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It is often difficult for a single image to obtain all the details of the same scene. To handle this problem, 

multiple images can be acquired through a variety of ways, and then the obtained images can be typically 

combined into one image by image fusion technology. For improving image fusion quality, a new image 

fusion method based on Non-Subsampled Contourlet Transform (NSCT) is proposed. Source images are 

initially decomposed via NSCT, the low frequency sub-band image and a series of high frequency sub-

band images with different directions and different scales are obtained, low frequency sub-band image 

fusion is carried out based on the activity with local sharpness changes. In the high frequency region, 

fusion is carried out based on local gradient energy with edge strength, and finally the fusion image is 

reconstructed by NSCT inverse transform. Through the fusion experiments of multi-focus image and 

multimodal images, the proposed method is compared with the other methods such as NSCT_PC, 

NSCT_EN_PCNN, NSST_PCNN, CWT_SR and JBF. Visually, the fusion image obtained by the proposed 

method is clearer in detail and has a stronger sense of image hierarchy. Using objective evaluation such 

as peak signal to noise ratio, structural similarity, edge information retention, and information entropy, 

they are improved by at least 0.4%, 0.02%, 9.7%, and 1.4% respectively. Generally speaking, the method 

in this paper retains more important details and shows better fusion performance.  

Povzetek: Članek predstavi metodo zlivanja slik na osnovi NSCT. Nizkofrekvenčne koeficiente združi z 

aktivnostjo in lokalnimi spremembami ostrine, visokofrekvenčne pa z lokalno gradientno energijo in 

močjo robov. Poskusi z multifokusnimi ter multimodalnimi slikami pokažejo boljšo jasnost, ohranitev 

robov, kontrast in entropijo. 

 

1 Introduction 
Different image sensors have redundancy and 

complementarity in space and time when imaging the 

same scene or imaging the same sensor in different ways 

[1]. In image processing, an important problem is how to 

optimally combine information into an image to maximize 

accurate and comprehensive scene description, image 

fusion is to solve this problem. Image fusion makes use of 

the redundancy and complementarity of single image 

information, and adopts certain fusion criteria to describe 

the new fusion image more accurately and more com-

prehensively [2]. At present, image fusion is widely used 

in medical imaging, remote sensing, computer vision and 

many other fields [3-6]. For example, in target 

recognition, the fusion of panchromatic image and 

multispectral image makes new image have higher spatial 

resolution and higher frequency resolution 

simultaneously. In medical diagnosis, the fusion of 

Computed Tomography (CT) and Magnetic Resonance 

Image (MRI) allows new image to show bone and soft 

tissue clearly. In remote sensing, the fusion of synthetic 

aperture radar image and millimeter wave radar image can  

 

 

have the advantages of strong anti-jamming ability and 

high resolution at the same time.  

According to different fusion ideas, the current dominant 

image fusion methods are mainly divided into two 

categories: fusion method based on spatial domain and 

fusion method based on transformation domain. The fu-

sion method based on spatial domain is to fuse the pixel or 

color information directly, this method is unable to extract 

the clear part and edge part of image accurately, which is 

likely to lose the characteristic such as contour and detail 

of the source image and reduce the contrast of the fused 

image [7]. Multiscale and multiresolution analysis 

methods are commonly used in fusion methods based on 

transformation domain. Typical multiscale and 

multiresolution analysis methods include pyramid method 

[8], wavelet transform method [9] and contourlet trans-

form method [10] et al. Because of its good time-

frequency analysis characteristics, anisotropy and relative 

inde-pendence on different scales, wavelet transform can 

obtain better fusion effect than pyramid method, and thus 

becomes a common multiscale analysis method in the 

field of image fusion [11]. However, because wavelet 

transform has no translation invariance, which is likely to 

cause significant fluctuations or drift in the feature ex-
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traction coefficients. and the directionality is also limited., 

it cannot effectively describe the contour and directional 

texture features of the image [12]. Do and Vetterli 

introduced the Contourlet transform in 2005 to address the 

limitations of wavelet transform, such as frequency 

aliasing and limited directionality [13], which has good 

time-frequency local characteristics, anisotropy, flexible 

multiscale and multi-directional decom-position of 

images. But it has the disadvantage of frequency aliasing 

and no translation invariance. Cunha and Zhou et al. put 

forward a Non-Subsampled Contourlet Transform 

(NSCT) in 2006 [10], which takes advantage of non-

subsampled pyramid filter decomposition and non-

subsampled directional filter Banks. This algorithm has 

been widely used in many fields.  

