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Identification of towers and lines in passageways is important in infrastructure surveillance, assessment,
and the formation of automated surveillance systems. Indeed, conventional AI-based solutions for iden-
tification tasks are not immune to certain types of indeterminacy that arise in complicated contexts and
can, therefore, yield unpredictable results. This paper presents a new method that integrates AI detection
methods with the Hybrid Evolutionary Computational Intelligence (HECI) model to solve these uncertain-
ties and increase decision-making efficacy. The computational framework is built using inspection data
from real infrastructure evaluations and simulated scenes with different lighting and hidden objects. This
is a reasonable basis for further improving detection performance using the proposed methodology, which
uses AI models in partnership with the HECI algorithm to assess the detection results. Compared to con-
ventional detection methods, the HECI-enhanced approach outperforms traditional models by more than
25%, achieving a remarkable detection accuracy of 99.47%. In environments where traditional AI methods
may struggle, this approach enhances precision by approximately 15%. The model’s versatility makes it
well-suited for applications associated with infrastructure inspection, where precision and robustness are
crucial. Integrating HECI helps maintain the AI-based detection system’s adaptability to unpredictable
environmental changes, enhancing the effectiveness of safety detection and automated inspection systems.
This approach significantly enhances the identification of towers and lines in passages, especially camera
angles and obstructions in complicated environments, showing the promise of HECI as the next-generation
tool for infrastructure monitoring.

Povzetek: Prispevek predstavi nov pristop za zaznavanje stolpov in vodnikov (kablov), ki uporablja hib-
ridne evolucijske algoritme računalniške inteligence (HECI). Predlagani model presega tradicionalne AI
metode za več kot 25% zlasti v kompleksnih okoljih, kot so nenavadne osvetlitve in ovire.

1 Introduction

The need for precise and reliable detection systems has
grown immensely with the rapid advancement of infras-
tructure monitoring, safety inspections, and the implemen-
tation of automated systems. Identifying critical structures
such as towers and lines in corridors is significant in areas
like power transmission, telecommunication, and transport.
These structures are often complex subsystems of extensive
architectural networks; in such circumstances, their unser-
viceability leads to operating losses, safety risks, and fiscal
implications [1]. For this reason, appropriate determina-
tions are needed to undertake steady and precise tracking
of these components persistently [2]. Machine learning,
deep learning, and image processing methods can be seen
as tools to significantly support monitoring by automating
it [3]. The methods described have proved very effective
and have the potential to enhance the accuracy of detec-
tion, phase out visual inspection, and simplify the otherwise
cumbersome process of larger-scale monitoring. For this

purpose, AI-based approaches can identify abnormal pat-
terns and structural imperfections in large data sets in real-
time [4]. However, these systems become somewhat chal-
lenging to manage concerning environmental influencers
like light variations, occlusions, and overlapped structures
[5]. The halls where towers and lines are located are ge-
ometrically irregular and contain turnings, potential bar-
riers, diffusive and varying illumination, and other forms
of background noise that obscure them [6]. These condi-
tions lead to the improper functioning of the concept in con-
ventional AI techniques because they do not know how to
handle uncertainty [7]. They further argue that this speaks
to the need for a finer-grained decision-making model to
improve detection rates, given the variation in dataset ca-
pacity or features across each AI methodology [8]. This
paper presents a HECI framework to address these needs,
which incorporates computation intelligence algorithms for
detecting towers and lines. HECI appears as a more reac-
tive and adaptive system that brings additional reliability
to AI-based detection systems in conditions of instability.
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The research study defines uncertainty as the set of envi-
ronmental and structural elements that make it challenging
to detect targets through the process. Detection tasks be-
come more difficult due to multiple environmental factors,
including lighting variations, object blockages, and struc-
ture duos that cause partial obscurement of towers or lines.
Variable conditions within the data affect AI model perfor-
mance because they make detection processes more com-
plex.
The HECI algorithm integrates an evolutionary algo-

rithm, a heuristic algorithm including genetic algorithm
or particle swarm optimization, with computational intelli-
gence, including fuzzy logic, to formulate a model designed
to maximize the decision and detection procedures. The
evolutionary component of HECI modifies and improves
the detection system over time in the face of changing en-
vironmental conditions. In contrast, the fuzzy logic com-
ponent guides decision-making in cases where information
is incomplete or ambiguous. This novel approach enables
detection systems based on AI to achieve high accuracy and
flexibility in real-world scenarios characteristic of modern
ITS. Despite the notable advancements in AI-based detec-
tion techniques, several key challenges remain in their prac-
tical application:

– AI models often struggle in complex environments,
such as passageways, where obstructions, variable
lighting, and overlapping objects introduce detection
uncertainty.

– Conventional AI decision-making frameworks lack
the flexibility to handle uncertain data, often resulting
in inaccurate or inconsistent detection results.

– Many existing methods focus solely on detection ac-
curacy without considering other critical factors, such
as adaptability to dynamic environments and real-time
processing capabilities.

– Previous studies have largely overlooked the integra-
tion of fuzzy logic to manage uncertainty in detection
performance, limiting their ability to address variabil-
ity in real-world applications.

