
https://doi.org/10.31449/inf.v49i16.7779 Informatica 49 (2025) 213–234 213

Biometric-Based Secure Encryption Key Generation Using

Convolutional Neural Networks and Particle Swarm Optimization

Sahera A. S. Almola, Raidah S. Khudeyer, Hameed Abdulkareem Younis

Department of Computer Information Systems, College of Computer Science and Information Technology, University

of Basrah, Basrah, Iraq

E-mail: sahera.sead@uobasrah.edu.iq, raidah.khudayer@uobasrah.edu.iq, hameed.younis@uobasrah.edu.iq
*Corresponding author

Keywords: biometric verification, fingerprints, deep learning, particle swarm optimization (pso) algorithm, encryption

key generation

Received: December 7, 2024

 With the rapid expansion of computer networks and information technology, ensuring secure data

transmission is increasingly vital—especially for image data, which often contains sensitive information.

This research presents a biometric-based encryption system that uses fingerprint recognition and deep

learning to generate strong, random encryption keys. Two convolutional neural networks (CNNs) are

employed: one to verify identity based on a user’s ID and another to extract fingerprint features for key

generation. These keys are optimized using Particle Swarm Optimization (PSO), enhancing their

randomness and resistance to brute-force attacks.

 The system generates keys in real-time, eliminating the need for storage and minimizing the risk of theft or

leakage. To further improve security, encryption keys are automatically updated after every ten messages,

with different keys generated from multiple fingerprints of the same individual. Testing with the SOCOFing

dataset (6,000 original and 49,270 synthetic images) achieved 99.75% identity verification and 99.83%

classification accuracy. Performance metrics—entropy of 7.89, correlation factor of 0.00628, and zero

repetition—demonstrate high robustness. This approach offers a secure, adaptive, and personalized

encryption method ideal for sensitive domains like finance and healthcare.

 Povzetek: Opisana je izvirna metoda za generiranje varnih šifrirnih ključev z uporabo prstnih odtisov, CNN

modelov in optimizacije roja delcev (PSO)

1 Introduction

Internet and network users share millions of color images

daily, which are utilized in various applications such as

telemedicine, remote learning, business, and military

operations. Color images, in particular, often contain

sensitive and detailed information, making them prime

targets for unauthorized access and cyberattacks.

Securing these images is crucial not only to prevent data

loss during transmission but also to protect sensitive

information from attackers. Various techniques are

employed to secure digital images, such as watermarking,

steganography, and image encryption. Encryption

operates in two main stages: encryption and decryption.

During encryption, the input image is transformed into an

unreadable form using a secret key, while in decryption,

the content is restored using the same key [1]. The

encryption key is a fundamental element in the

encryption and decryption processes, and it significantly

determines the security system's strength. However, a

critical challenge faced by encryption systems lies in

managing the encryption key itself [2]. Traditional

encryption methods require transmitting the encryption

key to the recipient to decrypt the data. This approach

introduces vulnerabilities, as any exposure of the key

during transmission could lead to the compromise of the

encrypted data. Consequently, there is an increasing need

for systems that dynamically generate encryption keys on-

demand at the user’s end, eliminating the need for key

transmission over networks [3]. This innovative approach

ensures that the encryption key is generated locally each

time data is decrypted, significantly reducing risks

associated with key interception. It also eliminates the

need for key exchange, adding an extra layer of security

since unauthorized parties cannot generate the key even if

communication is intercepted.

 The keyless exchange method, when combined with

biometric verification, offers a highly secure solution by

minimizing the risk of key theft. This approach aligns

with the methodology presented in this research.

However, implementing such a solution poses significant

challenges in the fields of secure computing and key

management, as it requires a robust system to ensure the

consistent and accurate generation of keys [4]. The

importance of this research lies in emphasizing the

generation of encryption keys locally at the user’s end to

safeguard data and mitigate risks associated with key

transmission over networks. This is particularly critical

for securing color images, as their high information

content often correlates with increased sensitivity, making

them especially vulnerable to sophisticated attacks.

 To address these challenges, advanced techniques

based on artificial intelligence and machine learning,

mailto:sahera.sead@uobasrah.edu.iq
mailto:raidah.khudayer@uobasrah.edu.iq
mailto:hameed.younis@uobasrah.edu.iq

214 Informatica 49 (2025) 213–234 S.A.S. Almola et al.

particularly deep learning, have emerged. One notable

technique involves using deep learning to generate

encryption keys from fingerprints. This method leverages

the extraction of unique features from fingerprints,

converting them into robust, non-repetitive encryption

keys to ensure high data security [5]. This method

addresses limitations in traditional encryption systems,

such as the need for key transmission over networks.

Since a fingerprint is a unique biometric identifier that

cannot be easily copied or mimicked, it serves as an ideal

source for generating encryption keys. Moreover, deep

learning enhances the accuracy and strength of the

generated keys by utilizing deep neural networks to

analyze biometric images and extract unique features for

each fingerprint [6]. This approach also resists advanced

threats, including brute-force and quantum encryption

attacks, by dynamically generating encryption keys in

real-time. The added layer of complexity and secrecy

prevents unauthorized parties from accessing the keys,

even if communication data is partially intercepted [7].

The integration of deep learning in generating encryption

keys from fingerprints represents a significant

advancement in information security. This approach

combines robust security measures with individual

privacy, paving the way for building encryption systems

that are highly resistant to breaches and better equipped

to address modern security challenges. The remainder of

this paper is organized as follows: Section 2 reviews

related works, while Section 3 provides background on

the key techniques utilized in this research. Section 4

explains the management of secret keys. Section 5 details

the proposed method. Section 6 focuses on experimental

results and performance analysis. Section 7 discusses the

results, and Section 8 concludes this study.

2 Related works
The integration of biometric data, chaotic systems, and

deep learning in encryption key generation has been a

prominent research area. Various studies have explored

innovative approaches to enhance the security and

robustness of encryption systems. Hashem and Kuban

(2023) [8] introduced a system that leverages fingerprint

biometrics to generate long, random encryption keys. The

approach involves preprocessing fingerprint images to

remove noise, utilizing a modified VGG-16

convolutional neural network (CNN) to extract unique

features, and employing transfer learning to build a key

generation model without the need for retraining. Erkan et

al. (2024) [9] proposed a secure image encryption

framework that combines a chaotic logarithmic map with

a deep CNN for key generation. Their system incorporates

advanced operations such as permutation, DNA encoding,

diffusion, and bit-reversal to ensure security. The

robustness of this framework was validated through

comprehensive analyses, including key sensitivity and

resistance to various attacks, demonstrating superior

performance compared to traditional encryption methods.

 Quinga Socasi, Zhinin-Vera, and Chang (2020) [10]

developed a method for generating encryption keys from

alphanumeric passwords using an autoencoder neural

network. Their experiments revealed that this method

outperforms conventional algorithms, particularly when

encrypting small text files, making it highly resistant to

cracking attempts. Wu et al. (2022) [11] presented a

biometric key generation framework that uses fingerprints

to achieve over 1024-bit key strength and 98% accuracy.

However, their method depends on a predefined pipeline

and fuzzy extractors for key stabilization. In contrast, the

method proposed in this research dynamically extracts

high-resolution fingerprint features using deep learning

models, ensuring greater adaptability across datasets.

These features are combined with chaotic encryption

systems to enhance randomness and security.

Furthermore, Particle Swarm Optimization (PSO) is

employed to optimize the generated keys, achieving over

99% accuracy and producing 1024-byte keys without

requiring stabilization layers. This approach demonstrates

superior flexibility and security for real-world IoT

applications. Alesawy and Muniyandi (2016) [12]

investigated data security in cloud environments using

random encryption keys. Their study analyzed the impact

of incorporating Elliptic Curve Diffie-Hellman (ECDH)

keys and demonstrated significant improvements in

efficiency and performance by integrating Artificial

Neural Networks (ANNs) with ECDH and genetic

algorithms, despite increased processing times for larger

datasets. Saini and Sehrawat (2024) [13] proposed a

technique for generating unique encryption keys by

combining an autoencoder network with hashing

techniques and prime numbers derived from the MNIST

dataset. To enhance security, the system incorporates

XOR operations and Blum-Blum-Shub (BBS) generators.

