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 With the rapid expansion of computer networks and information technology, ensuring secure data 

transmission is increasingly vital—especially for image data, which often contains sensitive information. 

This research presents a biometric-based encryption system that uses fingerprint recognition and deep 

learning to generate strong, random encryption keys. Two convolutional neural networks (CNNs) are 

employed: one to verify identity based on a user’s ID and another to extract fingerprint features for key 

generation. These keys are optimized using Particle Swarm Optimization (PSO), enhancing their 

randomness and resistance to brute-force attacks. 

 The system generates keys in real-time, eliminating the need for storage and minimizing the risk of theft or 

leakage. To further improve security, encryption keys are automatically updated after every ten messages, 

with different keys generated from multiple fingerprints of the same individual. Testing with the SOCOFing 

dataset (6,000 original and 49,270 synthetic images) achieved 99.75% identity verification and 99.83% 

classification accuracy. Performance metrics—entropy of 7.89, correlation factor of 0.00628, and zero 

repetition—demonstrate high robustness. This approach offers a secure, adaptive, and personalized 

encryption method ideal for sensitive domains like finance and healthcare. 

           Povzetek: Opisana je izvirna metoda za generiranje varnih šifrirnih ključev z uporabo prstnih odtisov, CNN 

modelov in optimizacije roja delcev (PSO) 

 

1  Introduction 

Internet and network users share millions of color images 

daily, which are utilized in various applications such as 

telemedicine, remote learning, business, and military 

operations. Color images, in particular, often contain 

sensitive and detailed information, making them prime 

targets for unauthorized access and cyberattacks. 

Securing these images is crucial not only to prevent data 

loss during transmission but also to protect sensitive  

information from attackers. Various techniques are 

employed to secure digital images, such as watermarking, 

steganography, and image encryption. Encryption 

operates in two main stages: encryption and decryption. 

During encryption, the input image is transformed into an 

unreadable form using a secret key, while in decryption, 

the content is restored using the same key [1].  The 

encryption key is a fundamental element in the 

encryption and decryption processes, and it significantly 

determines the security system's strength. However, a 

critical challenge faced by encryption systems lies in 

managing the encryption key itself [2]. Traditional 

encryption methods require transmitting the encryption 

key to the recipient to decrypt the data. This approach 

introduces vulnerabilities, as any exposure of the key 

during transmission could lead to the compromise of the  

 

 

encrypted data. Consequently, there is an increasing need 

for systems that dynamically generate encryption keys on-

demand at the user’s end, eliminating the need for key 

transmission over networks [3]. This innovative approach 

ensures that the encryption key is generated locally each 

time data is decrypted, significantly reducing risks 

associated with key interception. It also eliminates the 

need for key exchange, adding an extra layer of security 

since unauthorized parties cannot generate the key even if 

communication is intercepted.  

      The keyless exchange method, when combined with 

biometric verification, offers a highly secure solution by 

minimizing the risk of key theft. This approach aligns 

with the methodology presented in this research. 

However, implementing such a solution poses significant 

challenges in the fields of secure computing and key 

management, as it requires a robust system to ensure the 

consistent and accurate generation of keys [4]. The 

importance of this research lies in emphasizing the 

generation of encryption keys locally at the user’s end to 

safeguard data and mitigate risks associated with key 

transmission over networks. This is particularly critical 

for securing color images, as their high information 

content often correlates with increased sensitivity, making 

them especially vulnerable to sophisticated attacks. 

      To address these challenges, advanced techniques 

based on artificial intelligence and machine learning, 
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particularly deep learning, have emerged. One notable 

technique involves using deep learning to generate 

encryption keys from fingerprints. This method leverages 

the extraction of unique features from fingerprints, 

converting them into robust, non-repetitive encryption 

keys to ensure high data security [5]. This method 

addresses limitations in traditional encryption systems, 

such as the need for key transmission over networks. 

Since a fingerprint is a unique biometric identifier that 

cannot be easily copied or mimicked, it serves as an ideal 

source for generating encryption keys. Moreover, deep 

learning enhances the accuracy and strength of the 

generated keys by utilizing deep neural networks to 

analyze biometric images and extract unique features for 

each fingerprint [6]. This approach also resists advanced 

threats, including brute-force and quantum encryption 

attacks, by dynamically generating encryption keys in 

real-time. The added layer of complexity and secrecy 

prevents unauthorized parties from accessing the keys, 

even if communication data is partially intercepted [7]. 

The integration of deep learning in generating encryption 

keys from fingerprints represents a significant 

advancement in information security. This approach 

combines robust security measures with individual 

privacy, paving the way for building encryption systems 

that are highly resistant to breaches and better equipped 

to address modern security challenges. The remainder of 

this paper is organized as follows: Section 2 reviews 

related works, while Section 3 provides background on 

the key techniques utilized in this research. Section 4 

explains the management of secret keys. Section 5 details 

the proposed method. Section 6 focuses on experimental 

results and performance analysis. Section 7 discusses the 

results, and Section 8 concludes this study. 

 

2  Related works 
The integration of biometric data, chaotic systems, and 

deep learning in encryption key generation has been a 

prominent research area. Various studies have explored 

innovative approaches to enhance the security and 

robustness of encryption systems. Hashem and Kuban 

(2023) [8] introduced a system that leverages fingerprint 

biometrics to generate long, random encryption keys. The 

approach involves preprocessing fingerprint images to 

remove noise, utilizing a modified VGG-16 

convolutional neural network (CNN) to extract unique 

features, and employing transfer learning to build a key 

generation model without the need for retraining. Erkan et 

al. (2024) [9] proposed a secure image encryption 

framework that combines a chaotic logarithmic map with 

a deep CNN for key generation. Their system incorporates 

advanced operations such as permutation, DNA encoding, 

diffusion, and bit-reversal to ensure security. The 

robustness of this framework was validated through 

comprehensive analyses, including key sensitivity and 

resistance to various attacks, demonstrating superior 

performance compared to traditional encryption methods. 

       Quinga Socasi, Zhinin-Vera, and Chang (2020) [10] 

developed a method for generating encryption keys from 

alphanumeric passwords using an autoencoder neural 

network. Their experiments revealed that this method 

outperforms conventional algorithms, particularly when 

encrypting small text files, making it highly resistant to 

cracking attempts. Wu et al. (2022) [11] presented a 

biometric key generation framework that uses fingerprints 

to achieve over 1024-bit key strength and 98% accuracy. 

However, their method depends on a predefined pipeline 

and fuzzy extractors for key stabilization. In contrast, the 

method proposed in this research dynamically extracts 

high-resolution fingerprint features using deep learning 

models, ensuring greater adaptability across datasets. 

These features are combined with chaotic encryption 

systems to enhance randomness and security. 