In the image fusion process based on multiscale and 

multiresolution analysis, fusion rule selection is another 

significant factor affecting the fusion effect [14]. For the 

low frequency coefficients, weighted average is most 

commonly used, but this method is easily lose some useful 

information in the low frequency of image, which brings 

down the contrast of fusion image to a certain extent. For 

the high frequency coefficients, adopting the coefficients 

of maximum absolute value or maximum energy is the 

simplest, but it ignores the correlation be-tween the 

coefficients, which is likely to cause the false selection of 

fusion coefficients [15]. 

To address these challenges, this paper proposes an 

approach based on NSCT for more effective feature 

extraction. This method adopts an activity function for the 

low frequency region and combines it with the local 

sharpness variation to form a low frequency measurement 

operator, thereby enhancing the expression of contour 

information in the fused image. For the high frequency 

region, a detail enhancement operator based on local gra-

dient energy and combined with edge strength is proposed 

to further improve the extraction and utilization of edge 

texture features. 

2 Non-Subsampled contourlet 

transform 
NSCT has the characteristics of multi-scale, multi-

direction, anisotropy, translation invariance and so on, 

which is a super perfect multi-scale transform method. It 

is composed of the Non-Subsampled Pyramid Filter Banks 

(NSPFB) and Non-Subsampled Directional Filter Banks 

(NSDFB), and using à trous algorithm [16] to achieve a 

very flexible multi-scale transform. 

The structure diagram and frequency decomposition 

diagram of NSCT are shown in Fig. 1. First, NSPFB 

performs multi-scale and multi-resolution transform, and 

then NSDFB performs multi-direction transform. In the 

decomposition of NSCT, the decomposition filter used in 

each level is composed of the up-sampling decomposition 

filter used in the previous level of decomposition. In the 

NSPFB transform of image, the lowpass subband image 

generated by each level of decomposition is obtained by 

lowpass filtering the low-pass subband image of the 

previous level after up-sampling, while the band-pass 

subband image generated by each level of decomposition 

is obtained by high-pass filtering the low-pass subband 

image of the previous level after up-sampling. In the 

process of NSDFB directional decomposition of images, 

the two-dimensional frequency domain plane can be 

divided into several directional wedge-shaped blocks after 

each level filter undergoes up-sampling, then NSDFB can 

achieve accurate multi-direction decomposition in the 

frequency domain. Similarly, in the reconstruction of 

NSCT, each level of synthetic filter is obtained by up-

sampling the synthetic filter used in the previous level of 

reconstruction. It is because in the decomposition and 

reconstruction process, no up-sampling and down-

sampling operations are performed on the signal, but up-

sampling operations are performed on the corresponding 

decomposition filter and synthesis filter, which makes 

NSCT have translation invariance. 

  

 
(a)transform diagram                                        (b)three level frequency decomposition 

 

Figure 1: a and b Transform diagram and frequency composition diagram of NSCT 

 

Image after NSCT decomposition, the size of all 

decomposed images is the same as that of the source 

image. The multi-scale and multi-direction decomposition 

at each level ensures the characteristics of anisotropy and 

enables the NSCT to represent the image sparsely. 

Obvious features such as curves, edges and contours are 

represented as the magnitudes of sub-image coefficients. 

Especially the detailed features such as edges and textures 
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are manifested as a few frequency coefficients with larger 

values in the NSCT domain. In other words, frequency 

coefficients with larger values contain more information 

such as edges and textures. Compared with wavelet 

transform, NSCT has better sparse representation ability 

and more concentrated energy. Therefore, using NSCT in 

image fusion can better extract features of each band and 

obtain more information. 

3 The fusion method 
Fusion rule is another important issue to determine the 

fusion effect. A new image fusion method based on NSCT 

is put forward in this paper.  