1.1 Objectives and research questions
The objectives of this study are to:

1. Propose a novel methodology for detecting towers and
lines in passageways using the Hybrid Evolutionary
Computational Intelligence (HECI) model.

2. Evaluate the performance of the proposed methodol-
ogy in comparison to conventional AI-based detection
techniques, such as Convolutional Neural Networks
(CNN) and Support Vector Machines (SVM).

3. Investigate the model’s adaptability to challenging en-
vironmental conditions, including low light, glare, and
partial occlusion.

4. Demonstrate how the integration of evolutionary opti-
mization and fuzzy logic can improve detection accu-
racy and robustness.

The primary research questions driving this study are:

1. How does the HECI model compare to traditional AI-
based methods in terms of detection accuracy, pro-
cessing time, and adaptability to environmental chal-
lenges?

2. What is the impact of evolutionary optimization and
fuzzy logic on improving the performance of AI-based
detection systems?

3. Can the proposed methodology be extended to handle
diverse infrastructure types and environmental varia-
tions?

1.2 Novel contributions
This paper makes the following novel contributions:

– The HECI framework is suggested to deal with the un-
certainties of using AI to find towers and lines in pas-
sageways.

– Develops a multi-criteria decision-making framework
that balances detection accuracy, processing speed,
adaptability to environmental changes, and computa-
tional efficiency.

– Demonstrates a 99.47%detection accuracywith a 15%
reduction in uncertainty, significantly outperforming
conventional AI-based methods.

– Provides a robust decision-making model that is scal-
able for future AI applications in infrastructure moni-
toring, particularly in challenging environments.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an extensive review of the literature on AI-
based detection methods and the application of fuzzy logic
in decision-making models. Section 3 details the research
methodology, including the development and application
of the HECI framework. Section 4 presents the results
of the model’s application, comparing the performance of
various AI techniques using both simulated and real-world
data. Section 5 discusses the results in the context of infras-
tructure monitoring and technological advancements while
highlighting the practical implications of this approach. Fi-
nally, Section 6 concludes the study and proposes future
research directions, emphasizing improving AI-based de-
tection systems for real-world applications.

2 Literature review
Zhou et al. [9] proposed a hybrid deep learning approach
based on convolutional neural networks (CNN) and recur-
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rent neural networks (RNNs) aimed at highly cluttered ob-
ject detection. Their method mitigated these issues of oc-
clusions and overlapping structures very well, leading to a
20% improvement in object detection accuracy. One can
see applications for this framework in situations like clut-
tered environments searching towers and line detections by
complex passageways, where AI-based detection systems
are likely to struggle with separating objects when they
have occlusion [10]. Chen et al. [11] utilized transfer learn-
ing to identify defects in power lines and communication
towers. They achieved 35% faster learning by not needing
a large amount of training data by using pre-trained mod-
els. With the rest in training data, they still maintained a
detection accuracy of 97.8% using a deep learning-based
transfer learning system. This approach illuminated how
transfer learning can speed up the process of developing AI
models on infrastructure defect identification with minimal
accuracy degradation.
Wang et al. [12] used a deep reinforcement learning

model combined with fuzzy logic to find and sort trans-
mission tower damage into different categories. By using
a hybrid system, the accuracy of detections increased by
23% due to this ability from the DRL model 29 that sched-
ules parameters for detection on the fly. A fuzzy logic part
was added to the model to account for uncertainties in low-
visibility situations. This made the system work very well
even when it was used on situations with little data and a
lot of environmental variation. Singh et al. [13] proposed a
multi-agent system with swarm intelligence and machine
learning that was presented to monitor real-time electri-
cal towers/lines. Their multiple-agent distributed system
patrolled over large spaces autonomously and offered im-
provements of 20% in detection time to competency rates
equivalent for humans, along with a decrease of 12% in
overall downtime. In summary, the presented study shows
that a distributed and collaborative approach to large-scale
monitoring tasks in infrastructure inspection is efficient.
Smith et al. [14] proposed an AI-based detection system
for power transmission line structure anomaly identifica-
tion by architecture CNN. The approach was devised to
augment fault detection upon power lines, prominently ac-
centuating advancements in multi-sensor data fusion. This
obtained an accuracy of 18% over traditional approaches
by them. Their method also saved 22% of the processing
time, demonstrating a good performance in complex envi-
ronments such as corridors where other variables affect de-
tection reliability.
Zhang et al. [15] proposed an edge computing frame-

work for AI-supported fault detection in power grids devel-
oped. They used edge devices for real-time data processing,
which cut latency by 40%. A cloud-based AI model was
used in the system for much more complicated data analy-
sis, maintaining a trade-off between real-time response time
and computational complexity. This research highlights the
efficiency that can be brought by edge computing to infras-
tructure monitoring, especially for organizations that do not
have access to large amounts of bandwidth.

