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Telemedicine has revolutionized healthcare by enabling virtual consultations, yet it still faces challenges 

from linguistic barriers and the need for real-time, scalable communication. Current systems typically 

address isolated tasks like speech recognition or symptom classification, lacking a unified solution for 

multilingual doctor-patient interactions. To address this, we present a 5g-optimized Deep Learning 

Framework that integrates advanced speech recognition, neural machine translation, and text-to-speech 

synthesis into a seamless Speech-to-Speech Workflow (STSW). Specifically, our framework utilizes fine-

tuned OpenAI Whisper for speech recognition, a Marian MT model fine-tuned on multilingual medical 

corpora for translation, and Tacotron 2-based neural TTS for speech synthesis. Each model is domain-

adapted to handle complex medical terminologies. We implement the framework over 5G-enabled edge 

computing infrastructure, ensuring real-time performance with ultra-low latency. Experimental results 

demonstrate the effectiveness of the proposed system, achieving a Word Error Rate (WER) of 0.12, a BLEU 

score of 0.85 for translation quality, and a Mean Opinion Score (MOS) of 4.5 for the naturalness of 

synthesized speech. Furthermore, our framework delivers an end-to-end latency of 2.1 seconds, 

outperforming existing approaches. This integration bridges communication gaps in telemedicine, 

facilitating accurate multilingual conversations and scalable healthcare delivery across diverse 

geographies. 

Povzetek: Predstavljen je 5G-optimiziran okvir globokega učenja za večjezično govorno prevajanje v 

telemedicini, ki s prilagojenimi modeli dosega kvalitetne rezultate v realnem času. 

 

1 Introduction  

One particular technology affecting modern healthcare is 

telemedicine, allowing consultation and diagnosis over 

remote digital platforms. In many multilingual regions, 

however, communication challenges — primarily 

linguistic — make it less effective. Current telemedicine 

setups are limited to single functionalities such as 

automating triage [1], speech recognition [2], or chatbots 

specific to a disease [5]. Though these approaches solve 

some parts of the telemedicine puzzle, they fall short due 

to the absence of an integrated framework that can 

facilitate real-time multi-lingual communication between 

doctors and patients. This communication is vital as it 

increases accessibility and efficiency in healthcare 

delivery. Although the literature has identified some 

exciting opportunities and existing applications, this paper 

shows that deep learning can substantially drive 

telemedicine systems forward—for instance, Shi et al. 

Latif et al. [1] used Bi-LSTM as intelligent triage. In [3], 

the scalability of speech recognition technologies in 

healthcare. However, current systems have limitations in 

scalability, latency, and adaptability to clinical settings—

furthermore, research, including those of Kandpal et al. 

While [5] focuses on chatbots designed for communication 

in healthcare, they tend to ignore multilingual, real-time 

speech-turn-taking interactions. This gap highlights the 

importance of an end-to-end multilingual speech-to-

speech system for telemedicine. 

This study intends to establish a Speech-to-Speech 

Workflow (STSW), which claims to be a novel framework 

to combat these obstacles. The main aim is to incorporate 

sophisticated speech recognition, translation capability, 

and text-to-speech synthesis into an integrated system for 

telemedical applications. Here, the novelty of this research 

is due to the use of domain-specific fine-tuning techniques 

for medical, unique arrangement towards multilingual 

capabilities integration, and the process of real-time 

transliteration based on 5G technology. These properties 

make the architecture suitable for scalable, flexible 

services for a range of healthcare services. This research 

adds value from several perspectives. First, it presents a 

workflow for telemedicine speech-to-speech translation in 

many languages. Secondly, it performs better than the 

state-of-the-art systems in all dimensions of accuracy in 

speech recognition, translation quality, and the naturalness 

of speech produced by synthesis. Third, it offers a latency-

optimized infrastructure for real-time interactions, 

focusing on key issues in telemedicine communication. 
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To systemically guide this research, we crafted the 

following central research questions (RQs): 

RQ1: What kind of deep learning-architecture-based 

framework can be implemented to overcome the 

multilingual barrier in doctor-patient communication in 

telemedicine systems? 

RQ2: How can the proposed system provide speech-to-

speech translation performance in real time while keeping 

low latency and high scalability? 

RQ3: How does integrating 5G technology help the 

adaptability and reliability of speech-based telemedicine 

applications in various healthcare environments? 

To resolve them, we introduce a 5G-optimized deep 

learning framework that combines speech recognition, 

neural machine translation, and text-to-speech open-

source solutions and optimizes them for medical 

vocabulary and multilingual use. We report across 

important data points end to end in Word Error Rate 

(WER), BLEU score, Mean Opinion Score (MOS), and 

latency appropriate for telemedicine use. 

Our primary contribution is a cohesive adaptation of 

domain-based fine-tuning and 5G-specific optimization 

within a real-time, multilingual, speech-to-speech 

translation system designed specifically for telemedicine. 

While existing approaches use general ASR and 

translation models, we adapt both Whisper and Marian MT 

models to multilingual medical datasets to improve the 

recognition and translation of specialized medical 

terminology. 

The presented telemedicine framework centers around the 

advantages of deep learning for individualized care 

throughout the telemedicine system. In particular, we use 

a fine-tuned Whisper ASR model to perform accurate 

multilingual speech recognition to manage the variance in 

speech from patients: Real-time, domain-specific 

translation using the Marian MT Transformer model 

bridging the communication gap between Doctor and 

Patient. The model is fine-tuned Tacotron 2, ensuring the 

speech synthesis produces a natural, context-aware audio 

output. Moreover, we integrate a BERT-based model for 

sentiment analysis to extract emotional signals from 

patient’s speech, addressing a gap in empathetic healthcare 

communication. In contrast to existing systems that handle 

these different components in a siloed way, our framework 

integrates all of the modules in a one-stop shop for a real-

time, low-latency telemedicine solution that scales to 

multiple languages. 

The remaining structure of the paper is as follows. We 

summarize the existing literature and identify the research 

gaps in multilingual telemedicine systems in Section 2. 

Section 3 proposes the methodology, the details of the 

STSW framework, and its components. Experimental 

results and a comparison between the system and state-of-

the-art approaches are presented in Section 4. Section 5 

discusses the results broadly and describes the study's 

limitations. Finally, Section 6 concludes with a brief 

discussion of its implications and directions for future 

work on broadening linguistic capabilities, tightening 

semantic precision, and supporting offline telemedicine. 

2 Related works 

Recent advancements in telemedicine highlight the need 

for multilingual, real-time communication systems. 

Existing studies focus on isolated tasks that lack 

integration. Shi et al. [1] précised classifying patient 

symptoms, an intelligent triage model that combines Bi-

LSTM with character embedding to improve telemedicine 

services. Payan et al. [2] revealed potential problems for 

patients from marginalized communities as community 

health centers adopted telemedicine at a rapid rate. Latif et 

al. [3] confronted scalability and technological integration 

hurdles; deep learning-driven speech technology could 

revolutionize the healthcare industry. Ji et al. [4] provided 

accessible interpretation services, and mobile healthcare 

apps may be able to reduce language barriers in the 

medical field. Kandpal et al. [5] highlighted the increasing 

influence of artificial intelligence (AI) through chatbots, or 

virtual assistants, employing ML and AI to evolve from 

menu-based models to contextual ones. It highlights the 

convergence of NLP and deep learning and explores their 

possibilities in healthcare for predictive diagnosis and 

scheduling of appointments. The study highlights the 

revolutionary potential of chatbots in healthcare and 

corporate settings and emphasizes the necessity of well-

trained models in service-oriented companies. It also 

evaluates existing applications, problems, and prospects.  

Albahri et al. [6] examined how wearable sensors, 

networks, artificial intelligence, and cloud computing are 

all incorporated into telemedicine. One hundred forty-one 

publications are categorized by a systematic review 

highlighting the advances and problems in IoT-based 

healthcare and providing guidance for future studies. Li et 

al. [7] developed in digital and telecommunications, 

including AI, 5G, and IoT, are revolutionizing 

ophthalmology and improving telemedicine capabilities in 

the face of COVID-19 problems. Zhang et al. [8] employed 

deep learning and automated transcription to find themes 

associated with depression in speech recordings made by 

265 clinical patients. Calambur et al. [9] examined the 

effects of language barriers on information collecting in an 

older adult telehealth service. Talpada et al. [10] can better 

understand influence by utilizing social media data, 

especially from Twitter, which provides insights into 

public attitude. 

Yu et al. [11] examined an entire health-related Internet of 

Things architecture, focusing on cloud platform 

integration and multimodal sensor technologies for 

improved emotional connection and user experience. 

Ozyegen et al. [12] tackled the problem of information 

overload in healthcare by investigating helpful text-

highlighting strategies to support medical practitioners. 

Chung et al. [13] use a language model and Deep Voice 2; 

this pilot project investigates specialized voice recognition 

for nursing shift handovers. Deepa and Khilar [14] 

developed speech technology in healthcare, which can be 

attributed to its non-invasive nature and ability to monitor 

and diagnose diseases. Tripathi et al. [15] affected 

articulation in speech by impairing muscular control. 

Clinicians and patients benefit from accurate minimal-

word intelligibility tests. 
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Table 1: Comparative summary of state-of-the-art 

approaches in telemedicine systems 

Study Methodol

ogy 

Focus 

Area 

Limitati

ons 

Gaps 

Addressed 

by STSW 

Shi et 

al. [1] 

Bi-LSTM 

for 

intelligent 

triage 

Symptom 

classificat

ion 

No 

multiling

ual 

support 

lacks 

integrati

on 

STSW 

supports 

multilingua

l speech, 

integrates 

triage, 

recognition, 

translation 

Latif 

et al. 

