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The rapid rise in teenage internet use has heightened the need for effective e-safety and cybersecurity mea-
sures. However, existing models often lack the precision and adaptability required to address the complex
and evolving patterns of teenage online activity. This study proposes TransDenseInceptionNet (TDINet),
a hybrid deep learning model that integrates DenseNet for feature reuse, InceptionNet for multi-scale fea-
ture extraction, and Transformer layers for long-range interactions. The model is trained on a longitudinal
dataset (2017-2024) from Texas and California, which includes key cybersecurity indicators such as device
types, social media usage, malware detection, password strength, and security incidents. To address data
imbalances, outliers, and complex feature interactions, we introduce a robust preprocessing pipeline incor-
porating Dynamic Feature Imbalance Compensation (DFIC), Cumulative Anomaly Weighting (CAW), and
Adaptive Projection Encoding (APE). Additionally, Contextual Feature Synthesis (CFS) enhances predic-
tion accuracy by capturing intricate interaction patterns. Simulations conducted using TensorFlow GPU
in Google Colab demonstrate that TDINet achieves 97% accuracy, 0.99 AUC, 96.5% F1-score, and supe-
rior performance in precision (96.8%) and recall (97.1%) compared to CNN, LSTM, and GNNmodels. The
novel preprocessing techniques improve feature representation, leading to more robust and stable learning.
Furthermore, novel evaluation metrics, including Adaptive Interaction Efficiency (AIE), Temporal Stabil-
ity Index (TSI), and Anomaly Sensitivity Factor (ASF), validate TDINet’s reliability in detecting anomalies
with low false positive rates and maintaining prediction stability. The results underscore that TDINet ana-
lyzes historical data to classify behaviors and forecast cybersecurity risks based on learned trends, offering
a scalable and impactful solution for improved cybersecurity in adolescent online behavior.

Povzetek: Model TransDenseInceptionNet (TDINet) omogoča nkvalitetno napovedovanje vedenjskih in
varnostnih tveganj mladostnikov z uporabo globokega učenja na realnih e-varnostnih podatkih iz ZDA.

1 Introduction

Smartphones, tablets, and laptops have changed communi-
cation among young people. Internet usage provides ed-
ucation, social networking, and pleasure but also exposes
them to cyber threats they may not comprehend. Teenagers
are at a higher risk of cyber threats due to increased online
activity, engagement in social networking, and lower cy-
bersecurity awareness [1]. Many unwittingly divulge sensi-
tive data, rendering them vulnerable to fraudsters on social
media sites like Facebook, Twitter, and Instagram [2]. In
the UAE, kids upload objectionable information and suffer
cyber threats, affecting their safety and social connections.
Despite national programs like Malaysia’s “Click Wisely,”
parents often fail to supervise their children’s internet us-
age, leaving them vulnerable to cyberbullying, phishing,
and malware [3]. Social media connects people and offers
employment chances, but fraudsters use social engineering

to steal personal data. Lack of cybersecurity understanding
among teens exacerbates these concerns, making cyberse-
curity education crucial. Using shortened URLs on sites
like YouTube and Snapchat, modern phishing and cyber-
crime strategies deceive youth into providing personal in-
formation [4]. Cyberbullying has significant psychological
impacts, yet many kids don’t know how to report it. Predic-
tive cybersecurity products for adolescent e-safety aware-
ness are in demand. Using machine learning and AI for
real-time internet monitoring give teenagers personalized
safety suggestions, enabling educated decisions [5]. Cyber
risks develop quickly. Thus, current cybersecurity efforts
are insufficient.

The following important issues are intended to be an-
swered by this study: One question is: how can we use real-
world e-safety data to train deep learning to accurately cat-
egorize and forecast teenage cybersecurity risks? What are
the ways in which preprocessing strategies that rely on fea-
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ture interaction make models more resistant to data imbal-
ances and noise? (3) How does TDINet outperform other
models and what are its generalizability and performance
benefits? These questions demonstrate the need of TDINet
for assessing cybersecurity risks and direct our technique.
The proposed TransDenseInceptionNet (TDINet) pre-

dicts andmitigates cybersecurity vulnerabilities in real time
using DenseNet, InceptionNet, and Transformer architec-
tures. Using online behavior and complex feature interac-
tions, TDINet enhances detection accuracy and provides in-
dividualized safety suggestions for teenagers, encouraging
safer internet usage [6]. Following are the contributions of
this work:

1. An enhanced deep learning model is proposed
named TransDenseInceptionNet (TDINet) that inte-
grates DenseNet, InceptionNet, and Transformer ar-
chitectures to improve categorizing adolescent online
behaviors and cybersecurity threats.

2. Implemented innovative preprocessing methods, such
as Dynamic Feature Imbalance Compensation (DFIC)
and Cumulative Anomaly Weighting (CAW), to ad-
dress data imbalances, anomalies, and outliers within
the dataset.

3. Proposed Contextual Feature Synthesis (CFS) pro-
duces new features, including Temporal Interaction
Features, Behavioural Ratio Metrics, and Cumulative
Risk Indicators, to elucidate complicated connections
and enhance prediction accuracy.

4. Attained exceptional classification performance with
97% accuracy and robust results in innovative mea-
sures like Adaptive Interaction Efficiency (AIE), Tem-
poral Stability Index (TSI), and Anomaly Sensitivity
Factor (ASF).

2 Related work
Teenage internet usage has boosted cybersecurity research
on privacy breaches, cyberbullying, and harmful content.
ML and DL have been utilized in several studies to detect
and manage these risks.
In a deep learning framework, the author employed

CNNs to identify dangerous content and detect social me-
dia cyberbullying. The model detected abusive language
and threats but struggled with subtle cyberbullying like sar-
casm or hidden undertones [7]. LSTM and Transformer ar-
chitectures used a hybrid deep learning model better to de-
tect social media privacy breaches than support vector ma-
chines. However, its computational complexity hampered
real-time applications [8]. Researchers used Random For-
est and Gradient Boosting Machines (GBM) to detect on-
line threats, including phishing, identity theft, and cyber-
stalking [9]. The need for tagged datasets made scalabil-
ity problematic; however, text, user behavior, and meta-
data improved detection rates. A deep neural network

