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It is often difficult for a single image to obtain all the details of the same scene. To handle this problem,
multiple images can be acquired through a variety of ways, and then the obtained images can be typically
combined into one image by image fusion technology. For improving image fusion quality, a new image
fusion method based on Non-Subsampled Contourlet Transform (NSCT) is proposed. Source images are
initially decomposed via NSCT, the low frequency sub-band image and a series of high frequency sub-
band images with different directions and different scales are obtained, low frequency sub-band image
fusion is carried out based on the activity with local sharpness changes. In the high frequency region,
fusion is carried out based on local gradient energy with edge strength, and finally the fusion image is
reconstructed by NSCT inverse transform. Through the fusion experiments of multi-focus image and
multimodal images, the proposed method is compared with the other methods such as NSCT_PC,
NSCT_EN_PCNN, NSST_PCNN, CWT_SR and JBF. Visually, the fusion image obtained by the proposed
method is clearer in detail and has a stronger sense of image hierarchy. Using objective evaluation such
as peak signal to noise ratio, structural similarity, edge information retention, and information entropy,
they are improved by at least 0.4%, 0.02%, 9.7%, and 1.4% respectively. Generally speaking, the method
in this paper retains more important details and shows better fusion performance.

Povzetek: Clanek predstavi metodo zlivanja slik na osnovi NSCT. Nizkofrekvencne koeficiente zdruzi z
aktivnostjo in lokalnimi spremembami ostrine, visokofrekvencne pa z lokalno gradientno energijo in
mocjo robov. Poskusi z multifokusnimi ter multimodalnimi slikami pokazejo boljSo jasnost, ohranitev

robov, kontrast in entropijo.

1 Introduction

Different image sensors have redundancy and
complementarity in space and time when imaging the
same scene or imaging the same sensor in different ways
[1]. In image processing, an important problem is how to
optimally combine information into an image to maximize
accurate and comprehensive scene description, image
fusion is to solve this problem. Image fusion makes use of
the redundancy and complementarity of single image
information, and adopts certain fusion criteria to describe
the new fusion image more accurately and more com-
prehensively [2]. At present, image fusion is widely used
in medical imaging, remote sensing, computer vision and
many other fields [3-6]. For example, in target
recognition, the fusion of panchromatic image and
multispectral image makes new image have higher spatial
resolution  and higher ~ frequency  resolution
simultaneously. In medical diagnosis, the fusion of
Computed Tomography (CT) and Magnetic Resonance
Image (MRI) allows new image to show bone and soft
tissue clearly. In remote sensing, the fusion of synthetic
aperture radar image and millimeter wave radar image can

have the advantages of strong anti-jamming ability and
high resolution at the same time.

According to different fusion ideas, the current dominant
image fusion methods are mainly divided into two
categories: fusion method based on spatial domain and
fusion method based on transformation domain. The fu-
sion method based on spatial domain is to fuse the pixel or
color information directly, this method is unable to extract
the clear part and edge part of image accurately, which is
likely to lose the characteristic such as contour and detail
of the source image and reduce the contrast of the fused
image [7]. Multiscale and multiresolution analysis
methods are commonly used in fusion methods based on
transformation  domain.  Typical multiscale and
multiresolution analysis methods include pyramid method
[8], wavelet transform method [9] and contourlet trans-
form method [10] et al. Because of its good time-
frequency analysis characteristics, anisotropy and relative
inde-pendence on different scales, wavelet transform can
obtain better fusion effect than pyramid method, and thus
becomes a common multiscale analysis method in the
field of image fusion [11]. However, because wavelet
transform has no translation invariance, which is likely to
cause significant fluctuations or drift in the feature ex-


mailto:wfhdy@163.com

252  Informatica 49 (2025) 251262

traction coefficients. and the directionality is also limited.,
it cannot effectively describe the contour and directional
texture features of the image [12]. Do and Vetterli
introduced the Contourlet transform in 2005 to address the
limitations of wavelet transform, such as frequency
aliasing and limited directionality [13], which has good
time-frequency local characteristics, anisotropy, flexible
multiscale and multi-directional decom-position of
images. But it has the disadvantage of frequency aliasing
and no translation invariance. Cunha and Zhou et al. put
forward a Non-Subsampled Contourlet Transform
(NSCT) in 2006 [10], which takes advantage of non-
subsampled pyramid filter decomposition and non-
subsampled directional filter Banks. This algorithm has
been widely used in many fields.

