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The analysis of swimming techniques has become increasingly significant for enhancing performance met-
rics and optimizing training methods. This study presents a novel approach to evaluate and select the opti-
mal technology for swimming technique analysis by employing aMulti-Criteria Decision-Making (MCDM)
framework within a hesitant bipolar fuzzy environment. Traditional evaluation methods often fail to handle
expert evaluations’ inherent uncertainty and hesitation. To address this gap, our approach integrates hesi-
tant bipolar fuzzy sets, effectively capturing expert judgements with high precision and flexibility. Through
this method, we assess a range of technological tools across multiple criteria, including accuracy, usabil-
ity, affordability, and real-time feedback capabilities. The results reveal that the chosen MCDM model
achieves an accuracy of 99.2% in aligning with expert preferences, establishing it as a reliable method for
ranking swimming analysis technologies. Moreover, our findings indicate that Technology D outperforms
others with a preference score of 0.90, suggesting its suitability for extensive application in sports train-
ing environments. This study not only highlights the effectiveness of hesitant bipolar fuzzy sets in sports
technology evaluation but also provides a robust framework for similar applications across other domains
where decision-making under uncertainty is critical.

Prispevek predstavi nov okvir za oceno tehnologij analize plavalne tehnike, ki uporablja MCDM metodo v
okolju z negotovostjo in bipolarno zamegljenostjo. Ta pristop učinkovito obravnava negotovost in dvome
strokovnjakov ter natančno oceni različne tehnologije na podlagi več kriterijev.

1 Introduction

Swimming has become a significant area in sports science,
and applying technology in performance analysis could
greatly benefit the elite sports performer and the coach [1].
The application of technology in handling swimming skills
and styles is of particular importance and relevance, where
better strategies can be developed, or wrong ones are re-
moved, and the biomechanics and postural efficiency of
movements are enhanced [2]. Hence, choosing this particu-
lar technology for the above-mentioned purpose is consid-
ered essential but not easy because of the variety of tech-
nologies, and selecting the best among them implies the
problems of defining the performance evaluation criteria
[3] [4].
In recent years, multi-criteria decision-making (MCDM)

models have gained recognition as promising tools in as-
sessing technologies since they enable decision-making
based on several criteria [5]. However, most previous
works in the MCDM area fail to capture the inherent
stochasticity and conservatism that usually accompany the
rating process, mainly when the domain highly depends
on an expert’s opinion [6]. Regarding this, hesitant bipo-
lar fuzzy sets (HBFS), a new acquisition to the fuzzy set

theory, have proved to apply these subjective factors more
efficiently since the HBFS capture both positive and nega-
tive aspects of the experts [7]. This study uses HBFS for the
first time in theMCDM process to overcome the challenges
caused by evaluating swimming analysis technology, mak-
ing it unique [8].

1.1 Research gap

Recent works in sports science and technology literature
on performance analysis examine different methods where
tools include wearable technologies, video technology sys-
tems, and biomechanical models [9]. However, the models
employed to assess and validate these tools’ readiness po-
tential and make decisions regarding selecting appropriate
technology depend on the conventionalMCDM techniques,
including the analytic hierarchy process (AHP), the tech-
nique for order preference by similarity to the ideal solu-
tion (TOPSIS), and many other similar models [10]. These
methods have limitations when applied to expert evalua-
tions in complicated sports environments [11]. Firstly, most
traditional MCDM approaches have drawbacks in solving
the issues of hesitation and bipolarity of specialists’ opin-
ions. The specialists might be cautious when delivering
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quantitative assessments, even when new technologies or
unknown approaches are used [12]. Furthermore, in the
evaluation of technology related to sports analysis, it can be
observed that the perceptions of specialists consist of value
judgments that contain positive and negative elements that
differ with respect to the criteria, which facts substanti-
ate the bipolar character of the judgment and are not ad-
equately incorporated into conventional methods [13]. The
above-cited studies, therefore, failed to provide comprehen-
sive coverage of the whole range of subjectively perceived
factors essential when selecting the most suitable technolo-
gies for swimming technique analysis, which points to a
research gap [14]. A key objective is to demonstrate the
model’s capacity to replicate expert preferences with high
accuracy. As detailed in the results, the proposed method
achieves a 99.2% alignment with expert rankings, indicat-
ing its robustness and applicability for real-world decision
support in sports technology assessments.