Furthermore, Particle Swarm Optimization (PSO) is 

employed to optimize the generated keys, achieving over 

99% accuracy and producing 1024-byte keys without 

requiring stabilization layers. This approach demonstrates 

superior flexibility and security for real-world IoT 

applications. Alesawy and Muniyandi (2016) [12] 

investigated data security in cloud environments using 

random encryption keys. Their study analyzed the impact 

of incorporating Elliptic Curve Diffie-Hellman (ECDH) 

keys and demonstrated significant improvements in 

efficiency and performance by integrating Artificial 

Neural Networks (ANNs) with ECDH and genetic 

algorithms, despite increased processing times for larger 

datasets. Saini and Sehrawat (2024) [13] proposed a 

technique for generating unique encryption keys by 

combining an autoencoder network with hashing 

techniques and prime numbers derived from the MNIST 

dataset. To enhance security, the system incorporates 

XOR operations and Blum-Blum-Shub (BBS) generators. 

Extensive testing confirmed the robustness of this 

approach against attacks. Kurtninykh, Ghita, and Shiaeles 

(2021) [14] addressed the complexities of 

cryptographic key management in systems with 

increasing users and applications. They evaluated five key 

management systems, including Hashicorp Vault and 

Pinterest Knox, focusing on features such as security, 

scalability, and access control. The study concluded that 

Hashicorp Vault is particularly suitable for small 

businesses due to its superior security features. A 

summary of the related studies is provided in Table 1. for 

further reference. 
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Table 1: Previous works on key generation 

 

 

 

This research builds upon the foundations laid by these 

studies, emphasizing the dynamic generation of 

encryption keys using deep learning and chaotic systems 

to address challenges in key management and enhance 

security. The comparison Table 1. clearly demonstrates 

the superiority of our proposed method over all previous 

approaches. The proposed method utilizes dynamic keys 

generated by deep learning networks, which significantly 

enhance randomness and security. Moreover, the key is 

non-portable, non-persistent, and achieves the largest size 

and highest accuracy compared to other methods.   

3  Background 
This paragraph addresses two main techniques: CNNs and 

PSO, which form the foundation of the methodology 

proposed in this research. In the following paragraphs, we 

will provide a summary of each technique and explain its 

significance in the study. 

 

A. CNNs are advanced models in the field of deep 

learning, specifically designed to handle grid-like data, 

such as images. In this research, two CNN models were 

used to generate an encryption key based on fingerprint 
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images. Table 2. summarize the components of each model used in the work. 

 

Table 2:  Components of CNN models used 

 

Parameters (#) 
  

 

Output Shape 

 

Layer (Type) 

832 (None, 92, 92, 32 ) Conv2D (conv2d_1) 

128 (None, 92, 92, 32 ) BatchNormalization(batch_normalization_1) 

0 (None, 46, 46, 32 ) MaxPooling2D(max_pooling2d_1) 

51,264 
  

(None, 42, 42, 64 ) Conv2D (conv2d_2) 

256 (None, 42, 42, 64 ) BatchNormalization batch_normalization_2) 

0 (None, 21, 21, 64 ) MaxPooling2D (max_pooling2d_2) 

73,856 (None, 19, 19, 128 ) Conv2D (conv2d_3) 

512 (None, 19, 19, 128 ) BatchNormalization (batch_normalization_3) 
  

0 (None, 9, 9, 128 ) MaxPooling2D (max_pooling2d_3) 

0 
(None, 9, 9, 128) 

  

Dropout (dropout_1) 

0 
(None, 10368) 

 
 

Flatten (flatten_1) 
 

 

10,617,856 
 

 

(None, 1024) 

 
 

Dense (dense_1) 
 

 

0 (None, 1024) 
Dropout (dropout_2) 

 
 

615,000 

 
(None, 600) 

 
 

Dense (dense_2) 

 
 

 

The first model was designed to identify a person’s 

identity based on their ID number. After confirming the 

person’s identity, the second model identifies the selected 

fingerprint and extracts its features. Both models rely on 

convolutional layers to automatically and progressively 

extract important features from the input data, making 

them effective in performing tasks, which, in turn, aids in 

generating strong encryption keys by analyzing fine 

patterns in the images.  

 

 

 

The two models were trained using the backpropagation 

technique with a suitable loss function for each task. This 

architectural design was chosen to achieve accurate 

performance in recognizing the identity of the fingerprint 

owner through the identifier number in the file name, and 

then generate an encryption key based on the unique 

features of the fingerprint using two convolutional neural 

networks. 
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This approach adds an extra layer of security, ensuring 

that the keys are not only unique and non-repetitive but 

also resilient to various forms of attacks. The use of 

PSO ensures that the final encryption keys are both 

optimized for security and 

B. PSO (Particle swarm optimization) is an 

optimization algorithm inspired by the collective 

behavior of birds or fish.  It involves a group of 

particles, each representing a potential solution in the 

solution space. Each particle adjusts its movement 

based on its own experience and the experiences of 

neighboring particles, with the aim of reaching the 

optimal solution.  PSO is known for its efficiency and 

ability to find optimal solutions in multi-dimensional 

spaces.  In this research, PSO is applied to optimize the 

process of encryption key generation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithm enhances the randomness and strength of 

the generated keys, ensuring that they are both secure and 

resistant to attacks. PSO improves the key generation 

process by fine-tuning the key parameters in real-time, 

making it more robust against potential security threats. 

This approach adds an extra layer of security, ensuring 

that the keys are not only unique and non-repetitive but 

also resilient to various forms of attacks. The use of PSO 

ensures that the final encryption keys are both optimized 

for security andgenerated dynamically, without the need 

for permanent storage, thus reducing the risks of key 

leakage or unauthorized access. Key enhancement using 

PSO: The Particle swarm optimization (PSO) algorithm is 

used to enhance the quality of the initial key, making it 

stronger and more secure. Figure 1. illustrates the detailed 

steps of the Particle swarm optimization (PSO) algorithm 

using pseudo-code. This pseudocode reflects the essence 

of the PSO algorithm applied to optimize encryption keys 

  Pseudo-code for the PSO Algorithm 

1. Initialize Parameters: 

o Define bounds: 

• Lower bound (lb) = 0 

• Upper bound (ub) = 255 

o Set PSO parameters: 

• Number of particles = len(keys) 

• Maximum iterations = 200 

• Inertia weight (w) = 0.9 

• Cognitive coefficient (c1) = 0.5 

• Social coefficient (c2) = 0.5 

o Set random seed for reproducibility. 

2. Initialize Particles: 

o Convert keys to a NumPy array. 

o Set initial particle positions = keys. 

o Set initial velocities = zeros. 

o Initialize personal bests: 

• Personal best positions = initial positions. 

