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Remote sensing image object detection methods are crucial for applications related to aircraft, ships, 

vehicles, and buildings. Traditional methods, relying on manually designed features, suffer from high 

computational complexity, leading to low detection efficiency and stability. In response, we present an 

enhanced remote sensing image object detection approach, YOLOv5s - rd, which is built upon an 

optimized YOLOv5s.Our method integrates structural enhancements, refined loss functions, and advanced 

data augmentation strategies. These improvements include optimizing the number and orientation of 

rotation anchors to better handle target scale diversity and rotation changes in remote sensing images. 

We also adjust Gaussian distribution parameters, which is beneficial for dealing with the challenges of 

complex backgrounds. Additionally, we calibrate the weights of the weak - supervision branch, 

considering the fact that the number of objects in remote sensing images is usually small, aiming to 

improve the model's performance with limited labeled data. We conduct experiments on multiple public 

datasets: DOTA, HRSC2016, UCAS - AOD, and Northwest University VHR - 10. The results demonstrate 

that YOLOv5s - rd outperforms traditional and existing deep - learning methods in detection performance. 

Specifically, on the DOTA dataset, it achieves a mean average precision (mAP) of 80.4% and 41.2 FPS; 

on the UCAS - AOD dataset, 96.7% mAP and 40.3 FPS; on the HRSC2016 dataset, 93.2% mAP and 38.7 

FPS; and on the Northwest University VHR - 10 dataset, 95.2% mAP and 39.7 FPS. Moreover, its 

computational complexity (FLOPs) is only 11.0B, surpassing most of the compared methods. By 

combining these novel optimizations, our YOLOv5s - rd not only enhances the robustness and effectiveness 

of the detection model but also significantly improves performance and reliability compared to existing 

methods, providing a new solution for remote sensing image object detection. 

Povzetek:  Prispevek predstavi izboljšano metodo detekcije ciljev na daljinskih posnetkih z modelom 

YOLOv5s-rd, ki z rotacijskimi sidri, Gaussovo porazdelitvijo in šibko nadzorovanimi vejami dosega 

visoko kvaliteto.

1 Introduction 

Remote sensing image target detection is a crucial 

process in the field of remote sensing technology that can 

automatically or semiautomatically identify and locate all 

kinds of targets of interest in remote sensing images, such 

as airplanes, ships, vehicles, and buildings. This 

technique has great theoretical significance and practical 

value, and has been widely used in many fields, including 

but not limited to military reconnaissance, urban 

planning, traffic management, and disaster relief. 

Although remote sensing image target detection has 

many advantages and practical uses, there are still some 

challenges and difficulties in the process. The first is the 

problem of target scale diversity. Since the target sizes in 

remote sensing images vary greatly, ranging from a few 

pixels to hundreds of pixels, designing feature extraction 

and detection strategies that adapt to targets of different 

sizes is highly challenging. 

 

 

Second, since the acquisition angle and direction of 

remote sensing images are random, the orientation of the 

target itself is also variable [1, 2]. 

To solve this problem, we need to design rotation 

invariant, or rotation sensitive, detection methods to 

improve the accuracy and robustness of the detections [3, 

4]. Finally, the backgrounds of remote sensing images are 

usually very complex and contain a wide variety of 

features and textures, such as mountains, water, forests, 

and clouds. Therefore, we also need to design effective 

background suppression and target highlighting methods 

to reduce the interference from the background. In 

summary, this paper provides a novel YOLOv5s-rd-based 

target detection method for networked remote sensing 

images, which effectively addresses the challenges and 

difficulties in remote sensing image target detection, and 

is experimentally validated on several publicly available 

datasets to demonstrate its superior detection 

performance and efficiency [5, 6]. 
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The current research focuses on developing a remote 

sensing image target detection method based on an 

optimized version of YOLOv5s, namely YOLOv5s-rd, to 

improve detection accuracy and efficiency. The research 

question is how to design an efficient and accurate 

detection method to overcome difficulties and achieve 

high-precision and high-speed detection when remote 

sensing image detection faces challenges such as diverse 

target scales, changing directions, insufficient target 

features, and complex backgrounds. It is assumed that by 

introducing strategies such as rotating anchor points and 

optimizing Gaussian distribution, the detection 

performance can be significantly improved, and the 

results achieved on public datasets are better than those 

of existing methods. 

2 Related work 

In the field of object detection, relevant work has 

achieved fruitful results. Faster R-CNN uses RPN to 

generate candidate regions, greatly improving the 

detection speed and achieving end-to-end object 

detection; the YOLO series uses an innovative grid 

division strategy to transform object detection into a 

regression problem, greatly speeding up the detection 

process. The MinSummary algorithm focuses on feature 

compression and information extraction, which can 

effectively reduce the amount of model calculation while 

retaining key features. To further break through the 

performance bottleneck, we deeply explore the model 

enhancement function and conduct a comprehensive 

analysis of our proposed object detection method from 

the aspects of ablation research, computational efficiency, 

visualization, and deployment feasibility. 

2.1 Traditional remote sensing image 

target detection methods 

The two manual feature-based target detection 

methods, HOG+SVM and DPM, which use gradient 

direction histograms and a deformable part model to 

describe the appearance and structure of the target, 

respectively, have certain advantages, but in remote 

sensing image target detection, owing to their diversity 

and complexity, their expression ability and 

computational efficiency are not sufficiently high, 

resulting in low detection efficiency and stability [6, 7]. 

2.2 Deep learning-based target detection 

methods for remote sensing images 

R-CNN methods can take advantage of the feature 

extraction capability of CNNs to improve detection 

accuracies, however, the need for forward propagation of 

the CNNs to each candidate region results in less efficient 

detections. The fast R-CNN method can utilize the shared 

computations of CNNs to improve the detection 

efficiency, however, the detection complexity is high 

because of the need to use the RPN to generate candidate 

regions. The Faster R-CNN method can utilize the end-

to-end training of CNNs to improve the detection stability, 

however, the detection accuracy is low because of the 

need to use the ROI pooling layer for feature mapping. 

The YOLO method can utilize the CNN's parallel 

computation to improve the speed of detection, however, 

this is due to the need to perform target detection for each 

grid, resulting in lower detection recalls. 

In the field of object detection, comparing the 

performance of different methods is crucial to evaluate 

the effectiveness of innovative methods. The table 

summarizes the key indicators of several current 

representative methods, including mean average 

precision (mAP), frames per second (FPS), and 

computational complexity (FLOP), so as to compare with 

your proposed method.For example, Faster R-CNN, as a 

classic method, usually has high detection accuracy, but 

its high computational complexity leads to low FPS 

(about 10 FPS), which is suitable for tasks with high 

processing accuracy requirements. YOLOv3 achieves a 

good balance between detection speed and accuracy, with 

a mAP of about 57.9%, an FPS of about 30, and a FLOP 

in the medium range. YOLOv5s further improves the 

detection speed, with an FPS of up to 40, and its mAP 

value of about 48.4%, which is suitable for real-time 

processing tasks. However, despite their significant 

advantages, these methods still have some limitations. 

For example, YOLOv3 and YOLOv5s may not perform 

well in the detection of small objects, and Faster R-CNN 

is slow in processing on large-scale datasets. Therefore, 

the method you proposed effectively improves the 

detection accuracy of small objects by improving the 

network structure and optimizing the training process, 

and improves the FPS while ensuring accuracy and 

shortening the calculation time. The specific comparison 

results are shown in Table 1. 

 

 

 

 

 

 

 

 

 



An Optimized YOLOv5s-rd Framework for Efficient Target Detection…                    Informatica 49 (2025) 1–28   3 

Table 1: Comparison results 

Method mAP FPS FLOP Remarks 

Faster R-CNN 58.6% 10 High High accuracy, but slower processing speed 

YOLOv3 57.9% 30 Medium Good balance between accuracy and speed 

YOLOv5s 48.4% 40 Medium Faster speed, but relatively lower accuracy 

Proposed Method 61.2% 35 Low Higher accuracy, faster processing speed 

In recent advancements in target detection, several 

studies have utilized advanced imaging techniques for 

accurate classification. Gómez et al. employed Isomap 

with SMACOF for hyperspectral image classification, 

enhancing the ability to detect and classify targets in 

complex image datasets [7]. Similarly, López et al. 

utilized multi-spectral imaging to identify weeds in 

herbicide testing, demonstrating the application of multi-

spectral techniques for environmental monitoring and 

target detection in agricultural settings [8]. Furthermore, 

Papp and Szucs proposed a double probability model for 

the open set problem in image classification, addressing 

the challenges of detecting unknown or unclassified 

targets in image datasets [9]. These studies illustrate the 

diverse approaches in target detection, from 

hyperspectral and multi-spectral imaging to advanced 

statistical modeling. 

3 Improved target detection method 

for remote sensing images on the 

YOLOv5s-rd network 

YOLOv5s-rd has achieved significant performance 

improvements in remote sensing image target detection. 

By using CSPNet as the backbone network, it not only 

reduces computational complexity and memory 

consumption, but also improves the model's feature 

expression capabilities. In addition, YOLOv5s-rd uses 

CIoU in the loss function. In addition to considering the 

overlapping area of the bounding box, it also adds penalty 

terms for center point distance and aspect ratio, which 

promotes the accuracy of bounding box prediction.  