Extensive testing confirmed the robustness of this

approach against attacks. Kurtninykh, Ghita, and Shiaeles

(2021) [14] addressed the complexities of

cryptographic key management in systems with

increasing users and applications. They evaluated five key

management systems, including Hashicorp Vault and

Pinterest Knox, focusing on features such as security,

scalability, and access control. The study concluded that

Hashicorp Vault is particularly suitable for small

businesses due to its superior security features. A

summary of the related studies is provided in Table 1. for

further reference.

Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 215

Table 1: Previous works on key generation

This research builds upon the foundations laid by these

studies, emphasizing the dynamic generation of

encryption keys using deep learning and chaotic systems

to address challenges in key management and enhance

security. The comparison Table 1. clearly demonstrates

the superiority of our proposed method over all previous

approaches. The proposed method utilizes dynamic keys

generated by deep learning networks, which significantly

enhance randomness and security. Moreover, the key is

non-portable, non-persistent, and achieves the largest size

and highest accuracy compared to other methods.

3 Background
This paragraph addresses two main techniques: CNNs and

PSO, which form the foundation of the methodology

proposed in this research. In the following paragraphs, we

will provide a summary of each technique and explain its

significance in the study.

A. CNNs are advanced models in the field of deep

learning, specifically designed to handle grid-like data,

such as images. In this research, two CNN models were

used to generate an encryption key based on fingerprint

216 Informatica 49 (2025) 213–234 S.A.S. Almola et al.

images. Table 2. summarize the components of each model used in the work.

Table 2: Components of CNN models used

Parameters (#)

Output Shape

Layer (Type)

832 (None, 92, 92, 32) Conv2D (conv2d_1)

128 (None, 92, 92, 32) BatchNormalization(batch_normalization_1)

0 (None, 46, 46, 32) MaxPooling2D(max_pooling2d_1)

51,264

(None, 42, 42, 64) Conv2D (conv2d_2)

256 (None, 42, 42, 64) BatchNormalization batch_normalization_2)

0 (None, 21, 21, 64) MaxPooling2D (max_pooling2d_2)

73,856 (None, 19, 19, 128) Conv2D (conv2d_3)

512 (None, 19, 19, 128) BatchNormalization (batch_normalization_3)

0 (None, 9, 9, 128) MaxPooling2D (max_pooling2d_3)

0
(None, 9, 9, 128)

Dropout (dropout_1)

0
(None, 10368)

Flatten (flatten_1)

10,617,856

(None, 1024)

Dense (dense_1)

0 (None, 1024)
Dropout (dropout_2)

615,000

(None, 600)

Dense (dense_2)

The first model was designed to identify a person’s

identity based on their ID number. After confirming the

person’s identity, the second model identifies the selected

fingerprint and extracts its features. Both models rely on

convolutional layers to automatically and progressively

extract important features from the input data, making

them effective in performing tasks, which, in turn, aids in

generating strong encryption keys by analyzing fine

patterns in the images.

The two models were trained using the backpropagation

technique with a suitable loss function for each task. This

architectural design was chosen to achieve accurate

performance in recognizing the identity of the fingerprint

owner through the identifier number in the file name, and

then generate an encryption key based on the unique

features of the fingerprint using two convolutional neural

networks.

Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 217

This approach adds an extra layer of security, ensuring

that the keys are not only unique and non-repetitive but

also resilient to various forms of attacks. The use of

PSO ensures that the final encryption keys are both

optimized for security and

B. PSO (Particle swarm optimization) is an

optimization algorithm inspired by the collective

behavior of birds or fish. It involves a group of

particles, each representing a potential solution in the

solution space. Each particle adjusts its movement

based on its own experience and the experiences of

neighboring particles, with the aim of reaching the

optimal solution. PSO is known for its efficiency and

ability to find optimal solutions in multi-dimensional

spaces. In this research, PSO is applied to optimize the

process of encryption key generation.

The algorithm enhances the randomness and strength of

the generated keys, ensuring that they are both secure and

resistant to attacks. PSO improves the key generation

process by fine-tuning the key parameters in real-time,

making it more robust against potential security threats.

This approach adds an extra layer of security, ensuring

that the keys are not only unique and non-repetitive but

also resilient to various forms of attacks. The use of PSO

ensures that the final encryption keys are both optimized

for security andgenerated dynamically, without the need

for permanent storage, thus reducing the risks of key

leakage or unauthorized access. Key enhancement using

PSO: The Particle swarm optimization (PSO) algorithm is

used to enhance the quality of the initial key, making it

stronger and more secure. Figure 1. illustrates the detailed

steps of the Particle swarm optimization (PSO) algorithm

using pseudo-code. This pseudocode reflects the essence

of the PSO algorithm applied to optimize encryption keys

 Pseudo-code for the PSO Algorithm

1. Initialize Parameters:

o Define bounds:

• Lower bound (lb) = 0

• Upper bound (ub) = 255

o Set PSO parameters:

• Number of particles = len(keys)

• Maximum iterations = 200

• Inertia weight (w) = 0.9

• Cognitive coefficient (c1) = 0.5

• Social coefficient (c2) = 0.5

o Set random seed for reproducibility.

2. Initialize Particles:

o Convert keys to a NumPy array.

o Set initial particle positions = keys.

o Set initial velocities = zeros.

o Initialize personal bests:

• Personal best positions = initial positions.

• Personal best scores = evaluate fitness for each particle.

o Find global best:

• global_best_position = position with the best score.

• global_best_score = best personal score.

3. Run PSO Optimization:

For each iteration in range(num_iterations) do:

o For each particle do:

• Update velocity:

o new_velocity = (w × current velocity)

+(c1 × random factor ×

(Personal best – current position))

+(c2 × random factor × (global best - current position)).

• Update position:

o new_position = current position + new_velocity.

o Clip positions to bounds (lb, ub).

• Evaluate fitness of the new position.

o Update personal best position and score.

o Update global best:

• If any particle's score is better than the global best score:

o Update global best position and score.

4. Output Results:

o Convert global_best_position to integer (best_key).

o Compute best_entropy_value using the fitness function.

Figure 1: PSO algorithm

218 Informatica 49 (2025) 213–234 S.A.S. Almola et al.

based on the fitness function (such as randomness or

security). The process iteratively adjusts the position

(key) and velocity of the particles to find the optimal

encryption key with high security.

4 Secure key management
Secure key management is a critical process to ensure the

protection of encrypted data across encryption systems.

In the proposed methodology, the focus is on generating

cryptographic keys in real-time without permanent

storage, thus reducing the risks associated with key

leakage. However, temporary handling and protection of

keys during their lifecycle remain essential. Below is a

detailed explanation of the steps and importance of

secure key management, updated to reflect the real-time

generation approach:

1. Key generation: In the proposed system, keys are

generated dynamically and in real-time using advanced

techniques such as artificial neural networks, particularly

convolutional neural networks (CNN). This approach

ensures that the keys are both highly secure and non-

repetitive, avoiding the need for long-term storage. These

keys are designed to be sufficiently random and robust,

minimizing the possibility of guessing or tampering.

2. Temporary key handling: While keys are not stored

permanently, they are managed securely during their

temporary existence within the system. During

encryption or decryption processes, the keys are stored in

memory with strict safeguards, such as memory

encryption or secure enclaves, to prevent unauthorized

access. Once the operation is complete, the keys are

securely erased from the system to eliminate any residual

risk.