• Personal best scores = evaluate fitness for each particle. 

o Find global best: 

• global_best_position = position with the best score. 

• global_best_score = best personal score. 

3. Run PSO Optimization: 

For each iteration in range(num_iterations) do: 

o For each particle do: 

• Update velocity: 

o new_velocity = (w × current velocity) 

+(c1 × random factor × 

(Personal best – current position)) 

+(c2 × random factor × (global best - current position)). 

• Update position: 

o new_position = current position + new_velocity. 

o Clip positions to bounds (lb, ub). 

• Evaluate fitness of the new position. 

o Update personal best position and score. 

o Update global best: 

• If any particle's score is better than the global best score: 

o Update global best position and score. 

4. Output Results: 

o Convert global_best_position to integer (best_key). 

o Compute best_entropy_value using the fitness function. 

 

Figure 1: PSO algorithm 
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based on the fitness function (such as randomness or 

security). The process iteratively adjusts the position 

(key) and velocity of the particles to find the optimal 

encryption key with high security.  

4  Secure  key  management 
Secure key management is a critical process to ensure the 

protection of encrypted data across encryption systems. 

In the proposed methodology, the focus is on generating 

cryptographic keys in real-time without permanent 

storage, thus reducing the risks associated with key 

leakage. However, temporary handling and protection of 

keys during their lifecycle remain essential. Below is a 

detailed explanation of the steps and importance of 

secure key management, updated to reflect the real-time 

generation approach: 

1. Key generation: In the proposed system, keys are 

generated dynamically and in real-time using advanced 

techniques such as artificial neural networks, particularly 

convolutional neural networks (CNN). This approach 

ensures that the keys are both highly secure and non-

repetitive, avoiding the need for long-term storage. These 

keys are designed to be sufficiently random and robust, 

minimizing the possibility of guessing or tampering. 

2.  Temporary key handling: While keys are not stored 

permanently, they are managed securely during their 

temporary existence within the system. During 

encryption or decryption processes, the keys are stored in 

memory with strict safeguards, such as memory 

encryption or secure enclaves, to prevent unauthorized 

access. Once the operation is complete, the keys are 

securely erased from the system to eliminate any residual 

risk. 

3.  Key distribution: Since the system eliminates the 

need for traditional key exchange, the reliance on secure 

protocols like SSL/TLS or Diffie-Hellman for key 

distribution is significantly reduced. Instead, the 

generated key remains local to the system, mitigating 

risks associated with interception during transmission 

[16]4. Key rotation: In systems where keys are reused 

for multiple sessions or extended periods, regular key 

rotation is critical. However, in the proposed system, 

each key is uniquely generated for a specific session or 

operation, inherently providing the benefits of key 

rotation by design. 

5.  Key revocation: Although the system minimizes the 

use of persistent keys, mechanisms for immediate key 

invalidation are essential for scenarios involving session-

based or temporarily stored keys. These mechanisms 

ensure that any exposed or misused keys are rendered 

unusable promptly [17].  

6. Importance of key management in real-time 

systems: The proposed approach emphasizes the 

importance of secure key handling during the active 

lifecycle of keys. By avoiding permanent storage and 

focusing on real-time generation and temporary 

protection, the system significantly reduces the risks 

associated with key leakage or unauthorized access. This 

approach aligns with best practices in modern 

cybersecurity by combining the advantages of real-time 

key generation with robust temporary key management to 

ensure the highest level of data protection throughout the 

encryption process [16].  

5  Proposed method 

Figure 2: presents the diagram for the proposed 

encryption key management and generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Proposed method diagram 
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proposed method consists of three main parts. The first part 

begins with an algorithm for securing communication and 

managing encryption keys. This is followed by the second 

part, which involves the process of generating the encryption 

key and encrypting the image. Finally, the third part focuses 

on decrypting the image after the key has been generated. Each 

of these parts will be explained in detail later. 

Part One: Securing communication and 

managing confidential information transfer 

The first part of Figure 2 illustrates an algorithm 

designed to ensure secure communication and reliable 

key management between branches and the main branch. 

When a branch requests access to sensitive information 

(such as encrypted images), the main branch fulfills this 

request by sending the requested information after 

encrypting it with a secure key, ensuring data protection 

during transmission. User ID is used to control access. 

Algorithm execution steps  

The algorithm is executed in cooperation with the 

following two parts in the diagram as follows: 

1. Starting the process (start): The process begins by 

initializing the user's counter Counter [ID] to zero. 

2. Entering the ID number: The system prompts the 

user to input their identification number to verify 

their identity. 

3. Verifying the ID range (ID in 1..600): The system  

checks whether the entered ID number falls within 

the allowed range (1 to 600).  

• If the number is outside the range, an error 

message is displayed, and the user is asked to re-

enter the ID. 

• If the number is valid, the process moves to the 

next step. 

4. Checking the match with the exit indicator (ID in 

exit): The system compares the entered ID with the 

exit indicator list. 

• If a match is found, the process is 

terminated. 

• If no match is found, the process 

continues to    the next step. 

5. Incrementing the message counter (counter [ID] 

+= 1):  

If the ID is valid and not listed in the exit indicator, the 

user's message counter is incremented by 1. 

 

6. Managing the number of sent messages (dynamic 

key management): The system checks whether the 

number of messages sent by the user has exceeded the 

allowed limit (10 messages). 

• If the limit is exceeded, the counter is reset to 1. 

• If the limit is not exceeded, the current counter is   

used as an index for generating the encryption key.               

This mechanism ensures unique encryption keys 

for each set of messages, enhancing data security. 

Additionally, it raises a critical question: 

"Can biometric fingerprint data generate 

dynamic encryption keys resistant to quantum 

attacks?" 

This approach aims to strengthen the security of biometric 

keys against advanced threats such as quantum attacks. 

7.  Sending the request to the branch (send request to 

branch): The request containing the ID (ID) and the 

fingerprint index (P) is sent to the second branch for 

processing. 

• In the second part: A key is generated for image 

encryption, and the encryption process is executed. 

After encryption, the encrypted image is sent back to the 

first part. 

• In the third part: A new key is generated to decrypt 

the image. 

Once decryption is completed, the data is returned to the 

first part for the remaining steps. 

      Note: The details of the second and third parts will be 

explained in the following sections of the document for a 

precise and comprehensive understanding. In this way, the 

three parts form an integrated system that ensures secure 

communication and the safe transmission of sensitive 

information effectively. 

Algorithm features  

• Biometric security: Fingerprints are used as a 

means to verify user identities, which reduces the 

risks of unauthorized access. 

• Synchronization: The system relies on concurrent 

processing, enhancing performance efficiency and 

reducing response times for requests. 