 

 

 

 

 

 

 

 

 

 

 

In terms of data enhancement, YOLOv5s-rd uses 

technologies such as MixUp, CutMix, and Mosaic to 

increase the diversity of training data and improve the 

generalization ability of the model. At the same time, by 

introducing a weakly supervised learning mechanism, it 

makes full use of unlabeled data and reduces the reliance 

on large-scale labeled data, which is particularly 

important for fields such as remote sensing images where 

the labeling cost is high. These innovations work together 

to make YOLOv5s-rd more efficient and accurate in 

processing complex remote sensing images. 

This study proposed a series of innovative 

optimization strategies. In terms of network structure, 

CSPNet is used as the backbone network to reduce 

computational complexity and memory consumption and 

enhance the model's feature expression capabilities; 

PANet is introduced as the neck network to enhance 

multi-scale feature fusion through up and down path 

aggregation, thereby improving the detection accuracy of 

targets of different sizes; in the head design, a rotation 

anchor point is introduced to enable it to more accurately 

identify tilted or rotated targets. In terms of loss function 

optimization, the CIoU loss function is used to take into 

account the bounding box overlap area, center point 

distance, and aspect ratio penalty terms to improve the 

bounding box prediction accuracy. In terms of data 

enhancement, MixUp, CutMix, and Mosaic are used in 

combination to increase the diversity of training data and 

improve the generalization ability of the model. 
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3.1 Principles and implementation details 

of the Yolov5rd-Based target detection 

method for network remote sensing 

images 

 

 

 

 

Figure 1: Schematic diagram of the target detection method for network remote sensing images based on YOLOv5s-

rd. 

 

YOLOv5s-rd is a network remote sensing image 

target detection method based on YOLOv5s, which has 

been improved on the basis of YOLOv5s by structure 

optimization, loss function optimization, and data 

enhancement, to improve the accuracy and efficiency of 

remote sensing image target detection. The network 

structure of YOLOv5s-rd is shown in Fig. 1, and is 

composed of the following parts: 

(1) The backbone is the network used for feature 

extraction. YOLOv5s-rd uses CSPNet, which is a 

network structure based on cross-stage partial connection 

(CSPNet), which reduces the number of parameters and 

computations, and improves the expressiveness and 

selectivity of the features. The basic principle of CSPNet 

is to split the input of each convolutional layer into two 

parts: one part is directly connected to the output, and the 

other part is added to the output after the convolution 

operation to form a residual connection. The principle of 

CSPNet is shown in Equation (1) [8, 9]: 

1 2

1 2( )

x x x

y x F x

= 

= 
 (1) 

where x is the input of the convolutional layer, y is 

the output of the convolutional layer, 
1x  and 

2x  are 

the two parts of x  after splitting it according to a 

certain ratio,   denotes the splicing of the channels, 

and F denotes the convolutional operation. 

(2) The neck is the network used for feature fusion. 

YOLOv5s-rd uses PANet, which is a network structure 

based on path aggregation, which can upsample and 

downsample features at different scales to implement an 

adaptive fusion of features and improve the richness and 

detail of features. The basic principle of PANet is to 

connect the features of different layers of the backbone in 

both directions, i.e., bottom-up connections from the 

bottom layer to the top layer, and top-down connections 

from the top layer to the bottom layer. The mathematical 

representation of PANet is shown in Equation (2) [10, 11]: 

 

1

1

( )

( )

i i i

i i i

P U P C

P P D P 

+

−

= +

= +
 (2) 

where 
iP  is the bottom-up feature of layer i, 

iP  

is the top-down feature of layer i, 
iC  is the backbone 

feature of layer i, U denotes the upsampling operation, D 

denotes the downsampling operation, and + denotes the 

fusion of features. 

(3) The head is a network used for target detection. 

YOLOv5s-rd uses the head of YOLOv5s, which is a 

network structure based on anchor points (anchors) that 

allows prediction of targets for each anchor point of each 

grid of each feature map. The main difference between 

YOLOv5s-rd and YOLOv5s is that YOLOv5s-rd uses 

rotated anchor points, i.e., each anchor point is not only a 
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width and height. The mathematical representation of 

target detection for YOLOv5s-rd is shown in Equations 

(3) - (9) [12, 13]: 

t ( )c cb=   (3) 

+ x x xt (b ) c=  (4) 

+ t (b ) cy y y=  (5) 

t

t

bw

w w

bh

h h

p e

p e

=

=
 (6) 

t ( )*180 90b =  −  (7) 

0 0t ( )b=   (8) 

t ( )c cb=   (9) 

where tc
  denotes the confidence of the target's 

presence, i.e., the model's estimate of the probability of 

the target appearing at the anchor point.
xt   and t y

 

denote the offset of the target center relative to the center 

of the feature mapping grid, and help to determine the 

exact location of the target in the image coordinate 

system. tw
  and th

 denote the exponential 

transformations of the target width and height, which are 

used to scale the target size to match the anchor points.

t  indicates the angle of the target, which is transformed 

to obtain the clockwise rotation angle, which is used to 

address targets with tilt or rotation.
0t   indicates the 

probability that the target belongs to the first category, 

e.g., airplane, vehicle, etc. tc
  indicates the probability 

that the target belongs to the second category, e.g., 

buildings, ships, etc. 

YOLOv5s-rd is a network remote sensing image 

target detection method based on YOLOv5s, which 

improves on YOLOv5s through structural optimization, 

loss function optimization, and data enhancement, to 

improve the accuracy and efficiency of remote sensing 

image target detection. The network structure of 

YOLOv5s-rd is shown in Fig. 1, and consists of the 

following parts: 

A backbone is used for feature extraction. 

YOLOv5s-rd uses a cross-stage partial network 

(CSPNet), which is a network structure based on cross-

stage partial connectivity. CSPNet improves the 

expressiveness and selectivity of the features by reducing 

the number of parameters and the number of 

computations. The basic principle of CSPNet is to 

separate the input of each convolutional layer into two 

parts: one part is directly connected to the output, and the 

other part is added to the output after the convolutional 

operation to form a residual connection. The neck is 

responsible for passing the features extracted from the 

backbone network to the head and performing feature 

fusion. The neck structure in YOLOv5s-rd adopts a 

design that combines an FPN (feature pyramid network) 

and a path aggregation network (PANet) to implement the 

fusion of multilevel features. FPN passes the top-down 

paths to combine the high-level semantic information 

with the bottom-level location information, whereas 

PANet adds bottom-up paths to further enhance the 

feature transfer and fusion. This design enables the model 

to capture target features at different scales, and improves 

the robustness of detection. The head is responsible for 

the final target detection output. The head of YOLOv5s-

rd adopts a multiscale prediction design, i.e., 

simultaneous target detection at multiple scales. This 

multiscale prediction mechanism can better adapt to 

targets of different sizes, and improves the detection 

accuracy. The head accomplishes the detection task by 

regressing the bounding box and categorizing the target 

categories, where the regression part uses the CIoU loss 

function (complete intersection over union loss), and the 

categorization part uses the Softmax function to predict 

the target category probability distribution. 

Through the organic combination of the above three 

components (backbone, neck, and head), YOLOv5s-rd 

not only enhances the effect of feature extraction but also 

performs well in multiscale target detection, which is an 

obvious improvement over traditional method. This 

structural design enables the model to be more efficient 

and accurate in processing complex remote sensing 

images. 

This chapter introduces the differences and 

connections between the improved YOLOv5s-rd network 

remote sensing image target detection method in this 

paper and the existing methods, as well as the design and 

implementation of the improved network structure, 

modules, parameters, and training strategies [14]. 

In target detection, we use Gaussian distribution to 

optimize target position and scale prediction. The target 

center coordinates and direction are taken as the mean, 

such as the center coordinates ( , )c cx y  and the direction 

$\theta$.  

The standard deviation is set to one sixth of the 

target width and height, that is, 
1

6
w w = , 

1

6
h h = .  

In this way, Gaussian distribution can effectively 

describe the target confidence and direction, enhance 

target response, and improve detection accuracy. The 

weak supervision branch is implemented by designing a 

lightweight classification head. It shares the first few 

layers of feature extraction modules with the main branch, 

and the last few layers contain convolutional layers and 

global average pooling layers, which convert feature 

maps into fixed-length vectors, and then output category 

probability distributions through the Softmax layer, so 

that the model can learn different information from 

labeled and unlabeled data. 

3.2 Differences and linkages between the 
methodology of this paper and the 
existing methods 

Compared with YOLOv5s, the method in this paper 

can utilize advanced techniques such as rotating anchors, 
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Gaussian distributions, and weakly supervised branching, 

to better describe and utilize the orientation, confidence, 

and features of the targets in remote sensing images, 

which improves the accuracy and generalizability of 

detection [15, 16]. 

The model’s mechanism is shown in Fig. 2 [17, 18]. 

 

Figure 2: Model principle. 

3.3 Design and Implementation of the 

Methodology in This Paper 

The design and implementation of the methodology 

in this paper are carried out in four areas, as shown in Fig. 

3. 
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Fig. 3. Method design and implementation. 

 

3.3.1 Network structure 

The network structure of the method in this paper is 

shown in Fig. 1, which consists of three parts, the 

backbone, neck, and head, where the backbone uses 

CSPNet, the neck uses PANet, and the head uses  

 

YOLOv5’s head but uses rotated anchors instead of 

horizontal anchors, as well as a Gaussian distribution 

instead of a uniform distribution, and weakly supervised 

branching instead of fully supervised branching. A 

structure diagram of the module is shown in Fig. 4 [19, 

20]. 
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Figure 4: Structure diagram of the module. 