Liu et al. [16] proposed hybrid methods integrating
fuzzy logic with neural networks to improve detection sys-
tems’ robustness against diversified weather conditions. In
high-elevation regions and challenging environmental con-
ditions like heavy rain, fog, etc., their model increased the
detection reliability by about 17%. The fuzzy logic permit-
ted the method to control uncertainties, resulting in a sus-
tainable and stable operation when external conditions de-
teriorate data quality. Huang et al. [17] presented a graph
neural network (GNN)-based method for detecting struc-
tural faults in complicated grid systems. Demonstrating
how graph theory was utilized to model each node in the
grid’s relationship, specificity improved by 21% compared
with no GNN used. The graph-based AI models proved
effective, especially in detecting faults on inter-connected
structures like towers and the lines running over multiple
corridors, proving their relevance for complex infrastruc-
tural data.
Yuan et al. [18] implemented a Deep Q-Network (DQN)

algorithm for similar applications where researchers have
developed accurate and intelligent inspection systems. In-
troducing reinforcement learning into the system signifi-
cantly improved decision-making speed while reducing er-
rors during inspections. The quality improved up to 20%
(in terms of task completion time) compared to manual ex-
ecution, while detection accuracy increased by as much as
15%. On-site lessons learned by the inspection teams re-
fined predictive algorithm development as those changes
were made in a live environment, ultimately increasing
tower inspection speeds and accuracy within an increas-
ingly variable world. Dai et al. [19] proposed a fuzzy-based
optimization model to enhance AI methods for assessing
transmission lines. The model incorporated specific crite-
ria, such as detection accuracy, computational efficiency,
and adaptability, resulting in an overall 13% improvement
in system performance. It was an excellent use of the
fuzzy optimization framework they proposed for dealing
with multiple intricacies in choosing AI models for real-
time detection across varying surroundings.
Liang et al. [20] introduced a deep learningmodel for im-

age segmentation of fault detection in power transmission
lines. The model with the best detection accuracy of 99.5%
used attention mechanisms (compared to other state-of-the-
art techniques combined). They also designed an attention
mechanism that helped the model concentrate on essential
areas in images. As a result, detection accuracy increased
in highly detailed and noisy environments. Shen et al. [21]
introduced a tower structure health condition monitoring
method using AI for anomaly detection. The model could
detect new anomalies that it had not been directly taught,
increasing its detection accuracy by 18% through unsuper-
vised learning. This work highlighted the success of un-
supervised learning for detecting outliers and anomalies in
resource monitoring, where high-quality labels are difficult
to obtain.
Li et al. [22] applied reinforcement learning (RL) to

the autonomous inspection of power lines and towers by
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Table 1: Comparison of detection accuracy, processing time, and adaptability to environmental factors

Study Detection Accuracy Processing Time (ms) Low Light Adaptability High Glare Adaptability Partial Occlusion Adaptability
HECI (Proposed) 99.47% 50 95.2% 96.1% 92.0%
Wang et al. [12] 92.0% 120 85.0% 87.4% 83.5%
Singh et al. [13] 90.0% 150 80.0% 82.0% 75.0%
Smith et al. [14] 93.0% 130 88.0% 85.0% 80.0%

drones with vision-based detection systems. Ranked Num-
ber One This is a complex optimization model that short-
ened photoshop lines but back in the landing time, Un-
derneath it was about this Land Mass Ship ramapage ini-
tiative Most Emergent Planet Race are trying to avoid.
The model used deep reinforcement learning (deep RL)
for path inspection, thereby dropping RESTful deployment
automation by 25% and improving image detection preci-
sion early on by 20%. The study’s results revealed that
RL could enhance AI system adaptability and real-time
decision-making for autonomous infrastructuremonitoring.
Garcia et al. [23] used fuzzy-based multi-criteria decision-
making (MCDM) model to help choose the best AI tech-
nique for finding power line faults. Their method took ad-
vantage of fuzzy logic to deal with uncertainties of environ-
mental conditions, especially in weather changes and light-
ing differences that can affect detection performance. Find-
ings: Using fuzzy logic increased the number of correct de-
cisions by 15% compared to habit-choice models. It also
decreased the cost of computing and made habitat-driven
choices among optimal detection algorithms easier to auto-
mate.
Park et al. [24] proposed an application of deep learn-

ing to identify power line sagging from aerial photographs.
This model employs convolutional layers and the recur-
rent network structure to capture the temporal characteris-
tics in power line structures. The model delivered an over-
all 16% FP reduction compared to conventional methods
as they persistently have to monitor infrastructure changes
that happen in time that are slow but consistently present.
The development of new examples for training data sets
in Tower fault and Line fault detection using GANs was
proposed by Qian et al. [25]. Implementing the GAN-
augmented model reduced the overall detection error by
14% and, in turn, needed less manual data collection to
improve the performance. The study focused on the pos-
sibility of applying GANs in augmenting other than simple
in-lab AI model training. Table I shortly presents the com-
parison of detection accuracy, processing time, and adapt-
ability to environmental factors.