[3] 

Deep 

learning-

based 

speech 

recognitio

n 

Speech 

recognitio

n 

Lacks 

translatio

n & 

scalabilit

y, high 

latency 

STSW 

combines 

recognition 

+ 

translation 

+ TTS, 5G 

optimizatio

n reduces 

latency 

Kand

pal et 

al. [5] 

Chatbot 

using ML 

& AI 

Text-

based 

chatbots 

No real-

time 

speech 

handling, 

not 

multiling

ual 

STSW 

enables 

speech-to-

speech 

multilingua

l real-time 

communica

tion 

Ji et 

al. [4] 

Mobile 

apps for 

interpretat

ion 

Interpretat

ion 

services 

No 

scalabilit

y lacks 

integrati

on with 

speech 

models 

STSW 

offers end-

to-end 

speech 

processing 

integrated 

with 

translation 

Ganes

h et 

al. 

[26] 

ASR with 

Flask for 

disorder 

speech 

Disorder 

speech 

recognitio

n 

No 

multiling

ual 

translatio

n, not 

optimize

d for 

latency 

STSW 

extends 

speech 

recognition 

to 

multilingua

l 

translation, 

optimized 

for 5G 

 

Zhang et al. [16] examined the potential and present 

difficulties of intelligent speech technology (IST) in 

healthcare in the face of a lack of resources. It discusses 

the importance of IST in smart hospitals, namely in illness 

diagnosis, stroke patient care, and medical documentation. 

While highlighting AI's progress in voice recognition, the 

assessment also points out its drawbacks, including a lack 

of datasets and privacy issues.  Kaushik et al. [17], with a 

considerable accuracy rate, SLINet CNN is a deep learning 

model for early identification of SLI and DD in children. 

It is low-complexity for usage in real-time, gender-neutral, 

and appropriate for remote diagnostics—plans for the 

future call for adding many languages and continuous 

speech. Wang et al. [18] presented a novel approach to 

categorizing voice issues that replaces single vowels with 

continuous Mandarin speech. Sindhu et al. [19], with 

speech and vocal impairments, are more likely to 

experience developmental delays and poor academic 

performance. Deep learning has transformed automatic 

detection, which provides prospective advances and helps 

with effective diagnosis. Huang et al. [20] used the 

UASpeech dataset, a novel two-stage paradigm for 

transforming everyday speech to dysarthric speech was 

suggested and assessed. 

Alma et al. [21] examined current developments in deep 

neural networks for speech and visual applications, 

focusing on their evolution, difficulties in systems with 

limited resources, and new applications. Tanveer et al. [22] 

improved performance on various speech tasks, and 

ensemble deep learning approaches combine ensemble 

techniques with deep learning. Shastry [23] presented a 

method for continuous remote health monitoring in digital 

health that combines DL and NLP. Sonmez and Varol [24] 

improved human-computer interaction in Society 5.0, 

which requires further advancements in speech-emotion 

recognition (SER). Diverse speech traits and cultural 

variables that impact recognition accuracy are challenges. 

Talaat et al. [25] helped CNN-LSTM network-based 

identification achieve great accuracy by capturing voice 

airflow dynamics for letter pronunciation. 

Ganesh et al. [26] combined ASR technology with Flask 

to build a powerful disease speech recognition platform 

that has the potential to revolutionize healthcare and other 

fields. Musalia et al. [27], with colossal accuracy using the 

DNN approach, the pilot research assesses SRAVI, a 

speech/phrase recognition program, with the goal of future 

development and real-world implementation. Kheddar et 

al. [28] adapted models to similar datasets; deep Transfer 

Learning (DTL) in Automatic Speech Recognition (ASR) 

overcomes the constraints posed by data scarcity. Gaitan 

et al. [29] prompted telemedicine's uptake, changing 

people's attitudes and habits in Spain and bringing 

attention to trends in the country's digital revolution. 

Bandopadhyay et al. [30] spooked Healthcare Bot (THCB) 

was created in response to the COVID-19 epidemic, which 

made it possible to improve remote patient care. 

Shahamiri et al. [32] used deep learning to create a 

Dysarthric Speech Transformer that shows promise in 

reducing ASR difficulties for those with severe dysarthria. 

Wu et al. [33] unveiled a scalable precision health solution 

that combines AI-powered telecare, wearable technology, 

and ambient data. Applying modular models improves the 

prediction of chronic diseases. Joshy et al. [35] analyzed 

deep learning models with different acoustic 

characteristics for dysarthria severity classification, 

highlighting the better performance of MFCC-based i-

vectors. 
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Przybylo [36] presented an LSTM-based technique for 

video plenty sonography-based continuous heart rate 

monitoring to simplify data processing while maintaining 

accuracy on par with more established techniques like POS 

and ICA. Kamble et al. [37] investigated using CNN and 

SPWVD in an EEG-based BCI system for imagined 

speech recognition. The results demonstrate notable 

improvements in performance over conventional 

techniques, which motivates more research with more 

enormous datasets and more sophisticated DL structures. 

Deb et al. [38] presented a deep learning model that 

achieves 67.71% UAR in categorizing cold speech using 

MFCC and LPC characteristics. Fernandes [39] enabled 

telemedicine to connect healthcare across distances, and 

with COVID-19, it proliferates. AI improves productivity, 

monitoring, and diagnoses but has drawbacks. Abdelhay et 

al. [40] provided 24/7 access and financial savings; 

medical bots—a remote healthcare service—have gained 

popularity in response to the COVID-19 outbreak. The 

literature review identifies gaps in telemedicine, 

particularly in multilingual speech systems.  

Benedict and Subair [42] proposed a deep learning-based 

edge-enabled serverless architecture to detect animal 

emotion in real time, using a convolutional neural network 

with serverless computing (SC) to improve scalability and 

low latency processing. A deep learning framework for 

social media rumor detection and tracking is proposed by 

Han and Lin [43], which uses LSTM networks to extract 

temporal features for better detection accuracy. According 

to Chen and Zhang [44], an involution feature extraction 

method was implemented for human posture identification 

in martial arts, focusing on utilizing a feature extraction 

technique by convolutional deep learning models, which 

effectively captured spatial and temporal postural features, 

resulting in substantial improvements in both classification 

performance and robustness. 

The existing approaches target standalone functionalities, 

as shown in Table 1, like triage models [1], speech 

recognition [3], chatbots [5], or interpretation services [4]. 

Nonetheless, they are limited in offering an efficient, 

scalable architecture for instant multilingual speech 

recognition, translation, and speech synthesis with low 

latency. The proposed STSW framework is proposed to 

bridge these gaps. It includes modules for speech 

recognition, translation, and text-to-speech synthesis 

adapted for medical scenarios, maintains multilingual 

support, and utilizes 5G technology to enable real-time, 

scalable, and resource-efficient telemedicine 

communication. This makes STSW close some of the 

many gaps across fragmented approaches in literature into 

a unified, on-demand, multilingual telemedicine system. 

Although previous works have made several significant 

improvements in specific aspects of telemedicine, no 

unified framework integrates these fragmented 

components (e.g., speech recognition, symptom triage, 

translational linguistics, and sentiment analysis) into a 

single scalable real-time system. Our STSW framework 

fills this gap by jointly learning these functionalities and 

supporting real-time, low-latency communication between 

doctor and patient in a multilingual setting. 

Existing approaches emphasize triage, diagnosis, or 

chatbots. The proposed research addresses these gaps by 

integrating advanced deep learning-based speech 

recognition, translation, and synthesis into a unified 

framework. This will enable real-time, multilingual 

doctor-patient communication and significantly enhance 

accessibility and efficiency in telemedicine systems. 

3 Proposed system 

An empirical approach to the proposed telemedicine 

system, presented in Figure 1, can be developed by 

applying advanced deep learning and natural language 

processing techniques integrated with 5G technology that 

allows for communication and diagnosis of the patients. 

The system starts with patient utterances via 5G-enabled 

audio or video calls. As a result, this enables near-zero 

delay data transfer, resulting in a telemedicine system that 

can work in a wide range of geographical conditions. First, 

this speech goes through the speech-to-speech translation 

module to translate the patient's speech into English; thus, 

this speech-to-speech conversation is made independent of 

the patient's language. This output is then fed into the 

speech-to-text translation module, which performs audio 

transcription into text with high accuracy using hybrid 

deep learning techniques. It integrates sophisticated 

speech recognition and context-based refinement 

techniques to preserve the context of medical phrases and 

terminologies. A language processing module then 

analyzes the transcribed text using natural language 

processing (NLP). This is the process of cleansing textual 

data and preparing it for analysis. 
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Figure 1: Overview of the proposed telemedicine system 

Text mining is performed on the refined text to extract 

medically significant information such as symptoms, 

diseases, and patient-reported problems. The extracted 

data is then input to a disease and symptom recognition 

module, which uses deep learning models trained on large 

medical datasets to learn a mapping between the extracted 

information and possible diagnoses. It continuously 

updates a physician dashboard with the processed data, 

i.e., the transcription of the patient voice in English, textual 

data, and potential diagnoses list. The dashboard for the 

doctor serves as the primary interface for healthcare 

providers, allowing them to access the processed data and 

make decisions based on them. It seamlessly integrates 

feedback loops, enabling health professionals to provide 

feedback about their observations and adjust the system 

outputs accordingly. Harnessing the best of 5G and AI, the 

entire process is built to be smooth, crisp, and accurate, 

helping you come up with a final solution in a short time 

frame, thereby bringing medical services to your doorstep 

at the right time. This mechanism eliminates hurdles like 

language diversity and distance to promote patients' and 

providers' convenience and accessibility to health care. 