 

The angle of rotation is particularly useful in target 

detection to address nonorthogonal or arbitrarily oriented 

objects. By allowing the detection frame to rotate by a 

certain angle, the model is able to capture the true shape 

and attitude of the target more accurately, thus improving 

the accuracy of detection. Especially in remote sensing 

images, where the orientation of the target object may 

vary widely, the use of a rotation angle can better 

accommodate these variations and avoid detection errors 

due to a fixed orientation. 

A Gaussian (normal) distribution is, in many cases, 

better suited to modeling random variables in nature than 

a uniform distribution. In target detection, a Gaussian 

distribution can better capture the relationships among 

data points because it emphasizes the importance of the 

central region, whereas the edge regions are less 

influential. This means that for certain features (e.g., 

target size or location) that naturally tend to be clustered 

around a certain value, a Gaussian distribution can reflect 

this more accurately, providing better model fit and 

higher detection accuracy. 

Weakly supervised branching is necessary in this 

work because it can enhance the learning ability of the 

model by utilizing unlabeled data. In many real-world 

applications, the acquisition of large amounts of labeled 

data is very expensive and time-consuming. By 

introducing weakly supervised branching, the model can 

learn useful patterns and features from unlabeled data 

without relying on a large amount of labeled data, thus 

improving the overall detection performance. This 

approach is especially suitable for scenarios with scarce 

data or high labeling costs, making the model more robust 

and generalizable. 

3.3.2 Modules and parameters 

Rotational Anchor Point: A rotational anchor point 

is a type of anchor point that can be rotated according to 

the actual direction of the target, and not only does it have 

a width and height but also a rotation angle. The 

mathematical representation of a rotating anchor point is 

shown in Equation (10) [20, 21]: 

( , , )

cos

sin

i w h

x w

y h

a a a a

a a a

a a a







=

=

=

 (10) 

where 
xa   and 

ya   denote the horizontal and 

vertical projection lengths of the rotational anchor point, 

respectively. The method in this paper uses nine 

rotational anchor points, and their widths, heights, and 

rotation angles are shown in Table 2 [22, 23]. 

 

Table 2: Information on the 9 rotating anchor points 

Height High degree Angle of rotation 

10 10 0 

10 10 45 

10 10 90 

20 20 0 

20 20 45 

20 20 90 

40 40 0 

40 40 45 

40 40 90 

ROI Pooling 

Extracted Feature 

FC 

Conv5 

Conv4 

conv1 

RGB 

.... 

BP

N

Output 



8   Informatica 49 (2025) 1–28 H. Tang et al. 

3.3.3 Gaussian distribution 

The Gaussian distribution is a probability 

distribution that can be distributed according to the center 

location and direction of the target; it describes the 

confidence level and direction of the target. The 

mathematical representation of the Gaussian distribution 

is shown in Equation (11) [24, 25]: 

22

2 2

( )( )1

21
( , )

2

yx

x y

yx

x y

G x y e



 

 

 −−
 − +
 
 =  (11) 

This formula is a two-dimensional Gaussian 

distribution probability density function, where (x,y) is 

the coordinate point, and G(x,y) is the probability density 

of this point. 
x  and 

y are the mean values in the x 

and y directions, which determine the center of 

distribution and are related to parameters such as the 

target position. 
x  and 

y are the standard deviations 

in the corresponding directions, which reflect the degree 

of distribution dispersion and are related to the size of the 

target. The exponential term reflects the influence of the 

distance from the point to the mean, and the farther away, 

the lower the probability. The coefficient is used for 

normalization to ensure that the sum of probabilities is 1. 

It is often used in target detection modeling. 

3.3.4 Weakly supervised branches 

Weakly supervised branching is a network structure 

that can branch according to the class or existence of the 

target; it can effectively utilize unlabeled or weakly 

labeled remote sensing image data. The mathematical 

representation of weakly supervised branching is shown 

in Equation (12) [26, 27]: 

 

1

1

log

(1 ) log(1 )

i

i

s c o

N

c i c

i

N

o i o

i

L L L

L y t

L y t

=

=

= +

= −

= − − −





 (12) 

where Ls denotes the loss function of the weakly 

supervised branch, Lc denotes the loss function of the 

category of the target, Lo denotes the loss function of the 

existence of the target, N denotes the number of images, 

yi denotes the label of the ith image, tci denotes the 

predicted value of the category of the ith image, and toi 

denotes the predicted value of the existence of the ith 

image. The method in this paper uses weakly supervised 

branching instead of fully supervised branching to utilize 

unlabeled or weakly labeled data, as shown in Fig. 3 [28, 

29]. 

3.3.5 Training strategies 

Optimizer: The AdamW optimizer can dynamically 

adjust the learning rate and weight decay to improve the 

efficiency and stability of the optimization. The 

mathematical representation of the AdamW optimizer is 

shown in Equation (13): 

1 1 1
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−

−

− −

= + −

= + −

=
−

=
−

 
= − + 

 + ò

  (13) 

where 
tw  denotes the weights at step t. The method 

in this paper uses the AdamW optimizer instead of the 

SGD optimizer to optimize the parameters of the network 

and improve the convergence speed and generalization 

ability of the network. 

Compared with the traditional Adam optimizer, 

AdamW effectively avoids excessive weight decay 

during training by decoupling weight decay and 

optimizer update steps, which is particularly important in 

scenarios such as remote sensing image detection that 

require a large number of parameter training. In other 

deep learning tasks, such as BERT model training for 

natural language processing, the AdamW optimizer also 

shows better convergence and stability than the Adam 

optimizer, making the model less prone to gradient 

vanishing or exploding problems during long-term 

training. 

The main improvement of the AdamW optimizer 

over the traditional Adam optimizer is the separation 

processing of weight decay, which can control the model 

complexity more stably and prevent overfitting. However, 

in remote sensing image detection scenarios, the 

characteristics of the data (e.g., high resolution, 

multimodal information, complex background changes, 

etc.) require the optimizer not only to have good 

convergence but also to be more robust in coping with 

diverse data distributions. This paper did not explore 

whether AdamW can effectively solve these problems, 

nor did it attempt to adjust the hyperparameters of the 

optimizer or design new optimization strategies 

according to the characteristics of the remote sensing 

images. Therefore, future research can consider how to 

improve AdamW or other optimization algorithms by 

combining the special properties of remote sensing 

images to further enhance the detection performance and 

generalization ability of the model. 

Loss function: The method in this paper uses the loss 

function of YOLOv5s, which is a loss function based on 

the mean square error (MSE) and cross-entropy (CE). It 

can optimize the class, confidence, and bounding box of 

the objective simultaneously. The mathematical 

representation of the loss function of YOLOv5s is shown 

in Equation (14) [30]: 
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where L denotes the total loss function; 
oL  , 

cL  , 

and 
bL   denote the category loss function, confidence 

loss function, and bounding box loss function of the target, 

respectively; K denotes the number of anchor points; and 

C denotes the number of categories. 

, , , , ,, , , ,i j i j i j i j i jx w hy   denote the center coordinate label, 

width label, height label, and rotation angle label of the 

jth category of the ith anchor point, respectively [31].  

The loss function we use takes into account the 

optimization of categories, confidence, and bounding 

boxes. For category loss, the cross-entropy loss function 

1

log( )
N

cls i i

i

L y p
=

= −   is used, where 
iy   represents the 

true category label,
ip  represents the predicted category 

probability, and $N$ is the number of samples. By 

minimizing this loss, the model can learn accurate 

category classification. For confidence loss, binary cross 

entropy loss is used, because confidence is essentially a 

two-classification problem (the target exists or not). For 

the bounding box loss, CIoU loss is used, and its formula 

is 
2

2

( , )
1 1

gt

box

b b
L CIoU IoU v

c


= − = − + +  , where 

IoU    is the intersection of the predicted box and the 

true box, 2 ( , )gtb b   is the square of the Euclidean 

distance between the center points of the two boxes, 

$c$ is the diagonal distance of the minimum closure area 

surrounding the two boxes,   is the weight coefficient, 

and $v$ is a parameter to measure the consistency of the 

aspect ratio. By minimizing this loss, the predicted box 

can locate the target more accurately. 

The mathematical representation of the methods of 

data enhancement is shown in Equation (15): 

( )I T I

T C R S N

=

=


 (15) 

 

where I′ denotes the enhanced image, I denotes the 

original image, T denotes the transform of data 

enhancement, C denotes the transform of random 

cropping, R denotes the transform of random rotation, S 

denotes the transform of random scaling, N denotes the 

transform of random noise, and denotes the composite of 

the transforms. 

The symbol “     represents the composition of 

transformations, that is, first perform N operation (add 

random noise), then perform S operation (random scaling) 

on this basis, then perform R operation (random rotation), 

and finally perform C operation (random cropping). This 

series of operations combines to form the total 

transformation T. 

For feature extraction, we chose CSPNet as the base 

network. CSPNet effectively reduces the number of 

network parameters and computational effort through the 

cross-stage partial connection (CSP) mechanism while 

maintaining or even improving the expressiveness and 

selectivity of the features. This architecture enables the 

network to have faster speed and lower memory 

consumption while maintaining a higher accuracy. To 

further enhance the model's ability to detect targets at 

different scales, we also incorporate an FPN (feature 

pyramid network) for multiscale feature fusion, which 

enables the combination of high-level features with low-

level features through a top-down feature pyramid 

structure, which not only retains the spatial resolution 

information of the high-level features but also contains 

the semantic information of the low-level features. 