3.1 Fusion rule of low frequency sub-image 

The change of local information not only reflects the 

difference of each pixel in the image, but also describes 

the significance degree of the image relative to the 

background information from the side. Therefore, aiming 

at the low frequency subband decomposed by NSCT, this 

paper proposes a new definition of local change 

information -- activity function (AF), taking the local 

energy weighting of coefficients as the activity degree not 

only reflects the spatial correlation between pixels, but 

also considers the significance degree of coefficients, its 

expression is as follows: 

𝐴𝐹(𝑥, 𝑦) = ∑ 𝜔(𝑥′, 𝑦′)|𝐶(𝑥 + 𝑥′, 𝑦 + 𝑦′)|2
(𝑥′,𝑦′)∈𝛺1

   

(1) 

Where, 𝐴𝐹(𝑥, 𝑦) represents the activity of low frequency 

coefficient at the position . 𝐶(𝑥, 𝑦)  is the low 

frequency subband coefficient of source image after 

decomposition by NSCT. 𝛺1  defines the window range, 

which is a sliding window with a value of 3*3 [17], 

 represents the weight of the window and is the 

contrast sensitivity function, here it is taken as the 

Michelson contrast and defined as 

, and  

are respectively the maximum value and minimum value 

of subband coefficients in the corresponding window.  

The low frequency subband contains the variations of 

pixel brightness and gray level. To further enhance the 

information of the low frequency subband and reflect the 

local contrast changes, the Local Sharpness Change (LSC) 

is introduced. The local contrast variation of image is 

reflected by calculating the neighborhood sharpness 

change (SC) of (x,y). LSC is defined as equation 2. 

𝐿𝑆𝐶(𝑥, 𝑦) = ∑ ∑ (𝐶(𝑥, 𝑦) − 𝐶(𝑥1, 𝑦1))
2𝑁

𝑛=−𝑁
𝑀
𝑚=−𝑀     (2) 

In which, the values of M and N are 3 and 3 respectively 

[18]. 

Thus, the low frequency subbands are fused through the 

low frequency measurement operator (LMO), that is 

equation 3. 

𝐿𝑀𝑂(𝑥, 𝑦) = (𝐴𝐹(𝑥, 𝑦))
𝛼1

∙ (𝐿𝑆𝐶(𝑥, 𝑦))
𝛽1              (3) 

In which, the parameters 𝛼1 and  𝛽1 are respectively used 

to adjust the weights of AF and LSC sizes in LMO. 

In conclusion, the fusion rule of the low frequency 

subband is as equation 4. 

𝐿𝐹(𝑥, 𝑦) = {
𝐶𝐴 𝑖𝑓 ⌈𝑅𝐴(𝑥, 𝑦)⌉ >

𝑀̃∗𝑁

2

𝐶𝐵 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (4) 

In which,  

     𝑅𝐴(𝑥, 𝑦) = {(𝑥0, 𝑦0) ∈ 𝛺2 ∣ 𝐿𝑀𝑂𝐴(𝑥0, 𝑦0) ≥
𝐿𝑀𝑂𝐵(𝑥0, 𝑦0)} 

From the above, the fused low frequency subband 

𝐿𝐹(𝑥, 𝑦)  is obtained. 𝐶𝐴  and 𝐶𝐵  represent the low 

frequency subband of image to be fused respectively, and 

𝛺2 represents the sliding window centered on (x,y) with a 

size of M ̃*N ̃. The values of M ̃ and N  ̃ are 7 and 7 

respectively [19]. 

3.2 Fusion rule of high frequency sub-image 

The high frequency sub-image decomposed by NSCT 

mainly includes the detail information such as the contour 

structure and edge of image. This information is usually 

presented as the coefficients with large absolute value or 

large modulus, corresponding to the significant features in 

a certain direction interval, and they can well describe the 

structure information of image. The quality of extracting 

high frequency subband information directly affects the 

image fusion effect. To highlight the texture information 

of the high frequency subbands, local gradient energy 

(LGE) is introduced. The greater the local gradient energy, 

the more detailed information the image contains. By 

calculating the gray level changes at the position ( ),x y  of 

high frequency subband, the amount of its detailed 

information is reflected, that is as equation 5. 