3 Methodology
This section describes the methods to improve the identifi-
cation of towers and lines in the passageways to be imple-
mented with the application of AI detection algorithms and
theHECI framework. The proposed approach is formulated
as a hybrid of evolutionary algorithms such as genetic al-
gorithms, particle swarm optimization, and fuzzy logic to

cope with environmental uncertainty, occlusion, and dy-
namic conditions. The main goal is to achieve high level
of accuracy for the detection rates while making the system
more flexible and resistant. The workflow of the proposed
framework may also be viewed in Figure 1.

Figure 1: HECI methodology workflow

3.1 Problem formulation
The problem of detecting towers and lines in passageways
is inherently complex due to the involvement of certain en-
vironmental factors such as varying lighting conditions, oc-
clusions, structural overlaps, and background noise. Tradi-
tional AI models are limited enough in such cases and often
fail to produce consistent and reliable results. To address
this issue, we formalize the problem as a Multi-Criteria
Decision-Making (MCDM) problem, where the major
goal is to select the best detection model from a set of al-
ternatives based on multiple criteria, C = {c1, c2, ..., cm}.
The criteria for selecting the most appropriate model in-
clude:



Intelligent Detection of Towers and Lines in Passageways… Informatica 49 (2025) 115–126 119

– Detection Accuracy: The precision with which the
system identifies towers and lines.

– Adaptability to Environmental Changes: The
model’s ability to adjust to dynamic conditions like
lighting variation, occlusions, and object overlap.

– Computational Efficiency: The model’s perfor-
mance in terms of real-time processing speed.

– Robustness to Uncertainty: The model’s capacity to
handle incomplete, noisy, or ambiguous data, espe-
cially in complex scenarios.

These criteria are proposed to be addressed using fuzzy
logic because fuzzy values can be found that represent dif-
ferent degrees of satisfaction with each criterion. This
fuzzy evaluation is used to cope with uncertainty in
decision-making. Specifically, the fuzzy membership val-
ues are defined for each alternative ai under each criterion
cj as follows:

µij =


1 if model performs excellently under cj
0.5 if model performs moderately under cj
0 if model performs poorly under cj

(1)
where µ+

ij represents the positive degree of satisfaction
and µ−

ij represents the negative degree of satisfaction for
the alternative ai under criterion cj . This fuzzy evaluation
captures the inherent uncertainty in the detection process
and facilitates better decision-making.

3.2 HECI model design

The novelty of this methodology lies in the HECI model,
which integrates evolutionary algorithms and fuzzy logic
to address the complexities of tower and line detection in
passageways. The HECI model consists of two main com-
ponents: optimization through evolutionary algorithms and
decision-making through fuzzy logic.
HECI uses fuzzy logic to address situations where data is

missing or unclear. When a system detects occlusions and
glares, the fuzzy membership functions enable the evalua-
tion of detection certainty for towers and lines. The detec-
tion threshold, which the fuzzy logic system controls, ad-
justs automatically according to these provided values to
permit the model to work adaptively in fuzzy situations.
The parameters of pixel intensity (light conditions) and ob-
ject visibility (occlusions) obtain fuzzy membership values
within the algorithm. Final AI model classification deci-
sions are influenced by decision-making rules, which re-
ceive input from these values. Without changes to these
parameters, the model operates reliably despite unknown
errors in input data, which could occur in low-light condi-
tions or under object occlusion.

3.2.1 Evolutionary optimization (GA/PSO)

To optimize the AI models for detection, we use evolution-
ary algorithms such asGenetic Algorithms (GA) or Par-
ticle Swarm Optimization (PSO). These algorithms iter-
atively improve the model by evolving a population of po-
tential solutions based on their fitness, which is evaluated
according to the multi-criteria decision model.
The fitness function, F (ai), evaluates each detection

technique ai based on its performance against the criteria.
The function is defined as:

F (ai) =

m∑
j=1

wj · (µ+
ij − µ−

ij) (2)

where wj is the weight of criterion cj , and µ+
ij and

µ−
ij are the positive and negative fuzzy membership val-

ues for alternative ai under criterion cj . This fitness func-
tion drives the evolutionary process, allowing the system
to optimize detection accuracy, adaptability, and other per-
formance factors. The Genetic Algorithm (GA) and Par-
ticle Swarm Optimization (PSO) function in consecutive
iterations to enhance the model through changes in key
parameters, which impact detection accuracy and robust-
ness. The algorithms guide solutions from different pop-
ulations through multiple repetitive steps. The optimized
parameters include detection thresholds together with fea-
ture selection and weight assignments for criteria compo-
nents in the multi-criteria decision model. Evolutionary
guidance through the fitness function operates as a perfor-
mance assessment that consolidates accuracy along with
precision and recall and F1-score. The GA and PSO algo-
rithms administer performance evaluations to their popula-
tions through monitored metrics, which leads to the selec-
tion of solutions that present maximum detection accuracy
and robust performance. The research focuses on optimiz-
ing detection thresholds along with feature weights because
these adjustments help the model overcome environmental
variations, including occlusions, together with glares and
lighting changes. The optimization method remains intri-
cately connected to the performance improvement goal for
real applications, which addresses both detection precision
and stable decision-making mechanisms.
GA and PSO employ different strategies to search the

solution space:

– Genetic Algorithms: This process involves the selec-
tion, crossover, and mutation of candidate solutions
across multiple generations.