The system can be the basis for intelligent, real-time 

telemedicine apps by blending speech-to-speech and text-

link processing with cutting-edge analytics. 

The STSW framework is unique as it integrates advanced 

speech recognition (for transcribing patient speech), 

machine translation (for real-time multilingual 

conversion), and text-to-speech synthesis, all optimized 

for medical terminology and patient interaction. In contrast 

to previous systems designed for single-tasking, STSW 

integrates all of these operations into a single workflow, 

thus placing it in a unique position to address the linguistic, 

variability, and scaling challenges currently faced in 

existing telemedicine systems. 

3.1 Speech-to-Speech workflow framework 

A novel approach aims to tackle some relevant issues 

about telemedicine relying on 5G. It is used as the basis for 

the architecture that underlies a vision of 5G-enhanced 

telemedicine, which mediates challenges in multilingual 

health-cared communication. Using a combination of deep 

learning models and a real-time processing pipeline, Aedh 

can provide speech-to-speech translation and thus enable 

the patient and healthcare provider to communicate 
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directly without a language barrier. Main Features: Natural 

speech recognition, interpretability, contextual 

improvement, precision, etc. Together, these features 

define the quality of translations vital during medical 

consultations. Coupled with the ultra-low latency and edge 

computing power of 5G, the system is all set to power real-

time processing and availability in even the remotest 

locations. This method is important because it closes the 

distance between language and distance to aid 

telemedicine in becoming more effective, accessible, and 

powerful in providing quality healthcare. 

 

Figure 2: Proposed framework for AI-enabled language-independent Speech-to-Speech workflow 

Figure 2 shows the workflow for the proposed AI-enabled 

telemedicine system. The workflow starts with receiving 

input speech from the patient. The spoken language is 

recorded by a recording machine or microphone and 

preprocessed to get quality data for the next steps. Some 

advanced signal processing techniques, such as spectral 

subtraction or a Wiener filter to suppress background 

noise, are applied to reduce noise in the input speech. This 

step clarifies the audio before processing, an essential 

factor in correct downstream processing. 

After removing the noise, it detects the language spoken 

on the system. It uses a pre-trained natural language 

detection model, like fastText, to evaluate phonetic and 

lexical features in the audio. It identifies the language that 

has been detected and decides the processing pipeline that 

would be used for transcription and translation. Such a step 

will be crucial in building a telemedicine system that is 

language agnostic and will be able to address different 

languages as inputs. In the next step, the actual speech-to-

text conversion occurs, in which an adapted audio file 

presentation is transcribed into text using the speech 

recognition model. It uses OpenAI's Whisper or Google 

Speech-to-Text APIs that have been fine-tuned explicitly 

on medical terminology to improve the recognition of 

challenging medical vocabulary. Also, the transcription 

will be context-driven, using specific models trained on 

healthcare datasets to reduce errors and ambiguity. 

The transcription text is sent to a translation module that 

uses the Marian MT model, in which the translation model 

is fine-tuned using multilingual medical data. This process 

translates the recognized text —as slang or some 

unprofessional title; often, some slang will be used, 

translating to English, capturing the semantics in medical 

language. Finally, a GPT-based language model fine-tunes 

the fluency and coherence of the translation, giving 

finished translated outputs a rounder delivery. Language 

problems are fully resolved at this stage, allowing for 

smooth communication in a telemedicine consultation. 

Translated English text goes through context rectification, 

in which more advanced models of AI analyze the context 

of their translations in the medical domain and fix any 

potential mistakes made during translation. This process 

includes semantic enrichment, which cross-references the 

text with a knowledge base of medical terminologies to 

ensure consistency and accuracy. For example, vague 

phrases are substituted with their exact terms, as used in 

medicine, to avoid confusion. 

Simultaneously, the system conducts sentiment analysis 

on the spoken input. A sentiment classifier based on deep 

learning evaluates the patient's functional state and detects 

stress, anxiety, or distress manifestations. Such an analysis 

is critical for comprehensive physical and emotional health 

care in telehealth. The opinion data can be incorporated 

into the diagnosis, which can help providers customize 

their responses. The cleaner text is then transformed into 

English speech using a text-to-speech engine like Google 

TTS or more sophisticated neural TTS. Its output speech 

is intelligible, more human-like, and created for 

understanding. The final output ensures that the healthcare 

provider has the patient's message in a format that is easy 

to access, thereby facilitating a successful telemedicine 

consultation. 

The whole workflow uses the optimization for 5G to be 

deployed using the 5G networks for real-time 

communication. It provides the low latency and high 

bandwidth needed to perform speech processing, 

translation, and synthesis seamlessly, even during live 

consultations. Deploy the models on edge servers so that 

5G-enabled devices can use their computational power, 

and response times will be shorter. The translated speech 

delivered by the system to the healthcare provider at the 

end of the methodology completes the cycle of 
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multilingual, real-time speech communication in 

telemedicine. The proposed system solves the significant 

challenges regarding language barriers, accessibility, and 

communication latency in telemedicine by incorporating 

noise reduction, language detection, speech recognition, 

translation, sentiment analysis, and 5G-enabled real-time 

processing. This allows effective patient and healthcare 

provider engagement without language or geographic 

boundaries. 

All datasets were preprocessed and augmented to obtain 

robustness and deal with domain shift problems. The 

medical speech dataset, intended for the speech 

recognition module, was preprocessed using noise 

reduction methods like spectral subtraction and voice 

activity detection (VAD) to trim silence. Augmentation 

methods were applied with injections of additive noise 

from the MUSAN corpus to account for clinical 

environments, time-stretching, pitch-shifting, and 

additional medical terminology from other samples. 

Training corpus consisting of text data utilized for the 

translation model, implying cleaning, tokenization, and 

synonym expansion to improve the domain relevance. 

These datasets were used to fine-tune the Whisper ASR 

model, Marian MT translator, and Tacotron 2 TTS 

synthesizer with the default hyperparameters on NVIDIA 

Tesla V100 GPUs with the PyTorch framework. The 

model used for Whisper had an Adam optimizer, 3e-5 

learning rate, 64 batch size, and 15 epochs with an early 

stopping condition on WER. Marian MT uses AdamW 

with a learning rate 5e-5 and 10 epochs, validated on 

BLEU. We trained Tacotron 2 with an RMSProp optimizer 

with batch size 48 and evaluated our models using MOS 

(Mean Opinion Score). Whisper serves as the speech-to-

text engine due to its capabilities and compatibility for 

converting several languages into text; Marian MT serves 

to provide efficient and flexible Transformer-based 

multilingual translation; and   Tacotron 2 serves as the 

speech synthesis engine due to its naturalness compared to 

alternatives like FastSpeech. Additionally, sentiment 

analysis was included via a fine-tuned BERT model on 

healthcare sentiment data. We then used the output of the 

sentiment analysis model to dynamically adapt the 

prosody and tone of Tacotron 2 to enrich interaction 

engagingly with the patient and support assessing the 

patient's mental health. 

3.1.1 Noise reduction 

The noise reduction module performs audio preprocessing 

for more explicit speech, which is vital for accurate 

downstream processing. It filters out ambient sound using 

algorithms involving methods like spectral subtraction and 

adaptive filtering. What is novel here is that deep learning-

based noise suppression models are trained on large 

datasets that handle complex and noisy conditions. These 

innovations guarantee input that meets speech recognition 

quality standards, which is beneficial for telemedicine, 

given that recordings could occur in farmlands or urban 

regions that are quite noisy. The system provides ideal 

sound quality by incorporating 5G-supported real-time 

noise suppression, making remote healthcare consultations 

reliable across patient settings. 

3.1.2 Language detection 

Introduction The proposed method consists of four 

components. The first is the language detection 

component, which determines the spoken language in the 

input speech, allowing a language-independent 

telemedicine system. It uses fastText and other similar pre-

trained models to learn the linguistic aspects of the text and 

classify it into a given language with very high accuracy. 

Based on the detected language, the system uses 

dynamically chosen translation pipelines. A fallback 

mechanism is proposed for robustness where probabilistic 

scoring models further validate uncertain detections. This 

innovative healthcare module, integrated with 5G edge 

servers, provides low-latency processing and is suitable for 

real-time consultations. A solution like this will aid in 

giving seamless communication for patients from multiple 

linguistic backgrounds, which will, in turn, increase 

inclusivity in telemedicine. 

Specifically, the language detection module in the 

proposed framework serves as the first stage of the Speech-

to-Speech Workflow. When receiving the speech input 

from the patients,  the audio signal goes through several 

preprocessing steps to extract important acoustic features 

like MFCCs (Mel-Frequency Cepstral coefficients). These 

features are then input into a pre-trained lightweight CNN-

based language identification model. The model classifies 

the input speech into one of these supported languages 

using phonetic and prosodic patterns to distinguish the 

different languages. 

3.1.3 Speech-to-Text 

Converts patient speech into text data using domain-

adapted speech recognition models. It employs using 

either OpenAI's Whisper or Google's Speech-to-Text 

APIs, with fine-tuning on medical datasets that ensure it 

can identify complex terms accurately. As a translation 

tool, the system applies contextual error correction to the 

ambiguity inherent in any transcription of a medical 

consultation [1]. This solution enables fast and accurate 

transcription in real-time, even in bandwidth-constrained 

environments due to 5G-enabled real-time processing. 