• Dynamic key management: Each key is generated 

uniquely for each user based on their fingerprint, 

increasing the difficulty of breaching the system.  

This algorithm ensures effective protection of 

encrypted data and enhances the security of 

communications between branches, making it an 

excellent choice for systems that require a high level 

of security and privacy. 
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Part Two: Encryption key generation using 

CNN and image encryption 

The encryption key is generated using CNN based on the 

fingerprint. This process is carried out as specified in Part 

2 of the diagram, which includes the following 

operations: 

1. Database loading phase: This step is considered 

one of the main preparatory phases in the system to 

ensure the readiness of the data and models required 

to achieve accuracy and security in encryption key 

generation. In this research, the SOCOFing database 

was used, which contains fingerprints from 600 

people of African descent, with each person having 

10 fingerprints, resulting in a total of 6,000 original 

fingerprints. Additionally, synthetic groups were 

created with three levels of variation in the 

fingerprints: minor changes (Easy), medium 

changes (Medium), and significant changes (Hard). 

The total number of synthetic fingerprints used in 

training was approximately 49,270. The variation 

fingerprints were used for training the model, while 

the original fingerprints were used solely for testing. 

2. Data preprocessing phase: The following 

processes are included:   

3. Image size standardization: To ensure that all 

images in the database are compatible with the 

model requirements, the dimensions of all images 

are standardized. A common size, such as 96×96 

pixels, is often chosen to prepare the images for 

efficient model processing. The formula for resizing 

the images can be expressed mathematically as 

shown in Equation (1) below: 

I'(x',y') = I(y/Sy ,x/Sx)                         ( 1)  

       Where: 

I(x,y) is the original image, and I′(x′,y′) is the image 

after resizing, with Sx and Sy representing the 

scaling factors in the image dimensions[18]. 

 

A. Image enhancement using histogram 

equalization:  

       The histogram equalization technique was applied to 

enhance contrast in fingerprint images and highlight 

fine details. This technique is one of the 

fundamental methods in image processing and 

quality enhancement, aiming to improve the 

distribution of grayscale levels in the image to make 

fine details more visible. In images with low 

contrast, gray values may cluster within a narrow 

range, leading to the loss of fine details in dark or 

bright areas. Histogram equalization is used to 

address this issue by improving the distribution of 

these gray values over a broader range of available 

colors, enhancing contrast and making details easier 

to detect. The process of adjusting the tonal 

gradients in the image is carried out using the 

following equation (2)[19]: 

 

H′(I) =
CDFmin−CDF(I)

(NXM)−CDFmin
(1-L)           (2) 

 

     

The histogram equalization process involves several key 

parameters that affect the final outcome of the operation: 

 

1. Cumulative distribution function (CDF): This is the 

primary factor that determines how grayscale values are 

redistributed in the image. The CDF accumulates 

grayscale values progressively from the lowest to the 

highest and is used to adjust the distribution. Through this 

function, the grayscale value distribution in the image is 

calculated, and adjustments are made to spread these 

values evenly across the color range. 

 

2. Minimum non-zero value (CDFmin): This refers to 

the smallest non-zero value in the cumulative distribution 

function. It is used to determine how grayscale values in 

the image will be adjusted to achieve a more balanced 

distribution. For example, if the grayscale values in the 

image are concentrated around a particular value, utilizing 

this minimum helps improve the distribution of those 

values without significantly affecting the overall contrast 

of the image. 

 

3. Image size (N×M): This refers to the number of pixels 

in the image. The larger the image (i.e., a greater N×M), 

the more opportunities there are for accurately 

redistributing grayscale values. However, it is important 

to note that image size can impact processing speed, as 

larger images require more computations. 

 

4. Number of gray levels (L): Typically, L=256 in 

grayscale images (meaning there are 256 possible tonal 

levels ranging from 0 to 255). The number of gray levels 

defines the range of colors that can be distributed across 

the image. In images with a high number of gray levels, 

tonal gradations can be distributed more evenly, leading to 

better contrast enhancement. 

      When applying this technique, the range of grayscale 

values in the image is expanded, and these values are 

evenly distributed across the color range, leading to 

increased contrast. This enhanced contrast reveals fine 

details in the image, such as the minutiae in fingerprints, 

which might be poorly visible in low-contrast images. In 

the case of fingerprints, fine details such as ridges and 

patterns are often crucial for analysis and classification.  

By using histogram equalization, the clarity of these fine 

details can be improved, aiding in better feature extraction 

of the fingerprint and achieving higher performance in 

systems that use fingerprint recognition. Figure 3. shows 

an example of fingerprints before and after contrast 

enhancement using histogram equalization. Notice how 

the enhanced images display finer and clearer details 

compared to the original images. 
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                     (a)                                                     (b)                          

            Figure 3: (a) Original image (b) Image after 

histogram equalization 
 

5. Database analysis phase 

   After image enhancement, each fingerprint is analyzed to 

identify distinctive features, such as patterns and key 

regions within the fingerprint. This helps prepare the data 

for the model to understand the unique elements in each 

fingerprint. The goal of this process is to efficiently 

analyze the fingerprint database to extract the necessary 

information for feeding two different models. This is 

achieved by parsing the file name to extract the 

individual's identity, finger type, and hand (right or left). 

Additionally, these steps prepare the data for the two 

models, allowing the first model to recognize the 

individual’s identity, while the second model identifies 

the finger type based on fingerprint information.  After 

applying these processes to the database, the data is 

divided into training and testing sets. Artificial 

fingerprint data is used for training, while original data is 

used for testing. 

 

6. Model building phase: After preparing the database, 

two models are built using CNNs. The first model aims 

to identify the person's identity (SubjectID), while the 

second model aims to determine the finger number 

(FingerNum) and extract distinctive features of the 

finger. Each model consists of the layers shown in Table 

2. The hyperparameters used in the models are illustrated 

in Table 3. 

 

Table 3: CNN hyperparameters configuration 

 

 7. Training and evaluation phase of the two models 

         The performance of both models is evaluated using 

standard performance metrics such as accuracy, 

validation, and error rate calculation. This ensures that the 

first model is capable of accurately verifying the identity 

of authorized individuals when requesting the encryption 

key. Similarly, the second model's performance is 

assessed to determine its ability to correctly identify the 

fingerprint belonging to the individual whose identity has 

been verified. This evaluation is done using the test set. 

8. Identity verification and key generation  

The identity of the individual and the fingerprint match 

with the registered name are verified using two deep 

learning models. This is a key step in generating the 

encryption key from fingerprints, as illustrated in Figure 

4. 