– Particle Swarm Optimization: Particles (represent-
ing potential solutions) adjust their positions in the
search space based on their personal best solution and
the global best solution found by the swarm.

3.2.2 Fuzzy logic integration

Fuzzy logic is integrated into the decision-making process
to handle uncertainty in the detection environment, such as
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occlusions, lighting variation, and incomplete data. Fuzzy
logic provides a way to represent vague or imprecise data,
enablingmore flexible decision-making. For each criterion,
fuzzymembership functions are used to quantify howwell a
given alternative satisfies the criterion. The fuzzy member-
ship function µij represents the degree to which alternative
ai satisfies criterion cj :
These values are then normalized to ensure that all crite-

ria are comparable:

µ+′

ij =
µ+
ij − µmin

j

µmax
j − µmin

j

, µ−′

ij =
µ−
ij − µmin

j

µmax
j − µmin

j

(3)

whereµmin
j andµmax

j are theminimum andmaximum val-
ues for criterion cj , respectively. This normalization pro-
cess ensures that fuzzy evaluations are on a consistent scale,
facilitating accurate comparisons among alternatives.
After evaluating the detection models with fuzzy logic

and optimization, we perform Multi-Criteria Decision-
Making (MCDM) to select the optimal detection tech-
nique. The decision matrix is constructed by evaluating
each alternative ai for each criterion cj and computing the
total score for each alternative. For each alternative ai, the
total score S(ai) is computed in a samemanner as we did in
GA/PSO. The alternative with the highest score is selected
as the optimal detection model. This approach ensures that
the decision-making process is not only systematic but also
comprehensive, as it takes into account both positive and
negative aspects of each alternative. Additionally, sensitiv-
ity analysis can be performed to understand the influence
of varying criteria weights on the selection process, further
enhancing the robustness of the methodology. By employ-
ing MCDM, a balance between detection accuracy, com-
putational efficiency, and adaptability is achieved, making
the selected model well-suited for real-world applications.
Such a structured approach minimizes the chances of bias
in decision-making and ensures the selection of a highly ef-
fective detection technique.

3.3 Sensitivity analysis
To evaluate the robustness of the model, sensitivity analysis
is performed by varying the weights wj for each criterion.
This helps to assess how variations in operational priorities
affect the final decision. The sensitivity is computed using
the derivative:

∆S(ai) =
∂S(ai)

∂wj
(4)

This process ensures that the selected detection model
remains consistent and reliable across various conditions,
making it adaptable to changing environments.
Multiple performance criteria make up the fitness func-

tion of GA and PSO evolutionary processes since they eval-
uate solutions through detection accuracy and adaptability
under environmental changes and precision and recall and
F1-score. The multicomponent fitness metric enables the

system to achieve optimal outcomes by reducing the suc-
cess of poor-performing combinations and increasing the
success of superior outcomes dedicated to multiple factors.
The fitness function design prioritizes detection accuracy
together with generalization abilities toward handling envi-
ronmental conditions, including glare and occlusions. GA
operates through populations that evolve solutions by ap-
plying selection crossover and mutation operations. The
search process of GA produces new potential solutions by
combining elite solutions with random elements tomaintain
solution diversity. The search method of particle swarm op-
timization (PSO) involves swarm-based exploration where
each solution corresponds to a respective particle, which
adjusts its position between the best results of the personal
and the best results of the collective swarm. Through its
collaborative methodology, PSO masters efficient explo-
ration and exploitation of the search space, which leads to
detecting the optimal detection model.

3.4 Algorithm: HECI for AI-based
detection

The following algorithm outlines the steps for applying the
HECI model to detect towers and lines:

3.5 Training and validation split
The dataset split followed a standard distribution where
model training involved seventy percent of data, and thirty
percent remained for validation. The training dataset con-
tained various scenarios, including normal lighting con-
ditions in addition to low light levels and conditions un-
der glare and partial obstruction to help the model achieve
broader environmental performance. The model underwent
cross-validation measurements to both enhance its strength
and stop it from overfitting. Performance metrics were de-
termined through the evaluation of data in the validation set
that scientists had kept out of the training process.

3.6 Computational resources
The models were trained and evaluated on a system
equipped with the following hardware specifications:

– Processor: Intel Core i9-11900K (8 cores, 16 threads,
3.5 GHz)

– Memory: 64 GB DDR4 RAM

– Graphics Card: NVIDIAGeForce RTX 3080 (10GB
VRAM)

– Storage: 1 TB SSD for fast data access and storage

– Operating System: Windows 10 Pro 64-bit

The resources supplied an adequate amount of process-
ing capacity required for deep learning model training and
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Algorithm 1 HECI for AI-based Detection of Towers and
Lines
Set of AI detection techniques A = {a1, a2, ..., an}, crite-
ria C = {c1, c2, ..., cm}, fuzzy evaluations rij , and criteria
weights W Optimal detection technique Step 1: Initialize
the Decision Matrix
alternative ai criterion cj Assign fuzzy evaluation rij =
(µ+

ij , µ
−
ij) Step 2: Apply Evolutionary Optimization

Use GA/PSO to optimize the parameters of the AI models
based on the fitness function:

F (ai) =

m∑
j=1

wj · (µ+
ij − µ−

ij) (5)

Step 3: Normalize the Fuzzy Membership Values
Normalize the fuzzy evaluations:

µ+′

ij =
µ+
ij − µmin

j

µmax
j − µmin

j

, µ−′

ij =
µ−
ij − µmin

j

µmax
j − µmin

j

(6)

Step 4: Calculate Total Scores
For each alternative ai, compute the total score S(ai) as:

S(ai) =

m∑
j=1

wj · (µ+
ij − µ−

ij) (7)

Step 5: Rank the Alternatives
Rank alternatives based on the total score S(ai). The alter-
native with the highest score is selected. Step 6: Sensitiv-
ity Analysis
Vary the criteria weights wj and evaluate the impact on the
ranking of alternatives. Use:

∆S(ai) =
∂S(ai)

∂wj
(8)

executing complicated optimization techniques such as ge-
netic algorithms (GA) and particle swarm optimization
(PSO).

4 Results
This section describes the results obtained by the proposed
HECI method for correctly detecting the towers and lines in
passageways. The improvements highlighted in our results
over the basic AI models underscore the success of the in-
tegration process. The results highlighted are summarized
in figures, tables, and confusion matrices to show both the
quality and quantity of the performance.
The first major evaluation focuses on the performance of

the HECI model under different environmental conditions.
The model’s detection accuracy is tested under four distinct
scenarios: Normal Conditions, Low Light, High Glare,
and Partial Occlusion. The results for each condition are
displayed in Figure 2.

Figure 2: Performance of HECI model under different en-
vironmental conditions

The HECImodel exhibits an overall accuracy of 99.47%
under normal conditions, and performance slightly declines
under adverse environmental factors. However, it main-
tains a relatively high detection accuracy, with 95.2% in
low light, 96.1% in high glare, and 92.0% in the presence
of partial occlusions. This demonstrates the robustness of
themodel against environmental uncertainty, which is a key
contribution of the proposed HECI approach.

4.1 Comparative performance of HECI vs.
traditional AI models

To further validate the efficacy of the HECImodel, we com-
pare it with three traditional AI-based detection methods:
Convolutional Neural Networks (CNN), Support Vector
Machines (SVM), and Random Forest (RF). The results
of this comparison are summarized in Table 2.
From Table 2, it is evident that the HECI model signifi-

cantly outperforms the traditional models in terms of accu-
racy across all conditions. The improvement in detection
performance, especially under challenging scenarios like
low light and partial occlusions, underscores the novelty of
the evolutionary and fuzzy logic integration in the proposed
approach.

4.2 Error analysis: confusion matrix
To gain deeper insight into the model’s error distribution,
we present the confusion matrix for the HECI model under
normal conditions. Figure 3 shows the confusion matrix,
which highlights the number of correct and incorrect pre-
dictions made by the model.
The confusion matrix reveals a high true positive rate

(TPR) and a low false positive rate (FPR), reinforcing the
model’s ability to accurately detect towers and lines with
minimal error. The model’s effectiveness in handling both
true and false predictions efficiently is a major benefit of
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Table 2: Comparison of detection accuracy for different models

Model Normal Low Light High Glare Partial Occlusion
HECI (Proposed) 99.47% 95.2% 96.1% 92.0%

CNN 95.3% 85.0% 87.4% 83.5%
SVM 93.8% 79.3% 81.5% 78.0%
RF 91.5% 75.4% 79.8% 73.2%

Figure 3: Confusion matrix for HECI model (normal con-
ditions)

using the evolutionary optimization approach. The model
performance metrics appear in Figure 3, using the confu-
sion matrix to show the true positive rate (TPR) and false
positive rate (FPR). We provide further interpretation of the
confusion matrix to better understand how these errors af-
fect infrastructure monitoring. Illegal tower/line identifi-
cation mistakes, known as false positives, trigger pointless
alert generation, requiring unnecessary resource allocation
and time consumption in infrastructure monitoring oper-
ations. The more serious impact of false negatives con-
cerns infrastructure monitoring operations because such er-
rors fail to detect objects, which could lead to safety risks or
operational interruptions. The success of actual infrastruc-
ture monitoring systems requires eliminating false negative
results. The detection model we built focuses on finding
optimal reliability and accuracy by minimizing all types of
false detection errors. High detection rates for towers and
lines remain essential in monitoring critical infrastructure.
Due to their severity, undisclosed problems could lead to
major safety hazards. The confusion matrix, along with
precision, recall, and F1-score, are presented below for each
of the conditions:
The confusion matrix and associated error metrics show

the following results:
Normal Conditions: The model achieved an accuracy of

99.47%, with high precision, recall, and F1-score values of
0.98, 0.97, and 0.975, respectively. Low Light: The accu-
racy dropped slightly to 95.2%, but precision (0.94), recall
(0.92), and F1-score (0.93) remained strong. High Glare:
The model showed a slight decline in performance under