In the image fusion process based on multiscale and
multiresolution analysis, fusion rule selection is another
significant factor affecting the fusion effect [14]. For the
low frequency coefficients, weighted average is most
commonly used, but this method is easily lose some useful
information in the low frequency of image, which brings
down the contrast of fusion image to a certain extent. For
the high frequency coefficients, adopting the coefficients
of maximum absolute value or maximum energy is the
simplest, but it ignores the correlation be-tween the
coefficients, which is likely to cause the false selection of
fusion coefficients [15].

To address these challenges, this paper proposes an
approach based on NSCT for more effective feature
extraction. This method adopts an activity function for the
low frequency region and combines it with the local
sharpness variation to form a low frequency measurement
operator, thereby enhancing the expression of contour
information in the fused image. For the high frequency
region, a detail enhancement operator based on local gra-
dient energy and combined with edge strength is proposed
to further improve the extraction and utilization of edge
texture features.
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2 Non-Subsampled contourlet

transform

NSCT has the characteristics of multi-scale, multi-
direction, anisotropy, translation invariance and so on,
which is a super perfect multi-scale transform method. It
is composed of the Non-Subsampled Pyramid Filter Banks
(NSPFB) and Non-Subsampled Directional Filter Banks
(NSDFB), and using a trous algorithm [16] to achieve a
very flexible multi-scale transform.

The structure diagram and frequency decomposition
diagram of NSCT are shown in Fig. 1. First, NSPFB
performs multi-scale and multi-resolution transform, and
then NSDFB performs multi-direction transform. In the
decomposition of NSCT, the decomposition filter used in
each level is composed of the up-sampling decomposition
filter used in the previous level of decomposition. In the
NSPFB transform of image, the lowpass subband image
generated by each level of decomposition is obtained by
lowpass filtering the low-pass subband image of the
previous level after up-sampling, while the band-pass
subband image generated by each level of decomposition
is obtained by high-pass filtering the low-pass subband
image of the previous level after up-sampling. In the
process of NSDFB directional decomposition of images,
the two-dimensional frequency domain plane can be
divided into several directional wedge-shaped blocks after
each level filter undergoes up-sampling, then NSDFB can
achieve accurate multi-direction decomposition in the
frequency domain. Similarly, in the reconstruction of
NSCT, each level of synthetic filter is obtained by up-
sampling the synthetic filter used in the previous level of
reconstruction. It is because in the decomposition and
reconstruction process, no up-sampling and down-
sampling operations are performed on the signal, but up-
sampling operations are performed on the corresponding
decomposition filter and synthesis filter, which makes
NSCT have translation invariance.

innl

n,-n)

(b)three level frequency decomposition

Figure 1: aand b Transform diagram and frequency composition diagram of NSCT

Image after NSCT decomposition, the size of all
decomposed images is the same as that of the source
image. The multi-scale and multi-direction decomposition
at each level ensures the characteristics of anisotropy and

enables the NSCT to represent the image sparsely.
Obvious features such as curves, edges and contours are
represented as the magnitudes of sub-image coefficients.
Especially the detailed features such as edges and textures
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are manifested as a few frequency coefficients with larger
values in the NSCT domain. In other words, frequency
coefficients with larger values contain more information
such as edges and textures. Compared with wavelet
transform, NSCT has better sparse representation ability
and more concentrated energy. Therefore, using NSCT in
image fusion can better extract features of each band and
obtain more information.

3 The fusion method

Fusion rule is another important issue to determine the
fusion effect. A new image fusion method based on NSCT
is put forward in this paper.

3.1 Fusion rule of low frequency sub-image

The change of local information not only reflects the
difference of each pixel in the image, but also describes
the significance degree of the image relative to the
background information from the side. Therefore, aiming
at the low frequency subband decomposed by NSCT, this
paper proposes a new definition of local change
information -- activity function (AF), taking the local
energy weighting of coefficients as the activity degree not
only reflects the spatial correlation between pixels, but
also considers the significance degree of coefficients, its
expression is as follows:

AF(x,y) = L' ynen, (X, y)IC(x + %',y + y)I?