(DNN) categorized adolescent social media photographs
and videos as harmful. Although effective, the system
struggled in complex situations needing contextual knowl-
edge.
In another study, an autoencoder-based algorithm de-

tected phishing and malware abnormalities. Although the
autoencoder showed promise for real-time identification,
its high false-positive rate rendered it inappropriate for di-
verse online content [10]. Researchers used graph neural
networks to recognize phishing attacks on user-device con-
nections. Although effective, the method required signif-
icant computational resources [11] Federated learning to
spot cyber threats across devices and protect privacy was
suggested to lessen the risks of centralized data storage.
Communication overhead and accuracy issues from non-
uniform data distribution were limitations [12].
The study exploited semantic context to detect cyber-

bullying in real-time chat applications using a bidirectional
LSTM model. However, the algorithm has trouble detect-
ing implicit bullying, including exclusion or passive antag-
onism [13]. Robust detection of teenage phishing attempts
was achieved using capsule networks (CapsNets) to iden-
tify geographical and hierarchical data linkages. However,
CapsNets need more computer power than simpler models
[14]. One study identified cyberstalking by detecting pat-
terns in big text data sequences using RNNs and attention
processes. Although effective at text detection, the model
could not recognize multimedia content, which is crucial
for cyberstalking detection [15]. Table 1 shows the sum-
marized view of the current literature.
These studies indicate that ML and DL can detect cyber-

bullying, phishing, cyberstalking, and harmful content to
enhance teenage cybersecurity. However, processing costs,
large tagged datasets, and multimedia analysis difficulties
continue. TransDenseInceptionNet (TDINet) builds a scal-
able and efficient model using DenseNet, InceptionNet, and
Transformer architectures. TDINet overcomes system lim-
its with real-time identification, enhanced feature extrac-
tion, and better handling of intricate teenage online interac-
tions.

3 Problem statement

Despite significant advancements in machine learning
(ML) and deep learning (DL) for cybersecurity aware-
ness, existing approaches face critical challenges in multi-
scale feature extraction, long-term behavioral understand-
ing, computational efficiency, false-positive reduction, and
data imbalance handling. The following table outlines these
gaps and explains how TDINet overcomes them.
A scalable, multi-scale, context-aware framework that

can efficiently and effectively forecast cyber hazards is ur-
gently needed due to the shortcomings of current cyberse-
curity technologies. Current models generally fail to extract
both local and global trends, restricting their capacity to ad-
equately assess adolescent internet habits. A good cyberse-
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Table 1: Summary of related works
ref Methodology Achievements Challenges
[7] CNNs Identified dangerous

content and detected
social media cyber-
bullying

Struggled with subtle
cyberbullying, such
as sarcasm or hidden
undertones

[8] Hybrid model with
LSTM and Trans-
former

Detected social me-
dia privacy breaches
more effectively than
SVM

High computational
complexity, which
limited real-time
applications

[9] Random Forest and
Gradient Boosting
Machines (GBM)

Detected online
threats like phishing,
identity theft, and
cyberstalking

Scalability issues due
to the need for tagged
datasets; improved
detection with text,
user behavior, and
metadata

[10] Autoencoder-based
algorithm

Detected phishing
and malware anoma-
lies

High false-positive
rate, which limited
effectiveness for di-
verse online content

[11] Graph Neural Net-
works (GNN)

Recognized phishing
attacks on user-
device connections

Required significant
computational re-
sources

[12] Federated Learning Detected cyber
threats across
devices while pre-
serving privacy

Faced communica-
tion overhead and
accuracy issues from
non-uniform data
distribution

[13] Bidirectional LSTM Detected cyberbully-
ing in real-time chat
applications

Difficulty detecting
implicit bullying,
such as exclusion or
passive antagonism

[14] Capsule Networks
(CapsNets)

Detected teenage
phishing attempts
by identifying ge-
ographical and
hierarchical linkages

Required more com-
putational power
than simpler models

[15] RNN with attention
mechanisms

Identified cyberstalk-
ing patterns in large
text sequences

Effective for text de-
tection but unable to
recognize multime-
dia content, essential
for cyberstalking
detection

curity system reuses features to boost computing efficiency
and reduce redundancy. Transformer-based designs pro-
vide long-term behavioural dependency modelling, which
is necessary since cyber threats develop. Cyber threat de-
tection’s high false-positive rate undermines cybersecurity
advice. To accurately identify threats, a robust system
must detect anomalies and minimise false alarms. Many
current techniques have uneven class distributions, under-
representing infrequent but highly important security risks,
biassing predictions. A good architecture dynamically bal-
ances class distributions to enhance cybersecurity risk cat-
egory learning. Finally, as online activities grow in num-
ber and complexity, cybersecurity models must be com-
putationally optimised for real-time monitoring without re-
source overuse.
TransDenseInceptionNet (TDINet), a hybrid deep learn-

ing framework combining DenseNet, InceptionNet, and
Transformer architectures, meets these needs. These three
complementing architectures provide TDINet a more accu-
rate, scalable, and improved cyber threat detection and ado-
lescent e-safety solution.

Table 2: Comparison of existing approaches and TDINet’s
solutions
Limitation Gaps in Existing Approaches How TDINet Addresses It
Limited Multi-Scale
Feature Extraction

CNNs and LSTMs fail to cap-
ture both fine-grained and coarse-
grained patterns required for cyber-
security threat analysis [7, 8]. Tra-
ditional architectures extract local
features but lack hierarchical learn-
ing capabilities.

TDINet incorporates InceptionNet,
which uses multi-scale convolu-
tional layers to extract hierarchi-
cal cybersecurity patterns at differ-
ent resolutions, improving classifi-
cation performance.

Inefficient Feature Reuse
and High Computational
Cost

Deep models like Capsule Net-
works (CapsNets) and Graph Neu-
ral Networks (GNNs) require exces-
sive computation, making them im-
practical for real-time cybersecurity
monitoring [11, 14].

TDINet employs DenseNet’s fea-
ture reuse mechanism, ensuring
efficient gradient flow and reducing
computational redundancy while
maintaining high accuracy.

Inability to Model Long-
Term Behavioral Con-
text

Many existing models, including
CNNs and autoencoders, fail to
capture long-range dependencies in
teenage online behavior, limiting
contextual awareness of cyber risks
[10, 15].

TDINet integrates Transformer
layers, leveraging self-attention to
model global feature interactions,
enhancing long-term behavioral
understanding in cybersecurity
predictions.