3. Key distribution: Since the system eliminates the

need for traditional key exchange, the reliance on secure

protocols like SSL/TLS or Diffie-Hellman for key

distribution is significantly reduced. Instead, the

generated key remains local to the system, mitigating

risks associated with interception during transmission

[16]4. Key rotation: In systems where keys are reused

for multiple sessions or extended periods, regular key

rotation is critical. However, in the proposed system,

each key is uniquely generated for a specific session or

operation, inherently providing the benefits of key

rotation by design.

5. Key revocation: Although the system minimizes the

use of persistent keys, mechanisms for immediate key

invalidation are essential for scenarios involving session-

based or temporarily stored keys. These mechanisms

ensure that any exposed or misused keys are rendered

unusable promptly [17].

6. Importance of key management in real-time

systems: The proposed approach emphasizes the

importance of secure key handling during the active

lifecycle of keys. By avoiding permanent storage and

focusing on real-time generation and temporary

protection, the system significantly reduces the risks

associated with key leakage or unauthorized access. This

approach aligns with best practices in modern

cybersecurity by combining the advantages of real-time

key generation with robust temporary key management to

ensure the highest level of data protection throughout the

encryption process [16].

5 Proposed method

Figure 2: presents the diagram for the proposed

encryption key management and generation.

Figure 2: Proposed method diagram

The

Generating Encryption Key using CNN and Encrypting the

Image

Generating Encryption Key using CNN and Decrypting Image

Securing Communication and Transferring Confidential

Information

Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 219

proposed method consists of three main parts. The first part

begins with an algorithm for securing communication and

managing encryption keys. This is followed by the second

part, which involves the process of generating the encryption

key and encrypting the image. Finally, the third part focuses

on decrypting the image after the key has been generated. Each

of these parts will be explained in detail later.

Part One: Securing communication and

managing confidential information transfer

The first part of Figure 2 illustrates an algorithm

designed to ensure secure communication and reliable

key management between branches and the main branch.

When a branch requests access to sensitive information

(such as encrypted images), the main branch fulfills this

request by sending the requested information after

encrypting it with a secure key, ensuring data protection

during transmission. User ID is used to control access.

Algorithm execution steps

The algorithm is executed in cooperation with the

following two parts in the diagram as follows:

1. Starting the process (start): The process begins by

initializing the user's counter Counter [ID] to zero.

2. Entering the ID number: The system prompts the

user to input their identification number to verify

their identity.

3. Verifying the ID range (ID in 1..600): The system

checks whether the entered ID number falls within

the allowed range (1 to 600).

• If the number is outside the range, an error

message is displayed, and the user is asked to re-

enter the ID.

• If the number is valid, the process moves to the

next step.

4. Checking the match with the exit indicator (ID in

exit): The system compares the entered ID with the

exit indicator list.

• If a match is found, the process is

terminated.

• If no match is found, the process

continues to the next step.

5. Incrementing the message counter (counter [ID]

+= 1):

If the ID is valid and not listed in the exit indicator, the

user's message counter is incremented by 1.

6. Managing the number of sent messages (dynamic

key management): The system checks whether the

number of messages sent by the user has exceeded the

allowed limit (10 messages).

• If the limit is exceeded, the counter is reset to 1.

• If the limit is not exceeded, the current counter is

used as an index for generating the encryption key.

This mechanism ensures unique encryption keys

for each set of messages, enhancing data security.

Additionally, it raises a critical question:

"Can biometric fingerprint data generate

dynamic encryption keys resistant to quantum

attacks?"

This approach aims to strengthen the security of biometric

keys against advanced threats such as quantum attacks.

7. Sending the request to the branch (send request to

branch): The request containing the ID (ID) and the

fingerprint index (P) is sent to the second branch for

processing.

• In the second part: A key is generated for image

encryption, and the encryption process is executed.

After encryption, the encrypted image is sent back to the

first part.

• In the third part: A new key is generated to decrypt

the image.

Once decryption is completed, the data is returned to the

first part for the remaining steps.

 Note: The details of the second and third parts will be

explained in the following sections of the document for a

precise and comprehensive understanding. In this way, the

three parts form an integrated system that ensures secure

communication and the safe transmission of sensitive

information effectively.

Algorithm features

• Biometric security: Fingerprints are used as a

means to verify user identities, which reduces the

risks of unauthorized access.

• Synchronization: The system relies on concurrent

processing, enhancing performance efficiency and

reducing response times for requests.

• Dynamic key management: Each key is generated

uniquely for each user based on their fingerprint,

increasing the difficulty of breaching the system.

This algorithm ensures effective protection of

encrypted data and enhances the security of

communications between branches, making it an

excellent choice for systems that require a high level

of security and privacy.

220 Informatica 49 (2025) 213–234 S.A.S. Almola et al.

Part Two: Encryption key generation using

CNN and image encryption

The encryption key is generated using CNN based on the

fingerprint. This process is carried out as specified in Part

2 of the diagram, which includes the following

operations:

1. Database loading phase: This step is considered

one of the main preparatory phases in the system to

ensure the readiness of the data and models required

to achieve accuracy and security in encryption key

generation. In this research, the SOCOFing database

was used, which contains fingerprints from 600

people of African descent, with each person having

10 fingerprints, resulting in a total of 6,000 original

fingerprints. Additionally, synthetic groups were

created with three levels of variation in the

fingerprints: minor changes (Easy), medium

changes (Medium), and significant changes (Hard).

The total number of synthetic fingerprints used in

training was approximately 49,270. The variation

fingerprints were used for training the model, while

the original fingerprints were used solely for testing.

2. Data preprocessing phase: The following

processes are included:

3. Image size standardization: To ensure that all

images in the database are compatible with the

model requirements, the dimensions of all images

are standardized. A common size, such as 96×96

pixels, is often chosen to prepare the images for

efficient model processing. The formula for resizing

the images can be expressed mathematically as

shown in Equation (1) below:

I'(x',y') = I(y/Sy ,x/Sx) (1)

 Where:

I(x,y) is the original image, and I′(x′,y′) is the image

after resizing, with Sx and Sy representing the

scaling factors in the image dimensions[18].

A. Image enhancement using histogram

equalization:

 The histogram equalization technique was applied to

enhance contrast in fingerprint images and highlight

fine details. This technique is one of the

fundamental methods in image processing and

quality enhancement, aiming to improve the

distribution of grayscale levels in the image to make

fine details more visible. In images with low

contrast, gray values may cluster within a narrow

range, leading to the loss of fine details in dark or

bright areas. Histogram equalization is used to

address this issue by improving the distribution of

these gray values over a broader range of available

colors, enhancing contrast and making details easier

to detect. The process of adjusting the tonal

gradients in the image is carried out using the

following equation (2)[19]:

H′(I) =
CDFmin−CDF(I)

(NXM)−CDFmin
(1-L) (2)

The histogram equalization process involves several key

parameters that affect the final outcome of the operation:

1. Cumulative distribution function (CDF): This is the

primary factor that determines how grayscale values are

redistributed in the image. The CDF accumulates

grayscale values progressively from the lowest to the

highest and is used to adjust the distribution. Through this

function, the grayscale value distribution in the image is

calculated, and adjustments are made to spread these

values evenly across the color range.

2. Minimum non-zero value (CDFmin): This refers to

the smallest non-zero value in the cumulative distribution

function. It is used to determine how grayscale values in

the image will be adjusted to achieve a more balanced

distribution. For example, if the grayscale values in the

image are concentrated around a particular value, utilizing

this minimum helps improve the distribution of those

values without significantly affecting the overall contrast

of the image.

3. Image size (N×M): This refers to the number of pixels

in the image. The larger the image (i.e., a greater N×M),

the more opportunities there are for accurately

redistributing grayscale values. However, it is important

to note that image size can impact processing speed, as

larger images require more computations.

4. Number of gray levels (L): Typically, L=256 in

grayscale images (meaning there are 256 possible tonal

levels ranging from 0 to 255). The number of gray levels

defines the range of colors that can be distributed across

the image. In images with a high number of gray levels,

tonal gradations can be distributed more evenly, leading to

better contrast enhancement.