1)

Where, AF (x,y) represents the activity of low frequency
coefficient at the position (x, y) . C(x,y) is the low

frequency subband coefficient of source image after
decomposition by NSCT. 2, defines the window range,
which is a sliding window with a value of 3*3 [17],

a)(x', y') represents the weight of the window and is the

contrast sensitivity function, here it is taken as the
Michelson contrast and defined as

w(x" y) = (Cmax _Cmin )/(Cmax +Cmin) ! C:matx and Cmin
are respectively the maximum value and minimum value
of subband coefficients in the corresponding window.
The low frequency subband contains the variations of
pixel brightness and gray level. To further enhance the
information of the low frequency subband and reflect the
local contrast changes, the Local Sharpness Change (LSC)
is introduced. The local contrast variation of image is
reflected by calculating the neighborhood sharpness
change (SC) of (x,y). LSC is defined as equation 2.

2
LSC(x,y) = Z%:—M Z¥=—N(C(x: y) - C(x1;)’1)) 2
In which, the values of M and N are 3 and 3 respectively
[18].
Thus, the low frequency subbands are fused through the
low frequency measurement operator (LMO), that is
equation 3.

LMO(x,y) = (AF(x, )™ - (LSC(x,y))"* (3)
In which, the parameters «, and B, are respectively used
to adjust the weights of AF and LSC sizes in LMO.
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In conclusion, the fusion rule of the low frequency
subband is as equation 4.
. MxN
LF(x,y) — {CA lf [RA(X,}’)] > 2 (4)
Cg otherwise

In which,
Ry(x,y) = {(x0,¥0) € 2, | LMO4(x0,y0) =

LMOg(xo,¥0)}

From the above, the fused low frequency subband
LF(x,y) is obtained. C, and Cg represent the low
frequency subband of image to be fused respectively, and
0, represents the sliding window centered on (x,y) with a
size of M*N'. The values of M" and N are 7 and 7
respectively [19].

3.2 Fusion rule of high frequency sub-image

The high frequency sub-image decomposed by NSCT
mainly includes the detail information such as the contour
structure and edge of image. This information is usually
presented as the coefficients with large absolute value or
large modulus, corresponding to the significant features in
a certain direction interval, and they can well describe the
structure information of image. The quality of extracting
high frequency subband information directly affects the
image fusion effect. To highlight the texture information
of the high frequency subbands, local gradient energy
(LGE) isintroduced. The greater the local gradient energy,
the more detailed information the image contains. By
calculating the gray level changes at the position (x, y) of

high frequency subband, the amount of its detailed
information is reflected, that is as equation 5.

LGE(x,y) = EmneslG(x + my + n)|?  (5)
Where, s is the window size and its value is 3 [19].

G(x,y) is the gradient of pixel (x,y) » LGE(x,y)

represents the local gradient energy of the high frequency
subband at the position (x, y) .

G(x, y) is the first-order difference in the x and vy

directions, representing the transverse difference feature
and the longitudinal difference feature respectively, and is
defined as equation 6.

G(x,y) =1dCx,y) —dx+ 1L, y)| +|dCx,y) —d(x,y +
D (6)

Where, d(x,y) is the coefficient of the high frequency
subband at the position (X, Y) .

Since LGE, as an estimator describing the detailed
information of images, lacks the extraction and
description of large-scale structural information such as
contours, Edge Strength (ES) is introduced. By calculating
the amplitude of the gradient of edge pixels in the high
frequency subband, the layering of its structure and edge
contour is highlighted, that is as equation (7).