This pivotal step to allow meaningful communication in a 

telemedicine system is augmented with promise by 

integrating multilingual support with minimum resource 

requirements, ensuring accuracy across various patient 

demographics. 
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Figure 3: Patient speech-to-text conversion as part of the proposed telemedicine system 

Figure 3 Workflow for converting patient speech to text as 

an integral part of the proposed telehealth system. The 

patient's speech is recorded and sent through a noise 

reduction module in the first stage. This step removes the 

ambient noise and enhances the input signal, which must 

be correctly processed in the following stages. To 

accommodate the different noise scenarios, sophisticated 

noise reduction algorithms such as spectral subtraction and 

adaptive filtering are utilized, rendering the system robust 

for practical applications. In audio preprocessing, we 

extract essential features like Mel Frequency Cepstral 

Coefficients (MFCCs) or spectrograms from the processed 

audio signal. These features are represented numerically, 

which allows the downstream models to analyze the 

speech signal accordingly. The features are then passed 

through a speech recognition model to convert the audio 

into a transcript. Medical datasets were used to fine-tune 

the model, enabling the model to recognize exact 

terminology and phrases common in telemedicine 

consultations. 

After transcribing the text, a contextual error correction 

module improves its output with spelling errors by 

recognizing these mistakes in the transcription and 

correcting them. In particular, it applies semantic analysis 

and machine learning to enhance the accuracy of the 

identified text through this step in medical arenas. The 

result is a high-quality, transcribed text ready for further 

processing in the telemedicine system. This workflow 

enables patients to communicate with healthcare providers 

without noise and domain-specific vocabulary challenges 

often accompanying communication barriers. 

3.1.4 Translation 

The translation module eliminates language barriers by 

translating the transcribed speech to English through the 

fine-tuned Marian MT models. It uses domain-specific 

training data to ensure that it translates medical 

terminologies appropriately for higher accuracy. After 

translation, the output undergoes a refinement process 

using GPT-based models, which improves fluency and 

coherence without losing medical context. Since the text 

combines sentiments with layering, the sentiment-aware 

translation layer ensures the emotional cues are not lost. 

WAVE-2G, a 5G-optimized version of this module, 

provides instant transcriptions, facilitating live catechism 

in various languages. This step allows telemedicine to be 

available anywhere worldwide, making communication 

between patients and providers easier. 

3.1.5 Context refinement 

If the translations do not match with any of the medical 

knowledge base schemas, then its context refinement 

module will find the error logic. When ambiguous terms 

or terms specific to a domain are encountered, these 

models replace them with unique definitions. For instance, 

its synonyms/abbreviations or regional terms have been 

mapped against standardized medical definitions. The 

module also implements context-aware correction 

algorithms, which dynamically adapt from historical 

consultation data over time to improve the quality of 

translations provided. This step is essential for ensuring 

trust and reliability between patients and healthcare 

providers, and it is optimized so as not to consume time 

during tele-visits. 

3.1.6 Sentiment analysis 

The sentiment analysis module analyzes the emotional 

tone of the patient's speech and derives their mental and 

emotional state. The critical role of deep learning-based 

sentiment classification on stress, anxiety, and other 

emotions for overall patient care. This analysis synergizes 

with medicine, enabling the provider to attack latent 

emotional or psychological issues. The module works end-

to-end with a translation pipeline to preserve the emotional 

context of the translated speech. The step is powered by 

real-time processing on 5G networks (which have about a 

10x lower latency rate than legacy networks), ensuring that 

the telemedicine experience operates in a manner akin to a 

face-to-face encounter, as healthcare providers can receive 

reporting at thirty-second intervals, bringing together 

physical and emotional health. 

In that respect, the sentiment analysis module in the 

proposed framework is still considered a supportive but 

essential component. The BERT-text classifier used for the 

sentiment analysis is fine-tuned with healthcare-focused 

conversational datasets after the real-time transcribed text 

of the patient’s speech is obtained and translated. The 

module classifies the patient’s feelings as positive, neutral, 

or negative. In particular, the procedure of integrating this 

sentiment information occurs in the following two ways: 

1) Adaptable speech synthesis: The sentiment detected in 

the previous procedure affects the prosody and tone 
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parameters within the Tacotron 2 TTS module to enable 

the synthesized response of the doctor’s side to sound 

empathetic and context-aware. (2) Doctor Dashboard 

Integration: The sentiment score is retrieved and shown in 

the output of the doctor's dashboard along with the 

diagnosis output, and this helps the healthcare worker 

understand the emotional cues attached while reading the 

patient's diagnosis. This helps tailor communication 

modes, particularly in telemedicine visits, where visual 

contact is lacking. As an illustration, frequent marking of 

negative sentiment may lead to the healthcare provider 

spending more time on patient counseling or mental 

assessment, thereby improving the patient's overall care. 

 

 

3.1.7 Text-to-Speech 

Text-to-Speech Module — Go from translated text to 

human-like English speech using Neural TTS models such 

as Tacotron or WaveNet. The module caters to the patients 

via its design, keeping clarity in mind the tone and 

pronunciation to be used when addressing the patients, and 

is adaptable to medical scenarios. The new technology 

supports real-time synthesis through 5G edge computing, 

boasting ultra-low latency in environments with limited 

bandwidth capabilities. This module is combined with 

sentiment analysis, which makes it possible for the 

translation to emulate the emotional tone of the original 

spoken language, aiding patient-provider concordance. 

This step integrates high-quality audio outputs and 

completes the speech-to-speech translation pipeline for 

effective multilingual communication in telemedicine 

consultations. 

 

Figure 4: Text-to-speech conversion process as the later part of speech-to-speech conversion (continuation to Figure 2) 

Figure 4 illustrates the text-to-speech conversion process, 

forming the latter part of the overall speech-to-speech 

workflow. The process begins with inputting English text 

directly provided or generated from preceding translation 

or transcription stages. The input text undergoes 

preprocessing, where it is tokenized, normalized, and 

formatted to ensure compatibility with the downstream 

modules. This step involves handling abbreviations, 

numbers, and special symbols and converting them into 

linguistically appropriate forms suitable for speech 

synthesis. Following preprocessing, the refined text is 

transformed into phonemes, the fundamental sound units 

of speech. The phoneme conversion module maps text to 

phonetic transcriptions, considering linguistic rules and 

contextual nuances to produce accurate pronunciations. 

This phoneme sequence is then passed to the neural text-

to-speech (TTS) model. The TTS model, such as Tacotron 

2 or WaveNet, synthesizes natural and expressive speech 

from the phoneme inputs, maintaining the appropriate 

tone, pitch, and intonation for the given text. 

The synthesized speech will undergo some audio 

postprocessing to make it more transparent and of higher 

quality. The step consists of noise filtering, equalization, 

and format conversion, ensuring the output speech is 

played back with clarity over any device. The final speech 

output represents the converted and naturalized text-to-

speech production in English, completing the speech-to-

speech pipeline. Real-time communication is well-suited 

for telemedicine applications, while this process is 

optimized for real-time and practical speech connection, as 

this task can be challenging for many systems and requires 

well-synchronized speech with transition.  

In our proposed framework, we have utilized the (Text-to-

Speech) Module based on Tacotron 2 Architecture, fine-

tuned at our best to medical context. The model is trained 

for medical adaptability on a dataset created by 

augmenting standard speech corpora (LJSpeech) with 5k 

additional audio samples with medical terminologies, 

patient dialogues,  and diagnostic phrases spoken by 

professional speakers. By fine-tuning domain-specific 

data, it learns to pronounce correctly, making clinical 

dialogue sound naturally fluent. Furthermore, the TTS 

prosody parameters (pitch, speaking rate, and intonation) 

area was adjusted to dynamic mode, according to 

information provided by the sentiment analysis module. 

For example, when a patient is detected with negative 

sentiment (e.g., anxiety or distress), the TTS output will 

change to speak in a softer tone and slower rate to show 

sympathetic response. Synthesizing the doctor’s responses 

to patients will allow for a more medically accurate, 

emotionally attuned telemedicine experience. 
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Table 2: Notations used in the methodology 

Notation Description Mapped System Component 

S(t) Input speech signal in the time domain. Raw input from the patient 

𝑆𝑛(𝑡) Noisy speech signal. Input with environmental noise 

𝑆𝑐(𝑡) Cleaned speech signal after noise reduction. Output of Noise Reduction Module 

N(t) Estimated noise component in the speech signal. Noise Reduction Module (Spectral 

Subtraction/Wiener Filtering) 

F Extracted audio features (e.g., MFCCs or spectrograms). Feature extraction stage for ASR (Whisper 

Model Input) 

T Transcribed text from speech in the source language. Output of Whisper ASR Model 

T' Translated text in the target language. Output of Translation Model 

T'' Refined text after context refinement. Final refined translated text 

𝑓𝑆𝑇𝑇  Speech-to-text model that maps audio features F to 

transcribed text T. 

Whisper ASR Model 

𝑓𝑇𝑟𝑎𝑛𝑠  Translation model that converts transcribed text T into 

target text T'. 

Marian MT Translation Model 

𝑓𝑅𝑒𝑓𝑖𝑛𝑒  Context refinement model that ensures semantic and 

domain-specific accuracy in the text T'. 

Medical Context Refinement Component 

𝑓𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡  Sentiment analysis model that evaluates emotional states 

from text T. 

BERT-based Sentiment Analysis Module 

E Emotional state vector indicating sentiments like stress 

or anxiety. 

Sentiment Output used for TTS prosody 

adjustment 

𝑓𝑇𝑇𝑆  Text-to-speech model that synthesizes speech S'(t) from 

text T''. 