9. Key optimization stage using PSO  

To enhance the quality of the initial key and obtain a 

stronger, more secure key, PSO algorithm is applied. This 

algorithm aims to improve the random distribution and 

security properties of the key. The goal of this algorithm 

is to increase the randomness of the key and ensure its 

difficulty in being guessed or broken.  The use of the PSO 

algorithm to optimize encryption keys relies on updating 

the positions and velocities of particles based on the 

individual's fingerprints, as illustrated in Figure 1. This 

continuous update of the keys, leveraging the best 

personal and global positions, results in generating an 

encryption key that is more secure and complex. This also 

raises the question: "How does the proposed system 

perform against statistical attacks?" This approach 

aims to reduce the likelihood of the keys being exposed to 

any repetitive patterns that could be exploited in statistical 

attacks. Table 4. outlines the hyperparameters used in the 

optimization algorithm, selected based on a series of 

experimental trials. 
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Table 4: Hyperparameters of pso  

 

 

10.   Image encryption stage and sending encrypted 

image 

Chen's chaotic system is a three-dimensional dynamic 

system that exhibits chaotic behavior and is based on 

nonlinear differential equations to represent the evolution 

of the state over time. It can be used to generate a chaotic 

encryption key based on the system's state. The Chen 

chaotic system relies on the following equations that 

describe the changes in the variables x, y, and z: 

𝑑𝑥

𝑑𝑡
= 𝑎. (𝑥 − 𝑦)                         (3) 

𝑑𝑦

𝑑𝑡
= (𝑎 − 𝑐). x- x . z + c . y     (4) 

𝑑𝑧

𝑑𝑡
= 𝑥. 𝑦 -  b . z                          (5) 

   

Pseudo-Code for verification and encryption key generation 

1. Initialize finger name function: 

o Define show_fingername(fingernum): 

• If fingernum >= 5: 

o Set hand = "right" and 

subtract 5 from fingernum. 

• Otherwise: 

o Set hand = "left". 

• Map fingernum to finger names (e.g., 

little, ring, middle, index, thumb). 

• Return the full finger name (hand + 

finger). 

2. Verify fingerprint information: 

o Predict subject ID and finger number for a random 

fingerprint (rand_fp_num) from the test set using models: 

• Id_pred = predicted subject ID. 

• Id_real = actual subject ID. 

• fingerNum_pred = predicted finger number. 

• fingerNum_real = actual finger 

number. 

o Check predictions: 

• If both IDs and finger numbers match: 

o Print "Information 

confirmed" with subject 

ID and call 

show_fingername(fingerN

um_pred) to get the finger 

name. 

• Otherwise: 

o Print "Prediction is wrong." 

3. Extract candidate fingerprints: 

o Initialize lists keys1 (for original fingerprints) and 

keys2 (for dense layer outputs). 

o For each index i in the prediction range: 

• Get Id_check = predicted subject ID. 

• If Id_check == Id_pred: 

o Append the fingerprint to keys1. 

o Append the dense layer output to 

keys2. 

o Convert keys1 and keys2 to arrays. 

4. Select target fingerprint: 

o Use index p1 to select: 

• original_fp = keys1[p1]. 

• dense_output_finger_selected = keys2[p1]. 

5. Apply data augmentation: 

o Define an image data generator (datagen) with 

+transformations: 

• Rotation, width/height shift, shear, 

zoom, and horizontal flip. 

o Reshape original_fp to fit the generator’s input 

format. 

6. Generate augmented fingerprints and keys: 

o Use datagen to create 20 augmented fingerprints: 

• For each augmented fingerprint: 

o Generate a new fingerprint. 

o Predict the dense layer 

output. 

o Take absolute values of the 

output to create a key. 

o Append the key to the keys 

list. 

7. Return results: 

• Output Keys // To be used as input for PSO algorithm to find 

optimal key the list keys for use in encryption. 

 

Figure 4: Pseudocode for the identity verification 

and key generation process 
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Where:  x, y, and z are the variables that determine the 

state of the chaotic system at time t.   

•       a, b, and c are the parameters that control the 

behavior of   t     he system.   Steps followed: 

• Initial conditions: The process starts by 

defining the initial values for x, y, and z, which 

represent the state of the system at the beginning of the 

simulation. These values are set in the code as 

[1.0,1.0,1.0]. Numerical integration: The odeint 

function is used for numerical integration to solve the 

differential equations over time. Through this process, 

the values of x, y, and z are updated at each time step, 

based on the parameters a, b, and c that influence the 

system's behavior. 

• Generating a chaotic sequence: A chaotic 

sequence is generated by solving the differential 

equations of the Chen chaotic system over multiple 

time steps. This sequence is then used to generate a 

chaotic encryption key. 

• Encryption key generation: The resulting 

chaotic sequence is converted into integer values 

ranging from 0 to 255 to represent color values in an 

RGB image. This is done by multiplying each value in 

the sequence by 255 and converting it to the uint8 data 

type. 

• Combining the chaotic key with the 

generated key: The chaotic key is combined with the 

key generated using CNN through an XOR operation. 

This step increases the complexity of the final key used 

for image encryption. 

• Encrypting the image: The XOR operation is 

applied between the original image and the final key to 

generate the encrypted image. This operation 

transforms the pixel values in the image into new 

values based on the chaotic key. 

   Part three: key generation using CNN and image 

decryption: 

This part is similar to the stages in Part 2, with the 

only difference being that the models are not built and 

trained again; instead, the previously saved models 

are loaded. Additionally, there is a decryption stage 

instead of encryption. The stages in this part are as 

follows: 

• Data loading phase: Only the test set is loaded 

(i.e., 600 genuine fingerprints from SOCOFing). 

• Data preprocessing phase: The raw data is 

processed to prepare it for the next stage. 

• Database analysis phase: The data is analyzed 

to extract the necessary information. 

• Loading the saved models: The previously 

trained models are loaded. 

• Verification and key generation: The data is 

verified, and the key is generated. 

• Key optimization stage using PSO: The key 

is optimized using the PSO algorithm. Decrypt the 

image and send it: The image is decrypted and sent. 

Decryption: To decrypt the image, the same key (the 

chaotic key and the key generated from CNN) is used 

to perform an XOR operation on the encrypted image, 

restoring the original image. 

 

6   Results and analysis 
This section of the research addressed four main axes: 

evaluating the CNN, assessing the generated key, 

evaluating the PSO algorithm, and finally comparing 

the results of the proposed method with similar 

methods. As follows: 

 

A.  Results of CNN models and performance analysis 

At this stage, the data was divided into training and 

testing sets to ensure the accuracy of the models in 

predicting and distinguishing between different 

categories. 80% of the data was allocated for training, 

and 20% for testing, ensuring an equal distribution of 

categories in both sets to avoid bias. After training the 

models on the training set, their performance was 

tested using the test data. 