𝐿GE(𝑥, 𝑦) = ∑ |𝐺(𝑥 + 𝑚, 𝑦 + 𝑛)|2
𝑚,𝑛∈𝑆      (5) 

Where,  is the window size 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 3 [19] . 

 is the gradient of pixel ( ),x y , 𝐿𝐺𝐸(𝑥, 𝑦) 

represents the local gradient energy of the high frequency 

subband at the position ( ),x y . 

( ),G x y  is the first-order difference in the x and y 

directions, representing the transverse difference feature 

and the longitudinal difference feature respectively, and is 

defined as equation 6. 

𝐺(𝑥, 𝑦) = |𝑑(𝑥, 𝑦) − 𝑑(𝑥 + 1, 𝑦)| + |𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑦 +
1)| (6) 

Where, 𝑑(𝑥, 𝑦)  is the coefficient of the high frequency 

sub𝑏𝑎𝑛𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ( ),x y .  

Since LGE, as an estimator describing the detailed 

information of images, lacks the extraction and 

description of large-scale structural information such as 

contours, Edge Strength (ES) is introduced. By calculating 

the amplitude of the gradient of edge pixels in the high 

frequency subband, the layering of its structure and edge 

contour is highlighted, that is as equation (7). 

𝐸𝑆(𝑥, 𝑦) = 𝑠𝑞𝑟𝑡(𝑑𝑥(𝑥, 𝑦)2 + 𝑑𝑦(𝑥, 𝑦)2)         (7) 

Where, 𝑑𝑥 = 𝑑 ∗ ℎ𝑥 , 𝑑𝑦 = 𝑑 ∗ ℎ𝑦  respectively represent 

the convolution results of the high frequency subband 

pixel 𝑑(𝑥, 𝑦) with the Scharr operator [20] in the 𝑥 and 𝑦 

directions. 

( ),x y

( )' ',x y

( ) ( ) ( )' '

max min max min,x y C C C C = − +
maxC minC

S

( ),G x y
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  ℎ𝑥 = [
−3 0 3

−10 0 10
−3 0 3

], ℎ𝑦 = [
−3 −10 −3
0 0 0
3 10 3

] 

represent the Scharr operators in the 𝑥  and 𝑦  directions 

respectively. 

Thus, through the high-frequency measurement operator 

(HMO) 

𝐻𝑀𝑂(𝑥, 𝑦) = 𝐿𝐺𝐸(𝑥, 𝑦)𝛼2 ∙ 𝐸𝑆(𝑥, 𝑦)𝛽2                                 (8) 

the high frequency subbands are fused. In (8), the 

parameters 𝛼2 and 𝛽2 are respectively used to adjust the 

weights LGE and ES in HMO. 

By comparing the value of HMO in the high frequency 

subbands, the fusion rule of high frequency subbands is 

obtained as 

𝐻𝐹𝑗,𝑘(𝑥, 𝑦) =

{
𝑑𝐴

𝑗,𝑘(𝑥, 𝑦) 𝑖𝑓 𝐻𝑀𝑂
𝑑𝐴

𝑗,𝑘(𝑥, 𝑦) > 𝐻𝑀𝑂
𝑑𝐵

𝑗,𝑘(𝑥, 𝑦)

𝑑𝐵
𝑗,𝑘(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                     

(9) 

Where, 𝐻𝐹𝑗,𝑘(𝑥, 𝑦)   is the fused image of the high 

frequency subband at scale 𝑗 and direction 𝑘 (horizontal, 

vertical or diagonal direction), 𝑑𝐴
𝑗,𝑘(𝑥, 𝑦)  and 𝑑𝐵

𝑗,𝑘(𝑥, 𝑦) 

are the high frequency subbands corresponding to the 

scale 𝑗  and direction 𝑘  of the source images A and B 

respectively. 

3.3 Overall framework of image fusion 

According to the above method, the fusion framework 

based on NSCT is shown in Fig. 2.
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fusion 

coefficients

Inverse 

NSCT

 
Fig. 2 Overall framework of image fusion 

Firstly, the registered source image  and  are 

transformed by NSCT at level  respectively, here the 

value of  is set to 3 [16], then the low frequency 

subband coefficients { ， } and the 

high frequency subband coefficients{ , 

} （ ） are obtained. Furthermore, as 

activity reflects the energy changes in a local area, and the 

local sharpness change enhances the contrast variation of 

activity. Therefore, for the low frequency subband, the 

LMO rule based on the activity function with local 

sharpness change is adopted for fusion to obtain 𝐿𝐹(𝑥, 𝑦). 