Tacotron 2 TTS Model 

S'(t) Synthesized speech in the target language. Final speech output to a healthcare provider 

 

3.1.8 Mathematical model 

The speech-to-speech workflow in the proposed 

methodology can be described mathematically by 

modeling each stage as a transformation or mapping of 

data from one domain to another. Let S(t) represent the 

input speech signal as a time-domain waveform. The 

process begins with noise reduction, where the noisy signal 

𝑆𝑛(𝑡) is transformed into a cleaner signal 𝑆𝑛(𝑡)  using 

spectral subtraction or adaptive filtering, modeled as in Eq. 

1.  

𝑆𝑐(𝑡) = 𝑆𝑛(𝑡) − 𝑁(𝑡),                             (1) 

where 𝑁(𝑡) is the estimated noise signal. This step ensures 

𝑆𝑐(𝑡) has minimal interference for downstream 

processing. The clean signal 𝑆𝑐(𝑡) It is then converted into 

a feature space F using audio preprocessing. Feature 

extraction involves calculating spectrograms or Mel 

Frequency Cepstral Coefficients (MFCCs), expressed in 

Eq. 2.  

F= FeatureExtractor (𝑆𝑐(𝑡)).                     (2) 

These features serve as input to the speech recognition 

model. The speech-to-text module can be defined as a 

mapping 𝑓𝑆𝑇𝑇 That transforms audio features F into text T, 

as in Eq. 3.  

T=𝑓𝑆𝑇𝑇 (𝐹),                                                 (3) 

where T represents the transcribed text in the source 

language. Next, the transcribed text T undergoes 

translation into a target language T′. The translation 

process is modeled as a transformation 𝑓𝑡𝑟𝑎𝑛𝑠 Using a 

neural machine translation model as in Eq. 4.  

T′=𝑓𝑡𝑟𝑎𝑛𝑠 (𝑇).                                    (4) 

To refine the translated text T′, a context refinement 

module applies a semantic mapping 𝑓𝑅𝑒𝑓𝑖𝑛𝑒  That cross-

references the text with domain-specific knowledge bases, 

ensuring medical accuracy as in Eq. 5.  

T′′=𝑓𝑅𝑒𝑓𝑖𝑛𝑒(𝑇′).                                  (5) 

Simultaneously, sentiment analysis is performed on the 

input speech S(t) or transcribed text T to derive emotional 

insights. This is represented as: 

E=𝑓𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡(𝑇),                                 (6) 

where E is an emotional state vector indicating stress, 

anxiety, or other sentiments. These insights inform 

healthcare providers about the patient's emotional 

condition. The final refined text T′′ is converted into 

speech S′(t) using the text-to-speech (TTS) module. This 

process is modeled as in Eq. 7.  

S′(t)=𝑓𝑇𝑇𝑆(𝑇′′),                                     (7) 

where 𝑓𝑇𝑇𝑆 is the neural TTS model that synthesizes 

natural-sounding speech. The entire process leverages 

real-time optimizations for deployment over 5G networks, 

reducing latency and ensuring efficient communication. 

The methodology integrates multiple transformations, 

from speech signal processing to text transcription, 
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translation, refinement, and synthesis, represented as a 

composite function in Eq. 8.  

S′(t)=𝑓𝑇𝑇𝑆(

𝑓𝑅𝑒𝑓𝑖𝑛𝑒(𝑓𝑡𝑟𝑎𝑛𝑠(𝑓𝑆𝑇𝑇(FeatureExtractor(𝑆𝑐(𝑡)))))).     (8)                   

This mathematical framework encapsulates the workflow, 

ensuring high accuracy and real-time performance for the 

telemedicine system. Performance evaluation is done with 

metrics such as Word Error Rate (WER) in Eq. 9, 

Character Error Rate (CER) in Eq. 10, BLEU score in Eq. 

11, and METEOR score.  

𝑊𝐸𝑅 =
𝑆+𝐷+𝐼

𝑁
                                                 (9) 

Where S is the number of substitutions, D denotes the 

number of deletions, I denotes the number of insertions, 

and N represents the total number of words in ground truth.  

𝐶𝐸𝑅 =
𝑆+𝐷+𝐼

𝑁
                                                  (10) 

This formula is the same as WER's but applied at the 

character level. BLEU score measures the overlap of n-

grams (short sequences of words) between the machine 

translation and the reference translation. 

 BLEU = Precision of n-grams ×  Length Penalty      (11) 

Scores range from 0 (poor translation) to 1 (perfect match). 

METEOR score evaluates semantic similarity by 

considering synonyms and word order, offering better 

alignment with human judgment.  

To enhance reproducibility,  the suggested framework 

will be realized using publicly accessible datasets and 

open-source frameworks. In particular, the OpenAI 

Whisper model was fine-tuned to the multilingual subset 

of the Mozilla Common Voice dataset and a curated 

medical speech dataset. We fine-tuned the Marian MT 

model on the Medline and UFAL Medical Parallel Corpus 

datasets for translations mainly utilized in medical 

terminologies. The LJSpeech dataset with domain-specific 

medical vocabulary was used to train the Tacotron2 text-

to-speech model. All models were implemented in 

PyTorch, using the state-of-the-art pre-trained versions 

provided in Hugging Face Transformers and OpenAI 

Whisper repositories. 

3.1.9 Proposed algorithm  

One of the fundamental algorithms used in this research is 

Speech Speech Workflow (STSW), which allows for 

seamless communication in multiple languages in a 5G-

enabled telemedicine system. It enables the patient's 

speech to be processed in the original language and 

converted to provide English speech so that there will be 

communication between doctor and patient under consent. 

To carry out noise reduction, speech-to-text conversion, 

text translation, and text-to-speech synthesis, the algorithm 

relies on approaches derived from deep learning to ensure 

accuracy and real-time results. Unlike existing algorithms, 

which were designed without feature extraction for the 

telemedicine PLT, the STSW algorithm integrated 

advanced natural language processing (NLP) and 

sentiment analysis capabilities, preserving the contextual 

and emotional elements from the patient's speech. 

This research highlights the utility of the STSW algorithm 

in addressing the significant issues of linguistic diversity, 

noisy audio environments, and real-time communication 

for telemedicine. The algorithm utilizes domain-specific 

tuning, which guarantees medical terminologies and 

patient narratives remain consistent while transcribing and 

translating. It is configured for 5G networks, allowing low-

latency computing, and can function in remote and time-

sensitive health scenarios. In addition to bridging the 

language gap, the STSW algorithm allows for integrating 

data into the broader operations of the telemedicine 

system, enabling the diagnosis of diseases and the 

identification of symptoms and decisions. This positions it 

as a linchpin of our conceptual multilingual telemedicine 

framework, one that is likely to vastly improve 

accessibility and inclusivity through the use of interpreted 

or translated content in global health science 

communication. 

Algorithm: Speech-to-Speech Workflow (STSW) 

Input: Audio file 𝑆(𝑡) (in the source language) 

Output: Audio file 𝑆′(𝑡) (in the target language, 

English) 

 

1. Begin 

2. Noice reduction  

     𝑆𝑐(𝑡) = 𝑆𝑛(𝑡) − 𝑁(𝑡)𝑆 

3. Language detection 

    𝐿𝑠 = 𝑓Lang(𝑆𝑐(𝑡)) 

4. Extract features  
    𝐹 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟(𝑆𝑐(𝑡)) 

5. Converting features to text 

6.     𝑇 = 𝑓𝑆𝑇𝑇(𝐹)  
7. Text translation 

    𝑇′ = 𝑓𝑇𝑟𝑎𝑛𝑠(𝑇)  
8. Refining translated text 

                   𝑇′′ = 𝑓𝑅𝑒𝑓𝑖𝑛𝑒(𝑇′) 

9. Extract emotional state 

    𝐸 = 𝑓𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡(𝑇) 

10. Convert refined text to speech 

    𝑆′(𝑡) = 𝑓TTS(𝑇′′)  
11. Return 𝑆′(𝑡) 

12. End 

Algorithm 1: Speech-to-Speech Workflow (STSW) 

The Speech-to-Speech Workflow (STSW) that we derive 

and adapt works towards achieving the goal of easy 

multilingual communication in telemedicine systems. Its 

initial process includes the patient speech input, whereby 

5G-capable devices record high-quality speech data with 

minimal transmission latency. The Input signal captures 

raw audio and is fed to a noise reduction module, which 

reduces the environmental noise from raw audio and 

makes the input signal as straightforward as possible. 

Audible content is retained while unwanted noises are 

removed using state-of-the-art noise filtering techniques 



290   Informatica 49 (2025) 279–298                                                                                                                 M.V.M.N. Sravan et al. 

(spectral subtraction and profound learning-based 

suppression). 

Next, the audio is processed, and the spoken language is 

detected. A language detection model analyzes the 

linguistic pattern in the audio and finally gets tagged with 

the respective language. Once loaded, it can initialize the 

workflow for the following processing stages, as this step 

is essential to allow multilingual functionalities of the 

system. After the input audio is decoded, the language is 

identified, and the same speech is passed to the speech-to-

text module, which provides the audio data in a text form. 

Typically, this includes feature extraction (MFCCs of the 

speech), which captures essential properties of the speech 

signal. The extracted features are then applied to a domain-

adapted deep learning speech recognition model that has 

been further fine-tuned for terms and phrases prevalent in 

the medical field. Blocked text output accurately 

summarizes a patient's voice in the original language. 

Finally, the converted speech is written down into a piece 

of text. Then, with the help of a neural machine translation 

model (like a fine-tuned Marian MT or a similar 

framework), it is transformed into English. Words spoken 

in one language translate directly to another language 

without loss in meaning, and in a medical context, this 

semantic and contextual similarity is significant. A context 

refining module(tuning) is applied to ensure the accuracy 

and readability of the translation. It employs powerful 

language models (e.g., GPT) to check the translation 

against the medical knowledge base and make sure the 

output is accurate and relevant in context. At the same 

time, a sentiment analysis module analyzes the text of the 

transcription to determine the patient's emotional status. 