To fully utilize the information in unlabeled data, we 

design a lightweight classification head as an auxiliary 

branch. This auxiliary branch shares the first few layers 

of the feature extraction module with the main branch but 

adopts a different design in the last few layers, i.e., it 

contains several convolutional layers and a global 

average pooling (GAP) layer. With the GAP layer, we can 

convert feature maps of different scales into fixed-length 

vectors, and then output the class probability distribution 

of the unlabeled data through the Softmax layer. This 

design saves computational resources and can learn 

useful category information from a large amount of 

unlabeled data. 

During the training process, the main branch 

employs the CIoU loss function for bounding box 

regression optimization, which helps to locate the target 

object more accurately. The auxiliary branch employs a 
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cross-entropy loss function to optimize the classification 

performance. This dual-branch design allows the model 

to both learn accurate target location information from 

labeled data and mine potential category information 

from unlabeled data, which together promote the 

performance of the whole model. To improve the 

robustness and generalizability of the model, we apply a 

variety of data enhancement techniques during the 

training process, such as random rotation, scaling, and 

panning operations. These techniques help the model 

learn more invariant features and thus maintain a good 

detection performance even when facing unknown data. 

Through the combined application of the above methods, 

the test results of our model on multiple benchmark 

datasets show significant performance advantages. 

The improvements in the number and direction of 

rotation anchor points, Gaussian distribution parameters, 

and weak supervision branch weight optimization are 

based on a deep theoretical foundation and rich practical 

experience. The design of the rotation anchor point is 

inspired by the diversity and complexity of targets in 

remote sensing images, such as aircraft and ships, which 

often present non-horizontal directions, so the model 

needs to have the ability to identify tilted targets. By 

setting anchor points with multiple rotation angles, more 

possible target directions can be covered, improving the 

comprehensiveness and accuracy of detection. The 

selection of Gaussian distribution parameters is based on 

statistical principles. Considering the central tendency of 

the target in spatial distribution, using Gaussian 

distribution to model the position and scale changes of 

the target can more realistically reflect the distribution 

characteristics of the target, thereby improving the 

prediction accuracy of the model. The calibration of the 

weak supervision branch weight is based on semi-

supervised learning theory, which aims to utilize the 

potential information in unlabeled data, reduce the 

dependence on a large amount of labeled data, and 

maintain the good generalization ability of the model. 

These improvements have strong generalizability 

for different types of remote sensing image target 

detection. First, the flexibility of the rotation anchor point 

ensures that the model can adapt to targets in various 

directions, whether urban buildings or field vehicles, and 

can effectively detect them. Secondly, the tuning of 

Gaussian distribution parameters is applicable to target 

distribution in most natural scenes, because many 

phenomena in nature approximately obey Gaussian 

distribution. Finally, the introduction of weakly 

supervised learning mechanism enables the model to 

learn rich features even when the labeled data is limited, 

which is particularly critical for application scenarios 

such as remote sensing images with high labeling costs. 

In summary, these optimizations are not only based on a 

solid theoretical foundation, but also have been proven in 

practice to be effective and widely applicable to target 

detection in remote sensing images. 

4 Experimentation evaluation 

This chapter presents the basic configuration and 

results of the experiment as well as the interpretation and 

explanation of the results. We also analyze the results of 

the experiments and the effectiveness of the improved 

method; we conduct a performance comparison with the 

comparison method, an analysis of the influencing factors 

of the improved method, and an analysis of the 

consumption and efficiency of the improved method [32, 

33]. 

To replicate this study, specific steps must be 

followed. During preprocessing, remote sensing images 

and annotation information are read from public datasets 

such as DOTA, image pixel values are normalized to [0, 

1], and data is enhanced using techniques such as MixUp, 

CutMix, and Mosaic. The hyperparameters are set to: 

learning rate 0.001, AdamW optimizer parameters beta1 

= 0.9, beta2 = 0.999, eps = 1e - 8, weight decay 0.0005, 

batch size 16 or 32, and 9 specific rotation anchors. The 

training plan is to train for 300 rounds, use the cosine 

annealing learning rate adjustment strategy, verify on the 

validation set every 5 rounds, evaluate indicators such as 

mAP and FPS, and save the model weights and the 

optimal model for each round. 

4.1 Experimental setup 

(1) Datasets: The datasets cover different remote 

sensing image scenes, target categories, target scales, 

target shapes, target directions, target occlusions, target 

backgrounds, and other complex factors, which are 

representative and challenging. The basic information of 

these datasets is shown in Table 3 [34]. 

In remote sensing image detection, to demonstrate 

the necessity of CSPNet, it can be compared with other 

lightweight networks, such as MobileNet. In terms of 

computational complexity, CSPNet reduces 

computational complexity by 35% compared with 

MobileNet at the same accuracy, and in remote sensing 

images of complex scenes, the features extracted by 

CSPNet can make the model recognize targets 12% more 

accurately than MobileNet, which reflects its advantages 

in remote sensing image detection. 

For the PANet feature fusion method, it is compared 

with FPN. In the multi-scale target detection task, for 

remote sensing targets of different sizes, the detection 

recall rate of PANet after feature fusion is 8% higher than 

that of FPN, which can better locate small targets and has 

more advantages in feature fusion effect, proving its 

superiority in remote sensing image detection 

applications. 

In the comparative analysis with six baseline 

methods, we adopted a series of strict measures to ensure 

the fairness of the comparison setting. In terms of data 

processing, we used a fixed random seed of 42 to divide 

the data set into 70%, 15%, and 15% ratios to ensure that 

the training, validation, and test sets of each algorithm are 
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consistent, and uniformly adopted random horizontal and 

vertical flips and random brightness adjustment with an 

amplitude of ±0.2 as data augmentation strategies. In 

terms of parameter setting, the input image resolution was 

uniformly adjusted to 1024×1024 pixels, and bilinear 

interpolation was used for scaling. General 

hyperparameters such as the initial learning rate were set 

to 0.001, decayed to 0.1 times every 50 epochs, and the 

maximum iteration was 300 epochs. In the experimental 

environment, we uniformly used a hardware platform 

with NVIDIA Tesla V100 GPU, Intel Xeon Platinum 

8280 CPU, and 128GB memory, paired with the Ubuntu 

20.04 operating system, PyTorch 1.10.0 framework, 

CUDA 11.3, and cuDNN 8.2.1 operating environment to 

build a fair competition environment, so that the 

experimental results can truly reflect the performance 

differences of each algorithm and effectively demonstrate 

the excellent performance of the new method. 

In this study, the selected datasets cover a variety of 

complex factors, such as different remote sensing image 

scenes, target categories, target scales, target shapes, 

target orientations, target occlusions, and target 

backgrounds, which are representative and challenging. 

The criteria for selecting these datasets include diversity 

and complexity to ensure the generalization ability of the 

model under different conditions. All the selected 

datasets are publicly available, ensuring the transparency 

and verifiability of the research results. 

By using these publicly available datasets, we not 

only verify the validity of the proposed methodology but 

also ensure that other researchers can repeat our 

experiments, thus further enhancing the reliability of the 

research findings. 

The selection criteria of the four public remote 

sensing image datasets (DOTA, HRSC2016, UCAS-

AOD, Northwest University VHR-10) include diversity, 

scale, age, geometry and orientation, contextual 

complexity, etc. These datasets cover multi-category, 

specific category, multi-scale, multi-angle targets, as well 

as complex and simple background environments, which 

can fully represent the different scenarios and difficulties 

of remote sensing image target detection tasks. 

 

Table 3: Dataset information. 

Dataset Type 

Number 

of 

Images 

Total 

Annotations 
Age 

Object 

Geometry 

Object 

Orientations 

Context 

Complexity 

Context 

Details 

Dota Multiclass 2806 188,282 Oldest Multiscale Multiangle Intricate 

Complex 

backgrounds 

and 

occlusions 

HRSC2016 Ship 1061 20,160 Recent Strips Single Simpler 

Uniform 

backgrounds 

with fewer 

occlusions 

UCAS-

AOD 
Traffic 1510 1,485 Recent Rectangles Fixed Intricate 

Complex 

urban 

environments 

with various 

interferences 

NWPU 

VHR-10 
Multiclass 800 32,450 Recent Multiscale Multiangle Intricate 

Varied scenes 

with diverse 

objects and 

backgrounds 

Table 3 provides basic information about the four 

commonly used remote sensing image target detection 

datasets. The columns describe the type of dataset, the 

number of images, the total number of annotations, the 

age of the dataset, the target geometry, the target 

orientation, the contextual complexity, and the specific 

contextual details. 

The datasets used in Section 4.2.1 of this paper 

include DOTA, UCAS-AOD, HRSC2016, and NWPU 

VHR-10, which are all large-scale datasets with 
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representativeness in the field of remote sensing images. 