High False Positives in
Cyber Threat Detection

Autoencoder-based methods and
traditional anomaly detection tech-
niques exhibit high false-positive
rates, making cybersecurity recom-
mendations unreliable [9, 10].

TDINet introduces Cumulative
Anomaly Weighting (CAW) and
Adaptive Interaction Efficiency
(AIE), significantly reducing false
alarms while maintaining sensitiv-
ity to real threats.

Challenges in Handling
Class Imbalance

Many models struggle with imbal-
anced cybersecurity datasets, where
cyber threats are significantly
outnumbered by normal activi-
ties, leading to biased predictions
[12, 13].

TDINet utilizes Dynamic Feature
Imbalance Compensation (DFIC)
and Contextual Feature Synthesis
(CFS) to re-weight features dynam-
ically, ensuring balanced training
across different cybersecurity risk
categories.

Scalability and Real-
Time Cybersecurity
Monitoring Issues

Existing approaches, especially
GNNs and RNN-based models, re-
quire extensive labeled datasets and
computational resources, making
them difficult to deploy in real-time
settings [11, 12, 14].

TDINet is designed for scalability,
integrating lightweight feature ex-
traction and self-attention mecha-
nisms that optimize processing time
while maintaining high predictive
accuracy.

4 Proposed system model
This work proposes a TransDenseInceptionNet (TDINet)
framework, which integrates DenseNet, InceptionNet, and
Transformer architectures to create a robust deep learning
model for classifying teenage online behaviors and cyber-
security risks. DenseNet allows each layer to accept in-
puts from all preceding layers to improve feature reuse
and reduce the vanishing gradient issue. Parallel convo-
lutional filters of different sizes allow InceptionNet to ex-
tract fine-grained and coarse data features. The Trans-
former component uses self-attention methods to record
long-range relationships between distant features, giving
global context throughout feature space. TDINet’s hybrid
design lets it comprehend complicated, hierarchical data re-
lationships and scale across feature dimensions, making it
ideal for cybersecurity classification. The layered nature of
TDINet allows it to capture local patterns and worldwide
linkages, improving its prediction of adolescent users’ e-
safety awareness, malware exposure risk, and cybersecurity
behavior. The modular view of proposed system is shown
in Figure 1.

4.1 Dataset collection

This research used publicly accessible internet data from
Texas andCalifornia educational institutions and homes, in-
cluding network activity logs and e-safety monitoring sys-
tems [16]. Table 3 displays adolescent interactions per hour
on different online platforms, such as social media, educa-
tional websites, and other internet services, from January
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Figure 1: Proposed system architecture

2017 to October 2024. Texas and California were cho-
sen for their diversified internet use, state-level cyberse-
curity legislation, and urban and suburban demographics.
These nations also do considerable cybersecurity research
and publish real-world cybersecurity events, security logs,
and behavioral patterns. By concentrating on these places,
the dataset represents adolescent cybersecurity activities
broadly, boosting prediction model generalizability across
geographical and social situations. The dataset was prepro-
cessed and anonymised while keeping behavioral features
for cybersecurity awareness study to protect data integrity
and privacy. An extensive dataset of online behaviors, se-
curity events, and device interactions allows for a thor-
ough study of e-safety awareness and cybersecurity hazards
among teens in real-world digital contexts.

4.2 Preprocessing and data balancing
Several preprocessing techniques were implemented to ad-
dress imbalanced distributions, temporal dependencies, and
anomalies. Dynamic Feature Imbalance Compensation
(DFIC) adjusts feature weights based on skewness. :

DFIC(ψi) =
1

1 + e−α(µi−σi)
(1)

where µi is the mean, σi the standard deviation, and α
the scaling factor. Outliers weremanaged usingCumulative

Table 3: Dataset features overview
S.No Features Short Description S.No Features Short Description
1 Device Type Type of device used (Mobile, Laptop,

etc.)
14 Education Content

Usage
Level of engagement with educational
content

2 Malware Detection Whether malware was detected on the
device

15 Age Group Categorization of users into age groups:
<13 (pre-teens), 13-16 (mid-teens), and
17-19 (late teens), primarily focusing on
teenagers but including some pre-teens
for comparative analysis

3 Phishing Attempts Number of phishing attempts experi-
enced

16 Geolocation Location of network access (US, EU,
etc.)

4 Social Media Usage Usage frequency of social media plat-
forms

17 Public Network Us-
age

Whether a public network was used

5 VPN Usage Whether a VPN was used during online
activity

18 Network Type Type of network connection (WiFi, Cel-
lular, etc.)

6 Cyberbullying Re-
ports

Whether cyberbullying incidents were
reported

19 Hours Online Number of hours spent online

7 Parental Control
Alerts

Alerts triggered by parental control soft-
ware

20 Website Visits Average number of distinct websites vis-
ited per hour, aggregated over sessions.

8 Firewall Logs Number of blocked or allowed network
connections

21 Peer Interactions Frequency of direct peer-to-peer interac-
tions (e.g., messages, social media en-
gagement, group chats)

9 Login Attempts Number of login attempts made 22 Risky Website Vis-
its

Whether visits to risky websites occurred

10 Download Risk Risk level associated with downloaded
files

23 Cloud Service Us-
age

Whether cloud services were used

11 Password Strength Strength of passwords used (Weak, Mod-
erate, Strong)

24 Unencrypted Traffic Whether unencrypted network traffic
was accessed

12 Data Breach Notifi-
cations

Alerts regarding compromised personal
information

25 Ad Clicks Total number of online advertisement
clicks per session.

13 Online Purchase
Risk

Risk level of online purchases made 26 Insecure Login At-
tempts

Number of login attempts flagged as in-
secure due to weak passwords, unen-
crypted connections, or multiple failed
attempts.

AnomalyWeighting (CAW), which assignsweights based on
deviation from the median:

CAW(xi) =
|xi − median(λi)|

1 +
∑

|xj − median(λi)|
(2)

Temporal Interaction Encoding (TIE) generated interac-
tion terms for time-dependent features:

Tτk
=
∑

λr(τk) · δ(τk−1, τk+1) (3)

where λr(τk) is the feature value at time step τk. Anoma-
lies were blended with contextual records via Contextual
Anomaly Blending (CAB):

CAB(xp) = θxp + (1 − θ) ·
1

l

∑
xs (4)

Categorical features were encoded using Hierarchical Cat-
egorical Frequency Encoding (HCFE):

HCFE(χt) =
1

1 + log(count(χt))
(5)

Normalizing distorted feature distributions via adaptive
quantile transformation (AQT) guarantees more consistent
and Gaussian-like data scaling, hence strengthening the sta-
bility of deep learning models. Using outlier identification,
feature-wise standardization, and robust normalizing meth-
ods to increase feature consistency and model interpretabil-
ity, Noise Compensated Feature Scaling (NCFS) was also
used to handle noise coming from sensor fluctuations and
missing data.