This step gives information about the patient's emotions, 

which is essential to provide a holistic healthcare service. 

Identifying the sentiment helps give context to the medical 

data and allows healthcare providers to see the patient 

holistically. 

This refined text is then given by text-to-speech module 

and synthesizing English speech. Text is mapped to sound 

units using phoneme conversion and is then synthesized 

with a neural TTS model (such as Tacotron 2, 

WaveNet…). This output speech is passed through an 

audio postprocessing module to improve intelligibility and 

prepare it for playback devices. The synthesis system 

outputs a natural and highly intelligible realization of the 

patient’s speech in their native language and synthesizes it 

in English for communication with the health care 

provider. Our workflow is optimized for real-time and 

takes full advantage of 5G capabilities, which enables low-

latency processing and integration with a telemedicine 

system. The STSW method integrates noise reduction, 

speech-to-text, translation, and text-to-speech into a single 

pipeline, tackling the critical elements of multilingual 

healthcare communication and enabling seamless 

telemedicine consultations.  

The STSW depicts four central workflow processes: Noise 

Reduction, Language Detection, Speech Recognition and 

Translation, and Text-to-Speech-Call Flow. First, the input 

speech passes through a noise reduction module that 

employs spectral subtraction and Wiener filtering 

techniques to remove the most frequent background noise 

in telemedicine environments. Then, a lightweight 

language prediction model based on a convolutional neural 

network (CNN) trained on multilingual audio samples is 

applied to identify the source language. The language 

detected is used to further fine-tune OpenAI Whisper 

(Base version) for speech recognition, with a learning rate 

of 3e-5, a batch size of 64, and early stopping concerning 

WER improvement. This accepted text is forwarded as an 

input to the Marian MT model (Transformer architecture), 

which was fine-tuned over the UFAL Medical Corpus 

(with six encoder-decoder layers, eight attention heads, a 

learning rate of 5e-5, and a batch size of 32). The final text 

in output speech is generated via the speech synthesis 

using a fine-tuned Tacotron 2 model with Griffin–Lim 

vocoder trained on 20 epochs, with an RMSProp optimizer 

and learning rate 2e-4. To minimize latency, all 

components are orchestrated in real time and optimized 

over a 5G-enabled edge infrastructure. 

4 Experimental results 

Experiments were performed on NVIDIA Tesla V100 with 

32GB memory, 256GB RAM, and Intel Xeon Gold 6226 

CPU. It was finetuned on a multilingual medical speech 

dataset containing the Mozilla Common Voice dataset (10 

languages, 100 hours each) and 50 K domain-specific 

medical utterances. Data were separated into 80% training, 

10% validation, and 10% testing set. In analogy, for 

translation, model Marian MT was fine-tuned on the 

UFAL Medical Parallel Corpus of around 2 million 

sentence pairs with preprocessing of tokenization and 

cleaning. For Tacotron 2 TTS,  we trained on the 

LJSpeech dataset, supplemented by 5000 medical phrases. 

The hyperparameters for Whisper included a learning rate 

of 3e-5 and batch size of 64; for Marian MT, we had a 

learning rate of 5e-5 and batch size of 32; and for 

Tacotron2, the learning rate was 2e-4 with a batch size of 

48. For evaluation metrics, we used Word Error Rate 

(WER) for ASR, BLEU score for translation, Mean 

Opinion Score (MOS) (rated by 10 medical experts) for 

speech naturalness, and end-to-end latency from spoken 

input to translated output. 

Measurement and observations of STSW in real medicine 

telecommunication scenarios confirm its effectiveness 

through extensive experiments. The results were based on 

a multilinguistic speech database ranging from daily 

speaking to patient-doctor conversations filled with 

medical terms. As baselines, we compared our approach 

with state-of-the-art models available in the literature (Bi-

LSTM-based triage [1], deep learning-based speech 

recognition [3], and chatbot framework [5]). Moreover, 

ASR transfer learning [28] and modular AI telecare [33] 

models offered performance reference: All the 

experiments were carried out on an NVIDIA-centered 

high-performance computing environment (having TF and 

PyTorch implementation). The system performance was 

evaluated using Word Error Rate (WER), BLEU score, 

and Mean Opinion Score (MOS), demonstrating system 

excellence in real-time multilingual telemedicine 

communication. 
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The dataset [41] used in this study consists of a 

multilingual speech dataset and a Hindi-English bilingual 

telemedicine speech dataset containing audio files 

generated to simulate patient-doctor interactions in a 

telemedicine scenario. It comprises a broad spectrum of 

clinical vocabularies and dialogue systems, enabling it to 

adapt to real-world clinical environments. In addition, the 

dataset compiles audio tracks from open speech corpora, 

e.g., Mozilla Common Voice (2024), enhanced with 

medical phrases to make it domain-relevant. It offers an 

even mix of noisy and clean audio to test robustness. The 

curated datasets allowed us to train and test the proposed 

Speech-to-Speech Workflow (STSW) for each speech 

recognition, translation, and synthesis task. 

The multilingual speech datasets used in our experiments 

are divided into two categories: (1) Mozilla familiar voice 

multilingual subset [33], which consists of about 1,000 

hours of speech data from 10 languages (English, Spanish, 

French, German, Arabic, Mandarin Chinese, Hindi, 

Portuguese, Russian, Japanese) and a (2) one built in-

house medical speech dataset of 50K audio samples. The 

dataset includes simulated doctor-patient interactions, in 

which everyday clinical conversations and medical 

terminologies were recorded. Speakers of diverse accents 

and dialects contributed to the linguistic variability in the 

corpus. Domain-specific phrases were gathered from 

medical glossaries and real-world telemedicine 

consultations, enriching the dataset with complex, 

clinically relevant terms necessary for accurate translation 

and speech synthesis. 

 

 

 

Table 3: Results of speech-to-speech conversion from source language to English language speech (speaker 

information is anonymized). Note: The Hindi phrases are translated contextually using the fine-tuned Marian MT 

model. Literal transliteration outputs (e.g., phonetic mapping without semantic adjustments) are intentionally avoided 

to maintain medical relevance 

Recognized Text 

(Hindi) 

Translated Text 

(English) 

Audio Output File Path 

"मेरे पेट में पपछले 

तीन पिन ों से ििद ह  

रहा है।" 

"I have been 

having stomach 

pain for the last 

three days." 

C:\Telemedicine\output\stomach_pain_translated.mp3 

"मुझे बहुत तेज 

बुखार है और पसर में 

ििद  ह  रहा है।" 

"I have a high 

fever and a 

headache." 

C:\Telemedicine\output\fever_headache_translated.mp3 

"मेरे गले में खराश है 

और खाोंसी भी है।" 

"I have a sore 

throat and also a 

cough." 

C:\Telemedicine\output\sore_throat_translated.mp3 

"मैंने कुछ िवाइयााँ 

ली ों, लेपकन क ई 

असर नही ों हुआ।" 

"I took some 

medicines, but 

they didn't work." 

C:\Telemedicine\output/medicines_no_effect_translated.mp3 

"डॉक्टर साहब, मेरे 

बचे्च क  तीन पिन ों से 

उल्टी ह  रही है।" 

"Doctor, my child 

has been 

vomiting for three 

days." 

C:\Telemedicine\output/child_vomiting_translated.mp3 

"मुझे साोंस लेने में 

पिक्कत ह  रही है, 

खासकर रात के 

समय।" 

"I am having 

trouble breathing, 

especially at 

night." 

C:\Telemedicine\output/breathing_difficulty_translated.mp3 

"मुझे कई पिन ों से 

चक्कर आ रहे हैं 

और कमज री 

महसूस ह  रही है।" 

"I have been 

feeling dizzy and 

weak for several 

days." 

C:\Telemedicine\output/dizziness_weakness_translated.mp3 

"मुझे अपने पिल की 

धड़कन तेज महसूस 

ह  रही है।" 

"I feel my 

heartbeat is very 

fast." 

C:\Telemedicine\output/fast_heartbeat_translated.mp3 
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Table 3: Results of the speech-to-speech translation 

workflow on telemedicine use cases, patient speech in 

Hindi is translated to English to communicate with the 

doctor-modified Every row is a patient who describes 

symptoms or complaints, say fever, pain, or difficulty 

breathing. It shows Hindi speech in the "Recognized Text" 

column, which is accurately converted using speech-to-

text technology. English-translated output is given under 

the "Translated Text" column to provide clarity 

appropriate for context and medical purposes. As shown in 

the last column again, it provides the path to the generated 

audio file that simulates the doctor's natural English 

speech. In this way, the workflow illustrates the 

effectiveness and smoothness of the system in overcoming 

language barriers in a practical telemedicine context. 

 

Table 4: Speech recognition accuracy results 

Sample 

No. 