1.2 Limitations of previous studies
Previous research on technology evaluation in sports sci-
ence has encountered several notable limitations:

1. Inability to capture expert hesitation: Standard
MCDM frameworks assume that experts provide
definitive judgements, overlooking the reality that ex-
perts may feel hesitant in ranking or scoring certain
technologies due to limited familiarity or mixed feel-
ings about specific tools.

2. Lack of flexibility in decision modeling: The absence
of advanced fuzzy logic in conventional models re-
stricts their capacity to adapt to varied, subjective eval-
uations that experts may provide, particularly in set-
tings involving innovative or lesser-known technolo-
gies.

3. Insufficient support for bipolar opinions: Traditional
MCDM approaches, which rely on single-directional
preference scales, lack the functionality to handle
bipolarity, where experts simultaneously consider the
positive and negative aspects of each option. This lim-
itation can lead to overly simplistic evaluations that
fail to reflect the true complexity of expert opinions.

4. Low accuracy in reflecting expert preferences: As a
consequence of the above limitations, previous frame-
works have demonstrated lower alignment with ac-
tual expert preferences, reducing the reliability of the
decision-making process.

Given these limitations, the current study proposes a hes-
itant bipolar fuzzy MCDM framework to enhance technol-
ogy evaluation’s flexibility, precision, and accuracy in the
context of swimming technique analysis. The main data
source for evaluating swimming analysis technologies con-
sists of expert assessments, which rate accuracy and usabil-
ity, and feedback quality and cost-effectiveness. The ex-
perts assign their ratings regarding the domain based on

their knowledge, and then the model uses hesitant bipo-
lar fuzzy numbers to capture their dual sentiments and un-
clearness. The initial fuzzy evaluations provided by experts
serve as the fundamental information source for an MCDM
process using HBFS to produce final alternative rankings.
Expert opinions enter directly into the model without alter-
ing their initial hesitancy through this structure.

1.3 Challenges of the study
Conducting a comprehensive evaluation of swimming anal-
ysis technologies through HBFS MCDM presents distinct
challenges that are crucial to address for effective model
implementation and reliable results. These challenges in-
clude:

– Data collection challenges: Collecting detailed, re-
liable feedback from domain experts, particularly in
fields as specialized as swimming performance anal-
ysis, requires careful consideration of expert back-
ground, expertise level, and subjective bias. Ex-
perts may have varying familiarity levels with differ-
ent technologies, further complicating feedback con-
sistency.

– Handling uncertainty in expert judgments: A core
challenge in using HBFS MCDM is managing uncer-
tainty effectively. Experts may not provide entirely
definitive judgements due to uncertainty in the evalu-
ation criteria or unfamiliarity with some technologies.
HBFS offers a mechanism for handling such uncer-
tainty but requires careful parameterization to ensure
accurate representation.

– Computational complexity and model feasibility: Al-
though HBFS MCDM models enhance the decision-
making process, they also introduce computational
complexities that make them difficult to apply in prac-
tice. For this model to be feasible in real-world scenar-
ios, careful calibration is needed to balance computa-
tional efficiency and decision accuracy.

Addressing these challenges is essential for implement-
ing an effective HBFS MCDM model, ensuring it achieves
the desired accuracy and reliability in technology evalua-
tion.

1.4 Motivation
The primary purpose of this paper is to help fill the research
gap and provide a more elaborate and accurate decision-
supported view on the evaluation of sports technology. Ex-
ploring HBFS in this study propels sports analysis by im-
proving the credibility of decision, while reflecting the un-
certainty and subjectivity of expert judgements in decision
making about technology adoption. This study aims to ob-
tain an optimal solution for evaluating tools for analyzing
swimming technique styles by utilizing advanced fuzzy set
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theory in a multicriteria decision-making system. The flex-
ible structure of the framework benefits the broadening use
of the framework in various sports and for technology as-
sessment, and therefore, it spurs its development and re-
search.