NCFS(ym) =
ym − noise_estimate(ψm)

κm

(6)

For data balancing, Progressive Synthetic Oversampling
with Dynamic Adjustments (PSODA) generated synthetic
samples for minority classes:

θnew = θj + ζ(θneighbor − θj) (7)

Class weights were dynamically adjusted usingDynamic
Class Weight Adjustment (DCWA):

Wclass =
1

1 + e−δ(ρdesired−ρcurrent)
(8)
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Adaptive Gaussian Smoothing (AGS) balanced contin-
uous feature distributions by adjusting the mean and vari-
ance. These techniques ensured balanced, normalized data,
enhancing model accuracy and stability.

4.3 Composite feature relevance optimizer
(CFRO) and contextual feature
synthesis (CFS)

One hybrid feature selection approach that finds the most
useful features while decreasing redundancy is the Com-
posite Feature Relevance Optimizer (CFRO). The SIM
and RWE, or Significance Index Measure and Redundancy
Weight Estimation, are the two main methods it uses. The
SIM component gives more weight to characteristics with
greater variability and stronger correlations by evaluating
each feature ξi based on its Pearson correlation ρ(ξi, y) and
its variance σ(ξi) with the target variable. It may be stated
as:

SIM(ξi) = ρ(ξi, y) ·
σ(ξi)∑n
k=1 σ(ξk)

(9)

The RWE algorithm finds the mutual information I(ξi, ξj)
between feature pairs ξi and ξj , normalizes it by their com-
bined entropy H(ξi) + H(ξj), and removes features that
contribute too much overlap while keeping important at-
tributes. This eliminates redundant features. The function
for estimating redundancy is expressed as:

R(ξi, ξj) =
I(ξi, ξj)

H(ξi) +H(ξj)
(10)

CFRO uses Multi-Objective Selection through Opti-
mization (MOSO) to balance feature relevance and redun-
dancy. To achieve an optimal balance, the framework op-
timizes a trade-off between maximizing feature relevance
and minimizing redundancy. This is accomplished by se-
lecting a subset T that optimizes the objective function:

max
T

∑
ξi∈T

SIM(ξi)− β
∑

ξi,ξj∈T

R(ξi, ξj)

 (11)

where the trade-off parameter β controls the balance be-
tween feature relevance and redundancy. A higher β prior-
itizes reducing redundancy, while a lower β favors feature
relevance. To quantify the achieved balance, the Feature
Relevance-to-Redundancy Ratio (FRR) is introduced:

FRR =

∑
ξi∈T SIM(ξi)∑

ξi,ξj∈T R(ξi, ξj) + ϵ
(12)

An ideal feature set for predictive modeling is one with a
high FRR, which means that the characteristics that were
chosen keep their high relevance while reducing redun-
dancy. According to the results of the cross-validation,
CFRO uses Adaptive Weight Adjustment (AWA) to change
the relevance and redundancy weights (λSIM and λRWE)

when needed. This provides flexibility while working with
various datasets. Here is the definition of the updating
mechanism:

λSIM = λSIM · (1+δCV), λRWE = λRWE · (1−δCV) (13)

where δCV is the measure of the efficiency gain via cross-
validation:

δCV =
Validation Accuracy Improvement

Previous Accuracy
(14)

When the value of δCV is positive, the model gives more
weight to eliminating redundancy and less to boosting λSIM,
but vice versa when the value is negative. The feature se-
lection procedure is kept optimum for different data dis-
tributions by this adaptive adjustment. Contextual Feature
Synthesis (CFS) is also used to enhance the dataset by cre-
ating additional features that may capture complicated vari-
able connections. This makes the feature set more expres-
sive. In order to enhance the dataset, CFRO selects high-
relevance attributes, whereas CFS synthesizes contextual
features. The purpose of Temporal Interaction Features
(TIF) is to identify changes in behavior over time by de-
scribing the correlations between session length and mate-
rial consumption. This is the TIF formula:

ϑTIF =

(
τsession

1 + e−θτsession

)
·
(

τcontent
1 + e−θτcontent

)
(15)

The percentage of security incidents as a percentage of all
user interactions is one example of a Behavioral Ratio Met-
ric (BRM) that attempts to quantify security-related behav-
iors. Variations in risk exposure are highlighted by this
statistic, which is computed as:

ϑBRM =
τsecurity

τinteractions + ϵ
(16)

Furthermore, the Contextual Risk Index (CRI) compiles
risk-related data from a variety of behavioral indications,
such as security warnings, possible breaches, and login at-
tempts. The model for this is:

ϑCRI = κ1 · τlogins + κ2 · τalerts + κ3 · τbreaches (17)

CFRO removes superfluous or weakly relevant variables
from the input feature set, whereas CFS adds important in-
teractions and behavioral patterns. These components op-
timize feature selection and representation to improve the
model’s predictive performance, resulting in more accurate
cybersecurity risk assessment and anomaly detection.

4.4 Classification method:
TransDenseInceptionNet (TDINet)

This work introduces a novel classification model
TDINet)combining DenseNet, InceptionNet, and Trans-
former architectures. TDINet uses DenseNet, Inception-
Net, and Transformer layers to simulate cybersecurity risk
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and awareness. DenseNet helps reuse features and avoid
the vanishing gradient issue, preserving online activity
and security patterns across network levels. Standard
CNNs may lose key details due to depth-related feature
degradation, whereas DenseNet improves information
flow, enabling the model to preserve subtle cybersecurity
patterns over numerous layers. InceptionNet’s multi-scale
feature extraction helps capture hierarchical cybersecu-
rity interactions. InceptionNet’s parallel convolutional
filters provide fine-grained and broad-spectrum feature
learning for adolescent online activities, which encompass
micro-level (password strength, social media activity) and
macro-level (long-term online habits, anomalous trends)
patterns. Cybersecurity categorization benefits from this
skill since risks may arise from individual episodes and
long-term behavioral patterns. Finally, Transformer layers
let TDINet record cybersecurity feature dependencies
and contextual connections. Transformers’ self-attention
mechanism preserves and weighs critical features from
earlier interactions, making TDINet’s cybersecurity risk
predictions more stable and context-aware than recurrent
architectures like LSTM or GRU. TDINet is a unique
and resilient deep learning framework for real-time cy-
bersecurity awareness prediction that combines feature
reuse (DenseNet), multi-scale learning (InceptionNet), and
long-range awareness (Transformers).
The dataset has complicated feature interactions and hi-

erarchical structures. Therefore, this hybrid model was
chosen to represent local patterns and long-range connec-
tions. TDINet’s highly linked layers, multi-scale feature
extraction, and self-attention processes enable it to learn
low-level and high-level representations for complex clas-
sification problems. Figure 2 for the suggested architecture.