ES(x,y) = sqrt(dy(x,)* + dyy(x,¥)?) )
Where, d, = d = hy, d,, = d = h,, respectively represent
the convolution results of the high frequency subband
pixel d(x,y) with the Scharr operator [20] in the x and y
directions.
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-3 0 3 -3 —-10 -3
hx=[—10 0 10],hy=[0 0 Ol

-3 0 3 3 10 3
represent the Scharr operators in the x and y directions
respectively.
Thus, through the high-frequency measurement operator
(HMO)
HMO(x,y) = LGE (x,y)% - ES(x, y)P2 (8)
the high frequency subbands are fused. In (8), the
parameters a, and 8, are respectively used to adjust the
weights LGE and ES in HMO.
By comparing the value of HMO in the high frequency
subbands, the fusion rule of high frequency subbands is
obtained as
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HF*(x,y) =
[dirk(x, y) if HMO j(x,y) > HMO ji(x,)
A B

" (x,y)
©) |
Where, HF/*(x,y) is the fused image of the high
frequency subband at scale j and direction k (horizontal,
vertical or diagonal direction), d.*(x,y) and dJ*(x,y)
are the high frequency subbands corresponding to the
scale j and direction k of the source images A and B
respectively.

otherwise

3.3 Overall framework of image fusion

According to the above method, the fusion framework
based on NSCT is shown in Fig. 2.

Fig. 2 Overall framework of image fusion
Firstly, the registered source image A and B are
transformed by NSCT at level | respectively, here the
value of | is set to 3 [16], then the low frequency

subband coefficients { C; (x,y), Cf(xy)} and the
high frequency subband coefficients{ dfk(x,y) ,

ij,k(X1Y)} ( j>j, ) are obtained. Furthermore, as

activity reflects the energy changes in a local area, and the
local sharpness change enhances the contrast variation of
activity. Therefore, for the low frequency subband, the
LMO rule based on the activity function with local
sharpness change is adopted for fusion to obtain LF (x, y).
While local gradient energy represents the difference
changes, and edge strength represents the weighted
difference of large-scale structures, both of them reflect
the amount of image details. In high frequency subband,
the HMO rule based on local gradient energy with edge
strength is adopted for fusion to obtain HF/*(x,y).
Finally, the high frequency coefficients and low frequency
coefficients are reconstructed by NSCT inverse transform
to get the fusion image.

4 Experimental results and analysis

The superiority of the method proposed in this paper is
verified through experiments on self-built datasets. The
test images included multi-focus Lena images, CT and

Low
Low frequency frequency
_ NSCT coefficient of image A fusion rufe | Low frequency
image A fusion
High frequency coefficients Inverse
coefficient of image A _ NSCT fusion
freH:l%?lc image
Low frequency fusiqon ruI% -
NSCT[ | coefficient of image B| > nghﬁtzrseiggency
image B :
High frequency coefficients
coefficient of image B

MRI images, FA (Fluorescent Angiography) images and
RF (Red-Free) images, etc., and were analyzed through
visual and objective indicators. The experiment was
conducted on CPU, with the code written in MATLAB,
and the running time was within 2 seconds.

4.1 Objective evaluation indicators

This paper uses the commonly used measurement
indicators to comprehensively and quantitatively evaluate
the performance of different fusion methods, they are
respectively [21]-[23]: peak signal to noise ratio (PSNR),
structural similarity (SSIM), root mean square error
(RMSE), Edge Information Retention (EIR), Information
Entropy (IE). Among them, PSNR measures the similarity
between the source image and the fused image by
calculating the mean square error, the higher its value is,
the smaller the distortion generated during the fusion
process is, and the more similar the source image is to the
fused image. SSIM measures the structural similarity
between the source image and the fused image, the larger
its value is, the more similar the source image is to the
fused image. RMSE calculates the standard deviation
between the fused image and the standard image, the
smaller the value, the closer the fused image is to the
standard image. EIR measures the retention of edge
information and detailed textures of the source image, the
higher the value, the more detailed and texture information
the fused image contains, and the better the quality of
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visual information obtained from the source image. IE
reflects the information and clarity contained in the fused
image, the higher its value, the more information and
richer details the fused image contains, and the better the
fusion performance.

4.2 Parameter setting

Adjusting one parameter is achieved by fixing other
parameters and evaluating it from RMSE, SSIM, EIR, and
IE to determine the optimal value of the parameter. Below,
we take the image fusion of the left-focused Lena and
right-focused Lena as an example to analyze the optimal
parameters.