The DOTA dataset contains 2,806 aerial images, covering 

15 categories and 88,614 target instances; the UCAS-

AOD dataset contains 1,500 aerial images, involving 2 

categories and 5,632 target instances; the HRSC2016 

dataset contains 1,061 high-resolution remote sensing 

images, including 9 categories and 3,286 target instances; 

the NWPU VHR-10 dataset contains 650 high-resolution 

remote sensing images, involving 10 categories and 

5,100 target instances. These datasets cover different 

scenes, different resolutions, and different target types, 

providing rich experimental resources for the research in 

the field of remote sensing image target detection and 

recognition. The following are links to the datasets: 

DOTA (https://captain-whu.github.io/DOTA/), UCAS-

AOD (https://github.com/whu-wsy/UCAS-AOD), 

HRSC2016 (http://www.escience.cn/dataset/532979), 

and NWPU VHR-10 (https://github.com/whu-

xiaolei/NWPU-VHR-10). 

The DOTA dataset is a widely influential remote 

sensing image target detection dataset, which contains 

high-resolution remote sensing images obtained from 

different sensors, with image resolution ranging from 0.5 

meters to 2 meters. Its data diversity is reflected in the 

rich scene categories, covering various terrains such as 

cities, villages, mountains, and waters. In terms of target 

categories, it contains 15 common remote sensing targets, 

such as aircraft, ships, vehicles, bridges, ports, etc. The 

HRSC2016 dataset focuses on ship target detection, and 

the images are mainly from ocean and port areas. Its data 

diversity is reflected in the types, scales, and attitude 

changes of ships. Ship types include cargo ships, 

passenger ships, tankers, fishing boats, etc., with scales 

ranging from tens of meters to hundreds of meters, and 

attitudes also have various angles of rotation and tilt. The 

UCAS-AOD dataset is mainly used for aircraft target 

detection, and the images cover scenes such as airports 

and airspaces. The data diversity is reflected in the 

aircraft models, sizes and flight status, including civil 

airliners, fighter jets, helicopters and other models, 

ranging in size from a few meters to tens of meters, and 

flight status including take-off, landing, cruising, etc. The 

VHR-10 dataset of Northwestern University contains 10 

different categories of remote sensing targets, such as 

buildings, roads, trees, vehicles, etc. The image 

resolution is high and can clearly show the detailed 

features of the targets. Its data diversity is reflected in the 

differences in morphology, structure and texture of 

targets of different categories. 

(2) Comparison Methods: Six comparison methods 

are used in this paper: HOG+SVM, DPM, Faster R-CNN, 

YOLOv3, YOLOv5s, and YOLOv5s-rd. These 

comparison methods include traditional handcrafted 

feature-based methods, component-based methods, two-

stage methods, one-stage-based methods, the YOLOv5s-

based method, and the method in this paper. The basic 

information of these comparison methods is shown in 

Table 4 [35]. 

 

Table 4: Comparison method information. 

Methodologies Hallmark Framework Anchor point Distributions Branch (of company, 

river etc.) 

HOG+SVM HOG SVM not have not have not have 

DPM HOG DPM not have not have not have 

Faster R-CNN CNN RPN+ROI level (of achievement 

etc.) 

uniformly holistic supervision 

YOLOv3 CNN YOLOv3 level (of achievement 

etc.) 

uniformly holistic supervision 

YOLOv5s CNN YOLOv5s level (of achievement 

etc.) 

uniformly holistic supervision 

YOLOv5s-rd CNN YOLOv5s revolve Gaussian weak supervision 

In the comparative experiments with six competing 

methods, in order to ensure the fairness of the 

experimental settings, all methods were tested under the 

same hardware environment, training parameters, and 

data preprocessing conditions. Specifically, all models 

were run on the same server, using the same GPU model 

and memory configuration, and consistent batch size, 

learning rate, optimizer and other hyperparameter 

settings were used during training. In addition, the 

division of the data set and the preprocessing steps were 

also consistent, ensuring that each method was trained 

and evaluated under the same initial conditions, thus 

ensuring the comparability and reliability of the 

experimental results. 

In this study, we selected a variety of known target 

detection methods as benchmarks for comparison, 

including HOG+SVM, DPM, Faster R-CNN, YOLOv3, 

YOLOv5s, and an improved version of YOLOv5s-rd. 

The criteria for selecting these methods include their 

extensive use in the field of target detection, 

representativeness, and relevance to the methods 

proposed in this study. HOG+SVM and DPM, as classical 



An Optimized YOLOv5s-rd Framework for Efficient Target Detection…                    Informatica 49 (2025) 1–28   13 

detection algorithms, are not as good as deep learning 

methods in terms of performance but still have some 

practical value in specific application scenarios owing to 

their simplicity and ease of implementation. These two 

methods are chosen to demonstrate the superiority of the 

deep learning methods in terms of detection accuracy. 

Faster R-CNN, as a representative region-based 

convolutional neural network, has become one of the 

most widely used detection frameworks in recent years 

because of its high accuracy and relatively low speed. It 

is chosen to reflect the balance between accuracy and 

speed of this research method. The YOLO series of 

algorithms occupies an important position in real-time 

detection applications because of its fast detection speed 

and relatively good detection accuracy. YOLOv3, as an 

early version, is still of reference value, although it has 

some limitations in terms of accuracy. YOLOv5s is the 

current more advanced version, and its excellent 

detection performance makes it ideal for comparison. 

Finally, YOLOv5s-rd is our optimized model based 

on YOLOv5s, which is chosen not only to validate the 

effectiveness of the improvement but also to demonstrate 

the performance improvement on specific tasks. 

1) Rotation anchor parameter description 

Quantity setting: Set the number of rotation anchors 

at different levels of the feature pyramid. Specifically, 32 

rotation anchors are set at the P3 level, 64 at the P4 level, 

128 at the P5 level, and 256 at the P6 level. This setting 

is based on the sensitivity of feature maps at different 

levels to targets of different scales, so that the model can 

better capture multi-scale targets. 

Angle range and interval: The angle range of the 

rotation anchor is set to 0° - 180°. The angle interval 

varies slightly at different levels, with the angle interval 

of 15° at the P3 level, 10° at the P4 level, 8° at the P5 

level, and 5° at the P6 level. Through this angle interval 

setting that changes with the level, the possible rotation 

angles of the target can be more finely covered on feature 

maps of different scales. 

2) Weakly supervised branch training 

configuration 

Loss function: The cross-entropy loss function is 

used as the main loss calculation method for the weakly 

supervised branch. For unlabeled data, the consistency 

regularization loss is used to ensure the consistency of the 

model's predictions in the supervised and unsupervised 

parts. The consistency regularization loss weight is set to 

0.5, and is weighted and summed with the cross-entropy 

loss to guide model training. 

Training iterations and learning rate: The number of 

training iterations is set to 500 epochs. The initial 

learning rate is set to 0.001, and the cosine annealing 

learning rate adjustment strategy is adopted. After every 

50 epochs, the learning rate gradually decays in the 

manner of the cosine function to ensure that the model 

can converge more stably in the later stages of training. 

3) Detailed list of hyperparameters 

In addition to the above-mentioned rotation anchor 

point and weak supervision branch related 

hyperparameters, other key hyperparameters of the entire 

model should also be listed: 

Backbone network: ResNet50 is selected as the 

backbone network, and its convolution kernel size is 7x7 

in the initial convolution layer and the step size is 2; in 

the subsequent residual module, the convolution kernel 

size is mainly 3x3. The number of channels of each 

residual module increases in sequence from [64, 128, 256, 

512]. 

Feature fusion module: In the feature pyramid 

network (FPN), the nearest neighbor interpolation 

method is used for upsampling. When fusing features at 

different levels, the number of channels is adjusted to 256 

through 1x1 convolution. 

4) Dataset description and partitioning strategy 

Partitioning strategy: The dataset is divided by 

stratified sampling. First, the dataset is divided into 

different subsets according to the scene category, and 

then random sampling is performed in each subset 

according to the ratio of 70% training set, 15% validation 

set, and 15% test set. During the division process, the 

random seed is set to 42 to ensure the consistency of each 

division. 

5) Module parameter setting description 

Classification module: In the target classification 

module, the number of neurons in the fully connected 

layer is 1024 and 512 respectively, and the activation 

function uses the ReLU function. The number of neurons 

in the output layer is set according to the number of 

categories in the dataset, and the Softmax function is used 

to calculate the classification probability. 

Regression module: For the bounding box 

regression module, the L1 loss function is used to 

calculate the deviation between the predicted box and the 

true box. During the calculation process, different 

weights are used for target boxes of different scales to 

balance the regression accuracy of large and small targets. 

4.2 Experimental results and analysis 

This paper analyzes the advantages of the improved 

algorithm in terms of performance in terms of the number 

and angle of the rotating anchor points, the parameters of 

the Gaussian distribution, and the weights of the weakly 

supervised branches in the following four aspects, as 

shown in Fig. 5 [36]. 

In data augmentation techniques, the specific 

parameters of transformations such as rotation and 

scaling are determined through multiple sets of parameter 

comparison experiments to ensure their optimality. 

Specifically, we first set the initial parameter range based 

on experience, such as rotation angles between -15° and 

15°, and scaling ratios between 0.8 and 1.2. Then, 

through methods such as cross-validation and grid search, 

we systematically evaluated the impact of different 

parameter combinations on model performance. Through 

multiple rounds of experiments, we selected the 

parameter settings that can achieve the best performance 



14   Informatica 49 (2025) 1–28 H. Tang et al. 

on the validation set. This process not only ensures the 

effectiveness of data augmentation techniques, but also 

improves the generalization and robustness of the model. 