Figure 2: Proposed TDINet architecture

DenseNet component The first portion of TDINet,
DenseNet [22], uses the dense connection to improve fea-
ture reuse and address the vanishing gradient issue. Each
DenseNet layer takes input from all preceding layers, max-
imizing information flow. Layer t output, Gt, is calculated
as:

Gt = ϕ (Vt [G0,G1, . . . ,Gt−1]) (18)
Vt represents the weight matrix of the t-th layer, and

[G0,G1, . . . ,Gt−1] concatenates all previous layer outputs.

The model becomes non-linear with the activation function
ϕ. A dense connection encourages feature reuse, optimiz-
ing model representation while decreasing parameters.

InceptionNet component The TDINet architecture in-
cludes InceptionNet for multi-scale feature extraction. In-
ceptionNet uses parallel convolutional layers with 1x1, 3x3,
and 5x5 filter sizes to capture fine-grained and coarse infor-
mation. The output of an Inception block Jk is:

Jk = [h1x1(Y), h3x3(Y), h5x5(Y), q(Y)] (19)

The outputs of the 1x1, 3x3, and 5x5 convolutions are
represented by h1x1(Y), h3x3(Y), and h5x5(Y), while q(Y)
is the max-pooling operation on input Y. This multi-scale
extraction lets the model capture tiny and big dataset char-
acteristics at different geographical resolutions. Batch nor-
malization stabilizes training after each Inception block to
avoid internal covariate change and keep activations within
a tolerable range.

Transformer component The Transformer component,
TDINet’s main innovation, captures long-range interdepen-
dence and global interactions in feature space. The Trans-
former relies on the self-attention mechanism to concen-
trate on relevant things independently of their spatial place-
ments. According to TDINet, the chronological sequence
of user actions like login attempts, website visits, and se-
curity warnings is called spatial placement. Because cy-
bersecurity abnormalities might happen at unpredictable in-
tervals, traditional methods that depend on this ordering to
find patterns are less effective. Through the use of self-
attention, TDINet is able to dynamically prioritize features
irrespective of their chronological order, enabling it to iden-
tify security threats even in cases when behavioral patterns
do not follow predicted sequences. The self-attention oper-
ation for input Z is:

Attention(A,B,C) = softmax
(
ABT

√
db

)
C (20)

The self-attention mechanism encodes input features as
a matrix A of form (N, d), whereN represents the number
of behavioral occurrences and d represents the feature di-
mension. The model converts A into query, key, and value
matrices. The query matrix B has the form (N, dk), where
dk is the attention Attention scores are calculated using the
key matrix C N, dk. The attention mechanism calculates
feature interactions and dependence importance. This helps
TDINetmodel cybersecurity data long-term behavioral cor-
relations. This is significant in tasks where distant data
characteristics interact and influence prediction. TDINet
computesmany attention heads in parallel to provide amore
complete representation and concatenates their results. De-
fine multi-head attention:
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MultiHead(A,B,C) = [head1, head2, . . . , headn]UO
(21)

Each head analyzes a portion of the feature space, and
UO is the learned output projection matrix. This improves
the model’s capacity to collect several feature map proper-
ties.

Layered architecture of TDINet TDINet’s layered de-
sign includes these components. Several DenseNet layers
harvest and reuse features from incoming data Y. Incep-
tionNet receives the output from these layers, GT :

Jk = [h1x1(GT ), h3x3(GT ), h5x5(GT ), q(GT )] (22)

The multi-scale representation Jk is coupled with the
DenseNet layer output. The Transformer layers capture
long-range dependencies using global attention to the com-
bined features. The Transformer component outputs:

P = Transformer(Jk) +GT (23)

The output P with local and global features is sent to a
fully connected layer for classification. Stochastic gradient
descent optimizes the cross-entropy loss-trained model.

4.5 Performance evaluation metrics
Traditional criteria like accuracy, precision, recall, and
F1-score grade TDINet on performance. For unbalanced
datasets, F1-score balances precision and recall, whereas
accuracy counts overall correctness, precision quantifies
the fraction of properly predicted positive occurrences, and
recall indicates the model’s ability to recognize genuine
positives.
Besides these basic metrics, we present three unique as-

sessment measures: AIE, TSI, and ASF. Features’ predic-
tive loss effects are quantified using AIE to evaluate model
performance. Comparing the loss function with and with-
out particular feature dependencies shows interaction effi-
ciency and directly acknowledges feature interactions. By
averaging changes across various time periods, TSI pro-
vides a more complete estimate of temporal stability than
two consecutive ones. Both sensitivity and penalty factors
are used in ASF to identify abnormalities while limiting
false positives.

AIE =
1

M

M∑
i=1

(
L(θpi , θqi ) − L(θpi )

L(θpi )

)

TSI = 1 −
1

N

N∑
t=1

|Q(t) − Q(t+ 1)|
Q(t)

ASF =
1

B

B∑
j=1

(
TPj

TPj + FNj

)
− ν ·

FPj

FPj + TNj

(24)

AIE quantifies feature interactions to improve model as-
sessment, TSI stabilizes predictions across time frames,

and ASF balances anomaly detection sensitivity with false-
positive reduction. These unique measurements provide
more information into TDINet’s performance than tradi-
tional approaches.