         The accuracy of the models was calculated using 

the accuracy function available in the TensorFlow 

library, which represents the ratio of correct predictions 

to the total number of predictions. To continuously 

monitor performance, TensorBoard was used, which 

helped track various metrics such as accuracy and loss 

throughout the training and testing phases, allowing for 

ongoing improvements to the models based on these 

indicators. The results obtained showed varying 

performance across the different models, with these 

results summarized in Tables 5, 6, and 7, which 

illustrate accuracy and loss across different 

generations. Additionally, the graphs in Figures 5, 6, 

and 7 show the evolution of the models' performance 

over time, highlighting the models' ability to learn and 

improve progressively. Where the false positive rate 

was 0.000185. 

Table 5: Model performance comparison: accuracy and 

loss.
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Table 6: Classification report for finger recognition  

 

Table 7: Classification report for subjectID recognition 

 

 

Figure 5: Accuracy and loss of the identity model. 

Figure 6: Accuracy and loss of the fingerprint model. 

 
Figure 7: Confusion matrix and accuracy metric 

B.  Encryption key evaluation results and metrics: The 

generated encryption key was evaluated using a set of 

specialized metrics to ensure its quality and 

effectiveness in resisting cyberattacks. The experiments 

were conducted using fingerprint images sized 96 × 96 

in a Kaggle environment with Python, on a workstation 

equipped with an Xeon(R) I (R) processor, 64 GB of 

RAM, and a GPU P100. The metrics used included 

evaluations such as key size and various randomization 

tests (such as entropy test, repetition test, etc.) to assess 

the randomness of the key and its predictability. These 

tests help ensure that the system remains unaffected 

when used in live applications. 

6.1   Key space analysis 
Brute-force attack is a type of cyber-attack that relies on 

guessing the key by attempting a large number of 

possible passwords or secret phrases. An encrypted 

image with a short key is highly vulnerable to this attack 

over time. However, if the key is longer, it will remain 

resistant for a longer period. Therefore, it becomes 

impossible to guess the key if it has an adequate length. 

Key space analysis is used to assess the strength against 

brute-force attacks.  

According to this analysis, a key with a length greater 

than 2100 is considered suitable for high-security 

encryption [26]. In our system, we propose an approach 

based on deep neural networks (CNN) and PSO to 

generate this key.  
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The key has a size of 1024 values, with each value 

ranging between 0 and 255. This means the key consists 

of 1024 bytes (since each value requires one byte, and 8 

bits are enough to represent values from 0 to 255). Given 

that each value in the key ranges from 0 to 255, we have 

256 possibilities for each value. With 1024 values, the 

total key space will be: 2561024 or, in other words, 2 

8×1024=28192.This represents an extremely large key space, 

which is sufficiently large to be highly resistant to brute-

force attacks. A key size of 28192 offers a very high level 

of security, making it practically impossible to crack 

using brute-force methods, even with fast computing 

devices. Nonetheless, the question remains: How does 

the proposed system perform against brute-force 

attacks?  

Comparison of key space (28192) with 

traditional systems 

• Comparison with AES-256: 

The proposed key space (28192) is significantly larger 

compared to AES-256, where the key space is 

approximately 2256. This substantial difference makes our 

key space more resistant to brute-force attacks. 

Traditional systems like AES-256 rely on efficient 

algorithms to compensate for the smaller key space 

compared to the vast proposed space. 

• Comparison with RSA-2048: 

      The proposed key space is also significantly larger 

compared to RSA-2048, where the key space is 

approximately 22048. RSA relies on computational 

complexity for large numerical factorization, whereas in 

our system, the security strength depends on the key 

length derived from biometric features processed through 

deep networks. 

• Comparison with ECC-384 (Elliptic curve                                                                                                                           

cryptography): 

     The traditional key space for ECC-384 is 

approximately 2384, which is much smaller compared 

to our proposed key space (28192). ECC relies on 

elliptic curves to compensate for shorter keys, but in 

contrast, we provide much longer keys derived from 

neural networks, enhancing their unpredictability. 

• Comparison with DES (Data encryption 

standard): 

     The key space in DES is 256, which is extremely small 

compared to our proposed key space. 

DES is considered outdated and vulnerable to brute-

force attacks, whereas our proposed key space vastly 

surpasses it in terms of length and complexity. 

6.2 Significance of results in cryptographic 

key management 

• The results, such as randomness tests and high 

entropy, demonstrate that the generated key exhibits a 

high degree of randomness, making it ideal for high-

security applications. 

• High entropy indicates that the keys have a 

uniform distribution of values, reducing  

• the likelihood of predicting any part of the key, 

which is a critical feature in key management. 

6.3   Encryption key tests 
In this study, six fingerprint samples were used as the 

basis to generate six encryption keys. Each key underwent 

comprehensive testing using eight different metrics to 

determine the quality and randomness of the generated 

keys. The results of these eight tests were systematically 

presented in a table, reflecting the effectiveness of the 

proposed method. The results showed the success of the 

keys in all eight tests, confirming that the keys generated 

from the fingerprints meet the required security standards. 

These tests demonstrate the randomness and 

unpredictability of the keys, making the approach suitable 

for secure encryption applications. The core encryption 

key tests include the following: 

• Entropy test: 

     The entropy measures the distribution of information 

in the key and reflects the level of randomness. The 

entropy is calculated using the following equation (6): 

H(X)= −∑ 𝑝𝑛
𝑖=1 (𝑥𝑖) 𝑙𝑜𝑔2 𝑝(𝑥𝑖)           (6 ) 

Where p(xi) is the probability distribution of the value xi 

in the key. If the entropy equals 8 bits, it means the key is 

completely random [26].  

Table 8: Results of the entropy test  

 

• Repetition test: The repetition test generally aims to 

ensure that the key does not contain any repeated sections 

within its sequence, whether these sections are adjacent or 

non-adjacent. If parts of the key are repeated, it weakens 

the randomness and increases the likelihood of 

discovering a pattern that can be exploited in an attack. 

This test involves checking all parts of the key to detect 

any repetition that might impact its security level.  The 

repetition test addresses repetition in the key overall, 

whether in adjacent or non-adjacent parts [27]. 
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Table 9: Results of the repetition  test 

 

• Uniformity test using the chi-squared test: 

This test aims to check whether the values in the 

encryption key are evenly distributed across the full 

range of possible values. The chi-squared test is used to 

compare the actual distribution of values in the key with 

the expected ideal distribution. If the values are evenly 

distributed, the key is considered to have a uniform 

distribution. Equation (7) illustrates the test: 

χ2=∑ (
(

𝑛

256
−𝑛𝑖)

𝑛/256
)

255

𝑖=0

                 (7 ) 

• ni: The frequency of occurrence of value i in the 

key. 