The measurement operator of high frequency subbands
and low frequency subbands obtained by NSCT is used as
the measurement method for the contour structure and
edge texture information of the image, its parameter
values directly affect the fusion quality and determine the
effect of the final fused image. In order to determine the
optimal values of the weight parameters in HMO and LMO,
the weight parameters a, and B, in the LMO were
analyzed first. The parameter §; was fixed as 1, and the
value of parameter a; was set within the range of 0 to 0.01.
The experimental results are shown in Table 1. It can be
seen that: (1) with the increase of the parameter «;, each
evaluation index changes accordingly. When «;=0.006,
RMSE reaches the minimum value, SSIM, EIR and IE
reach the maximum values, and the quality of the fused
image improves well. Similarly, when a;=0.006, adjust
the value of the parameter 8; to achieve the best fusion
effect performance. Eventually, the values of a; and j;
are 0.006 and 1.05 respectively. (2) The parameters «,
and B, in HMO were analyzed. Through experiments, it
was found that whether it was RMSE, SSIM, EIR or IE,
the fused image was not greatly affected by the values of
a, and 3,. Therefore, both a, and 8, took the default
value of 1.

Table 1: Comparison of multi-focus Lena fusion results
at different values of o,

o4 RMSE SSIM EIR IE
0.001 3.299 05124 0.685 7.795
0.002 3.298 0.5124 0.685 7.798
0.003 3.298 0.5125 0.687 7.803
0.004 3.297 05125 0.688 7.808
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0.005 3.296 05125 0.688 7.811
0.006 3.296 0.5126 0.689 7.812
0.007 3.297 0.5126 0.688 7.810
0.008 3.297 0.5126 0.687 7.805
0.009 3.298 05126 0.685 7.802

Note: Bold indicates the optimal value

4.3 Frame structure experiment

Three representative multi-scale image fusion frameworks
were applied to the multi-focus Lena image fusion, and the
same fusion rules of high frequency and low frequency
were adopted to conduct experiments on these three fusion
frameworks and NSCT framework to prove the
effectiveness of NSCT framework in this paper. These
three multi-scale image fusion frameworks include the
Pyramid Method (PM), Discrete Wavelet Transform
(DWT), and Contourlet Transform (CT). The
experimental results are shown in Figure 3, it can be seen
from the local magnification of the cap edge at the lower
right corner in Figure 3(c)- 3(f) that: Fig. 3(c) using the
PM framework, the energy loss of the image is relatively
large, which leads to a decrease in the contrast of the fused
image and the appearance of slight artifacts at some
contour edges. In Fig. 3(d) and Fig. 3(e), the DWT and CT
frameworks are respectively applied, there are slight
distortion and aberration at some edges. the fused images
have some random noise, and the graininess in the detail
areas is relatively strong. In Fig. 3(f), the NSCT
framework is used. compared with the previous three
multi-scale frameworks, both contrast and fidelity have
been significantly improved, and the texture features of
the source image have also been restored.

Table 2 shows the comparison of objective evaluation for
multi-focus Lena image fusion under several multi-scale
frameworks. It can be seen that compared with other
multi-scale frameworks, the NSCT framework performs
better in preserving edge details, as confirmed by PSNR,
SSIM, RMSE, EIR and IE. Based on the authenticity of
the texture features of the source image, the NSCT
framework enhances the expression of texture features and
details during the fusion process. This makes it
particularly  suitable for high-detail preservation
applications, such as medical imaging etc.
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a) focus on the right

(e)CT
Figure3: a-f Multi-focus Lena image fusion under several multi-scale frameworks

Table 2: Comparison of multi-focus Lena image
fusion under several multi-scale frameworks