5 Simulation and results

5.1 Simulation setup
Thorough simulations were conducted on the GPU environ-
ment of Google Colab using TensorFlow 2.9 on a Dell Core
i7 12th Gen system with 32GB RAM and an 8-core CPU. A
NVIDIA RTX 3090 GPU (24GB VRAM) was utilized for
model training to speed up deep learning activities. A bal-
anced assessment technique was achieved by splitting the
dataset into 70% training, 15% validation, and 15% testing.
Hyperparameters and Training Configuration: The

Adam optimizer was used with an initial learning rate of
0.0005 that declined by 0.1 per 20 epochs to increase con-
vergence stability. We chose categorical cross-entropy loss
since the challenge was multi-class categorization. The
model was trained for 50 epochs using 64 batches to bal-
ance computational effort and gradient stability. Trans-
former layers used scaled dot-product attention to capture
long-range relationships, whereas DenseNet and Inception-
Net used ReLU activation functions. To avoid overfitting,
dropout (0.3 rate) and L2 regularization (λ = 0.0001) were
used. To stabilize learning, all main layers also used batch
normalization. With 10 epochs of patience, the early stop-
ping mechanism stopped training when validation perfor-
mance plateaued.
Runtime Statistics: Averaging 3.5 minutes per epoch,

training took around 3 hours. The final product was
212MB, suitable for cloud-based security monitoring so-
lutions. One sample’s inference time was 15 milliseconds,
enabling real-time cybersecurity incident detection.
Model validation and reproducibility: The architecture

was thoroughly verified on cloud-stored IoT data using ex-
ploratory data analysis (EDA) methods including feature
distributions, outlier identification, and trend analysis be-
fore training to guarantee robustness. Grid search was used
to tune learning rates, batch sizes, and regularization param-
eters. This methodical methodology ensures that TDINet is
scalable and generalizable, giving actionable cybersecurity
risk assessment insights despite the complexity of multi-
horizon predictive cybersecurity jobs.

5.2 Results
Figure 3 shows the frequency of user devices and social
media use. Laptops, tablets, and desktops follow mobile
devices on the left. Device security issues arise since more
internet users utilize mobile devices. Social media use fre-
quency is indicated on the right. Most individuals use social
media mildly, seldom intensely. Most social media users
seldom utilize it. Higher social media use may indicate cy-
bersecurity hazards. User behavior emphasizes device type
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and social media use in e-safety and cybersecurity risk eval-
uations.

Figure 3: Frequency distribution of user device types and
social media use behaviors

Figure 4: Feature descriptions of the dataset, including de-
mographic, behavioral, and security-related attributes

Figure 4 shows user behavior dependent on password se-
curity and age demographics. User password strength fre-
quency is shown on the left. Few users employ interme-
diate or strong passwords; most rely on weak ones. Hack-
able passwords are a major cybersecurity issue. Right plot
shows user age distribution. Most users are 13-16, then 17-
19 and under 13. Since younger users may engage in dan-
gerous online activities, e-safety and cybersecurity educa-
tion should be targeted to them. Users’ security practices
stress stronger passwords and younger demographic secu-
rity awareness.

Figure 5: Correlation of the selected features

Figure 5 demonstrates the correlation matrix of cho-
sen adolescent cybersecurity and e-safety elements. Each

heatmap column indicates the correlation coefficient be-
tween two characteristics, with values between 0.0 and
1.0 (moderate to strong). Darker red and blue tints im-
ply greater positive and negative associations, respectively.
Device Type, Malware Detection, Social Media Usage, and
E-Safety Awareness Score show major variable associa-
tions, helping clarify dataset feature dependencies and in-
teractions.

Figure 6: Feature importance of features

Figure 6 rates features by their influence on cybersecurity
and e-safety outcomes. “Age Group” is at the top, demon-
strating that demographics affect cybersecurity. User pro-
tection is emphasized with “Malware Detection” and “VPN
Usage” ranking high. Also important are “Firewall Logs,”
“Website Visits,” and ”Download Risk,” which empha-
size user activity and security data. “Password Strength,”
“Cyberbullying Reports,” and “Data Breach Notifications”
score lower but help security evaluations. This figure iden-
tified critical decision-making and risk-evaluation criteria.

Figure 7: Confusion matrix of proposed TDINet

Figure 7 shows the model’s E-Safety Awareness Score,
Malware Exposure Risk, and Cybersecurity Behaviour Cat-
egory prediction. The first matrix accurately classifies E-
Safety Awareness as “Low,” “Moderate,” or ”High,” with
minimal misclassifications between “Low” and “High.”
The model predicts 88 “No” and 69 “Yes” occurrences in
the second matrix for Malware Exposure Risk with few
errors. The third matrix accurately identifies people as
”Safe,” ”Neutral,” or ”Risky,” with minimal misclassifica-
tions. With minimal mistakes, the model predicts e-safety
awareness, malware risk, and cybersecurity behavior.
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Figure 8: TDINet train-test accuracy vs epoch

In Figure 8, two side-by-side charts compare training,
test accuracy, and loss to show TDINet model performance
throughout 30 epochs. Epochs improve training and test
accuracy on the left. After 30 epochs, the training and test
datasets achieve 98.87% accuracy. The model learns from
input and generalizes between training and test sets. High
alignment between training and test accuracy curves indi-
cates the model is not overfitting and operates consistently
across unknown data. Right: simultaneous training and test
loss. Training and test loss drop to 0.18 in the final pe-
riod. Losses on training and test sets reduce its prediction
error. The model’s low training-test loss indicates regular-
ization and not overfitting. Both graphs demonstrate how
the TransDenseInceptionNet (TDINet) model trains to re-
duce error and maximize accuracy across training and test
data.