• n/256: The expected frequency for each value i 

assuming a uniform distribution. 

• n: The total number of values in the key. 

• If the chi-square (χ2) value is low, it indicates 

that the actual distribution of values is close to the 

ideal distribution, meaning the key is evenly 

distributed. 

• At a significance level of 0.05, if the chi-square 

value is less than 293.25, the key is considered to 

have passed the test and has a uniform distribution 

[28]. 

Table 10: Results of the uniformity test 

 

•   Repetition test(adjacent) focuses specifically on 

identifying repetition in adjacent parts of the key. 

This test checks for any repeated consecutive or 

sequential sections that might indicate a fixed pattern 

or excessive repetition, which could weaken the 

effectiveness of encryption. Repetition of adjacent 

parts is considered a sign of poor randomness, thus 

reducing the strength of the key. The closer the value 

is to 0, the less repetition there is, which means the 

key has a higher level of randomness [29]. 

 

Table 11:  Results of the repetition test(adjacent)

 

• Pearson correlation test is a statistical test used to 

measure the relationship between two variables. 

This relationship is expressed by a coefficient 

called the "Pearson correlation coefficient," which 

ranges from -1 to 1. If the correlation coefficient is 

close to 0, it indicates no correlation (high 

randomness), making the encryption key strong and 

hard to predict. The purpose is to determine the 

extent of the correlation between values in the 

encryption key. If the correlation coefficient is 

close to 0, it indicates that the key is sufficiently 

random, thus making it strong against analytical 

attacks.  The equation (8) represents the Pearson 

correlation equation: 

 

                         r = 
∑(Xi−Xˉ)(Yi−Yˉ)

√∑(Xi−Xˉ)2⋅∑(Yi−Yˉ)2
            (8) 

   Where: 

• r: Pearson correlation coefficient. 

• Xi: Individual values in the first series. 

• Yi: Individual values in the second series (e.g.,   

lagged values in time series). 

• X̄: Mean of the Xi values. 

• Ȳ: Mean of the Yi values [30]. 

Table 12: Results of the pearson correlation test 

 

• Stability test 

The key must remain stable if the input data is stable. 

This means that if the same inputs are used to generate 

the key multiple times, the resulting key should always 

be identical.  However, slight changes in the inputs 

should result in a significant change in the key, which 

enhances encryption strength against attacks. 

 



Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 227 

 

 

 

6.3   Consistency of fixed inputs 

o If the input is fixed I, the encryption system should 

produce the same key K every time: F(I)=K. 

o Repeat key generation multiple times using the same 

I, and the result should be consistent K in all 

attempts: K1=K2=⋯=Kn. 

Table 13: Results of the stability test (1) 

 

6.4   Sensitivity to minor changes 

(inclusivity effect) 
We make a slight change in the input I to create I′.  

A new key K′ is generated using I′:      F(I′) = K′. We 

measure the difference between K and K′ using the 

Bit Change Rate: 

 

  Bit change rate=
Bit difference between  K and K′

1024
 ×

  100%  

 
The change rate should be higher than 50% to ensure the 

system's sensitivity to changes [31].   

 

 

 

 

Table 14: Results of the stability test (1) 

 

    Table 15: Encryption results with the original key and 

the modified key

 

6.5   Range test 
The range test aims to evaluate the distribution of 

encryption key values within a specific range to ensure 

its randomness. 

  Steps of the range test 

1. Calculate the range: Determine the difference 

between the maximum value max and the minimum 

value min.  Range=max−min 

2. Range splitting: divide the range into buckets. 

3. Frequency calculation: count the values in each 

bucket. 

4. Distribution analysis: if the frequencies are 

approximately equal, the key is considered random. 

expected frequency equation (9): 

              Ei = N/M     (9) 

where N is the total number of values, and M is the 

number of buckets[27]. 
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Table 16: Results of the range test

 

• Autocorrelation test 

The Autocorrelation Test is used to determine the 

randomness of a sequence of values in an encryption key. 

If the key is sufficiently random, the autocorrelation 

values should be small or close to zero, indicating no 

clear pattern or dependency in the sequence. To calculate 

the autocorrelation at a lag d, equation (10) is used: 

R(d) = 
1

𝑛−𝑑
∑ (𝑥𝑖. 𝑥𝑑 + 𝑖 )    (10)

𝑛−𝑑

𝑖=1
 

Where: R(d) is the autocorrelation coefficient for lag d. 

• xi is the value at position i in the sequence. 

• Xd+i_ is the value at position d+i in the sequence. 

• n is the length of the sequence. 

A value of R(d) close to zero for different values of d 

indicates a high level of randomness in the encryption 

key, The Figure 8. shows the distribution of 

autocorrelation test results, highlighting successful and 

failed values based on the specified critical value (0.05) 

[28]. 

 

Figure 8: Distribution of autocorrelation test results with 

success and failure indication based on critical value 

Table 17: Results of the autocorrelation test   

 

C. Results of using PSO in enhancing the encryption key 
After completing the specified number of iterations, the 

best encryption key is obtained, which is the key that 

achieved the highest fitness during the optimization        

process. Table 18.   illustrates the effect of using PSO on 

the generated encryption key. 

Table 18: The impact of the PSO algorithm in improving 

the encryption key.

 

D. Comparison of the accuracy of the proposed system 

with other systems 

This section evaluates the accuracy of our proposed 

system in comparison to other systems reported in recent 

years, based on their respective sources. Experimental 

results from our proposed model demonstrated an 

accuracy exceeding 99%. Table 19. presents a detailed 

comparison between our system and other existing 

systems. 



Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 229 

 

 

 

Table 19: Accuracy comparison between our system 

and recent approaches. 

 

The aim of this comparison is to evaluate the 

effectiveness of the proposed system in the context of 

recent advancements in deep learning technology, 

providing insight into how cybersecurity can be 

enhanced through the application of advanced 

techniques. The table also reflects the ongoing progress 

in fingerprint data processing, showing that modern 

systems achieve higher accuracy than traditional 

systems, supporting the idea that using deep learning 

can improve the effectiveness and security of 

encryption systems. 

7   Discussion 

In this section, we will discuss the results of the 

proposed system in comparison to modern methods 

presented in Table 19, focusing on accuracy, 

randomness tests (such as entropy), and robustness. 

Additionally, we will address potential trade-offs 

associated with using CNNs, such as computational 

overhead. Below is a detailed comparison of key 

results. 