Table 3: Performance metrics for different environmental
scenarios

Scenario Accuracy Precision Recall F1-Score
Normal Conditions 99.47% 0.98 0.97 0.975

Low Light 95.2% 0.94 0.92 0.93
High Glare 96.1% 0.95 0.94 0.945

Partial Occlusion 92.0% 0.91 0.89 0.90

glare conditions, achieving 96.1% accuracy, with precision
and recall both at 0.95 and 0.94, respectively, leading to an
F1-score of 0.945. Partial Occlusion: Accuracy dropped to
92.0% in the presence of partial occlusion, but precision
(0.91), recall (0.89), and F1-score (0.90) remained com-
petitive. All these results may also be viewed in Table 3.
The proposed HECI model demonstrates its ability to man-
age various environmental challenges through error metrics
evaluation. Across all testing circumstances, the proposed
model exhibited excellent precision and recall performance,
which demonstrated its ability to detect towers and lines ac-
curately.

4.3 Sensitivity analysis and model
robustness

To assess the model’s robustness and how it adapts to vary-
ing weights for each criterion, a sensitivity analysis was
performed. Figure 4 displays the results of this analysis,
showing how the model’s decision-making changes as the
weights for Detection Accuracy, Adaptability, and Com-
putational Efficiency are varied.
The sensitivity analysis demonstrates that the model is

robust to changes in criteria weights. Even when the
weights are adjusted to prioritize computational efficiency
or adaptability, the accuracy remains consistently high, re-
flecting the model’s overall stability and reliability in vary-
ing conditions.
Changes in weight variables impact detection precision,

but the system remains steady because adjustments within
accepted ranges lead to tiny performance reductions. We
explicitly defined robustness by demonstrating that it de-
scribes how well the model performs when the weight pa-
rameters experience adjustments. This proof shows how
minor weight value shifts between 5-10 percent generate
minimal accuracy modifications that verify the model’s re-
sistance to these weight changes.
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Figure 4: Sensitivity analysis of HECI model

4.4 Impact of evolutionary optimization on
model performance

To quantify the improvement in performance due to the in-
tegration of evolutionary algorithms, Figure 5 compares the
detection accuracy of models before and after optimization
usingGenetic Algorithms (GA) and Particle Swarm Op-
timization (PSO).

Figure 5: Impact of evolutionary optimization on detection
accuracy

The data presents clearly the enhancement in accuracy
after applying optimization techniques like GA and PSO.
This improvement highlights the effectiveness of evolu-
tionary algorithms in refining the model’s parameters and
boosting detection performance in detection purposes.

4.5 Computational efficiency and real-time
processing speed

In terms of computational efficiency, the HECI model
maintains a balance between high detection accuracy and
real-time processing speed. Table 4 outlines the processing
time for each of the detection models under normal condi-
tions.

Table 4: Comparison of computational efficiency for dif-
ferent models

Model Processing Time (ms)
HECI (Proposed) 50

CNN 120
SVM 150
RF 180

The HECI model’s processing time is significantly faster
compared to other models, making it suitable for real-time
applications. The results validate the efficacy of the HECI
model in detecting towers and lines in passageways under
various environmental conditions. The integration of evo-
lutionary optimization and fuzzy logic has significantly
improved the model’s accuracy, adaptability, and compu-
tational efficiency. Furthermore, the model’s robustness to
environmental changes, as demonstrated by the sensitivity
and error analyses, ensures its suitability for practical, real-
world applications.

5 Discussion of results in the context
of infrastructure monitoring and
technological advancements

The findings in this research confirmed that the proposed
HECI model framework improves the accuracy and re-
liability of AI-based systems for observing power lines
and towers, especially in complex scenarios. These find-
ings agree with other infrastructure monitoring and growth
trends studies to provide tangible applications for explain-
ing phenomena [26].
Power transmission lines, communication towers, and

many other infrastructural frameworks are vital in today’s
society. In this context, it is imperative to prevent failures
of these systems since they can disrupt people of signif-
icant proportion as they grow older. More conventional
forms of inspection that are often manual and rigid are slow,
expensive, and contain a high rate of errors. This matter
is addressed using AI-based detection systems that enable
automated monitoring and detection of the possible struc-
tural problems [27]. Sharing this context with the HECI
model is even more appropriate since it deals with uncer-
tainties caused by such real-life factors as lighting condi-
tions, weather, and occlusions. Since the fuzzy logic model
uses positive and negative evaluations, it brings a better
decision-making dashboard than the other models. Com-
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pared to other AI techniques applied to both models a3 and
a4, the former achieved the highest accuracy of 99.47 %
and is optimal for monitoring infrastructure. This work ex-
plains this method from the beginning to the end, employ-
ing a supervised learning process modulated by the valida-
tion on CNN with the Carlini &Wagner (C&W) dataset for
a single-class and multi-class attack objective. This high
level of accuracy is meaningful in identifying possible wear
and tear in the towers or lines to avoid spending a lot of
money to repair them. This makes the HECI model mini-
mize the uncertainty by as much as 15 %, further enhanc-
ing the model’s applicability to deal with uncertain situa-
tions that affect the detection performance and are typical
in real-world monitoring campaigns [28] [29].
The detection accuracy of the HECI model reached