Table 4: Performance evaluation results
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GBM [9] 0.73 0.79 0.68 0.60 0.98 0.58 0.35 0.91 0.34 0.78 0.40
LG [9] 0.74 0.80 0.69 0.62 0.96 0.60 0.36 0.90 0.36 0.79 0.41

RNN [15] 0.71 0.77 0.67 0.58 1.02 0.65 0.33 0.89 0.32 0.76 0.39
CAPSNets [14] 0.90 0.94 0.88 0.82 0.22 0.87 0.80 0.88 0.49 0.85 0.58

CNN [7] 0.75 0.80 0.72 0.70 0.85 0.77 0.61 0.74 0.43 0.81 0.53
LSTM [8] 0.87 0.93 0.86 0.80 0.27 0.85 0.77 0.86 0.46 0.83 0.56
GNN [11] 0.92 0.96 0.90 0.85 0.21 0.89 0.83 0.90 0.51 0.88 0.59
TDINet 0.98 0.99 0.98 0.97 0.06 0.97 0.98 0.98 0.90 0.99 0.95

Performance assessment findings for current approaches
and the proposed TransDenseInceptionNet are shown in Ta-
ble 4. ROC, AUC, F1-Score, Precision, Log Loss, Accu-
racy, MCC, Recall, and three unique metrics—AIE, TSI,
and ASF—are used to compare these models. TDINet out-
performs other models in almost all statistics, reaching 97%
accuracy, 0.98 ROC, and 0.99 AUC. In novel measure-
ments, including AIE (0.90), TSI (0.99), and ASF (0.95),
TDINet excels in feature interaction efficiency, prediction
consistency across time, and anomaly detection with mini-
mal false positives. GNN and CAPSNets provide high ac-
curacy and recall but lag below TDINet in AIE, TSI, and
ASF. CNN has decent accuracy (77% and LSTM 85%), but
GBM and LG perform badly across all parameters.
Figure 9 compares cybersecurity threat detection algo-

rithms’ True Positive Rate (TPR) and False Positive Rate
(FPR) ROC curves. At 0.98, TDINet has the greatest
AUC for anomaly detection with few misclassifications.
DenseNet-based feature reuse, InceptionNet multi-scale
feature extraction, and Transformer long-range dependency
modelling boost its performance. GNN (AUC = 0.92) and
CAPSNets (AUC = 0.90) perform well but need more pro-

Figure 9: ROC curve of TDINet and other methods

cessing, limiting its potential for real-time applications.
Though it struggles with real-time threat adaption, LSTM
(AUC = 0.87) models sequential dependencies better than
CNN (0.75) and RNN (0.71). GBM (AUC = 0.73) and
Logistic Regression (AUC = 0.74) perform poorly with
high-dimensional cybersecurity data. The best model for
accuracy, anomaly detection, and computing economy is
TDINet.

Table 5: Average statistical analysis results
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GBM [9] 120.59 11.79 5.29 1.79 2.29 14.99 0.66 0.81 0.71
LG [9] 109.99 10.79 4.79 1.59 1.99 13.19 0.64 0.79 0.69

RNN [15] 142.79 13.89 6.09 1.99 2.59 17.29 0.73 0.87 0.78
CAPSNets [14] 191.89 18.79 8.19 2.69 3.29 22.69 0.92 0.95 0.89

CNN [7] 94.69 9.29 4.09 1.39 1.79 11.79 0.60 0.77 0.66
LSTM [8] 114.29 11.19 4.99 1.69 2.19 14.19 0.65 0.80 0.70
GNN [11] 152.29 14.99 6.49 2.19 2.79 18.49 0.87 0.91 0.84
TDINet 185.69 18.29 7.89 2.49 3.09 21.39 0.91 0.94 0.87

Table 5 shows the average statistical analysis results for
existing and recommended TDINet. Statistics are used
to compare each model in the table. TDINet beats ri-
val models in most tests, proving its statistical resilience.
ANOVA (7.89), Chi-Squared (21.39), and Pearson’s corre-
lation (0.87) show that TDINet predicts and achieves out-
comes with minimal performance variance. In MannWhit-
ney (191.89) and Chi-Squared (22.69), CAPSNets outper-
form GNN, indicating reliable categorization. CNN scored
poorly in Kruskal (9.29) and ANOVA (4.09), suggesting
it may struggle with variance and statistical significance.
LSTM performed decently.
An ablation research in which we replaced DenseNet, In-

ceptionNet, and Transformer layers with simpler ones al-
lowed us to evaluate each TDINet component. Each ablated
version’s accuracy, AUC, ASF, TSI, and AIE are compared
to the complete TDINet model in the table below.
The findings show that eliminating any component af-

fects performance, proving that each design feature indi-
vidually strengthens TDINet. DenseNet substituted with
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Table 6: Ablation study results
Model Variant Accuracy (%) AUC ASF TSI AIE
TDINet (Full
Model)

97.0 0.98 0.95 0.99 0.90

TDINet without
DenseNet (Replaced
with Standard CNN)

92.8 0.93 0.85 0.94 0.78

TDINet without
InceptionNet (Re-
placed with Standard
Convolutions)

91.5 0.91 0.82 0.92 0.74

TDINet without
Transformer Lay-
ers (Replaced with
LSTM)

89.7 0.88 0.79 0.90 0.70

a regular CNN decreases accuracy from 97.0% to 92.8%
and AIE from 0.90 to 0.78, emphasizing the relevance of
feature reuse in cybersecurity risk prediction. Inception-
Net removal lowers AUC from 0.98 to 0.91, illustrating the
necessity of multi-scale feature extraction for hierarchical
pattern recognition. Finally, LSTM replaces Transformer
layers, lowering TSI from 0.99 to 0.90, proving that Trans-
formers are necessary for long-term cybersecurity behavior
modeling.

6 Discussion
TransDenseInceptionNet (TDINet) outperforms CNNs,
LSTMs, and GNNs in multiple evaluation metrics, partic-
ularly AIE, TSI, and ASF. These unique metrics analyze
cybersecurity awareness and threat detection more thor-
oughly, guaranteeing that the model works well in real-
world cybersecurity monitoring situations and has high
classification accuracy. When compared to CNN-based
models, TDINet excels in multi-scale feature extraction,
which is essential for analyzing complicated cybersecurity
activities. The model can process various feature gran-
ularities concurrently with InceptionNet, improving AIE
scores. CNN-based models struggle to capture feature
variety, making them unable to grasp cyber threats’ dy-
namic nature. LSTM models, although good at sequen-
tial data, suffer with global feature dependencies and have
lower TSI scores because to their inability to anticipate
across time. TDINet models long-range dependencies us-
ing Transformer-based self-attention methods, improving
prediction stability and TSI performance.
GNNs are excellent for relational data modeling, while