While local gradient energy represents the difference 

changes, and edge strength represents the weighted 

difference of large-scale structures, both of them reflect 

the amount of image details. In high frequency subband, 

the HMO rule based on local gradient energy with edge 

strength is adopted for fusion to obtain 𝐻𝐹𝑗,𝑘(𝑥, 𝑦) . 

Finally, the high frequency coefficients and low frequency 

coefficients are reconstructed by NSCT inverse transform 

to get the fusion image. 

4 Experimental results and analysis 
The superiority of the method proposed in this paper is 

verified through experiments on self-built datasets. The 

test images included multi-focus Lena images, CT and 

MRI images, FA (Fluorescent Angiography) images and 

RF (Red-Free) images, etc., and were analyzed through 

visual and objective indicators. The experiment was 

conducted on CPU, with the code written in MATLAB, 

and the running time was within 2 seconds. 

4.1 Objective evaluation indicators 

This paper uses the commonly used measurement 

indicators to comprehensively and quantitatively evaluate 

the performance of different fusion methods, they are 

respectively [21]-[23]: peak signal to noise ratio (PSNR), 

structural similarity (SSIM), root mean square error 

(RMSE), Edge Information Retention (EIR), Information 

Entropy (IE). Among them, PSNR measures the similarity 

between the source image and the fused image by 

calculating the mean square error, the higher its value is, 

the smaller the distortion generated during the fusion 

process is, and the more similar the source image is to the 

fused image. SSIM measures the structural similarity 

between the source image and the fused image，the larger 

its value is, the more similar the source image is to the 

fused image. RMSE calculates the standard deviation 

between the fused image and the standard image, the 

smaller the value, the closer the fused image is to the 

standard image. EIR measures the retention of edge 

information and detailed textures of the source image, the 

higher the value, the more detailed and texture information 

the fused image contains, and the better the quality of 

A B

L

L

( )0 ,A

jC x y ( )0 ,B

jC x y

( ), ,A

j kd x y

( ), ,B

j kd x y
0j j
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visual information obtained from the source image. IE 

reflects the information and clarity contained in the fused 

image, the higher its value, the more information and 

richer details the fused image contains, and the better the 

fusion performance. 

4.2 Parameter setting 

Adjusting one parameter is achieved by fixing other 

parameters and evaluating it from RMSE, SSIM, EIR, and 

IE to determine the optimal value of the parameter. Below, 

we take the image fusion of the left-focused Lena and 

right-focused Lena as an example to analyze the optimal 

parameters. 

The measurement operator of high frequency subbands 

and low frequency subbands obtained by NSCT is used as 

the measurement method for the contour structure and 

edge texture information of the image, its parameter 

values directly affect the fusion quality and determine the 

effect of the final fused image. In order to determine the 

optimal values of the weight parameters in HMO and LMO, 

the weight parameters 𝛼1  and 𝛽1  in the 𝐿𝑀𝑂  were 

analyzed first. The parameter 𝛽1 was fixed as 1, and the 

value of parameter 𝛼1 was set within the range of 0 to 0.01. 

The experimental results are shown in Table 1. It can be 

seen that: (1) with the increase of the parameter 𝛼1, each 

evaluation index changes accordingly. When 𝛼1 =0.006, 

RMSE reaches the minimum value, SSIM, EIR and IE 

reach the maximum values, and the quality of the fused 

image improves well. Similarly, when 𝛼1=0.006, adjust 

the value of the parameter 𝛽1 to achieve the best fusion 

effect performance. Eventually, the values of 𝛼1  and 𝛽1 

are 0.006 and 1.05 respectively. (2) The parameters 𝛼2 

and 𝛽2 in HMO were analyzed. Through experiments, it 

was found that whether it was RMSE, SSIM, EIR or IE, 

the fused image was not greatly affected by the values of 

𝛼2  and 𝛽2 . Therefore, both 𝛼2  and 𝛽2  took the default 

value of 1. 