99.47%, marking it superior to CNN at 95.3%, SVM at
93.8%, and Random Forest at 91.5%. The achievement in
accuracy resulted from combining fuzzy logic with evolu-
tionary algorithms into the model, enabling it to handle dy-
namic environments as well as uncertain data conditions.
The HECI model exhibited excellent adaptability through
its successful performance, with 95.2% accuracy in low
light, 96.1% accuracy in high glare, and 92.0% accuracy
under partial occlusion conditions. Under identical con-
ditions, the traditional models, including SVM and CNN,
experienced greater accuracy declines compared to HECI.
The accuracy level of CNN dropped to 85.0% during low
light conditions, and SVM’s results were reduced to 79.3%
when operating in this environment. HECI utilizes evolu-
tionary optimization and fuzzy logic to boost its resistance
against such uncertainties because traditional models fall
short of managing such unpredictability with similar effec-
tiveness. The last five years have presented more concerns
about AI’s flexibility so that the models developed can run
effectively in different circumstances. The HECImodel has
shown a good balance between detection error rate, data
versatility, and throughput speed. This has made AI much
better at monitoring tropical infrastructures across various
data types and sizes [30].
The practical significance of these findings is substan-

tial. Integrating AI-based detection systems with the HECI
model allows operators to scale up and achieve real-time in-
frastructure monitoring. This proactive approach helps de-
tect structural issues before they escalate, reducing the need
for manual inspections, saving time and resources, and im-
provingmonitoring accuracy [31]. Sensitivity analysis con-
ducted in this study confirmed the reliability of the model,
as rankings of AI models remained consistent across pa-
rameter adjustments (e.g., detection rate and precision) that
vary based on user specifications for criteria such as detec-
tion accuracy and processing speed [32].
Previous studies have successfully applied fuzzy logic

and multi-criteria decision-making with AI systems. How-
ever, the HECI model addresses critical limitations of con-
ventional AI approaches by explicitly handling uncertain-
ties, providing a more nuanced understanding of AI per-
formance [33]. This capability is particularly relevant for

industries such as energy, telecommunications, and trans-
portation, where precise infrastructure monitoring is essen-
tial for maintaining operational continuity [34].
The proposed HECI model improves the infrastructure

monitoring process and contributes to global sustainability
goals by enhancing accuracy and reliability. It enables pre-
dictive maintenance, reducing the risk of sudden failures
and associated man-hour losses. By adopting a proactive
maintenance and upgrade strategy, the model minimizes
environmental and economic impacts, mitigating the pro-
gression to critical states that require emergency repairs and
reducing downtime caused by infrastructure failures.

5.1 Limitations and potential improvements
for real-world implementation

Multiple restrictions have been observed in theHECImodel
performance, although it shows exceptional results in de-
tection capability. Additional refinements of the model
are needed to make it process large-scale monitoring ap-
plications in real-time while maintaining accurate detec-
tions. The system performance can be improved through
future development, which will reduce both evolutionary
optimization process time and fuzzy logic runtime without
lessening detection precision. HECI exists in its present
form for detecting towers and lines that occur in passage-
ways. The model needs adjustment to accommodate dif-
ferent infrastructure structures (such as bridges and pipes)
along with environmental conditions when expanded be-
yond passage detection applications. The model’s operat-
ing efficiency depends entirely on the quality and degrees of
factual variation found in training datasets. Real-world de-
ployments require extending training data scope to different
environmental conditions along with structural forms since
this will boost model practicality across a broad spectrum
of use cases.

6 Conclusion
This work proposed a new method for identifying towers
and lines in passages using the HECI model. The find-
ings provide evidence for the effectiveness of the suggested
model in different difficult scenarios that are not specified
in other learning models, such as CNN, SVM, and RF. In
more general conditions, HECI has reached a 99.47% de-
tection rate. When tested in low illumination, glare, and
partial occlusion, it was able to perform to high standards
and, therefore, can be coined to be receptive to real-world
scenarios. Evolutionary optimization techniques such as
the genetic algorithm (GA) and particle swarm optimiza-
tion (PSO) significantly improved the detection, supporting
the importance of evolutionary algorithms in sharpening
model parameters. The sensitivity analysis shows howwell
the developed model can predict and be robust at different
detection criteria weights. The confusion measure matrix
shows that themodel has high accurate favourable detection
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rates and low false positive detection rates. Meanwhile, the
HECI model provides a reasonable level of detection accu-
racy and computational time prior to its application in real-
life applications. The results affirm that the HECI model
offers great promise for the practical and effective solving
of infrastructure monitoring and other detection problems
in open arenas. This paper presents a detailed analysis of
the HECI model and demonstrates that it possesses highly
desirable characteristics in terms of performance and scal-
ability. Based on these findings, the study argues that this
model can and should be considered suitable for application
in the context of intelligent detection systems, which is the
immediate field of interest for the majority of representa-
tives of this industry.
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