1.5 Novel contributions
This research introduces several novel contributions to the
field of sports science and technology evaluation:

1. Application of hesitant bipolar fuzzy sets in sports
analysis technology evaluation: This study pioneers
HBFSwithin anMCDM framework, offering a unique
approach for accurately capturing the complexities of
expert opinions in sports technology evaluation.

2. Development of a specialized MCDM model for
swimming technique analysis: By integrating HBFS
into an MCDM model tailored for swimming tech-
nique analysis, this research addresses the unique re-
quirements of the sport, including multi-dimensional
performance criteria, uncertainty in expert judgement,
and the need for high-accuracy decision support.

3. Empirical validation of decision accuracy: Through
rigorous testing and validation, the model demon-
strates a decision accuracy of 99.2%, substantiating its
efficacy in reflecting expert preferences and improv-
ing existing evaluation methods.

These contributions underscore the originality of this
study and its relevance to the broader field of sports technol-
ogy evaluation, where decision-making under uncertainty
is paramount.
The remainder of this paper is organized as follows: Sec-

tion 2 reviews existing literature on MCDMmethods, hesi-
tant fuzzy sets, and sports technology evaluation, highlight-
ing relevant studies and theoretical underpinnings. Sec-
tion 3 details the Methodology used in the study, describ-
ing the integration of HBFS within the MCDM framework
and the criteria considered for swimming analysis technol-
ogy evaluation. Section 4 presents the Experimental Re-
sults and Analysis, showcasing model outcomes, accuracy
rates, and comparative assessments against other decision-
making frameworks. Section 5 provides a discussion on
the Implications and Future Research Directions, suggest-
ing areas for further exploration and practical applications
of the proposed model. Finally, Section 6 concludes the
study, summarizing key findings and reaffirming the con-
tributions made to the field.

2 Literature review
The evaluation of advanced decision-making frameworks
in diverse domains continues to gain significance, as it of-
fers insights into addressing complex challenges with pre-
cision. This section explores key studies that highlight

innovative approaches to multi-criteria decision-making
(MCDM) and their applications in various fields.
Ali et al. [15] introduced a newmethod for solvingmulti-

faceted decision-making issues, which can be especially
useful in economic matters, energy supply and demand
challenges, and the population’s resource scarcity. To de-
velopmore effective models for solving complex problems,
their study proposed the Spherical Fuzzy Bipolar Soft Sets
(SFBSSs) model. It was suggested that this model be used
instead of the proposed spherical fuzzy set hybridizations
because those do not handle information equally in a bipolar
setting. They provided empirical evidence of SFBSSs and
showed how suchmodels could be used byworking through
a real-life corporate decision-making problem—the selec-
tion of a chief management officer. Their research also
looked at other features and functions of SFBSSs, such as
subset, complement, relative null and absolute set, extended
union and intersection, and restricted union and intersec-
tion [16]. To explain why operations like AND and OR are
valid, primary number results like commutativity, associa-
tivity, and distribution, along with De Morgan’s laws, were
used in the context of the SFBSS environment. Addition-
ally, they studied a multiple-attribute decision approaching
hierarchy ranking downstream fish passage designs for hy-
droelectric utilities where the objectives reflected an opti-
mal tradeoff between the hydropower and ecological im-
pacts on fish migration. Their comparison established the
usefulness of the SFBSS model in outcompeting other ap-
proaches; it is also invariant to negative, neutral, and posi-
tive memberships under volatile conditions.
In a multicriteria assessment of technologies of sea-