 

Table 1: Comparison of multi-focus Lena fusion results 

at different values of α1 

𝛂𝟏 RMSE SSIM EIR IE 

0.001 3.299 0.5124 0.685 7.795 

0.002 3.298 0.5124 0.685 7.798 

0.003 3.298 0.5125 0.687 7.803 

0.004 3.297 0.5125 0.688 7.808 

0.005 3.296 0.5125 0.688 7.811 

0.006 3.296 0.5126 0.689 7.812 

0.007 3.297 0.5126 0.688 7.810 

0.008 3.297 0.5126 0.687 7.805 

0.009 3.298 0.5126 0.685 7.802 

Note: Bold indicates the optimal value 

4.3 Frame structure experiment 

Three representative multi-scale image fusion frameworks 

were applied to the multi-focus Lena image fusion, and the 

same fusion rules of high frequency and low frequency 

were adopted to conduct experiments on these three fusion 

frameworks and NSCT framework to prove the 

effectiveness of NSCT framework in this paper. These 

three multi-scale image fusion frameworks include the 

Pyramid Method (PM), Discrete Wavelet Transform 

(DWT), and Contourlet Transform (CT). The 

experimental results are shown in Figure 3, it can be seen 

from the local magnification of the cap edge at the lower 

right corner in Figure 3(c)- 3(f) that: Fig. 3(c) using the 

PM framework, the energy loss of the image is relatively 

large, which leads to a decrease in the contrast of the fused 

image and the appearance of slight artifacts at some 

contour edges. In Fig. 3(d) and Fig. 3(e), the DWT and CT 

frameworks are respectively applied, there are slight 

distortion and aberration at some edges. the fused images 

have some random noise, and the graininess in the detail 

areas is relatively strong. In Fig. 3(f), the NSCT 

framework is used. compared with the previous three 

multi-scale frameworks, both contrast and fidelity have 

been significantly improved, and the texture features of 

the source image have also been restored. 

Table 2 shows the comparison of objective evaluation for 

multi-focus Lena image fusion under several multi-scale 

frameworks. It can be seen that compared with other 

multi-scale frameworks, the NSCT framework performs 

better in preserving edge details, as confirmed by PSNR, 

SSIM, RMSE, EIR and IE. Based on the authenticity of 

the texture features of the source image, the NSCT 

framework enhances the expression of texture features and 

details during the fusion process. This makes it 

particularly suitable for high-detail preservation 

applications, such as medical imaging etc. 
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(a) focus on the right    (b) focus on the left 

  
(c) PM                        (d) DWT 

  
(e) CT                       (f) NSCT 

Figure3: a-f Multi-focus Lena image fusion under several multi-scale frameworks 

 

Table 2: Comparison of multi-focus Lena image 

fusion under several multi-scale frameworks 

Framewor
k 

PSNR SSIM RMS
E 

EIR IE 

PM 10.27
7 

0.512
5 

3.325 0.65
2 

7.64
5 

DWT 10.27
8 

0.512
5 

3.310 0.66
1 

7.76
5 

CT 10.27
9 

0.512
4 

3.309 0.66
8 

7.77
5 

NSCT 10.28
1 

0.512
6 

3.305 0.67
4 

7.78
9 

4.4 Analysis of fusion results 

To test the effectiveness of the algorithm proposed in this 

paper, it is compared with several frequency-domain 

image fusion methods proposed in recent years, including 

NSCT_PC [18], NSCT_EN_PCNN [17], NSST_PCNN 

[24], CWT_SR [11] and JBF [25]. NSCT_PC represents 

the fusion rule based on Phase Congruency (PC) and 

Laplace energy in the NSCT domain; NSCT_EN_PCNN 

represents the fusion rule based on the PCNN rule and 

image entropy in the NSCT domain; NSST_PCNN 

represents the fusion method based on the PCNN and 

energy strategy in the NSST domain; CWT_SR represents 

the fusion method based on sparse representation in the 

domain of complex wavelet transform; JBF represents a 

joint bilateral filtering fusion method based on enhancing 

edges and contrast.  

