC curve, a technique 

employed for evaluating the effectiveness of a binary 

classification model. The y-axis displays the true positive 

rate, denoting the percentage of true positives accurately 

identified by the model. Meanwhile, the x-axis showcases 

the false positive rate, indicating the percentage of true 

negatives incorrectly classified as positives. This curve 

plots the trade-off between sensitivity and specificity (1 - 

false positive rate) at different thresholds. A model with 

perfect discrimination (no overlap between the two 

distributions of the binary classifier) would have a curve 

that goes straight up the y-axis and straight across at a true 

positive rate of 1. The Area Under the Curve 

(AUC=0.6216) condenses the entire ROC curve into a 

singular metric. A perfect test is denoted by a value of 1, 

while a worthless test is indicated by 0.5. A higher AUC 

signifies better discrimination between positive and 

negative classes. The ROC curve of a random classifier is 

represented by the diagonal dashed line, corresponding to 

an AUC of 0.5. The curve above this line indicates that the 

classifier has a better-than-random ability to discriminate 

between the two classes. The steepness of the curve at 

different points can indicate how thresholds can be 

adjusted to optimize for either sensitivity or specificity. A 

steep initial rise indicates that a small decrease in 

specificity will gain a large increase in sensitivity. Based 

on the ROC curve, the model is evaluated to have a good 

performance in distinguishing between the positive and 

negative classes, but there is room for improvement. 

In the context of cardiovascular disease (CVD) 

prediction, the choice of evaluation metrics plays a crucial 

role in assessing a model’s clinical relevance. While our 

optimized KNN model demonstrated strong performance 

with an accuracy of 92.46% and F1-scores of 0.9246 and 

0.9608, relying solely on accuracy can be misleading due 

to the class imbalance present in the Framingham dataset. 

In such datasets, a model may perform well on the 

majority class (non-CVD) while failing to identify the 

minority class (CVD), thus inflating the overall accuracy. 

To address this, we incorporated additional metrics 

such as precision, recall, and F1-score, which provide a 

better understanding of the model's ability to correctly 

identify positive cases. The F1-score, as the harmonic 

mean of precision and recall, is especially useful when the 

cost of false negatives is high—as in medical diagnosis. 

Our model's high F1-score indicates a good balance 

between sensitivity and specificity. 

However, a discrepancy arises with the AUC-ROC 

score, which is 0.6216. This value, while better than 

random guessing (AUC = 0.5), indicates that the model's 

ability to distinguish between positive and negative 

classes is moderate. This is likely due to class imbalance 

and the nature of KNN, which does not output calibrated 

probability scores. While the model may classify well at a 

specific threshold, its probability estimates do not align 

closely with the true likelihood of disease, limiting its 

usefulness for clinical risk stratification. 

To compute these metrics, the model first constructs a 

confusion matrix from true and predicted labels to 

determine true positives, false positives, true negatives, 

and false negatives. From this, accuracy is calculated as 

the proportion of correct predictions; precision is the ratio 

of true positives to all predicted positives; recall is the ratio 

of true positives to all actual positives; F1-score combines 

both precision and recall; and the AUC-ROC represents 

the area under the curve plotting the true positive rate 

against the false positive rate across different thresholds. 

To improve AUC and overall discrimination, future 

enhancements could include probability calibration 

methods (like Platt scaling), resampling techniques such 

as SMOTE to handle class imbalance, and the use of 

precision-recall curves to better evaluate model 

performance under imbalance. 

Figure 11 is a histogram based on the probability of 

predictions used to evaluate the binary classifier. It 
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illustrates the data distribution by creating bins across the 

data range and subsequently using bars to represent the 

quantity of observations within each bin. The data is 

categorized into two groups represented by different 

colors: red for "factor(Actual) 0" and teal for 

"factor(Actual) 1." The horizontal axis (X-axis) represents 

predicted probabilities, ranging from 0 to approximately 

0.6. The vertical axis (Y-axis) shows the count of 

occurrences for each probability bin. The red bars show a 

high frequency of predicted probabilities around 0.1, 

indicating that for the factor level 0, the model predicted a 

low probability. The teal bars, which are fewer in number, 

also show predictions mostly in the lower probability 

range but are more spread out than the red bars. For the 

red group (0), the model has high confidence in its 

predictions as the probabilities are clustered around a 

peak. The more evenly dispersed probabilities for group 1 

suggest a lower or more diverse level of confidence. The 

dispersion of the teal distribution can signal less 

confidence in assigning a positive class (1), whereas the 

concentration of red at lower probabilities shows that the 

model is confident in giving a negative class (0). A typical 

problem that may impact the effectiveness of 

classification algorithms is a class imbalance in the 

dataset, shown by more red bars than teal (i.e., more factor 

0 than factor 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Probability of predictions 

Although the overall accuracy of the model is 

impressive, it has difficulties in correctly identifying 

instances of the positive class.  To increase the model's 

ability to forecast positive instances, further optimization 

and maybe even a solution to the class imbalance problem 

could be needed. The results of the study spotlight the 

significance of model refinement methods such as feature 

selection and hyperparameter tuning in improving the 

classification accuracy. The optimized KNN algorithm 

analyzes the Framingham dataset of 191 KB in size and 

4240 observations in 7.92 seconds. As the size of the 

dataset increases there is a notable increase in the 

execution time. But, in medical prognosis precision is 

more crucial than speed. 

8 Conclusion 

In the medical industry, early detection and precise 

diagnosis of cardiovascular disorders are essential since 

they can greatly enhance patient outcomes. This study 

presents an optimized approach for K-Nearest Neighbors 

and shows a significant increase in cardiovascular disease 

prediction when applied. The meticulous combination of 

intricate feature selection methods, principal component 

analysis (PCA) for dimensionality reduction, and 

hyperparameter tuning yields an exceptionally accurate 

and efficient model. The optimized KNN model performs 

better in early CVD detection than typical KNN models, 

as evidenced by its remarkable metrics and prediction 

accuracy of 92.46%. The complexity of medical data can 

be accommodated by customizing machine learning 

algorithms, as demonstrated by this study. Improving 

preventive health tactics and possibly saving lives requires 

the integration of these cutting-edge techniques into 

clinical procedures. More widespread applications in 

healthcare are possible as a result of the study's 

foundational principles and methods, which can be 

applied to other complex illness projections. Future 

research might concentrate on correcting the dataset's 

class imbalance in order to improve the KNN model's 

capacity to identify instances of the positive class more 

precisely. Advanced tactics may be used to further 

enhance the prediction performance of the model and 

lessen the effects of class imbalance. Typical examples of 

these strategies include resampling methods and the use of 

stacked and ensemble approaches. The true innovation of 

this study lies in presenting a robust and reproducible 

framework for enhancing KNN-based classification in the 

context of medical diagnosis. Rather than introducing a 

novel algorithm, this research demonstrates how existing 

algorithms can be significantly improved through 

systematic optimization strategies. The combination of 

Hampel filtering, PCA-based feature selection, and cross-

validated hyperparameter tuning delivers a highly 

accurate and computationally efficient model. Future 

studies can further extend this work by integrating 

ensemble-based or hybrid learning strategies and 

addressing class imbalance through advanced resampling 

techniques such as SMOTE. 
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