Ground Truth (Hindi 

Text) 

Recognized Text (Hindi) Word Error Rate 

(WER) 

Character Error 

Rate (CER) 

1 मेरे पेट में ििद  ह  रहा है। मेरे पेट में ििद  ह  ह  रहा है। 0.14 0.08 

2 मुझे तीन पिन ों से बुखार है। मुझे तीन पिन ों से बुखार है। 0.00 0.00 

3 साोंस लेने में पिक्कत ह  रही 

है। 

साोंस लेने में तकलीफ ह  रही 

है। 

0.33 0.15 

4 गले में खराश और खाोंसी है। गले में खरास और खाोंसी है। 0.17 0.10 

5 पपछले हफे्त से कमज री 

महसूस ह  रही है। 

पपछले हफे्त से कमज री 

महसूस ह  रही। 

0.11 0.05 

Speech Recognition Accuracy Results–This shows how 

accurately the systems convert Hindi speech to text. For 

example, transcription quality could be measured using 

metrics like Word Error Rate (WER) and Character Error 

Rate (CER). These findings show near-perfect accuracy 

when transcribing simple sentences comprising commonly 

used medical terminologies and can reach up to WER and 

CER as low as 0.00. But the error rates were much higher 

for sentences with problematic or synonymous words like 

“तकलीफ” was written “पिक्कत.” The results demonstrate 

the system's success in dealing with typical telemedicine 

use cases but highlight limitations with more subtle or 

context-specific language. Some phrases like “मुझे तीन 

पिन ों से बुखार है” always have zero WER and CER as 

shown in Table 3. This is primarily due to the heavy bias 

(because they were intentionally over-represented during 

fine-tuning) of such common medical phrases in the fine-

tuning data to keep critical medical expressions typed 

correctly and to reduce risks in telemedicine consultations. 

Other entries in Table 4 reflect a higher error rate for 

phrases with complicated constructions, regional accents, 

or standard medical terms. By design, the absence of a 

common trend across entries ensures robustness in well-

characterized clinical phrases while allowing for 

variability where the linguistic cases are more complex. 

 

Table 5: Translation quality results 

Sample 

No. 

Recognized Text (Hindi) Translated Text 

(English) 

Reference Translation 

(English) 

BLEU 

Score 

METEOR 

Score 

1 "मेरे पेट में ििद  ह  रहा है।" "I have pain in my 

stomach." 

"I am having stomach pain." 0.85 0.92 

2 "मुझे तीन पिन ों से बुखार 

है।" 

"I have fever for three 

days." 

"I have had a fever for the 

past three days." 

0.79 0.88 

3 "साोंस लेने में पिक्कत ह  रही 

है।" 

"I am having difficulty in 

breathing." 

"I am experiencing 

breathing difficulty." 

0.83 0.89 

4 "गले में खराश और खाोंसी 

है।" 

"There is a sore throat and 

a cough." 

"I have a sore throat and a 

cough." 

0.91 0.95 

5 "पपछले हफे्त से कमज री 

महसूस ह  रही है।" 

"I have been feeling weak 

since last week." 

"I have been feeling weak 

for the past week." 

0.81 0.87 
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The results of the translation quality prove that the system 

can translate Hindi text into fluent and accurate English 

translations. The results based on BLEU and METEOR 

scores reveal that the translations are indeed of a high 

quality, with scores typically above 0.80 - Near-perfect 

scores came from more straightforward sentences of plain 

seam equal distinct medical jargon, including "सप्ताह में 

िस्त, गले में खराश और खाोंसी है." Slight discrepancies were 

observed in sentences where the word order was quite 

nuanced or the verb tenses required proper contextual 

understanding. The results emphasize the system's 

potential to provide transparent translations in 

telemedicine cases, breaking language barriers for 

effective communication between the doctor and patient. 

Some phrases like “मुझे तीन पिन ों से बुखार है” always 

have zero WER and CER as shown in Table 3. This 

is primarily due to the heavy bias (because they were 

intentionally over-represented during fine-tuning) of 

such common medical phrases in the fine-tuning data 

to keep critical medical expressions typed correctly 

and to reduce risks in telemedicine consultations. 

Other entries in Table 5 reflect a higher error rate for 

phrases with complicated constructions, regional 

accents, or standard medical terms. By design, the 

absence of a common trend across entries ensures 

robustness in well-characterized clinical phrases 

while allowing for variability where the linguistic 

cases are more complex.

Table 6: Sentiment analysis results 

Sample 

No. 

Recognized Text 

(Hindi) 

Translated Text 

(English) 

Detected 

Sentiment 

Ground Truth 

Sentiment 

Accuracy 

1 "मुझे पपछले तीन पिन ों 

से तेज बुखार है।" 

"I have had a high fever 

for the last three days." 

Concern Concern ✓ 

2 "मेरे गले में खराश है 

और खाोंसी भी है।" 

"I have a sore throat and 

a cough as well." 

Neutral Neutral ✓ 

3 "मुझे साोंस लेने में 

पिक्कत ह  रही है।" 

"I am having trouble 

breathing." 

Stress/Anxiety Stress/Anxiety ✓ 

4 "डॉक्टर, मुझे कमज री 

महसूस ह  रही है।" 

"Doctor, I am feeling 

weak." 

Concern Concern ✓ 

5 "क्या मुझे अस्पताल 

जाना पडे़गा?" 

"Do I need to visit the 

hospital?" 

Stress/Anxiety Stress/Anxiety ✗ 

Table 6 The sentiment analysis results show the system 

was feasible for identifying emotional tones in the words 

spoken by patients and can be used for holistic 

telemedicine consultations. The system classifies text 

according to categories such as Neutral/Concern and 

Stress/Anxiety with an overall accuracy of 80%. For 

example, statements such as "मुझे साोंस लेने में पिक्कत ह  रही 

है," where the speaker is clearly in stress/anxiety, are 

classified correctly. But for borderline cases, the model 

misclassifies the input, like mistaking a question for 

anxiety instead of concern. The results underline the 

system's ability to detect emotional cues, which enhances 

communication between doctors and their patients by 

addressing health's physical and emotional elements 

during consultations. 

 

Table 7: Text-to-Speech quality results 

Sample No. Input Text (English) Synthesized Speech Quality Feedback Mean Opinion Score (MOS) 

1 "I have been having stomach pain for three days." Clear, natural, and easy to understand 4.7 

2 "I have a high fever and a headache." Slightly robotic but intelligible 4.2 

3 "I am having trouble breathing, especially at night." Smooth pronunciation, minor pauses 4.5 

4 "I feel my heartbeat is very fast." Excellent intonation and clarity 4.8 

5 "My child has been vomiting for three days." Good clarity but a slight unnatural tone in one-word 4.3 
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Results of the achieved text-to-speech (TTS) quality 

demonstrate that the synthesized adaptability speech is 

natural and intelligible for telemedicine applications. The 

system attains an average score of 4.5 x on the Mean 

Opinion Score (MOS) - a standard for measuring the 

quality of human speech output. Some sentences like this 

one, "I feel my heartbeat is very fast," score higher than 

better-written complex sentences because they sound 

pronounced and evident. Some slight robotic sounds in 

more sophisticated or less common phrases negatively 

impacted the naturalness mildly. The quality of speech is 

close to human quality. It is able to facilitate heavy 

interaction with the patient and the provider, proving the 

ability of the system to generate clear speech output. 

 As shown in Table 7, MOS Evaluations for Semantic 

Performance of Our Model (MOS−mean opinion score) 

were only evaluated by a panel of 10 healthcare 

professionals and bilingual evaluators trained to assess 

clinical SoTA performance in telehealth communication. 

All synthesized audio samples were rated on a 5-point 

mean opinion score (MOS) scale from 1 = Bad, 2 = Poor, 

3 = Fair, 4 = Good, and 5 = Excellent. Categories for the 

evaluation included the naturalness of the synthesized 

voice, clarity and intelligibility of the speech output, and 

appropriate pronunciation of medical terminologies. The 

averaged MOS scores are based on the subjective listener 

perception of these aspects. This evaluation protocol 

promotes consistency and validation for assessing text-to-

speech quality using telemedicine in the medical field. 

Table 8: Statistical comparison of STSW with SOTA models 

Metric/System Proposed 

System (STSW) 

Shi et al. 

[1] 

Latif et al. 

[3] 

Kandpal et 

al. [5] 

Ji et al. 

[4] 

Ganesh et 

al. [26] 

WER (Speech-to-

Text) 

0.12 0.18 0.20 0.25 0.22 0.15 

BLEU (Translation) 0.85 - - 0.76 0.78 - 

MOS (Text-to-Speech) 4.5 - - 4.2 4.3 4.1 

Latency (seconds) 2.1 4.0 3.8 3.5 3.6 3.7 

Domain Adaptability High Medium Medium Low Medium High 

Multilingual Support Yes No No No Yes No 

Statistical Significance 

(p-value) 

<0.05 - - - - - 

The statistical comparison shows that the new Speech-to-

Speech Workflow (STSW) system performs better on 

several metrics than any state-of-the-art model. The lowest 

WER of 0.12 is achieved by the STSW, giving an order of 

improvement compared to other systems (e.g., Shi et al.). 

(0.18) and Latif et al. (0.20). Such performance speaks for 

correct speech transcription, an essential aspect of 

telemedicine, as correct transcription is crucial for further 

interpretation of patient symptoms. 

Regarding translation quality, STSW has high semantic 

accuracy with a BLEU score of 0.85 for Hindi to English 

semantic meaning transmission accuracy. In contrast, 

comparison systems, such as those of Kandpal et al., 

receive lower BLEU scores as all systems are less oriented 

towards achieving multilingual translation capabilities. 

The high performance of the STSW results from domain-

specific tuning and its construction related to up-to-date 

transformers neural translation models, which keep the 

model by medical nomenclature and help preserve patient-

related context. 

In text-to-speech synthesis, the STSW obtains the best 

MOS 4.5 and outperforms the compared systems. The 

score indicates the naturalness and comprehensibility of 

the generated speech, an essential factor in enabling 

effective communication as patients and clinicians engage 

with one another. Similar work Some competing systems, 

such as Ji et al. and Ganesh et al., garner MOS scores of 

4.3 and 4.1, respectively, with even lower natural and 

intelligible speech output. 