water electrolysis for green hydrogen production at sea,
D’Amore-Domenech et al. [17] focused on the benefits
of using maritime renewable sources for power produc-
tion. Nevertheless, several benefits, marine renewables,
when combined with electrolysis technology, remain un-
profitable for commercial purposes. The study’s goal was
to find out which of the listed electrolysis technologies
looked most promising based on economic, environmen-
tal, and social approaches, given that it is often difficult
to achieve the best result in all the aspects listed above.
To accommodate this, the researchers used multicriteria
decision-making (MCDM) techniques, and while its appli-
cation is efficient, it sometimes serves as a source of in-
coherent analysis. To overcome this, the study used five
different MCDM techniques, and the reliability of the re-
sults was boosted by ensuring that the ranking algorithms
were consistent. A survey analysis of the study pointed out
that PEM electrolysis suits seawater electrolysis in the short
run, as demonstrated by its provision of a reasonable oppor-
tunity for green hydrogen application in combination with
marine renewable sources.
Abdullah et al. [18] proposed the establishment of a

causal relationship between criteria influencing water se-
curity based on the intuitive fuzzy decision-making trial
and evaluation laboratory (IF-DEMATEL) technique. This
work differs from the basic concept of DEMATEL by using
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IFNs instead of crisp numbers because the degree of hesi-
tation is inherent in the experts’ estimations. According to
the mentioned variables, influences were collected from the
water security professionals through one-to-one interviews
concerning seven criteria in water security using the three
tuples of IFNs. Operating IF-DEMATEL through special-
ized software enabled the computational aspect, producing
a causal relationship map. The evaluation concluded that
“over-abstraction,” “saltwater intrusion,” and “limited in-
frastructures” were initial causes of water insecurity and
that “water pollution” and “rapid urbanization” were pri-
mary criteria most sensitive to other circumstances in the
system. Thus, the study’s findings can help practice water
security management and generate research on using mod-
ified DEMATEL with IFNs, illustrating critical issues for
policymakers.
Du and Yang [19] introduced the method of advanced

market risk assessment of SMEs based on the IVIFHIPG
technique. This method cannot only solve the problem
that SMEs’ development scale and system are often lim-
ited in China but also can not form competitive strength
and sustainable development capability. Recognising the
centrality of risk management, the authors defined mar-
ket risk evaluation as a multiple attribute decision mak-
ing (MADM) problem under uncertainty. To capture un-
certainty, the authors used interval-valued intuitive fuzzy
sets (IVIFSs), which provide a means for expressing un-
certain data in the context of market risk evaluation [20].
Explorations of the options and features of the IVIFHIPG
technique were made, and a case study was presented to
demonstrate the technique’s effectiveness in SMEs’ mar-
ket risk appraisal. The main contributions of the study are
the development of the IVIFHIPG model, demonstration
of its practical usage for evaluating market risk, carrying
out comparative analysis to determine the efficiency of the
method and thus the applicability of various risk assess-
ments under uncertainty for SMEs, and proposing the IV-
IFHIPG to support SMEs in intensively competitive mar-
kets.
Mao [21] came up with a more sophisticated method

to gauge the operational effectiveness of businesses that
combine industry and finance using the Interval-Valued
Intuitionistic Fuzzy Hamacher Interactive Power Averag-
ing (IVIFHIPA) technique. Given the rising competi-
tive pressures experienced by enterprises as a result of
economic globalization, enterprises’ financial management
faces pressures toward change [22]. This study integrates
industry finance, an emerging strategy that seeks to improve
the effectiveness of financial management and control, re-
duce risks, and improve the capacity of industries. He
deliberated the operational quality evaluation of such en-
terprises as a multiple attribute decision-making (MADM)
problem under uncertainty with the help of IVIFSs to han-
dle vague and uncertain information. So, the IVIFHIPA
technique was created to combine the Interval-Valued In-
tuitionistic Fuzzy Hamacher Interactive Weighted Averag-
ing method with the traditional power average method. It is

more accurate and flexible thanMADM processes. The IV-
IFHIPA technique was evaluated in terms of its properties
and parameters, and it was tested with a real-life example
of evaluating operational quality for combining finance and
industry using lean management accounting. He pioneered
the IVIFHIPA model’s development, validation, and use to
increase operational quality assessments in complex, inter-
faced financial systems.
The literature reveals significant advancements in

decision-making frameworks, addressing various chal-
lenges across diverse applications. By analyzing these stud-
ies, this paper positions itself to build on existing method-
ologies while addressing unresolved gaps, thereby advanc-
ing the domain of multi-criteria decision-making. Table
1 provides the comparison of state-of-the-art methods for
swimming technology evaluation.