 When applying this technique, the range of grayscale

values in the image is expanded, and these values are

evenly distributed across the color range, leading to

increased contrast. This enhanced contrast reveals fine

details in the image, such as the minutiae in fingerprints,

which might be poorly visible in low-contrast images. In

the case of fingerprints, fine details such as ridges and

patterns are often crucial for analysis and classification.

By using histogram equalization, the clarity of these fine

details can be improved, aiding in better feature extraction

of the fingerprint and achieving higher performance in

systems that use fingerprint recognition. Figure 3. shows

an example of fingerprints before and after contrast

enhancement using histogram equalization. Notice how

the enhanced images display finer and clearer details

compared to the original images.

Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 221

 (a) (b)

 Figure 3: (a) Original image (b) Image after

histogram equalization

5. Database analysis phase

 After image enhancement, each fingerprint is analyzed to

identify distinctive features, such as patterns and key

regions within the fingerprint. This helps prepare the data

for the model to understand the unique elements in each

fingerprint. The goal of this process is to efficiently

analyze the fingerprint database to extract the necessary

information for feeding two different models. This is

achieved by parsing the file name to extract the

individual's identity, finger type, and hand (right or left).

Additionally, these steps prepare the data for the two

models, allowing the first model to recognize the

individual’s identity, while the second model identifies

the finger type based on fingerprint information. After

applying these processes to the database, the data is

divided into training and testing sets. Artificial

fingerprint data is used for training, while original data is

used for testing.

6. Model building phase: After preparing the database,

two models are built using CNNs. The first model aims

to identify the person's identity (SubjectID), while the

second model aims to determine the finger number

(FingerNum) and extract distinctive features of the

finger. Each model consists of the layers shown in Table

2. The hyperparameters used in the models are illustrated

in Table 3.

Table 3: CNN hyperparameters configuration

 7. Training and evaluation phase of the two models

 The performance of both models is evaluated using

standard performance metrics such as accuracy,

validation, and error rate calculation. This ensures that the

first model is capable of accurately verifying the identity

of authorized individuals when requesting the encryption

key. Similarly, the second model's performance is

assessed to determine its ability to correctly identify the

fingerprint belonging to the individual whose identity has

been verified. This evaluation is done using the test set.

8. Identity verification and key generation

The identity of the individual and the fingerprint match

with the registered name are verified using two deep

learning models. This is a key step in generating the

encryption key from fingerprints, as illustrated in Figure

4.

9. Key optimization stage using PSO

To enhance the quality of the initial key and obtain a

stronger, more secure key, PSO algorithm is applied. This

algorithm aims to improve the random distribution and

security properties of the key. The goal of this algorithm

is to increase the randomness of the key and ensure its

difficulty in being guessed or broken. The use of the PSO

algorithm to optimize encryption keys relies on updating

the positions and velocities of particles based on the

individual's fingerprints, as illustrated in Figure 1. This

continuous update of the keys, leveraging the best

personal and global positions, results in generating an

encryption key that is more secure and complex. This also

raises the question: "How does the proposed system

perform against statistical attacks?" This approach

aims to reduce the likelihood of the keys being exposed to

any repetitive patterns that could be exploited in statistical

attacks. Table 4. outlines the hyperparameters used in the

optimization algorithm, selected based on a series of

experimental trials.

222 Informatica 49 (2025) 213–234 S.A.S. Almola et al.

Table 4: Hyperparameters of pso

10. Image encryption stage and sending encrypted

image

Chen's chaotic system is a three-dimensional dynamic

system that exhibits chaotic behavior and is based on

nonlinear differential equations to represent the evolution

of the state over time. It can be used to generate a chaotic

encryption key based on the system's state. The Chen

chaotic system relies on the following equations that

describe the changes in the variables x, y, and z:

𝑑𝑥

𝑑𝑡
= 𝑎. (𝑥 − 𝑦) (3)

𝑑𝑦

𝑑𝑡
= (𝑎 − 𝑐). x- x . z + c . y (4)

𝑑𝑧

𝑑𝑡
= 𝑥. 𝑦 - b . z (5)

Pseudo-Code for verification and encryption key generation

1. Initialize finger name function:

o Define show_fingername(fingernum):

• If fingernum >= 5:

o Set hand = "right" and

subtract 5 from fingernum.

• Otherwise:

o Set hand = "left".

• Map fingernum to finger names (e.g.,

little, ring, middle, index, thumb).

• Return the full finger name (hand +

finger).

2. Verify fingerprint information:

o Predict subject ID and finger number for a random

fingerprint (rand_fp_num) from the test set using models:

• Id_pred = predicted subject ID.

• Id_real = actual subject ID.

• fingerNum_pred = predicted finger number.

• fingerNum_real = actual finger

number.

o Check predictions:

• If both IDs and finger numbers match:

o Print "Information

confirmed" with subject

ID and call

show_fingername(fingerN

um_pred) to get the finger

name.

• Otherwise:

o Print "Prediction is wrong."

3. Extract candidate fingerprints:

o Initialize lists keys1 (for original fingerprints) and

keys2 (for dense layer outputs).

o For each index i in the prediction range:

• Get Id_check = predicted subject ID.

• If Id_check == Id_pred:

o Append the fingerprint to keys1.

o Append the dense layer output to

keys2.

o Convert keys1 and keys2 to arrays.

4. Select target fingerprint:

o Use index p1 to select:

• original_fp = keys1[p1].

• dense_output_finger_selected = keys2[p1].

5. Apply data augmentation:

o Define an image data generator (datagen) with

+transformations:

• Rotation, width/height shift, shear,

zoom, and horizontal flip.

o Reshape original_fp to fit the generator’s input

format.

6. Generate augmented fingerprints and keys:

o Use datagen to create 20 augmented fingerprints:

• For each augmented fingerprint:

o Generate a new fingerprint.

o Predict the dense layer

output.

o Take absolute values of the

output to create a key.

o Append the key to the keys

list.

7. Return results:

• Output Keys // To be used as input for PSO algorithm to find

optimal key the list keys for use in encryption.

Figure 4: Pseudocode for the identity verification

and key generation process

Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 223

Where: x, y, and z are the variables that determine the

state of the chaotic system at time t.

• a, b, and c are the parameters that control the

behavior of t he system. Steps followed:

• Initial conditions: The process starts by

defining the initial values for x, y, and z, which

represent the state of the system at the beginning of the

simulation. These values are set in the code as

[1.0,1.0,1.0]. Numerical integration: The odeint

function is used for numerical integration to solve the

differential equations over time. Through this process,

the values of x, y, and z are updated at each time step,

based on the parameters a, b, and c that influence the

system's behavior.

• Generating a chaotic sequence: A chaotic

sequence is generated by solving the differential

equations of the Chen chaotic system over multiple

time steps. This sequence is then used to generate a

chaotic encryption key.

• Encryption key generation: The resulting

chaotic sequence is converted into integer values

ranging from 0 to 255 to represent color values in an

RGB image. This is done by multiplying each value in

the sequence by 255 and converting it to the uint8 data

type.

• Combining the chaotic key with the

generated key: The chaotic key is combined with the

key generated using CNN through an XOR operation.

This step increases the complexity of the final key used

for image encryption.

• Encrypting the image: The XOR operation is

applied between the original image and the final key to

generate the encrypted image. This operation

transforms the pixel values in the image into new

values based on the chaotic key.

 Part three: key generation using CNN and image

decryption:

This part is similar to the stages in Part 2, with the

only difference being that the models are not built and

trained again; instead, the previously saved models

are loaded. Additionally, there is a decryption stage

instead of encryption. The stages in this part are as

follows:

• Data loading phase: Only the test set is loaded

(i.e., 600 genuine fingerprints from SOCOFing).

• Data preprocessing phase: The raw data is

processed to prepare it for the next stage.

• Database analysis phase: The data is analyzed

to extract the necessary information.

• Loading the saved models: The previously

trained models are loaded.