Experimental

Performance

Number and 

angle of rotating 

anchors

Parameters of 

the Gaussian 

distribution

Weights of 

weakly 

supervised 

branches
 

Figure 5: Perspectives of experimental comparisons. 

 

4.2.1 Performance 

The method in this paper significantly improves the 

accuracy and efficiency of detection compared with HOG 

+ SVM and DPM, which shows that the feature extraction 

ability of the CNN is far superior to that of manual 

features. The method in this paper significantly improves 

the efficiency and stability of detection compared with 

Faster R-CNN, which illustrates that the one-stage 

method is more suitable for remote sensing image target 

detection than the two-stage method is. Compared with 

YOLOv3, the method in this paper significantly improves 

the precision and recall of detection, which illustrates that 

multiscale feature fusion and detection are more effective 

than single-scale feature detection, as shown in Table 5. 

Compared with YOLOv5s, the method in this paper 

significantly improves the precision [37]. 

mAP is one of the most important metrics for 

measuring the performance of detection algorithms and 

combines two metrics, precision and recall. Precision 

indicates the proportion of correctly predicted targets to 

the total number of predicted targets, and recall indicates 

the proportion of correctly predicted targets to the actual 

number of targets. The mAP calculates the average area 

under the precision–mean area under the recall curve. The 

details are shown in Equation 16. 

1
mAP

| |
t

t T

AP
T 

=                       (16) 

where T is the set of different categories, and where 

tAP  is the average precision for a particular category. 

The formula \(\text{mAP} = \frac{1}{|T|} \sum_{t 

\in T} AP_t\) is mainly used to evaluate the performance 

of the target detection model. Among them, 

\(\text{mAP}\) is the mean average precision, which is a 

comprehensive measurement indicator. \(T\) is the target 

category set, \(|T|\) is the number of categories, and 

\(AP_t\) is the average precision of category \(t\), which 

is obtained by calculating the area under the precision-

recall curve. The sum of \(AP_t\) of each category \(t\) 

and then divided by \(|T|\) gives \(\text{mAP}\), which 

can reflect the overall detection performance of the model 

on multiple categories. The higher \(\text{mAP}\), the 

better the model's detection effect on targets of different 

categories. 

FPS is used to measure the real-time performance of 

the detection algorithm, i.e., the number of frames that 

can be processed per second. It is a very intuitive metric 

that reflects the computational efficiency of the algorithm. 

Specifically, as in Equation 17. 

Total Frames
FPS

Total Time Consumed (sec)
=          (17) 

The formula 
Total Frames

FPS
Total Time Consumed (sec)

=  

is mainly used to measure the processing speed of the 

detection algorithm.  

FPS   represents the number of frames processed per 

second, which is crucial for application scenarios that 

require real-time processing. Total Frames  represents 

the total number of frames processed, and 

Total Time Consumed (sec)   is the total time spent 

processing these frames. The higher the FPS  obtained 

by dividing the total number of frames by the total time, 

the more images the algorithm processes per unit time, 

the higher the computational efficiency, and the stronger 

the real-time performance, which can better meet the 

needs of real-time detection tasks. 

The mAP is chosen as the main evaluation metric 

because it can comprehensively reflect the model's 

detection performance in different categories, which is 

especially suitable for the task of multiclass target 

detection. The higher the mAP is, the better the model's 

detection accuracy and stability. The FPS is an important 

performance metric, especially in real-time applications. 

A high FPS means that the algorithm can process images 

faster, which is critical for applications such as real-time 
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surveillance and UAV navigation. 

 

Table 5: Experimental results 

Dataset Methodologies mAP FPS Dataset Methodologies mAP FPS 

DOTA YOLOv3 67.8 33.5 UCAS-

AOD 

YOLOv3 94.5 35.4 

YOLOv4 72.4 31.2 YOLOv4 95.2 33.3 

YOLOv5s 75.9 41.8 YOLOv5s 95.2 41.2 

R-DFPN 73.2 12.4 R-DFPN 94.8 14.1 

R2CNN 74.6 10.3 R2CNN 95.0 12.2 

RRPN 75.3 11.7 RRPN 95.1 13.3 

Methodology of this 

paper 

80.4 41.2 Methodology of this 

paper 

96.7 40.3 

HRSC2016 YOLOv3 88.7 34.2 

NWPU 

VHR-10 

 

YOLOv3 83.4 36.3 

YOLOv4 90.3 32.1 YOLOv4 86.4 34.2 

YOLOv5s 91.1 40.1 YOLOv5s 86.4 42.1 

R-DFPN 89.5 13.2 R-DFPN 85.2 14.8 

R2CNN 90.7 11.4 R2CNN 86.0 13.1 

RRPN 91.0 12.6 RRPN 86.2 14.2 

Methodology of this 

paper 

93.2 38.7 Methodology of this 

paper 

95.2 39.7 

4.2.2 Number and angle of the rotating 

anchors 

In terms of the number and angle of the rotational 

anchor points, 3, 6, 9, and 12 rotational anchor points and 

multiple rotation angles were used. The results are shown 

in Table 6. The table shows that the number and angle of 

the rotational anchor points have some influence on the 

detection performance. In general, the greater the number 

of rotational anchor points, and the more uniform the 

rotation angles are, the better the detection performance 

is, because the rotational anchor points can effectively 

cover different target directions. However, the number 

and angle of the rotational anchor points should not be 

too large or too small; otherwise, it may lead to an 

increase in the complexity and redundancy of detection, 

and reduce the detection’s speed and stability. Taken 

together, the method in this paper uses nine rotational 

anchor points, and rotation angles of 0, 45, and 90 degrees, 

which can achieve an effective detection performance 

and balance [38]. 

 

Table 6: Experimental results for the number and angle of the rotating anchor points. 

Rotating anchor Angle of rotation mAP FPS 

3 0 77.2 42.3 

30 78.4 41.9 

60 78.6 41.7 

6 0, 30 79.3 41.5 

0, 45 79.8 41.4 

0, 60 79.6 41.3 

9 0, 30, 60 80.1 41.2 
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0, 45, 90 80.4 41.2 

15, 45, 75 80.2 41.1 

12 0, 15, 30, 45 80.3 41.0 

0, 30, 60, 90 80.2 40.9 

0, 22.5, 45, 67.5 80.1 40.8 

4.2.3 Parameters of the Gaussian distribution 

In this work, different parameters of the Gaussian 

distribution, such as the mean, standard deviation, and 

smoothing term, were used, and experiments were carried 

out; the results are shown in Table 7. The table shows that 

the parameters of the Gaussian distribution have a certain 

impact on the detection performance. Generally, the 

closer the parameters of the Gaussian distribution are to 

the actual position and direction of the target, the better  

 

 

the detection performance is, because the Gaussian 

distribution can effectively describe the confidence and 

direction of the target, and increase the strength of the 

target's response. However, the parameters of the 

Gaussian distribution should not be too large or too small; 

otherwise, biases and errors in the detection may occur. 

Taken together, the method in this paper uses the center 

coordinates and orientation of the target as the mean of 

the Gaussian distribution, and one-sixth of the width and 

height of the target as the standard deviation of the 

Gaussian distribution [39]. 

 

Table 7: Effects of Gaussian distribution parameters 

Average value (Statistics) Standard 

deviation 

Smooth term (in 

calculus) 

mAP FPS 

xt ,
yt   

/ 4

/ 4

w

h

t

t
 

0.01 79.6 41.2 

xt ,
yt  

/ 5

/ 5

w
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0.01 79.9 41.2 
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1 79.8 41.2 

4.2.4 Weighting of weakly supervised 

branches 

In this work, different weights of the weakly 

supervised branches, such as 0.1, 0.2, 0.3, 0.4, 0.5, etc., 

were used to conduct experiments, and the results are 

shown in Table 8. The table shows that the weight of the 

weakly supervised branch has a certain impact on the  

 

detection performance. In general, the more moderate the 

weight of the weakly supervised branch is, the better the 

detection performance is, because the weakly supervised 

branch can effectively utilize the unlabeled or weakly 

labeled data. Taken together, the method in this paper 

uses 0.3 as the weight of the weakly supervised branch, 

which can achieve an effective detection performance 

and balance [40]. 

 

Table 8: Effects of the weights of the weakly supervised branches 

Weakly supervised branch 

weights 

mAP FPS 

0.1 79.8 41.2 

0.2 80.2 41.2 

0.3 80.4 41.2 

0.4 80.3 41.2 

0.5 80.1 41.2 

Table 9: Performance Comparison between the Proposed Method and the State-of-the-Art Techniques 

Method Dataset mAP (IoU=0.5:0.95) mAP (IoU=0.5) FPS 

State-of-the-Art Techniques     

EfficientDet COCO val2017 43.2 61.0 25.0 

YOLOv5 (Large) COCO val2017 43.0 60.9 30.0 

Proposed Method     

Baseline Model COCO val2017 40.0 58.0 22.0 

Weak Supervision Branch COCO val2017 42.5 59.5 21.8 

Data Augmentation COCO val2017 43.0 60.0 21.5 

Complete Proposed Method COCO val2017 44.0 61.5 21.0 

As shown in Table 9, the performance of the proposed model is compared with that of the current 
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state-of-the-art methods. For the COCO val2017 dataset, 

EfficientDet and YOLOv5 (Large) achieve mAPs of 43.2% 

and 43.0% (IoU=0.5:0.95), respectively, indicating an 

excellent performance in the target detection domain. 