 

7.1   Comparison of results  
Accuracy:  The proposed system (using CNN and 

PSO) achieved an accuracy between 99.73% and 

99.83% within just 20 epochs, outperforming most 

models in the table. For example: The enhanced 

VGG-16 model achieved 99.98% accuracy in 100 

epochs, the highest in the table, but required five 

times more epochs than the proposed system. The 

Modified-LeNet model achieved 99.10% accuracy 

in 55 epochs, which is lower than the proposed 

system. The DeepFKTNetmodel achieved 98.89% 

accuracy in 60 epochs. Thus, the proposed system 

stands out as a strong option, delivering high accuracy 

in less training time, thanks to the combination of 

CNN and PSO, which enhances feature extraction and 

generates robust keys.                                                    

        

Randomness tests (e.g., entropy): The use of PSO in 

the proposed system significantly contributed to 

enhancing randomness, which strengthens the 

generated keys. When comparing randomness tests 

(e.g., entropy) with other models, the proposed system 

showed remarkable superiority. The combination of 

CNN and PSO enabled the generation of keys with 

excellent randomness levels, providing a higher degree 

of security compared to traditional models. PSO helps 

optimize the quality of the keys by searching for the 

optimal combination of hidden parameters, making 

them more random and harder to break.  

                                                              

      It is important to note that the model only retains the 

predictions generated during its operation, which are 

values devoid of any sensitive information. This 

enhances the system's security against various types of 

attacks, such as mixed replacement attacks, crossover 

attacks, and exhaustive search attacks. In such attacks, 

the attacker has no knowledge of the key generation 

mechanism or the supporting data, making the number 

of attempts required to crack the key increase 

proportionally with its length. For example, if the key 

length is 1024, the number of possible combinations 

would reach 28192 The proposed system focuses on 

enhancing data security by avoiding key storage, 

improving the randomness of key generation, and 

protecting sensitive information from various attacks, 

while ensuring high efficiency in user fingerprint 

recognition. 

Robustness: Biometric key (encryption key for 

security): 

The biometric key is generated based on the parameters 

learned during the training of the CNN model. 

During training, the model learns unique representations 

or features extracted from fingerprints. These 

representations are numerical weights that are not easily 

interpretable. 

The parameters are converted into an encryption key 

that relies on the unique properties of each fingerprint, 

making the key: 

• Unique and tamper-proof. 

• More secure and resistant to duplication. 

  Role of PSO in key enhancement: 

   PSO improves the key by identifying the optimal values 

of the parameters used in key generation. This enhances 

randomness and independence among keys, making 

them more resistant to attacks. 
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7.2 Advantages of the proposed system 

 The proposed system combines CNN and PSO to 

achieve: 

• High classification accuracy in less time. 

• High-quality encryption keys with excellent levels of 

randomness and security. 

• Strong protection of users’ biometric data against 

exploitation or breaches. 

• Improved biometric key performance using PSO to 

generate stronger and more random keys, increasing 

the system’s resilience to cyber threats. Thus, the 

proposed system leverages the multiple features of 

CNN and PSO, making it more robust in addressing 

security challenges such as resistance to adversarial 

attacks. While other models primarily focus on 

classification and accuracy, the proposed system 

demonstrates additional strength in encryption 

applications. 

Potential trade-offs: 

Although the use of CNN in the proposed system results 

in a slight increase in computational overhead compared 

to simpler models like the modified LeNet, this does not 

pose a significant obstacle. The model is designed to 

operate efficiently on modern systems supported by 

Graphics Processing Units (GPUs), ensuring accelerated 

training and reduced execution time. 

8  Conclusions 

  
• The results of this research show that integrating 

biometric techniques with deep learning provides an 

innovative and effective solution for generating 

secure and robust encryption keys based on 

fingerprints. The proposed system enhances the 

security of data transmitted over the internet, making 

it more resistant to theft and tampering. The use of 

two convolutional neural network models is a 

significant step, where the first model contributes to 

identity recognition and the second focuses on 

fingerprint detail recognition, ensuring the extraction 

of unique and reliable biometric features. 

 

• One of the main conclusions of this research is that 

the tanh activation function plays a crucial role in 

neural networks for generating encryption keys. This 

function is known for its ability to transform outputs 

into the range of (-1, 1) non-linearly, which 

contributes to improving the quality of the generated 

keys. Increased complexity and randomness:  

        The tanh function ensures a more balanced 

distribution of values across the range (-1, 1), reducing 

value concentration and enhancing the randomness of the 

key, leading to the generation of secure and robust 

encryption keys.  Better stability during training: The 

tanh function helps avoid issues such as vanishing 

gradients, resulting in better stability during the training 

process and improved model performance in generating 

encryption keys. Table 20. illustrates the key strength 

(entropy measure) when using the Tanh activation 

function compared to using the ReLU activation function. 

Table 20: Compares the key strength (entropy) of the 

Tanh and ReLU activation functions. 

 

The batch normalization layer plays a significant role 

in stabilizing and accelerating the learning process in 

deep models by normalizing the outputs to have a 

mean of 0 and a standard deviation of 1. While this 

stabilization is beneficial in many applications, such as 

image classification, it may negatively impact the 

strength of the generated encryption key. 

• The results indicate that the generated keys exhibit 

high levels of randomness, making them more 

challenging to breach. Additionally, the use of PSO 

algorithm is considered an effective technique for 

enhancing the randomness of the keys, as it allows for 

generating different keys for each transmission, 

thereby reducing the risk of key theft and increasing 

security. A comprehensive analysis of the performance 

of the models used in this research was conducted, 

showing a significant improvement in encryption 

effectiveness and the reliability of the generated keys, 

underscoring the efficiency of these models in the 

context of cybersecurity. 

 

• The proposed approach enhances system security 

compared to traditional systems by reducing reliance 

on static keys, which are a vulnerability in many 

encryption systems. Instead, biometric verification is 

used to generate unique keys for each user based on 

their fingerprints, thereby increasing the level of 

security. This research provides a significant 

contribution to systems that require high levels of 

protection, such as financial systems and medical data, 

by facilitating biometric verification for encryption 

without the need to exchange keys, thereby reducing 

associated risks. Additionally, the automatic key 

change feature adds an extra layer of security, 
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reflecting the effectiveness of this system in providing 

advanced protection. Ultimately, the research 

highlights the importance of integrating biometrics 

and deep learning in developing effective security 

solutions that address contemporary challenges in 

data protection. 

 

• The method presented in the research has wide 

potential for application in various fields. In addition 

to securing fingerprints and using them to generate 

encryption keys, the method can be applied to secure 

internet of things (IoT) devices by generating strong 

encryption keys that protect communication between 

devices. It can also be used to secure data stored in 

the cloud by generating high-security encryption keys 

based on unique user attributes, such as fingerprints. 

These applications highlight the flexibility and 

efficiency of the method in addressing modern 

cybersecurity challenges and enhance its appeal in 

various practical scenarios. 
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