• Verification and key generation: The data is

verified, and the key is generated.

• Key optimization stage using PSO: The key

is optimized using the PSO algorithm. Decrypt the

image and send it: The image is decrypted and sent.

Decryption: To decrypt the image, the same key (the

chaotic key and the key generated from CNN) is used

to perform an XOR operation on the encrypted image,

restoring the original image.

6 Results and analysis
This section of the research addressed four main axes:

evaluating the CNN, assessing the generated key,

evaluating the PSO algorithm, and finally comparing

the results of the proposed method with similar

methods. As follows:

A. Results of CNN models and performance analysis

At this stage, the data was divided into training and

testing sets to ensure the accuracy of the models in

predicting and distinguishing between different

categories. 80% of the data was allocated for training,

and 20% for testing, ensuring an equal distribution of

categories in both sets to avoid bias. After training the

models on the training set, their performance was

tested using the test data.

 The accuracy of the models was calculated using

the accuracy function available in the TensorFlow

library, which represents the ratio of correct predictions

to the total number of predictions. To continuously

monitor performance, TensorBoard was used, which

helped track various metrics such as accuracy and loss

throughout the training and testing phases, allowing for

ongoing improvements to the models based on these

indicators. The results obtained showed varying

performance across the different models, with these

results summarized in Tables 5, 6, and 7, which

illustrate accuracy and loss across different

generations. Additionally, the graphs in Figures 5, 6,

and 7 show the evolution of the models' performance

over time, highlighting the models' ability to learn and

improve progressively. Where the false positive rate

was 0.000185.

Table 5: Model performance comparison: accuracy and

loss.

224 Informatica 49 (2025) 213–234 S.A.S. Almola et al.

Table 6: Classification report for finger recognition

Table 7: Classification report for subjectID recognition

Figure 5: Accuracy and loss of the identity model.

Figure 6: Accuracy and loss of the fingerprint model.

Figure 7: Confusion matrix and accuracy metric

B. Encryption key evaluation results and metrics: The

generated encryption key was evaluated using a set of

specialized metrics to ensure its quality and

effectiveness in resisting cyberattacks. The experiments

were conducted using fingerprint images sized 96 × 96

in a Kaggle environment with Python, on a workstation

equipped with an Xeon(R) I (R) processor, 64 GB of

RAM, and a GPU P100. The metrics used included

evaluations such as key size and various randomization

tests (such as entropy test, repetition test, etc.) to assess

the randomness of the key and its predictability. These

tests help ensure that the system remains unaffected

when used in live applications.

6.1 Key space analysis
Brute-force attack is a type of cyber-attack that relies on

guessing the key by attempting a large number of

possible passwords or secret phrases. An encrypted

image with a short key is highly vulnerable to this attack

over time. However, if the key is longer, it will remain

resistant for a longer period. Therefore, it becomes

impossible to guess the key if it has an adequate length.

Key space analysis is used to assess the strength against

brute-force attacks.

According to this analysis, a key with a length greater

than 2100 is considered suitable for high-security

encryption [26]. In our system, we propose an approach

based on deep neural networks (CNN) and PSO to

generate this key.

Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 225

The key has a size of 1024 values, with each value

ranging between 0 and 255. This means the key consists

of 1024 bytes (since each value requires one byte, and 8

bits are enough to represent values from 0 to 255). Given

that each value in the key ranges from 0 to 255, we have

256 possibilities for each value. With 1024 values, the

total key space will be: 2561024 or, in other words, 2

8×1024=28192.This represents an extremely large key space,

which is sufficiently large to be highly resistant to brute-

force attacks. A key size of 28192 offers a very high level

of security, making it practically impossible to crack

using brute-force methods, even with fast computing

devices. Nonetheless, the question remains: How does

the proposed system perform against brute-force

attacks?

Comparison of key space (28192) with

traditional systems

• Comparison with AES-256:

The proposed key space (28192) is significantly larger

compared to AES-256, where the key space is

approximately 2256. This substantial difference makes our

key space more resistant to brute-force attacks.

Traditional systems like AES-256 rely on efficient

algorithms to compensate for the smaller key space

compared to the vast proposed space.

• Comparison with RSA-2048:

 The proposed key space is also significantly larger

compared to RSA-2048, where the key space is

approximately 22048. RSA relies on computational

complexity for large numerical factorization, whereas in

our system, the security strength depends on the key

length derived from biometric features processed through

deep networks.

• Comparison with ECC-384 (Elliptic curve

cryptography):

 The traditional key space for ECC-384 is

approximately 2384, which is much smaller compared

to our proposed key space (28192). ECC relies on

elliptic curves to compensate for shorter keys, but in

contrast, we provide much longer keys derived from

neural networks, enhancing their unpredictability.

• Comparison with DES (Data encryption

standard):

 The key space in DES is 256, which is extremely small

compared to our proposed key space.

DES is considered outdated and vulnerable to brute-

force attacks, whereas our proposed key space vastly

surpasses it in terms of length and complexity.

6.2 Significance of results in cryptographic

key management

• The results, such as randomness tests and high

entropy, demonstrate that the generated key exhibits a

high degree of randomness, making it ideal for high-

security applications.

• High entropy indicates that the keys have a

uniform distribution of values, reducing

• the likelihood of predicting any part of the key,

which is a critical feature in key management.

6.3 Encryption key tests
In this study, six fingerprint samples were used as the

basis to generate six encryption keys. Each key underwent

comprehensive testing using eight different metrics to

determine the quality and randomness of the generated

keys. The results of these eight tests were systematically

presented in a table, reflecting the effectiveness of the

proposed method. The results showed the success of the

keys in all eight tests, confirming that the keys generated

from the fingerprints meet the required security standards.

These tests demonstrate the randomness and

unpredictability of the keys, making the approach suitable

for secure encryption applications. The core encryption

key tests include the following:

• Entropy test:

 The entropy measures the distribution of information

in the key and reflects the level of randomness. The

entropy is calculated using the following equation (6):

H(X)= −∑ 𝑝𝑛
𝑖=1 (𝑥𝑖) 𝑙𝑜𝑔2 𝑝(𝑥𝑖) (6)

Where p(xi) is the probability distribution of the value xi

in the key. If the entropy equals 8 bits, it means the key is

completely random [26].

Table 8: Results of the entropy test

• Repetition test: The repetition test generally aims to

ensure that the key does not contain any repeated sections

within its sequence, whether these sections are adjacent or

non-adjacent. If parts of the key are repeated, it weakens

the randomness and increases the likelihood of

discovering a pattern that can be exploited in an attack.

This test involves checking all parts of the key to detect

any repetition that might impact its security level. The

repetition test addresses repetition in the key overall,

whether in adjacent or non-adjacent parts [27].

226 Informatica 49 (2025) 213–234 S.A.S. Almola et al.

Table 9: Results of the repetition test

• Uniformity test using the chi-squared test:

This test aims to check whether the values in the

encryption key are evenly distributed across the full

range of possible values. The chi-squared test is used to

compare the actual distribution of values in the key with

the expected ideal distribution. If the values are evenly

distributed, the key is considered to have a uniform

distribution. Equation (7) illustrates the test:

χ2=∑ (
(

𝑛

256
−𝑛𝑖)

𝑛/256
)

255

𝑖=0

 (7)

• ni: The frequency of occurrence of value i in the

key.

• n/256: The expected frequency for each value i

assuming a uniform distribution.

• n: The total number of values in the key.

• If the chi-square (χ2) value is low, it indicates

that the actual distribution of values is close to the

ideal distribution, meaning the key is evenly

distributed.

• At a significance level of 0.05, if the chi-square

value is less than 293.25, the key is considered to

have passed the test and has a uniform distribution

[28].

Table 10: Results of the uniformity test

• Repetition test(adjacent) focuses specifically on

identifying repetition in adjacent parts of the key.