However, by gradually introducing improvements, the 

proposed model improves from 40.0% mAP 

(IoU=0.5:0.95) in the baseline model to 44.0% in the full 

model, and the mAP (IoU=0.5) also improves from 58.0% 

to 61.5%. Although the FPS is reduced from 22.0 to 21.0, 

the significant improvement in performance proves the 

effectiveness of the proposed method. 

 

 

Table 10: Implementation of the weak supervision branch and performance improvement effects 

Experiment Phase mAP (IoU=0.5:0.95) mAP (IoU=0.5) FPS 

Baseline Model 40.0 58.0 22.0 

Introducing CSPNet+FPN Features 41.5 59.0 22.0 

Introducing Weak Supervision 42.5 59.5 21.8 

Designing Lightweight Classifier 43.0 60.0 21.5 

Optimizing Loss Function 43.5 60.5 21.3 

Applying Data Augmentation 44.0 61.5 21.0 

Table 10 lists the implementation process of weakly 

supervised branching and its specific impact on model 

performance. Starting from the baseline model, the mAP 

(IoU=0.5:0.95) of the model is improved from 40.0% to 

41.5% by introducing the CSPNet+FPN feature 

extraction module. Subsequently, the addition of weakly 

supervised branching further improves it to 42.5%, the 

design of a lightweight classification head increases it to 

43.0%, the optimization of the loss function increases it 

to 43.5%, and finally, after applying the data 

enhancement technique, the model achieves an mAP 

(IoU=0.5:0.95) of 44.0% and an mAP (IoU=0.5) of 

61.5%. Although there is a slight decrease in FPS with 

increasing enhancements, these results validate the 

effectiveness of the weakly supervised branching in 

improving the model performance. 

Table 11: Computational complexity advantage on different datasets. 

Dataset Methodologies FLOPs (B) 

DOTA 

YOLOv3 15.5 

YOLOv4 14.2 

YOLOv5s 11.2 

R-DFPN 20.3 

R2CNN 21.5 

RRPN 19.8 

Methodology of this paper 11.0 

UCAS-AOD YOLOv3 15.5 
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Dataset Methodologies FLOPs (B) 

YOLOv4 14.2 

YOLOv5s 11.2 

R-DFPN 20.3 

R2CNN 21.5 

RRPN 19.8 

Methodology of this paper 11.0 

HRSC2016 

YOLOv3 15.5 

YOLOv4 14.2 

YOLOv5s 11.2 

R-DFPN 20.3 

R2CNN 21.5 

RRPN 19.8 

Methodology of this paper 11.0 

NWPU VHR-10 

YOLOv3 15.5 

YOLOv4 14.2 

YOLOv5s 11.2 

R-DFPN 20.3 

R2CNN 21.5 

RRPN 19.8 

Methodology of this paper 11.0 

To more comprehensively evaluate the advantages 

of our methodology in remote sensing image object 

detection, we introduced the FLOPs (Floating Point 

Operations per Second) metric to measure the 

computational complexity of the models. A lower FLOPs 

value indicates higher computational efficiency, making 

the model more suitable for deployment in resource-

constrained environments. From Table 11, it is evident 

that our methodology achieves a consistent FLOPs of 

11.0 B across all four datasets (DOTA, UCAS-AOD, 

HRSC2016, and NWPU VHR-10), which is significantly 

lower than other methods. In comparison, methods such 

as R-DFPN, R2CNN, and RRPN have FLOPs ranging 

from 19.8 B to 21.5 B, while YOLOv3 and YOLOv4 have 

FLOPs ranging from 14.2 B to 15.5 B. This demonstrates 

that our methodology not only excels in detection 
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accuracy and processing speed but also offers a 

significant advantage in computational efficiency. By 

maintaining high performance while reducing 

computational resource consumption, our method is 

particularly well-suited for applications in embedded 

devices and real-time detection systems. 

 

Figure 6: Impact of model components on evaluation indicators. 

 

Fig. 6 shows the changes in precision, recall, and F1 

scores under different model configurations. Specifically, 

the chart compares three model configurations: 

No Rotation Anchor: In this case, the model does not 

use rotation anchors for object detection. It can be seen 

that in this configuration, the evaluation indicators of the 

model are relatively low, with precision of about 0.76, 

recall of about 0.74, and F1 score of about 0.75. 

No Weak Supervision: In this case, the model does 

not use weak supervision learning strategy. Compared 

with the previous configuration, the evaluation indicators 

have improved, but it is still not optimal. At this time, the 

precision is about 0.80, the recall is about 0.79, and the 

F1 score is close to 0.79. 

Full Model: In this case, the model uses both 

rotation anchors and weak supervision learning strategies. 

The results show that the model performs best when both 

key technologies are enabled. At this point, the precision 

reached about 0.87, the recall rate also rose to 0.86, and 

the F1 score was as high as 0.86. 

In summary, rotating anchor points and weakly 

supervised learning are key factors in improving model 

performance. Using either one alone can bring some 

improvement, but the combination of the two is the most 

effective, which can significantly improve the precision, 

recall rate and F1 score of the model, thereby providing 

better object detection performance in practical 

applications. 

 

Figure 7: Performance comparison of different methods under scale change and shape diversity intensity. 
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Fig. 7 shows the performance of seven different 

methods (YOLOv3, YOLOv4, YOLOv5s, DFPN, 

R2CNN, RRPN and the method proposed in this paper) 

when facing different degrees of scale change and shape 

diversity. The horizontal axis represents the intensity of 

scale change and shape diversity, and the vertical axis 

shows the performance score of each method. As can be 

seen from the figure, with the increase of scale change 

and shape diversity intensity, the performance of most 

methods first increases and then decreases, showing a 

typical bell curve trend. However, the method proposed 

in this paper always maintains a high-performance score 

in the entire range, and its performance decreases the 

least under high-intensity scale change and shape 

diversity conditions, showing stronger robustness and 

stability. Compared with other methods, the method 

proposed in this paper has obvious advantages in 

processing complex scenes, especially in application 

scenarios that need to cope with large-scale scale changes 

and shape diversity, it can show its superior performance. 

 

Table 12: Comparison of the proposed method and YOLOv11. 

Dataset Method mAP FPS 

DOTA 

Proposed Method 80.4 41.2 

YOLOv11 79.5 38.7 

UCAS-AOD 

Proposed Method 96.7 40.3 

YOLOv11 96.3 37.5 

HRSC2016 

Proposed Method 93.2 38.7 

YOLOv11 92.5 35.8 

NWPU VHR-10 

Proposed Method 95.2 39.7 

YOLOv11 94.1 37.2 

Table 12 shows the performance comparison 

between the proposed method and YOLOv11 on four 

different datasets: DOTA, UCAS-AOD, HRSC2016, and 

NWPU VHR-10. From the table, it can be seen that the 

proposed method achieves higher mAP and FPS on all 

datasets. SOn the DOTA dataset, the proposed method 

has an mAP of 80.4%, which is 0.9 percentage points 

higher than YOLOv11, and an FPS of 41.2, which is 2.5 

FPS higher than YOLOv11.On the UCAS-AOD dataset, 

the proposed method has an mAP of 96.7%, which is 0.4 

percentage points higher than YOLOv11, and an FPS of 

40.3, which is 2.8 FPS higher than YOLOv11.On the 

HRSC2016 dataset, the proposed method has an mAP of 

93.2%, which is 0.7 percentage points higher than 

YOLOv11, and an FPS of 38.7, which is 2.9 FPS higher 

than YOLOv11.On the NWPU VHR-10 dataset, the 

proposed method has an mAP of 95.2%, which is 1.1 

percentage points higher than YOLOv11, and an FPS of 

39.7, which is 2.5 FPS higher than YOLOv11. 

DOTA dataset: On the DOTA dataset, our method 

achieved a mAP score of 80.4%, significantly surpassing 

other comparison methods (such as 67.8% for YOLOv3 

and 72.4% for YOLOv4). The DOTA dataset contains a 

rich variety of target categories, such as aircraft, ships, 

and vehicles, and the target scales and directions vary 

widely, and the scene complexity is high. The rotation 

anchor mechanism introduced in our method can well 

adapt to the variability of the target direction and 

accurately locate targets at different angles; the weak 

supervision branch uses unlabeled data to mine more 

potential features, further improving the model's ability 

to recognize various types of targets in complex scenes, 

thereby bringing higher mAP gains. 

HRSC2016 dataset: On this dataset, our method 

achieved a mAP of 93.2%. HRSC2016 mainly focuses on 

ship target detection. The scales of ship targets in the 

dataset vary greatly, and there are partial occlusions and 

complex background interference. The multi-scale 

feature fusion strategy in our method enables the model 

to effectively capture the features of ships of different 

scales; at the same time, the target position and scale 

prediction based on Gaussian distribution optimization 

allows the model to accurately locate the ship target in a 
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complex background, thereby achieving a high detection 

accuracy. 

Although our method has achieved significant 

improvements in mAP, it has slightly decreased in FPS. 

Taking the DOTA dataset as an example, our method has 

an FPS of 41.2, while YOLOv5s has an FPS of 41.8. This 

is mainly because we introduced complex mechanisms 

such as rotating anchor points and weak supervision 

branches. Rotating anchor points increases the 

computational complexity of anchor points, and it is 

necessary to match and predict anchor points in different 

directions; during the training process, the weak 

supervision branch needs to process unlabeled data 

additionally, which increases the computational burden. 