Framewor PSNR SSIimv RMS EIR IE

k E

PM 10.27 0512 3325 0.65 7.64
7 5 2 5

DWT 10.27 0.512 3.310 0.66 7.76
8 5 1 5

CcT 10.27 0.512 3.309 0.66 7.77
9 4 8 5

NSCT 10.28 0.512 3.305 0.67 7.78
1 6 4 9

4.4 Analysis of fusion results

To test the effectiveness of the algorithm proposed in this
paper, it is compared with several frequency-domain
image fusion methods proposed in recent years, including
NSCT_PC [18], NSCT_EN_PCNN [17], NSST_PCNN
[24], CWT_SR [11] and JBF [25]. NSCT_PC represents
the fusion rule based on Phase Congruency (PC) and
Laplace energy in the NSCT domain; NSCT_EN_PCNN
represents the fusion rule based on the PCNN rule and
image entropy in the NSCT domain; NSST_PCNN
represents the fusion method based on the PCNN and
energy strategy in the NSST domain; CWT _SR represents
the fusion method based on sparse representation in the
domain of complex wavelet transform; JBF represents a
joint bilateral filtering fusion method based on enhancing
edges and contrast.

Figure4 shows the artificial multi-focus Lena image fusion
results of the method proposed in this paper and five
representative frequency-domain fusion methods. It can
be seen that in Fig. 4(c), Fig. 4(d), Fig. 4(e) and Fig. 4(f),
a large amount of energy is lost during the fusion process,

C. Guoetal.

(b) focus on the left

(f) NSCT

resulting in a decrease in the contrast of the fused image.
It can be seen from the local magnification images that the
fused image shows insufficient performance in the detail
texture of the hair, and some even have distortion. In Fig.
4(g), the JBF method significantly improves the fusion
effect. However, there are greater differences and not
smooth in local changes, and some details have
discontinuous edge points. Compared with the previous
several methods, the image texture fused by the method in
this paper is clearer and the image layering is stronger.
Table 3 shows the objective evaluation comparison of
multi-focus Lena image fusion by different methods. It
can be seen that the value of RMSE by the proposed
method is the smallest, that is to say, the fusion result
obtained by the proposed method is the closest to the
standard image. In addition, the proposed method also
outperforms other methods in terms of PSNR, SSIM, EIR,
and IE evaluation indicators, which indicates that the
fusion effect of the proposed method outperforms that of
other methods in terms of detail contour and pixel
intensity. The experimental results show that the
performance of the proposed method is better than that of
other methods both in subjective analysis and objective
indicators.

(a) focus on the right

(b) focus on the left
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(9) JBF (h) the proposed method

Figure 4: a-h Fusion results of different methods for multi-
focus Lena image

Table 3: Objective efficacy comparison of different
methods for multi-focus Lena fusion results
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NSCT_PC 10.27 0512 331 066 7.74
6 4 1 8 8

NSCT_EN_PCN 10.27 0512 331 0.66 7.75
N 7 5 2 4 6
NSST_PCNN 10.27 0.512 330 0.67 7.78
8 5 8 1 2

CWT_SR 10.27 0.512 330 0.67 7.77
8 3 9 5

JBF 10.27 0.512 330 0.67 7.78

9 5 8 2 5

Proposed 10.28 0.512 330 0.67 7.78
method 1 6 5 4 9

Methods PSNR SSIM RMS EIR IE
E

CT images focus on describing the contour features of
bones, while MRI images focus on describing the detailed
texture features of soft tissues. Figure 5 shows the fused
images of brain CT images and MRI images obtained by
different methods. It can be seen that in Fig. 5(c), 5(d),
5(e), and 5(f), the fused images show edge distortion or
blurring in terms of brain fiber texture information. It can
also be observed from the local magnified images that the
fused images have edge artifacts and information loss,
which seriously affects the accuracy of medical diagnosis.
This situation is improved in Fig. 5(g), but it is still
insufficient in the presentation of texture details. In Fig.
5(h), the detail texture of soft tissue structure in the fused
image is clearer compared with the previous several
methods, in the local magnified image, the gully texture
has better contrast. Table 4 shows the objective evaluation
comparison of CT/MRI image fusion by different methods.
It can be seen that the method proposed in this paper has
achieved considerable results in various indicators such as
PSNR, SSIM, EIR, and IE, which indicates that the
proposed method has better performance in aspects such
as image feature transfer and texture detail expression.
The experimental results show that in CT/MRI image
fusion, the method proposed in this paper outperforms
other methods in both subjective analysis and objective
indicators.