This test checks for any repeated consecutive or

sequential sections that might indicate a fixed pattern

or excessive repetition, which could weaken the

effectiveness of encryption. Repetition of adjacent

parts is considered a sign of poor randomness, thus

reducing the strength of the key. The closer the value

is to 0, the less repetition there is, which means the

key has a higher level of randomness [29].

Table 11: Results of the repetition test(adjacent)

• Pearson correlation test is a statistical test used to

measure the relationship between two variables.

This relationship is expressed by a coefficient

called the "Pearson correlation coefficient," which

ranges from -1 to 1. If the correlation coefficient is

close to 0, it indicates no correlation (high

randomness), making the encryption key strong and

hard to predict. The purpose is to determine the

extent of the correlation between values in the

encryption key. If the correlation coefficient is

close to 0, it indicates that the key is sufficiently

random, thus making it strong against analytical

attacks. The equation (8) represents the Pearson

correlation equation:

 r =
∑(Xi−Xˉ)(Yi−Yˉ)

√∑(Xi−Xˉ)2⋅∑(Yi−Yˉ)2
 (8)

 Where:

• r: Pearson correlation coefficient.

• Xi: Individual values in the first series.

• Yi: Individual values in the second series (e.g.,

lagged values in time series).

• X̄: Mean of the Xi values.

• Ȳ: Mean of the Yi values [30].

Table 12: Results of the pearson correlation test

• Stability test

The key must remain stable if the input data is stable.

This means that if the same inputs are used to generate

the key multiple times, the resulting key should always

be identical. However, slight changes in the inputs

should result in a significant change in the key, which

enhances encryption strength against attacks.

Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 227

6.3 Consistency of fixed inputs

o If the input is fixed I, the encryption system should

produce the same key K every time: F(I)=K.

o Repeat key generation multiple times using the same

I, and the result should be consistent K in all

attempts: K1=K2=⋯=Kn.

Table 13: Results of the stability test (1)

6.4 Sensitivity to minor changes

(inclusivity effect)
We make a slight change in the input I to create I′.

A new key K′ is generated using I′: F(I′) = K′. We

measure the difference between K and K′ using the

Bit Change Rate:

 Bit change rate=
Bit difference between K and K′

1024
 ×

 100%

The change rate should be higher than 50% to ensure the

system's sensitivity to changes [31].

Table 14: Results of the stability test (1)

 Table 15: Encryption results with the original key and

the modified key

6.5 Range test
The range test aims to evaluate the distribution of

encryption key values within a specific range to ensure

its randomness.

 Steps of the range test

1. Calculate the range: Determine the difference

between the maximum value max and the minimum

value min. Range=max−min

2. Range splitting: divide the range into buckets.

3. Frequency calculation: count the values in each

bucket.

4. Distribution analysis: if the frequencies are

approximately equal, the key is considered random.

expected frequency equation (9):

 Ei = N/M (9)

where N is the total number of values, and M is the

number of buckets[27].

228 Informatica 49 (2025) 213–234 S.A.S. Almola et al.

Table 16: Results of the range test

• Autocorrelation test

The Autocorrelation Test is used to determine the

randomness of a sequence of values in an encryption key.

If the key is sufficiently random, the autocorrelation

values should be small or close to zero, indicating no

clear pattern or dependency in the sequence. To calculate

the autocorrelation at a lag d, equation (10) is used:

R(d) =
1

𝑛−𝑑
∑ (𝑥𝑖. 𝑥𝑑 + 𝑖) (10)

𝑛−𝑑

𝑖=1

Where: R(d) is the autocorrelation coefficient for lag d.

• xi is the value at position i in the sequence.

• Xd+i_ is the value at position d+i in the sequence.

• n is the length of the sequence.

A value of R(d) close to zero for different values of d

indicates a high level of randomness in the encryption

key, The Figure 8. shows the distribution of

autocorrelation test results, highlighting successful and

failed values based on the specified critical value (0.05)

[28].

Figure 8: Distribution of autocorrelation test results with

success and failure indication based on critical value

Table 17: Results of the autocorrelation test

C. Results of using PSO in enhancing the encryption key
After completing the specified number of iterations, the

best encryption key is obtained, which is the key that

achieved the highest fitness during the optimization

process. Table 18. illustrates the effect of using PSO on

the generated encryption key.

Table 18: The impact of the PSO algorithm in improving

the encryption key.

D. Comparison of the accuracy of the proposed system

with other systems

This section evaluates the accuracy of our proposed

system in comparison to other systems reported in recent

years, based on their respective sources. Experimental

results from our proposed model demonstrated an

accuracy exceeding 99%. Table 19. presents a detailed

comparison between our system and other existing

systems.

Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 229

Table 19: Accuracy comparison between our system

and recent approaches.

The aim of this comparison is to evaluate the

effectiveness of the proposed system in the context of

recent advancements in deep learning technology,

providing insight into how cybersecurity can be

enhanced through the application of advanced

techniques. The table also reflects the ongoing progress

in fingerprint data processing, showing that modern

systems achieve higher accuracy than traditional

systems, supporting the idea that using deep learning

can improve the effectiveness and security of

encryption systems.

7 Discussion

In this section, we will discuss the results of the

proposed system in comparison to modern methods

presented in Table 19, focusing on accuracy,

randomness tests (such as entropy), and robustness.

Additionally, we will address potential trade-offs

associated with using CNNs, such as computational

overhead. Below is a detailed comparison of key

results.

7.1 Comparison of results
Accuracy: The proposed system (using CNN and

PSO) achieved an accuracy between 99.73% and

99.83% within just 20 epochs, outperforming most

models in the table. For example: The enhanced

VGG-16 model achieved 99.98% accuracy in 100

epochs, the highest in the table, but required five

times more epochs than the proposed system. The

Modified-LeNet model achieved 99.10% accuracy

in 55 epochs, which is lower than the proposed

system. The DeepFKTNetmodel achieved 98.89%

accuracy in 60 epochs. Thus, the proposed system

stands out as a strong option, delivering high accuracy

in less training time, thanks to the combination of

CNN and PSO, which enhances feature extraction and

generates robust keys.

Randomness tests (e.g., entropy): The use of PSO in

the proposed system significantly contributed to

enhancing randomness, which strengthens the

generated keys. When comparing randomness tests

(e.g., entropy) with other models, the proposed system

showed remarkable superiority. The combination of

CNN and PSO enabled the generation of keys with

excellent randomness levels, providing a higher degree

of security compared to traditional models. PSO helps

optimize the quality of the keys by searching for the

optimal combination of hidden parameters, making

them more random and harder to break.

 It is important to note that the model only retains the

predictions generated during its operation, which are

values devoid of any sensitive information. This

enhances the system's security against various types of

attacks, such as mixed replacement attacks, crossover

attacks, and exhaustive search attacks. In such attacks,

the attacker has no knowledge of the key generation

mechanism or the supporting data, making the number

of attempts required to crack the key increase

proportionally with its length. For example, if the key

length is 1024, the number of possible combinations

would reach 28192 The proposed system focuses on

enhancing data security by avoiding key storage,

improving the randomness of key generation, and

protecting sensitive information from various attacks,

while ensuring high efficiency in user fingerprint

recognition.

Robustness: Biometric key (encryption key for

security):

The biometric key is generated based on the parameters

learned during the training of the CNN model.

During training, the model learns unique representations

or features extracted from fingerprints. These

representations are numerical weights that are not easily

interpretable.

The parameters are converted into an encryption key

that relies on the unique properties of each fingerprint,

making the key:

• Unique and tamper-proof.

• More secure and resistant to duplication.

 Role of PSO in key enhancement:

 PSO improves the key by identifying the optimal values

of the parameters used in key generation. This enhances

randomness and independence among keys, making

them more resistant to attacks.

230 Informatica 49 (2025) 213–234 S.A.S. Almola et al.

7.2 Advantages of the proposed system

 The proposed system combines CNN and PSO to

achieve:

• High classification accuracy in less time.

• High-quality encryption keys with excellent levels of

randomness and security.