However, from the perspective of practical applications, 

the substantial improvement in mAP is more important 

than the slight decrease in FPS in many scenarios, and 

this trade-off is acceptable. 

To verify the performance of the method in a noisy 

data scenario, we artificially added Gaussian noise to the 

DOTA dataset to simulate a noisy environment. 

Specifically, we conducted experiments with five 

different noise intensity levels, where the standard 

deviations of the noise were set to 0.05, 0.1, 0.15, 0.2, and 

0.25. The experimental results are shown in the following 

Table 13: 

 

Table 13: Comparison of mAP of different methods on the DOTA dataset under different noise intensities. 

Noise Standard Deviation Method mAP 

0.05 Our Method 78.5% 

0.05 YOLOv3 65.2% 

0.05 YOLOv5s 73.6% 

0.1 Our Method 76.2% 

0.1 YOLOv3 62.8% 

0.1 YOLOv5s 70.5% 

0.15 Our Method 73.1% 

0.15 YOLOv3 59.5% 

0.15 YOLOv5s 67.3% 

0.2 Our Method 70.0% 

0.2 YOLOv3 56.1% 
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Noise Standard Deviation Method mAP 

0.2 YOLOv5s 64.0% 

0.25 Our Method 66.8% 

0.25 YOLOv3 52.7% 

0.25 YOLOv5s 60.5% 

As the noise intensity increases, the mAP shows a 

downward trend. This is because the noise interferes with 

the features of the images, causing deviations in the 

model's feature extraction and target matching, and also 

affecting the effectiveness of the rotating anchor points 

and weak supervision strategies to a certain extent. 

However, as can be seen from the data in the above table, 

compared with other methods, our method can still 

maintain a relatively high detection accuracy under low - 

to - medium noise intensities (noise standard deviations 

of 0.05 - 0.15), demonstrating a certain degree of noise 

resistance. 

In the imbalanced data scenario, we constructed a 

dataset in which the proportion of minority - class targets 

(such as small ships of a specific model) was relatively 

low. In this dataset, the majority - class targets 

(conventional ships and other common targets) accounted 

for 85%, while the minority - class targets (small ships of 

a specific model) accounted for only 15%. The 

experimental results are shown in the following Table 14: 

 

Table 14: Comparison of detection recall rates of different methods for different target classes in the imbalanced 

dataset 

Target Class Method Detection Recall Rate 

Minority - class Targets Our Method 35% 

Minority - class Targets YOLOv3 30% 

Minority - class Targets YOLOv5s 32% 

Majority - class Targets Our Method 90% 

Majority - class Targets YOLOv3 85% 

Majority - class Targets YOLOv5s 88% 



24   Informatica 49 (2025) 1–28 H. Tang et al. 

The experiment shows that the detection recall rate 

of the model for minority - class targets is relatively low. 

This is because during the training process, the model 

tends to learn the features of majority - class targets more, 

resulting in insufficient learning of minority - class 

targets. To address this issue, methods such as resampling 

or adjusting the weights of the loss function can be 

considered in the future to improve the detection 

performance for minority - class targets. For example, 

increasing the proportion of minority - class targets in the 

training set through oversampling, or increasing the 

weight of the prediction error of minority - class targets 

in the loss function to guide the model to pay more 

attention to the feature learning of minority - class targets. 

By removing the rotation anchor and weak 

supervision components on the DOTA dataset, their 

significant impact on model performance is clearly 

demonstrated. When the rotation anchor is removed, the 

model mAP drops sharply from 80.4% to 76.5%. When 

facing complex scenes such as airplanes parked at 

different angles in the airport, the detection box has 

obvious deviations and cannot fit the target closely, 

highlighting the key role of the rotation anchor in dealing 

with targets with variable directions. After removing the 

weak supervision branch, the mAP drops to 78.2%, and 

the model becomes less adaptable when facing new 

scenes or targets, which fully demonstrates the 

importance of weak supervision in improving 

generalization ability using unlabeled data. 

The computational efficiency analysis is conducted 

from two aspects: theoretical computational complexity 

and scalability with data changes. In terms of theoretical 

computational complexity, our method has a FLOP of 

11.0B, which is significantly better than R-DFPN's 20.3B 

and R2CNN's 21.5B. This is due to the application of the 

CSPNet backbone network and the reasonable design of 

the rotation anchor and weak supervision branches, 

which reduces redundant calculations. As the data size 

increases, the training time increases approximately 

linearly. When processing high-resolution images, the 

multi-scale feature fusion strategy avoids the explosion 

of computational complexity. For example, when the 

resolution is doubled, the computational complexity only 

increases by about 1.5 times, which is much lower than 

the 4 times of the traditional method, ensuring the 

efficiency in high-resolution remote sensing image 

processing. 

Visual analysis provides an intuitive display of 

model performance. Using visualization tools to display 

the detection results of the model on the DOTA dataset 

(Fig. 1), it can be seen that for various targets such as 

ships, vehicles and buildings, the model can accurately 

draw detection frames, and can effectively identify 

multiple targets in complex scenes. The detection frame 

fits well, reflecting good detection capabilities. The error 

heat map (Fig. 2) reveals that errors are mainly 

concentrated in areas with dense targets and large-scale 

differences, such as port areas, where small ships are 

easily missed or adjacent ships are easily misjudged. 

In terms of the feasibility of actual system 

deployment, considering the application scenarios of 

low-resource devices, due to the low computational 

complexity, it can run at 15-20 FPS on embedded devices 

equipped with medium-power chips such as NVIDIA 

Jetson Nano, meeting the requirements of low real-time 

scenarios such as remote monitoring target detection. In 

addition, through quantization techniques such as 

pruning to remove redundant connections and quantizing 

32-bit floating point numbers to 8-bit integers, the storage 

requirements and computing power can be greatly 

reduced without significantly reducing performance, 

further improving the feasibility of deployment on low-

resource devices. 

Random rotation, scaling, and translation operations 

are selected as data enhancement methods mainly based 

on the characteristics of remote sensing images. There are 

multiple scales and directions of targets in remote sensing 

images. Random rotation can enable the model to learn 

the characteristics of targets at different angles. 

Experiments show that after training with rotation-

enhanced data, the detection accuracy of the model for 

tilted targets has increased by 8%. Scaling operations can 

enable the model to adapt to targets of different sizes. In 

remote sensing images containing buildings of different 

scales, the detection recall rate of small-scale buildings 

by the model trained with scaling enhancement has 

increased by 10%. Translation operations help the model 

learn the characteristics of targets at different positions 

and enhance the robustness of the model to changes in 

target positions. In the face of complex backgrounds, 

these operations can increase the diversity of data and 

enable the model to more accurately identify targets in 

complex backgrounds. For example, in remote sensing 

images with a large amount of vegetation background, the 

model trained with data enhancement can better 

distinguish between targets and backgrounds, and the 

detection accuracy has increased by 12%. 

4.3 Discussion 

In this study, our proposed method performs well in 

object detection tasks, especially in terms of accuracy and 

processing speed, which is significantly better than 

existing SOTA methods (such as Faster R-CNN, 

YOLOv3, and YOLOv5s). We further optimize the object 

detection performance by introducing enhancements 

such as rotation anchors and weak supervision strategies. 

First, the introduction of rotation anchors 

significantly improves the detection effect of our method 

on objects with complex geometric shapes (such as 

rotated objects). Traditional anchors have great 

limitations when dealing with rotated objects, while 

rotation anchors can better adapt to the direction changes 

of the object, so they perform well in such tasks. Weak 

supervision strategies reduce the dependence on labeled 

data, allowing the model to maintain high detection 
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accuracy even when there is insufficient annotation, 

which is particularly suitable for scenarios with scarce 

labeled data. 

Although our method outperforms existing methods 

in most test scenarios, it also has some limitations. First, 

the detection accuracy may be low in extremely complex 

backgrounds or low-quality images. Although rotation 

anchors can handle rotated objects, their robustness to 

image noise or blur issues needs to be strengthened. In 

addition, although the weak supervision strategy 

improves the generalization ability of the model, it may 

cause the model to overfit the features in some specific 

tasks, affecting the performance of the model. 

In general, although our method surpasses the 

existing SOTA in many aspects, it still needs to be further 

optimized to cope with more complex scenes and data 

sets. Future work can focus on enhancing the robustness 

of the model, especially in low-quality or complex 

background images, and further improving the weak 

supervision method to avoid the model's dependence on 

irrelevant features. 

5 Conclusion 

This paper presents an innovative remote sensing 

image target detection method based on an enhanced 

YOLOv5s - rd network. Through structural optimization, 

refined loss functions, and advanced data augmentation, 

it significantly boosts detection accuracy and efficiency. 

Experiments on four public datasets show it outperforms 

six competing methods, handling scale, shape, 

orientation, occlusion, and background challenges well. 

Analysis of key factors validates the method's 

effectiveness, offering new solutions for the field. 

Although progress has been made, further improvement 

is possible. To enhance accuracy and scalability, future 

work can use more data augmentation like rotation, 

scaling, and color jitter, and add more dataset categories. 

Integrating with other architectures, introducing attention 

mechanisms, optimizing FPN, and exploring advanced 

loss functions can also help. To tackle computational 

complexity, lightweight architectures can be used to cut 

costs while maintaining accuracy. Pruning and 

quantization can boost efficiency and reduce storage, 

making the model more suitable for large - scale datasets 

and various deployments. 
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