(b)MRI
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e) NSST _PCNN

(9) JBF (h) Proposed method

Figure 5: a-h Fusion results of different methods for CT image and MRI image

Table 4: Objective efficacy comparison of different Retinal FA (Fluorescent Angiography) images are the

methods for CT image and MRI image images of retinal blood vessels obtained by injecting
Methods PSNR  SSIM EIR IE sodium fluorescein contrast agent, and RF (Red Free) i

images are the images obtained by irradiating the retina

NSCT_PC 9.847 05235 0668 6.781 with short-wavelength light. They play an important role

in the diagnosis and monitoring of fundus diseases. Figure
6 and Figure7 show the fusion images of FA images and
RF images obtained by different methods. It can be seen
that the other methods have problems such as fuzzy

NSCT_EN_PCNN  9.826 0.5233 0.656 6.665

NSST_PCNN 9.845 0.5235 0.665 6.783

CWT SR 0839 05232 0664 6.776 pseudo-shadow and information loss in the soft tissues of
- the fundus vessels at different level, and even vascular
JBF 0.851 0.5237 0.673 6.826 edge distortion in the local magnified images, which is not

beneficial to the accuracy of medical diagnosis. The
Proposed method 9.856 0.5238 0.684 6.857 method proposed in this paper, relatively speaking,
provides a more accurate description of the FA/RF image
and better preserves the small structure information of the
vascular tissues. Tables 5 and Tables 6 show the objective
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evaluation comparison of FA/RF image fusion by
different methods. It can be seen that the method proposed
in this paper has obvious advantages in PSNR, SSIM, EIR,
and IE indicators, which indicates that the proposed
method has greatly improved the expression of the
detailed texture of fundus vascular tissue in FA and RF
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images and enhanced the contrast of the fused images. It
is convenient to observe the diseased region of the patient.
The experimental results show that the proposed method
outperforms the other methods in both subjective analysis
and objective evaluation in FA/RF image fusion.

(a) FA image

(e) NSST_PCNN

¢) NSCT_PC

(b) RF image

(d) NSCT_EN_PCNN

(f) CWT_SR
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(9) JBF (h) Proposed method
Figure 6: a-h Fusion results of different methods for FA image and RF image

Table 5: Objective efficacy comparison of different methods for FA image and RF image

Methods PSNR SSIM EIR IE
NSCT_PC 8.547 0.5051 0.486 6.588
NSCT_EN_PCNN 8.604 0.5053 0.531 6.604
NSST_PCNN 8.635 0.5054 0.549 6.628
CWT_SR 8.578 0.5052 0.536 6.606
JBF 8.642 0.5054 0.558 6.725
Proposed method 8.673 0.5055 0.612 6.817

a) FA image b) RF image

(c) NSCT_PC (d) NSCT_EN_PCNN

C. Guoetal.
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e) NSST_PCNN

(9) JBF
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(h) Proposed method

Figure 7: a-h Fusion results of different methods for FA image and RF image

Table 6: Objective efficacy comparison of different
methods for FA image and RF image

Methods PSNR SSIM EIR IE

NSCT_PC 8.512 0.5053 0.529 6.758
NSCT_EN_PCNN 8.535 0.5044 0.539 6.789
NSST_PCNN 8.557 0.5045 0.541 6.791
CWT_SR 8.525 0.5054 0.534 6.783
JBF 8.564 0.5045 0.546 6.788
Proposed method 8.582 0.5046 0.572 6.804

As mentioned above, the fusion effect of the method
proposed in this paper is better than the five popular image
fusion methods and three image fusion frameworks in the
field of frequency domain in recent years, and it achieves
better visual effects, thereby ensuring the reliability of
subsequent processing.

5 Conclusion

A new image fusion method based on NSCT is presented.
Firstly, the fusion rule scheme of source image
decomposed by NSCT is constructed, the low frequency
fusion rule is based on activity with local sharpness
changes, and the high frequency fusion rule is based on
local gradient energy with edge strength. In this paper,
artificial multi-focus images, brain CT and MRI images,
FA image and RF image are tested. The results show that

the presented method has excellent fusion property for
multi-focus and multimodal image fusion.
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