Figure4 shows the artificial multi-focus Lena image fusion 

results of the method proposed in this paper and five 

representative frequency-domain fusion methods. It can 

be seen that in Fig. 4(c), Fig. 4(d), Fig. 4(e) and Fig. 4(f), 

a large amount of energy is lost during the fusion process, 

resulting in a decrease in the contrast of the fused image. 

It can be seen from the local magnification images that the 

fused image shows insufficient performance in the detail 

texture of the hair, and some even have distortion. In Fig. 

4(g), the JBF method significantly improves the fusion 

effect. However, there are greater differences and not 

smooth in local changes, and some details have 

discontinuous edge points. Compared with the previous 

several methods, the image texture fused by the method in 

this paper is clearer and the image layering is stronger. 

Table 3 shows the objective evaluation comparison of 

multi-focus Lena image fusion by different methods. It 

can be seen that the value of RMSE by the proposed 

method is the smallest, that is to say, the fusion result 

obtained by the proposed method is the closest to the 

standard image. In addition, the proposed method also 

outperforms other methods in terms of PSNR, SSIM, EIR, 

and IE evaluation indicators, which indicates that the 

fusion effect of the proposed method outperforms that of 

other methods in terms of detail contour and pixel 

intensity. The experimental results show that the 

performance of the proposed method is better than that of 

other methods both in subjective analysis and objective 

indicators. 

 

  
(a) focus on the right           (b) focus on the left 
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(c) NSCT_PC             (d) NSCT_EN_PCNN 

  
  (e) NSST_PCNN                      (f) CWT_SR 

  
(g) JBF                       (h) the proposed method 

 

Figure 4: a-h Fusion results of different methods for multi-

focus Lena image 

 

Table 3: Objective efficacy comparison of different 

methods for multi-focus Lena fusion results 

Methods PSNR SSIM RMS
E 

EIR IE 

NSCT_PC 10.27

6 

0.512

4 

3.31

1 

0.66

8 

7.74

8 

NSCT_EN_PCN
N 

10.27

7 

0.512

5 

3.31

2 

0.66

4 

7.75

6 

NSST_PCNN 10.27

8 

0.512

5 

3.30

8 

0.67

1 

7.78

2 

CWT_SR 10.27

8 

0.512

3 

3.30

9 

0.67 7.77

5 

JBF 10.27

9 

0.512

5 

3.30

8 

0.67

2 

7.78

5 

Proposed 
method 

10.28

1 

0.512

6 

3.30

5 

0.67

4 

7.78

9 

 

CT images focus on describing the contour features of 

bones, while MRI images focus on describing the detailed 

texture features of soft tissues. Figure 5 shows the fused 

images of brain CT images and MRI images obtained by 

different methods. It can be seen that in Fig. 5(c), 5(d), 

5(e), and 5(f), the fused images show edge distortion or 

blurring in terms of brain fiber texture information. It can 

also be observed from the local magnified images that the 

fused images have edge artifacts and information loss, 

which seriously affects the accuracy of medical diagnosis. 

This situation is improved in Fig. 5(g), but it is still 

insufficient in the presentation of texture details. In Fig. 

5(h), the detail texture of soft tissue structure in the fused 

image is clearer compared with the previous several 

methods, in the local magnified image, the gully texture 

has better contrast. Table 4 shows the objective evaluation 

comparison of CT/MRI image fusion by different methods. 

It can be seen that the method proposed in this paper has 

achieved considerable results in various indicators such as 

PSNR, SSIM, EIR, and IE, which indicates that the 

proposed method has better performance in aspects such 

as image feature transfer and texture detail expression. 

The experimental results show that in CT/MRI image 

fusion, the method proposed in this paper outperforms 

other methods in both subjective analysis and objective 

indicators.