• Strong protection of users’ biometric data against

exploitation or breaches.

• Improved biometric key performance using PSO to

generate stronger and more random keys, increasing

the system’s resilience to cyber threats. Thus, the

proposed system leverages the multiple features of

CNN and PSO, making it more robust in addressing

security challenges such as resistance to adversarial

attacks. While other models primarily focus on

classification and accuracy, the proposed system

demonstrates additional strength in encryption

applications.

Potential trade-offs:

Although the use of CNN in the proposed system results

in a slight increase in computational overhead compared

to simpler models like the modified LeNet, this does not

pose a significant obstacle. The model is designed to

operate efficiently on modern systems supported by

Graphics Processing Units (GPUs), ensuring accelerated

training and reduced execution time.

8 Conclusions

• The results of this research show that integrating

biometric techniques with deep learning provides an

innovative and effective solution for generating

secure and robust encryption keys based on

fingerprints. The proposed system enhances the

security of data transmitted over the internet, making

it more resistant to theft and tampering. The use of

two convolutional neural network models is a

significant step, where the first model contributes to

identity recognition and the second focuses on

fingerprint detail recognition, ensuring the extraction

of unique and reliable biometric features.

• One of the main conclusions of this research is that

the tanh activation function plays a crucial role in

neural networks for generating encryption keys. This

function is known for its ability to transform outputs

into the range of (-1, 1) non-linearly, which

contributes to improving the quality of the generated

keys. Increased complexity and randomness:

 The tanh function ensures a more balanced

distribution of values across the range (-1, 1), reducing

value concentration and enhancing the randomness of the

key, leading to the generation of secure and robust

encryption keys. Better stability during training: The

tanh function helps avoid issues such as vanishing

gradients, resulting in better stability during the training

process and improved model performance in generating

encryption keys. Table 20. illustrates the key strength

(entropy measure) when using the Tanh activation

function compared to using the ReLU activation function.

Table 20: Compares the key strength (entropy) of the

Tanh and ReLU activation functions.

The batch normalization layer plays a significant role

in stabilizing and accelerating the learning process in

deep models by normalizing the outputs to have a

mean of 0 and a standard deviation of 1. While this

stabilization is beneficial in many applications, such as

image classification, it may negatively impact the

strength of the generated encryption key.

• The results indicate that the generated keys exhibit

high levels of randomness, making them more

challenging to breach. Additionally, the use of PSO

algorithm is considered an effective technique for

enhancing the randomness of the keys, as it allows for

generating different keys for each transmission,

thereby reducing the risk of key theft and increasing

security. A comprehensive analysis of the performance

of the models used in this research was conducted,

showing a significant improvement in encryption

effectiveness and the reliability of the generated keys,

underscoring the efficiency of these models in the

context of cybersecurity.

• The proposed approach enhances system security

compared to traditional systems by reducing reliance

on static keys, which are a vulnerability in many

encryption systems. Instead, biometric verification is

used to generate unique keys for each user based on

their fingerprints, thereby increasing the level of

security. This research provides a significant

contribution to systems that require high levels of

protection, such as financial systems and medical data,

by facilitating biometric verification for encryption

without the need to exchange keys, thereby reducing

associated risks. Additionally, the automatic key

change feature adds an extra layer of security,

Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 231

reflecting the effectiveness of this system in providing

advanced protection. Ultimately, the research

highlights the importance of integrating biometrics

and deep learning in developing effective security

solutions that address contemporary challenges in

data protection.

• The method presented in the research has wide

potential for application in various fields. In addition

to securing fingerprints and using them to generate

encryption keys, the method can be applied to secure

internet of things (IoT) devices by generating strong

encryption keys that protect communication between

devices. It can also be used to secure data stored in

the cloud by generating high-security encryption keys

based on unique user attributes, such as fingerprints.

These applications highlight the flexibility and

efficiency of the method in addressing modern

cybersecurity challenges and enhance its appeal in

various practical scenarios.

References
[1] Hosny, K. M., Darwish, M. M., & Fouda, M. M.

(2021). Robust color images watermarking using

new fractional-order exponent moments. IEEE

Access, 9, 47425–47435.

https://doi.org/10.1109/ACCESS.2021.3069317

[2] Kuzior, A., Tiutiunyk, I., Zielińska, A., & Kelemen,

R. (2024). Cybersecurity and cybercrime: Current

trends and threats. Journal of International Studies,

17(2). https://doi.org/10.14254/2071-8330.2024/17-

2/5

[3] Saran, D. G., & Jain, K. (2023). An improvised

algorithm for a dynamic key generation model. In

Inventive Computation and Information

Technologies: Proceedings of ICICIT 2022 (pp.

607–627). Springer Nature Singapore.

https://doi.org/10.1007/978-981-19-5048-5_44

[4] Rahman, Z., Yi, X., Billah, M., Sumi, M., & Anwar,

A. (2022). Enhancing AES using chaos and logistic

map-based key generation technique for securing

IoT-based smart home. Electronics, 11(7), 1083.

https://doi.org/10.3390/electronics11071083

[5] Kuznetsov, O., Zakharov, D., & Frontoni, E.

(2024). Deep learning-based biometric

cryptographic key generation with post-quantum

security. Multimedia Tools and Applications,

83(19), 56909–56938.

https://doi.org/10.1007/s11042-023-15265-6

[6] Yang, W., Wang, S., Cui, H., Tang, Z., & Li, Y.

(2023). A review of homomorphic encryption for

privacy-preserving biometrics. Sensors, 23(7),

3566. https://doi.org/10.3390/s23073566.

[7] Rana, M., Mamun, Q., & Islam, R. (2023).

Enhancing IoT security: An innovative key

management system for lightweight block ciphers.

Sensors, 23(18), 7678.

https://doi.org/10.3390/s23187678

[8] Hashem, M. I., & Kuban, K. H. (2023). Key

generation method from fingerprint image based on

deep convolutional neural network model. Nexo

Revista Científica, 36(6), 906-925.

https://doi.org/10.5377/nexo.vXXiXX.XXXX

[9] Erkate, U., Toktas, A., Enginoglu, S., Karabacak, E.,

& Thanh, D. N. H. (2024). An image encryption

scheme based on chaotic logarithmic map and key

generation using deep CNN. Expert Systems with

Applications, 237, 121452.

https://doi.org/10.1016/j.eswa.2023.121452

[10] Quinga Socasi, F., Zhinin-Vera, L., & Chang, O.

(2020). A deep learning approach for symmetric key

cryptography system. In Proceedings of the Future

Technologies Conference (pp. 41).

https://link.springer.com/chapter/10.1007/978-3-030-

63128-4_41

[11] Wu, Z., Lv, Z., Kang, J., Ding, W., & Zhang, J.

(2022). Fingerprint bio-key generation based on a

deep neural network. International Journal of

Intelligent Systems, 37(7), 4329–4358.

https://doi.org/10.1002/int.22782

[12] Alesawy, O., & Muniyandi, R. C. (2016). Elliptic

Curve Diffie-Hellman random keys using artificial

neural network and genetic algorithm for secure data

over private cloud. Information Technology Journal,

15(2), 77-83. https://doi.org/10.3923/itj.2016.77.83

[13] Saini, A., & Sehrawat, R. (2024). Enhancing data

security through machine learning-based key

generation and encryption. Engineering, Technology

& Applied Science Research, 14(3), 14148-14154.

https://doi.org/10.48084/etasr.7181

[14] Kurtninykh, I., Ghita, B., & Shiaeles, S. (2021).

Comparative analysis of cryptographic key

management systems. King's College London,

Strand, London, WC2R 2LS, UK.

https://doi.org/10.48550/arXiv.2109.09905.

[15] SSL Support Team. (2024, May 3). Key

management best practices: A practical guide.