3 Methodology
This research establishes a method for analyzing and com-
paring the best technology for swimming technique analy-
sis based on a multi-criteria decision-making (MCDM) ap-
plication under the hesitant bipolar fuzzy context. This is so
because the methodology adopts hesitant bipolar fuzzy sets
(HBFS) together withMCDM to deal with the uncertain na-
ture of the expert assessments where both the positive and
negative parts of the subjective assessments are captured.
By combining fuzzy set theory and MCDM, the approach
emphasizes the technologies based on criteria like accu-
racy, usability, economic feasibility, and feedback quality,
which are required to judge the swimming analysis tools.
It presents a transparent and integrated framework that can
address decision-making problems in situations that require
defuzzified but subtly different expert opinions.

3.1 Mathematical foundation of the model
3.1.1 Hesitant bipolar fuzzy sets (HBFS)

Hesitant bipolar fuzzy sets (HBFS) offer a mathematical
structure to handle complex evaluations involving both hes-
itation and bipolarity, representing positive and negative
opinions about a given attribute. For an attribute x in
an HBFS A, the membership µA(x) and non-membership
νA(x) degrees are defined as intervals:

µA(x) = [µL
A(x), µ

U
A(x)]

νA(x) = [νLA(x), ν
U
A (x)]

where µL
A(x) and µU

A(x) are the lower and upper bounds
of the membership interval, while νLA(x) and νUA (x) repre-
sent the bounds of the non-membership interval. The hes-
itation degree πA(x) reflects the uncertainty and is calcu-
lated as:

πA(x) = 1− µU
A(x)− νUA (x) (1)
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Table 1: Comparison of state-of-the-art methods for swimming technology evaluation

Method Performance Metrics Limitations Suitability for Swimming
Analysis

AHP [13] Accuracy, Usability,
Cost-effectiveness

Fails to capture hesitation
and bipolarity in expert
opinions

Suitable for general MCDM
but inadequate for capturing
expert uncertainty in sports
contexts

TOPSIS [?] Performance alignment
with ideal solution,
Usability

Assumes crisp judgements,
lacks flexibility for complex
decisions

Limited in dealing with sub-
jective or ambiguous expert
feedback

Fuzzy AHP [?] Accuracy, Decision sup-
port efficiency

Does not adequately address
uncertainty in expert judge-
ment

Can be used but does not
fully integrate the complex-
ities of hesitant and bipolar
evaluations

Spherical Fuzzy Sets
[15]

Robust decision-making
in uncertain environ-
ments

Inability to reflect both pos-
itive and negative aspects of
expert opinions

Limited in addressing both
the positive and negative di-
mensions required in tech-
nology evaluation

Our Method (HBFS
MCDM)

99.2% accuracy, Flexi-
bility in expert evalua-
tion, Real-time applica-
bility

Computational complexity,
Need for expert calibration

Fully captures expert
hesitation and bipolarity,
addresses gaps in previ-
ous methods by offering
a flexible, high-accuracy
framework

This hesitation component provides a nuanced approach
to handling ambiguous expert judgments, where opinions
may not be entirely positive or negative.

3.1.2 Bipolar fuzzy aggregation

In the evaluation process, hesitant bipolar fuzzy aggrega-
tion captures expert preferences by adjusting the interaction
between membership and non-membership values. For ex-
ample, combining two HBFS A and B with membership
and non-membership intervals can be achieved using spe-
cific aggregation operators:

µA∩B(x) =
µA(x) · µB(x)

λ+ (1− λ)(µA(x) + µB(x)− µA(x) · µB(x))
(2)

νA∪B(x) =
νA(x) + νB(x)− νA(x) · νB(x)

λ+ (1− λ) · (νA(x) + νB(x)− νA(x) · νB(x))
(3)

where λ is the interaction parameter that controls the
level of influence between the attributes.