 

  
(a)CT                                    (b)MRI 
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(c) NSCT_PC                   (d) NSCT_EN_PCNN 

  
(e) NSST_PCNN                   (f) CWT_SR 

  
(g) JBF                          (h) Proposed method 

 

Figure 5: a-h Fusion results of different methods for CT image and MRI image 

 

Table 4: Objective efficacy comparison of different 

methods for CT image and MRI image 

Methods PSNR SSIM EIR IE 

NSCT_PC 9.847 0.5235 0.668 6.781 

NSCT_EN_PCNN 9.826 0.5233 0.656 6.665 

NSST_PCNN 9.845 0.5235 0.665 6.783 

CWT_SR 9.839 0.5232 0.664 6.776 

JBF 9.851 0.5237 0.673 6.826 

Proposed method 9.856 0.5238 0.684 6.857 

 

 

 

Retinal FA (Fluorescent Angiography) images are the 

images of retinal blood vessels obtained by injecting 

sodium fluorescein contrast agent, and RF (Red Free) i 

images are the images obtained by irradiating the retina 

with short-wavelength light. They play an important role 

in the diagnosis and monitoring of fundus diseases. Figure 

6 and Figure7 show the fusion images of FA images and 

RF images obtained by different methods. It can be seen 

that the other methods have problems such as fuzzy 

pseudo-shadow and information loss in the soft tissues of 

the fundus vessels at different level, and even vascular 

edge distortion in the local magnified images, which is not 

beneficial to the accuracy of medical diagnosis. The 

method proposed in this paper, relatively speaking, 

provides a more accurate description of the FA/RF image 

and better preserves the small structure information of the 

vascular tissues. Tables 5 and Tables 6 show the objective 
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evaluation comparison of FA/RF image fusion by 

different methods. It can be seen that the method proposed 

in this paper has obvious advantages in PSNR, SSIM, EIR, 

and IE indicators, which indicates that the proposed 

method has greatly improved the expression of the 

detailed texture of fundus vascular tissue in FA and RF 

images and enhanced the contrast of the fused images. It 

is convenient to observe the diseased region of the patient. 

The experimental results show that the proposed method 

outperforms the other methods in both subjective analysis 

and objective evaluation in FA/RF image fusion.

  

  
(a) FA image                                     (b) RF image 

  
(c) NSCT_PC                               (d) NSCT_EN_PCNN  

  
(e) NSST_PCNN                                  (f) CWT_SR 
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(g) JBF                                    (h) Proposed method  

Figure 6: a-h Fusion results of different methods for FA image and RF image 

 

Table 5: Objective efficacy comparison of different methods for FA image and RF image 

Methods PSNR SSIM EIR IE 

NSCT_PC 8.547 0.5051 0.486 6.588 

NSCT_EN_PCNN 8.604 0.5053 0.531 6.604 

NSST_PCNN 8.635 0.5054 0.549 6.628 

CWT_SR 8.578 0.5052 0.536 6.606 

JBF 8.642 0.5054 0.558 6.725 

Proposed method 8.673 0.5055 0.612 6.817 

  
(a) FA image                                      (b) RF image 

  
(c) NSCT_PC                              (d) NSCT_EN_PCNN 
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(e) NSST_PCNN                                (f) CWT_SR 

  
(g) JBF                                       (h) Proposed method 

 

Figure 7: a-h Fusion results of different methods for FA image and RF image 

 

Table 6: Objective efficacy comparison of different 

methods for FA image and RF image 

Methods PSNR SSIM EIR IE 

NSCT_PC 8.512 0.5053 0.529 6.758 

NSCT_EN_PCNN 8.535 0.5044 0.539 6.789 

NSST_PCNN 8.557 0.5045 0.541 6.791 

CWT_SR 8.525 0.5054 0.534 6.783 

JBF 8.564 0.5045 0.546 6.788 

Proposed method 8.582 0.5046 0.572 6.804 

 

As mentioned above, the fusion effect of the method 

proposed in this paper is better than the five popular image 

fusion methods and three image fusion frameworks in the 

field of frequency domain in recent years, and it achieves 

better visual effects, thereby ensuring the reliability of 

subsequent processing. 

5 Conclusion 
A new image fusion method based on NSCT is presented. 

Firstly, the fusion rule scheme of source image 

decomposed by NSCT is constructed, the low frequency 

fusion rule is based on activity with local sharpness 

changes, and the high frequency fusion rule is based on 

local gradient energy with edge strength. In this paper, 

artificial multi-focus images, brain CT and MRI images, 

FA image and RF image are tested. The results show that 

the presented method has excellent fusion property for 

multi-focus and multimodal image fusion. 
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