TDINet has higher ASF scores, suggesting a better ca-
pacity to identify anomalies and minimize false positives.
Due to graph processing difficulty, GNNs are powerful in
capturing hierarchical connections yet computationally in-
tensive. In limited computational contexts, they are un-
suitable for real-time cybersecurity monitoring. TDINet
uses DenseNet’s feature reuse method to decrease unneces-
sary calculations while keeping feature representation. This
performance lets TDINet evaluate data quicker and clas-
sify cyber risk more accurately. Several architectural fea-

tures make TDINet function better. InceptionNet’s multi-
scale feature extraction helps learn fine-grained and high-
level cybersecurity patterns, improving AIE by improving
interaction-based feature representations. Self-attention
mechanisms in Transformer layers allow the model to re-
tain global contextual awareness, decreasing cyber risk pre-
diction fluctuations and improving TSI stability. TDINet’s
Cumulative Anomaly Weighting (CAW) approach reduces
false positives, raising the ASF score and making the
model more dependable for real-world cybersecurity appli-
cations. By efficiently reusing learned feature representa-
tions across layers, the DenseNet design reduces computa-
tional redundancy and improves generalization.
TDINet has drawbacks despite its benefits. Computa-

tional overhead is a problem. DenseNet improves effi-
ciency, however InceptionNet and Transformer layers in-
crease memory and processing, making the model compu-
tationally heavier than CNN or LSTM-based techniques.
This may restrict its use in resource-constrained contexts
like embedded IoT devices, where real-time threat detec-
tion is essential. The large increases in classification accu-
racy, anomaly detection, and long-term prediction stabil-
ity justify this trade-off. For computational cost reduction
without performance degradation, future research may use
quantization or pruning to compress models. Challenges
with data imbalance are another restriction. TDINet uses
Dynamic Feature Imbalance Compensation (DFIC) to re-
duce class imbalance, but datasets with extreme cyberse-
curity threat distribution skewness may require progressive
oversampling or adversarial data augmentation to improve
generalization. DFIC dynamically modifies feature prior-
ity to avoid ignoring underrepresented cybersecurity risks,
however it may need improvements to manage occasional
cybersecurity attacks in real life.
For real-time cybersecurity monitoring in edge com-

puting contexts, TDINet should be computationally opti-
mized using pruning and quantization to improve its appli-
cability. Federated learning might let TDINet function in
privacy-preserving circumstances without centralized data
storage. This is especially useful in cybersecurity appli-
cations where data privacy is crucial. Beyond adolescent
cybersecurity awareness, TDINet’s infrastructure may be
used for business cybersecurity monitoring, financial fraud
detection, and industrial IoT security. TDINet outperforms
other deep learningmodels in cybersecurity awareness met-
rics including AIE, TSI, and ASF, giving it a more reliable
and scalable cyber threat detection framework. Despite re-
quiring more computing resources, the model’s powerful
feature extraction, anomaly detection, and feature reuse al-
gorithms offer top cybersecurity monitoring performance.
Table 6 displays ablation study findings. prove TDINet’s

hybrid architecture’s originality by showing that DenseNet,
InceptionNet, and Transformer layers are needed for bet-
ter classification. Removing DenseNet reduces feature
interaction efficiency (AIE), indicating that cybersecurity
awareness prediction requires feature reuse. Removing In-
ceptionNet weakens anomalous sensitivity (ASF), empha-
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sizing the necessity of multi-scale feature extraction for
identifying immediate and long-term cyber hazards. Fi-
nally, replacing Transformer layers with LSTM dramati-
cally lowers Temporal Stability Index (TSI), proving that
long-term cybersecurity behavior modeling requires self-
attention methods. These results show that TDINet is a
unique structured deep learning framework for real-world
cybersecurity threat identification, not merely a mix of
models. TDINet classifies cybersecurity awareness bet-
ter than traditional architectures by deliberately integrat-
ing feature reuse, multi-scale pattern recognition, and long-
range dependency modeling.

7 Conclusion and future work with
limitations

This work introduces TransDenseInceptionNet (TDINet),
a new deep learning model that can predict and classify
the cybersecurity behaviors, risks of malware exposure,
and e-safety awareness of adolescents. TDINet identi-
fies local patterns and long-range relationships by merg-
ing DenseNet, InceptionNet, and Transformer architec-
tures, guaranteeing a hierarchical knowledge of cybersecu-
rity concerns. The model’s capacity to handle unbalanced
and noisy datasets is improved by advanced preprocessing
methods including DFIC, CAW, and APE. Additionally,
Contextual Feature Synthesis (CFS) creates useful features
to improve forecast accuracy. TDINet surpasses CNNs,
LSTMs, and GNNs with 97% accuracy and better perfor-
mance in unique assessment measures including AIE, TSI,
and ASF. These findings demonstrate the model’s capac-
ity to use feature interactions, maintain prediction stability,
and identify anomalies with few false positives. This study
advances cybersecurity risk prediction, e-safety education,
and adolescent cybersecurity behavior analysis, providing
insights for other cybersecurity applications.
Despite its success, TDINet has certain drawbacks that

need to be addressed. A significant drawback is its com-
putational complexity. DenseNet’s feature reuse, Incep-
tionNet’s multi-scale feature extraction, and Transformer-
based self-attention methods improve prediction accuracy
and anomaly detection but increase computational load. Its
increased processing needs may restrict its use in resource-
constrained IoT or edge computing applications. TDINet’s
excellent accuracy (97%) and AUC (0.99) explain its com-
putational intensity, however pruning, quantization, and
knowledge distillation may enhance efficiency. Due of its
concentration on Texas and California teens, dataset speci-
ficity is another restriction. The dataset encompasses nu-
merous online habits and cybersecurity issues, but the con-
clusions may not apply to other age groups, cultural situa-
tions, or geographical areas. Cybersecurity knowledge and
online activity vary widely across groups, hence TDINet
needs further validation to determine its applicability. To
make the model more applicable to other user groups, fur-
ther research should include cross-population studies, do-

main adaptation, and federated learning.
Many research paths might increase TDINet’s scalabil-

ity and real-world applicability. First, model compression
methods including pruning, quantization, and lightweight
transformer topologies may optimize computational effi-
ciency and accuracy for edge computing devices. Second,
using TDINet to business cybersecurity monitoring, finan-
cial fraud detection, and industrial IoT security would show
its adaptability beyond adolescent cybersecurity awareness.
Third, federated learning might let TDINet learn from de-
centralized datasets while protecting data and user privacy.
TDINet sets a new benchmark in e-safety and cyberse-
curity, but overcoming these limits and future problems
will improve its scalability, efficiency, and generalizability.
The expanding cybersecurity analytics environment bene-
fits from this research’s comprehensive, scalable, and flex-
ible deep learning architecture for cybersecurity threat pre-
diction and e-safety awareness.
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