Retrieved from [SSL Support Team Website]

https://www.ssl.com/article/key-management-best-

practices-a-practical-guide//

[16] Wang, L., & Lv, Y. (2024). Differential privacy-

based data mining in distributed scenarios using

decision trees. Informatica, 48(2), 145–158.

https://doi.org/10.31449/inf.v48i23.6918

[17] Tu, Z., Milanfar, P., & Talebi, H. (2023). MULLER:

Multilayer Laplacian Resizer for Vision.

ResearchGate. Retrieved from

https://www.researchgate.net/publication/369855623

_MULLER_Multilayer_Laplacian_Resizer_for_Visi

on.

[18] Saifullah, S., Pranolo, A., & Dreżewski, R. (2024).

Comparative analysis of image enhancement

techniques for brain tumor segmentation: Contrast,

histogram, and hybrid approaches. Journal Name,

Volume (Issue), Page range.

https://doi.org/10.48550/arXiv.2404.05341

https://doi.org/10.1109/ACCESS.2021.3069317
https://doi.org/10.14254/2071-8330.2024/17-2/5
https://doi.org/10.14254/2071-8330.2024/17-2/5
https://doi.org/10.1007/978-981-19-5048-5_44
https://doi.org/10.3390/electronics11071083
https://doi.org/10.1007/s11042-023-15265-6
https://doi.org/10.3390/s23073566
https://doi.org/10.3390/s23187678
https://doi.org/10.5377/nexo.vXXiXX.XXXX
https://doi.org/10.1016/j.eswa.2023.121452
https://link.springer.com/chapter/10.1007/978-3-030-63128-4_41
https://link.springer.com/chapter/10.1007/978-3-030-63128-4_41
https://doi.org/10.1002/int.22782
https://doi.org/10.3923/itj.2016.77.83
https://doi.org/10.48084/etasr.7181
https://doi.org/10.48550/arXiv.2109.09905
https://www.ssl.com/article/key-management-best-practices-a-practical-guide/
https://www.ssl.com/article/key-management-best-practices-a-practical-guide/
https://doi.org/10.31449/inf.v48i23.6918
https://www.researchgate.net/publication/369855623_MULLER_Multilayer_Laplacian_Resizer_for_Vision
https://www.researchgate.net/publication/369855623_MULLER_Multilayer_Laplacian_Resizer_for_Vision
https://www.researchgate.net/publication/369855623_MULLER_Multilayer_Laplacian_Resizer_for_Vision
https://doi.org/10.48550/arXiv.2404.05341

232 Informatica 49 (2025) 213–234 S.A.S. Almola et al.

[19] Singh, P., Dutta, S., & Pranav, P. (2024).

Optimizing GANs for Cryptography: The Role and

Impact of Activation Functions in Neural Layers

Assessing the Cryptographic Strength. Applied

Sciences, 14(6), 2379.

https://doi.org/10.3390/app14062379.

[20] Zhang, B., & Liu, L. (2023). Chaos-Based Image

Encryption: Review, Application, and Challenges.

Mathematics, 11(11), 2585.

https://doi.org/10.3390/math11112585

[21] Taylor, O. E., & Igiri, C. G. (2024). Enhancing

image encryption using histogram analysis, adjacent

pixel autocorrelation test in chaos-based framework.

International Journal of Computer Applications,

186(22). https://doi.org/10.5120/ijca202492338

[22] Munshi, N. H., Das, P., & Maitra, S. (2022). Chi-

Squared Test Analysis on Hybrid Cryptosystem.

Volume 14, Issue 1, 34-40.

https://doi.org/10.2174/18764029136662105082357

06.

[23] Rasheed, A. F., Zarkoosh, M., & Abbas, S. (2023,

October). Comprehensive Evaluation of Encryption

Algorithms: A Study of 22 Performance Tests. 2023

Sixth International Conference on Vocational

Education and Electrical Engineering (ICVEE),

Surabaya, France, 191-194.

https://doi.org/10.1109/ICVEE59738.2023.1034824

0.

[24] Feng, L., Du, J., & Fu, C. (2023). Double graph

correlation encryption based on hyperchaos. PLOS

ONE, 18(9), e0291759.

https://doi.org/10.1371/journal.pone.0291759.

[25] Barker, E., & Roginsky, A. (2024). NIST SP 800-

131A Rev. 3: Transitioning the use of cryptographic

algorithms and key lengths (Initial Public Draft).

National Institute of Standards and Technology.

https://doi.org/10.6028/NIST.SP.800-131Ar3.ipd.

[26] Avaroğlu, E., Kahveci, S., & Akkurt, R. (2024).

Optimization of Acoustic Entropy Source for

Random Sequence Generation Using an Improved

Grey Wolf Algorithm. Computer Engineering

Department, Faculty of Engineering, Mersin

University. https://doi.org/10.18280/ts.410220

[27] Foreman, C., Yeung, R., & Curchod, F. J. (2024).

Statistical testing of random number generators and

their improvement using randomness extraction.

Cryptology ePrint Archive, Paper 2024/492.

Retrieved from https://doi.org/10.3390/e26121053

[28] Taylor, O. E., & Igiri, C. G. (2024). Enhancing

image encryption using histogram analysis,

adjacent pixel autocorrelation test in chaos-based

framework. International Journal of Computer

Applications, 186(22).

https://doi.org/10.5120/ijca2024923653

[29] Saeed, F., Hussain, M., & Aboalsamh, H. A.

(2022). Automatic fingerprint classification using

deep learning technology (DeepFKTNet).

Mathematics, 10(8), 1285.

https://doi.org/10.3390/math10081285

[30] Nahar, P., Chaudhari, N. S., & Tanwani, S. K.

(2022). Fingerprint classification system using

CNN. Multimedia Tools and Applications, 81(17),

24515–24527. https://doi.org/10.1007/s11042-022-

13494-6

[31] Nguyen, H. T., & Nguyen, L. T. (2019).

Fingerprints classification through image analysis

and machine learning method. Algorithms, 12(11),

241. https://doi.org/10.3390/a12110241

[32] Ang, L.-M., Seng, K. P., Ijemaru, G. K., &

Zungeru, A. M. (2018). Deployment of IoV for

smart cities: Applications, architecture, and

challenges. IEEE Access, 7, 6473–6492.

https://doi.org/10.1109/ACCESS.2018.2886575

[33] Saeed, F., Hussain, M., & Aboalsamh, H. A.

(2018a). Classification of live scanned fingerprints

using dense SIFT based ridge orientation features.

2018 1st International Conference on Computer

Applications & Information Security (ICCAIS), 1–

4. https://doi.org/10.1109/CAIS.2018.8441995

[34] Saeed, F., Hussain, M., & Aboalsamh, H. A.

(2018b). Classification of live scanned fingerprints

using histogram of gradient descriptor. 2018 21st

Saudi Computer Society National Computer

Conference (NCC),1–5.

https://doi.org/10.1109/NCC.2018.8682629

https://doi.org/10.3390/app14062379
https://doi.org/10.3390/math11112585
https://doi.org/10.5120/ijca202492338
https://doi.org/10.2174/1876402913666210508235706
https://doi.org/10.2174/1876402913666210508235706
https://doi.org/10.1109/ICVEE59738.2023.10348240
https://doi.org/10.1109/ICVEE59738.2023.10348240
https://doi.org/10.1371/journal.pone.0291759
https://doi.org/10.6028/NIST.SP.800-131Ar3.ipd
https://doi.org/10.18280/ts.410220
https://doi.org/10.3390/e26121053
https://doi.org/10.5120/ijca2024923653
https://doi.org/10.3390/math10081285
https://doi.org/10.1007/s11042-022-13494-6
https://doi.org/10.1007/s11042-022-13494-6
https://doi.org/10.3390/a12110241
https://doi.org/10.1109/ACCESS.2018.2886575
https://doi.org/10.1109/CAIS.2018.8441995
https://doi.org/10.1109/NCC.2018.8682629

Biometric-Based Secure Encryption Key Generation Using… Informatica 49 (2025) 213–234 233