3.1.3 Illustrative example of HBFS aggregation

To enhance understanding of the hesitant bipolar fuzzy
weighted averaging (HBFWA) operator, we present a sim-
ple numerical example. Suppose we have three hesitant
bipolar fuzzy elements (HBFEs) associated with a criterion:

– h1 = {(0.6,−0.2), (0.5,−0.1)}

– h2 = {(0.7,−0.3)}

– h3 = {(0.4,−0.4), (0.5,−0.2)}

with corresponding weights:

w1 = 0.3, w2 = 0.4, w3 = 0.3

First, compute the average positive and negative mem-
bership values for each HBFE:

avg+h1
=

0.6 + 0.5

2
= 0.55, avg−h1

=
−0.2 + (−0.1)

2
= −0.15

avg+h2
= 0.7, avg−h2

= −0.3

avg+h3
=

0.4 + 0.5

2
= 0.45, avg−h3

=
−0.4 + (−0.2)

2
= −0.3

Now, aggregate the values using the weighted average:

µ+ = w1 · 0.55 + w2 · 0.7 + w3 · 0.45
= 0.165 + 0.28 + 0.135 = 0.58

µ− = w1 · (−0.15) + w2 · (−0.3) + w3 · (−0.3)

= −0.045− 0.12− 0.09 = −0.255

Thus, the aggregated HBFE is:

h∗ = (0.58,−0.255)

This step-by-step example clarifies how hesitant bipolar
fuzzy information is combined using the HBFWA operator,
as employed in the proposed decision-making framework.
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3.2 Construction of the MCDM model for
swimming technology evaluation

The model employs the hesitant bipolar fuzzy interac-
tive averaging (HB-FIA) technique to evaluate criteria
for swimming technology. Each technology is evaluated
by weighting attributes such as accuracy, usability, cost-
effectiveness, and feedback quality. Given a set of at-
tributes A1, A2, . . . , An and weights w1, w2, . . . , wn, the
aggregated values are calculated as follows:

HB-FIA(A1, A2, . . . , An) =

(
n∏

i=1

µAi(x)
wi

) 1∑n
i=1

wi

,

(
n∏

i=1

νAi(x)
wi

) 1∑n
i=1

wi

(4)
The HB-FIA technique allows for weighted aggregation,

balancing each attribute’s impact according to its impor-
tance in the decision process. A total of four evaluation fac-
tors were chosen to assess swimming analysis technologies:
accuracy combined with usability and cost-effectiveness
along with feedback quality. The accuracy rate is essen-
tial to conduct proper performance assessments and correct
techniques. Both athletes and coaches can easily use the
technology due to its usability design characteristics that
eliminate the need for extensive training or technical sup-
port. The price of the tools stands as a crucial factor for
allowing institutions and individuals who have limited re-
sources to access them. The quality of feedback demanded
by athletes and coaches needs to be high in order to pro-
vide performance-enhancing insights on schedule. Cogni-
tive metrics that emphasize resistance against diverse en-
vironmental aspects, including water turbulence, pool con-
figurations and lighting variations, were added as supple-
mental evaluation criteria. This upgrade considers realistic
operational obstacles affecting these systems in the field,
enabling enhanced evaluation framework comprehensive-
ness.

3.2.1 Properties of the HB-FIA technique

– Sensitivity to Attribute Interactions: The HB-FIA
technique accounts for weighted influences, making it
adaptable to various levels of attribute significance.

– Enhanced Decision Precision: By integrating HBFS,
the model effectively represents both positive and neg-
ative judgments across criteria, capturing the full spec-
trum of expert opinions.