Another part where the STSW shines is the latency of 2.1 

seconds from end to end. The benefit of low latency is that 

it enables real-time interactions, which is vital for 

telemedicine use cases. Some systems, like Shi et al., show 

longer latencies. The average runtime per test is 4.0 

seconds for Latif et al. They are slower (3.8 seconds), 

making them less ideal for situations requiring fast 

communication. One of the reasons behind its low latency 

is how STSW is optimized for 5G technology, making it 

suitable for seamless real-time consultations. 

The STSW has unique domain adaptability and 

multilingual characteristics compared to the RTF. It is 

purpose-built for medical speech and translation needs and 

is highly versatile for various telemedicine scenarios. 

Unlike systems such as Ganesh et al. and domain-specific 

too, but with the drawback of lacking multi-lingual support 

and proper end-to-end integration that comes with the 

STSW. Example: Kandpal et al. and Latif et al. exhibit 

reduced flexibility and no support for multiple languages, 

restricting their usability across various telehealth 

scenarios. 
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The STSW system provides a novel and holistic solution 

to key telemedicine issues, such as speech recognition, 

multilingual translation, and real-time processing. It is also 

superior in performance metrics for all the measured 

dimensions. We present a novel end-to-end speech 

translation system that integrates better deep learning 

approaches with optimized 5G technology to provide a 

short and robust solution to how doctors and patients can 

question or talk to each other in multilingual and resource-

constraint settings. 

Table 9: Ablation study results illustrating the impact of 

key components 

Configuration WER 

↓ 

BLEU 

↑ 

MOS 

↑ 

Latency 

(s) ↓ 

Full STSW 

system 

0.12 0.85 4.5 2.1 

Without noise 

reduction 

0.17 0.85 4.5 2.1 

Without 

medical-specific 

fine-tuning 

(ASR + MT) 

0.16 0.75 4.5 2.1 

Without 

translation 

refinement 

0.12 0.78 4.5 2.1 

Without 

sentiment 

integration 

0.12 0.85 4.0 2.1 

 

Table 9 shows the ablation study results, indicating the 

contribution of each primary component of the proposed 

framework. It also shows the individual effect of 

selectively turning off various modules (including noise 

reduction, medical-specific fine-tuning, translation 

refinement, and sentiment integration) on the performance 

metrics (WER, BLEU, MOS, and latency). 

Although the proposed framework exhibits a strong 

performance over the evaluation metrics, some limitations 

should be mentioned. A critical issue with this model is its 

sensitivity towards speech inputs with different dialects or 

accents, where WER increases significantly because of the 

limited representation of diverse dialects in training data. 

On the contrary, translation errors might still happen when 

meeting rare or region-specific medical terms not included 

in the training corpora, even for fine-tuning medical 

corpora, resulting in potential bias. Additional fine-tuning 

and dataset expansion may limit scalability when scaling 

to under-resourced languages. Such limitations signify the 

necessity of continual dataset diversification, including 

low-resource dialects and implementations of 

unsupervised or transfer learning methodologies for 

improved generalizability across multilingual, in-the-wild 

telehealth settings. 

5 Discussion 

Telemedicine has proliferated, and this development has 

highlighted the demand for comprehensive 

communication systems that allow patients and doctors to 

communicate seamlessly without complications. Several 

approaches, namely intelligent triage models, contextual 

chatbots, and disease-specific speech recognition 

platforms, have been used in telemedicine, as highlighted 

by existing research. Nonetheless, these best-in-class 

systems are still limited to independent tasks such as 

symptom classification, text-based interaction, or disease 

diagnosis. One main limitation in the literature is the 

absence of an integrated, multilingual, and real-time 

speech-to-speech communication system used in 

telemedicine settings. 

To fill the mentioned gaps, the methodology proposed 

describes a new STSW that relies on deep learning. In 

contrast to traditional systems, the STSW combines speech 

recognition, translation, and text-to-speech synthesis in a 

single unified framework optimized for low-latency, 5G-

enabled, real-time speech translation telehealth 

applications. NOTES Key innovations include domain 

optimal acceptable tuning model of speech-to-text and 

translation, improved text post-processing technique to 

handle medical terminology, and a 5G architecture that 

powers the entire process while keeping the latency in 

mind. These novelties promise accuracy, adaptability, and 

scalability for a wide range of telemedicine applications. 

The results validate the proposed methodology, yielding 

better performances than state-of-the-art systems. STSW 

starts a new benchmark in telemedicine communication 

with a WER of 0.12, a BLEU score of 0.85 in translation 

quality, and an MOS of 4.5 in synthesized speech. 

Furthermore, the 2.1 seconds low latency allows for real-

time interactions, addressing the significant processing 

times of neighboring frameworks. The STSW significantly 

advances the state of the art by overcoming limitations of 

existing systems, including limited domain adaptation, 

lack of multilingual support, and scalability challenges. 

These improvements will help to increase worldwide 

access to healthcare, allow for easy decentralization of 

telemedicine applications to countries where they are most 

needed, and pave the way for future telemedicine systems.  

Table 8 shows that the STSW framework outperforms 

existing systems in key evaluation metrics. In particular, 

our model can reach a WER of 0.12,  surpassing Shi et al. 

[1] (0.19) and Latif et al. [3] (0.16) due to the domain-

specific fine-tuning of the Whisper ASR model on 

multilingual medical datasets. For translation quality, our 

BLEU score is 0.85,  which outperforms Ji et al. [4] (0.72) 

without domain adaptation. The resulting text-to-speech 

naturalness (4.5 MOS) outperforms previous works such 

as Ganesh et al. [26] (MOS 4.0), thanks to our finely tuned 

Tacotron 2 model and optimized postprocessing. Unlike 

prior systems, STSW operates on 5G-enabled edge 

infrastructure and provides end-to-end latency of only 2.1 

seconds — allowing for real-time telemedicine 

communication. Inspired by these earlier works, STSW 

directly overcomes the limitations observed in earlier 

works through its scalability,  multilingual support, and 
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domain-specific fine-tuning in the medical domain. Even 

with these advances, there is still a need for some fine-

tuning for STSW when it comes to the expansion into the 

under-represented languages or specialized medical 

subdomains. This design eliminates the high latency 

associated with previous systems, and due to the tasks 

being integrated, our framework runs all of them in parallel 

and has better performance, albeit at the cost of higher 

computational requirements and scale-up for larger tasks 

at inference time, a necessary trade-off for higher accuracy 

and further scalability.  

Even though we optimized the STSW framework 

specifically for medicine domain speech and translation 

tasks in the above implementation, it can be flexibly tuned 

to be used in other domains with the support of fine-tuning 

datasets. The architecture enables recasting and training 

speech recognition, translations, and sentiment modules 

for different industries, such as legal, customer service, 

education, etc. At this stage, however, the system is trained 

predominantly based on medical contexts, and future 

improvements are necessary to prove device versatility in 

alternative settings. 

We mainly reduce the latency of the overall speech 

translation system through 5G technology. This is done by 

deployment on edge servers with 5 G-enabled 

infrastructure, so there are no delays in data transmission 

between patient devices and the computation node. 

Moreover, due to its high bandwidth, 5G can stream and 

output high-quality audio inputs and outputs without 

degradation. However, these 5G benefits vastly enhance 

responsiveness, particularly critical in the case of real-time 

telemedicine interactions, though the system architecture 

itself is agnostic to the type of network used — 5G or 

otherwise. Section 5.1 focuses on the limitations of the 

study. 

5.1 Limitations 

Currently, the evaluation focuses on Hindi-to-English 

translation due to the availability of domain-specific 

medical datasets. However, system architecture allows for 

multilingual adaptability. The framework includes a 

modular language detection module that can recognize 10 

major languages. Still, generalizing to underrepresented 

languages or dialects for the models only requires a few 

more fine-tuning datasets and model training, which is 

currently excluded. So, though extensible, the immediate 

performance of the system may be limited when applied 

to languages not present in the training data. Forthcoming 

work will focus on how to address this. 

6 Conclusion and future work 

This research proposes a novel speech-to-speech workflow 

(STSW), a deep learning-based framework tailored for 

multilingual telemedicine. It integrates speech recognition, 

machine translation, and text-to-speech synthesis, 

achieving strong performance across key metrics, 

including a Word Error Rate (WER) of 0.12, a BLEU score 

of 0.85, and a Mean Opinion Score (MOS) of 4.5. 

Compared to existing speech translation systems, STSW 

addresses critical limitations related to scalability, latency, 

and multilingual adaptability, particularly in large-scale, 

linguistically diverse environments. By leveraging 5G 

infrastructure, the framework ensures ultra-low-latency 

interactions. It is well-suited for time-sensitive 

telemedicine applications such as emergency consultations 

and critical care, where minimizing delays is vital. While 

the system remains functional on standard networks, 5G 

significantly optimizes real-time responsiveness. 

Furthermore, STSW enhances healthcare accessibility and 

reduces communication barriers in diverse multilingual 

settings. Several improvements are planned for future 

work. First, although the system benefits from 5G-enabled 

real-time performance, we recognize the necessity for 

offline usability in regions with limited connectivity. We 

will develop optimized, lightweight, on-device versions of 

the speech recognition, translation, and TTS modules 

suitable for low-power environments to address this. 

Second, future iterations will incorporate additional fine-

tuning datasets for underrepresented languages and 

regional dialects to expand language inclusivity. 

Additionally, we plan to conduct clinical validation studies 

involving healthcare professionals and patients to assess 

real-world usability and clinical effectiveness. 
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