3.2.2 Parameterization of HBFS model

To ensure replicability and procedural transparency, we
define the parameterization steps adopted in applying the
HBFS-based MCDM framework. First, expert weights

were obtained using a linguistic scale mapped to triangu-
lar fuzzy numbers, which were subsequently converted into
normalized crisp values via a defuzzification process. Sec-
ond, for each criterion, experts provided a set of bipolar hes-
itant values representing both positive and negative mem-
bership degrees. These values were aggregated using the
HBFS averaging operator. The hesitation degrees were
constructed by recording multiple values for each expert’s
judgment under uncertainty. Each set was transformed into
a bipolar structure, where the positive set indicated support
and the negative set indicated opposition to an alternative
under a specific criterion. A threshold τ was set at 0.5 to
distinguish between dominant and non-dominant evalua-
tions, and normalization was applied across all criteria to
maintain comparability.

3.3 Algorithm for implementing the
HB-FIA model

The following algorithm details the steps involved in us-
ing the HB-FIAmodel for ranking swimming analysis tech-
nologies:

Algorithm 1 Detailed Implementation of the HB-FIA
Method
Require: Expert evaluations E = {e1, e2, . . . , en} under

criteria C = {c1, c2, . . . , cm}
Ensure: Final ranking of alternatives
1: Step 1: Normalize the hesitant bipolar fuzzy evalua-
tions under each criterion.

2: Step 2: Construct hesitant bipolar fuzzy decision ma-
trix D = [dij ], where dij represents the positive and
negative membership degrees for alternative i on crite-
rion j.

3: Step 3: Compute criterion weights wj either via
expert-assigned values or using entropy/objective
methods. For this study, expert-assigned weights re-
flecting real-world preference sensitivity are used.

4: Step 4: Apply aggregation operator (e.g., HBFAWA)
on D using weights wj to obtain aggregate scores for
each alternative.

5: Step 5: Defuzzify the aggregate hesitant bipolar fuzzy
values to obtain crisp utility values.

6: Step 6: Rank alternatives based on defuzzified values.

3.3.1 Pseudo-code of the HBFS-MCDM algorithm

Note on Weighting Strategy: The weights assigned to
each criterion reflect expert judgments on their relative im-
portance. Since these are inherently subjective, the model
integrates them proportionally into the aggregation pro-
cess to preserve the integrity of domain-specific knowl-
edge. This approach aligns with the principle of preference-
sensitive decision-making often required in expert-driven
sports technology evaluations.
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Algorithm 2 HBFS-MCDM Algorithm
1: Input: Set of alternativesA = {A1, A2, . . . , Am}, cri-
teria C = {C1, C2, . . . , Cn}, weights wj , and hesitant
bipolar fuzzy decision matrix D = [hij ]

2: for each alternative Ai do
3: for each criterion Cj do
4: Extract HBFE hij and compute average posi-
tive and negative membership values: µ+

ij , µ
−
ij

5: end for
6: end for
7: Aggregation: Apply HBFWA or HBFPWA to obtain

h∗
i = (µ+

i , µ
−
i ) for each Ai

8: Scoring: Compute score function S(h∗
i ) = µ+

i + µ−
i

9: Ranking: Rank all alternatives based on descending
order of S(h∗

i )
10: Output: Ranked list of alternatives

3.4 Illustrative example of HB-FIA
application

To demonstrate the model, we consider three key attributes
in the context of swimming technology: accuracy, usability,
and feedback quality. Suppose the membership and non-
membership intervals for each attribute are as follows:

µA1
(x) = [0.7, 0.9], νA1

(x) = [0.1, 0.2]

µA2(x) = [0.6, 0.8], νA2(x) = [0.2, 0.3]

µA3
(x) = [0.8, 0.95], νA3

(x) = [0.05, 0.15]

Using the assigned weights w1 = 0.4, w2 = 0.3, and
w3 = 0.3, the aggregated values are calculated using the
HB-FIA technique, yielding a final evaluation score for
each technology.

Figure 1: HB-FIA model workflow

Figure 2: Membership and non-membership interval inter-
actions

3.4.1 Model robustness and embedded sensitivity
mechanism

The research design uses HBFS structure because this struc-
ture naturally handles various input situations involving
expert opinion discrepancies alongside uncertainty levels.
Hesitation is supported by intervals within positive and neg-
ative membership functions in this model structure. The
usage of these methods enables detailed expert subjectivity
modeling while at the same time avoiding manual adjust-
ment needs for different situations. The aggregation pro-
cess unites hesitating values by using weighted rules that
represent evaluation criterion significance levels while sup-
pressing irregular assessment effects. The embedded sen-
sitivity method enables this weighting mechanism to safe-
guard the stable output rankings, which absorb minor varia-
tions of input values. New clarity has been introduced to ex-
plain parameter adaptability, which was previously implicit
in the original model, so that readers can understand the ro-
bustness framework explicitly. The model becomes more
usable within different evaluation applications because this
feature strengthens its replication ability.

4 Experimental results & analysis
The proposed hesitant bipolar fuzzy multi-criteria decision-
making (MCDM) model was applied to assess and rank
various swimming analysis technologies based on expert-
defined criteria: accuracy, usability, cost-effectiveness, and
feedback quality. This analysis generated an optimal rank-
ing that reflects both the subjective preferences of experts
and objective performance metrics. The results confirm
that the hesitant bipolar fuzzy methodology effectively cap-
tures nuanced judgments, supporting the practical applica-
tion of this model in real-world sports technology evalua-
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Table 2: Performance scores of swimming technologies across criteria

Technology Accuracy
Score

Usability
Score

Cost-
effectiveness
Score

Feedback
Quality Score

Technology A: Stroke Analyzer 0.85 0.78 0.65 0.83
Technology B: Speed Tracker 0.88 0.82 0.70 0.85

Technology C: Posture Corrector 0.82 0.76 0.68 0.79
Technology D: Performance Monitor 0.90 0.80 0.72 0.87

tion.

4.1 Criteria-wise performance analysis

Each criterion—accuracy, usability, cost-effectiveness, and
feedback quality—was individually evaluated to under-
stand its contribution to the overall ranking. Table 2
presents the performance scores of each swimming anal-
ysis technology under each criterion. These scores were
derived using the hesitant bipolar fuzzy framework, which
calculates membership and non-membership values based
on expert evaluations.

Table 3: Performance statistics of swimming analysis tech-
nologies

Technology Mean Std. Deviation Median
Tech A 82 2.5 82
Tech B 88 3.0 89
Tech C 79 2.0 78
Tech D 85 2.8 84

From Table 2, Technology D: Performance Monitor out-
performs others in terms of accuracy and feedback quality,
while TechnologyB: Speed Tracker performs best in usabil-
ity. These results align with the identified criteria, confirm-
ing the model’s robustness in differentiating technologies
based on both performance and expert evaluations.

Figure 3: Performance comparison across criteria for swim-
ming technologies

4.2 Overall ranking and final scores
TheHB-FIA technique was applied to calculate a final eval-
uation score for each swimming analysis technology, incor-
porating the weightage assigned to each criterion. Figure 4
illustrates the overall ranking of the swimming technologies
based on the HB-FIA aggregated scores.

Figure 4: Final ranking of swimming technologies using
HB-FIA scores

The results in Figure 4 reveal that Technology D: Per-
formance Monitor achieves the highest score, followed by
Technology B: Speed Tracker, Technology A: Stroke An-
alyzer, and Technology C: Posture Corrector. This rank-
ing is consistent with the contributions of individual crite-
ria scores shown in Table 2, indicating that the model’s ag-
gregation and weighting methods accurately reflect the per-
formance and expert preferences across criteria; similarly,
Table 3 shows the performance statistics of swimming anal-
ysis technologies.

4.3 Sensitivity analysis
To assess the stability and reliability of the ranking out-
comes, a sensitivity analysis was performed by varying the
weights assigned to each criterion. The purpose of this anal-
ysis was to determine whether small changes in criterion
importance would significantly impact the final ranking or-
der of swimming technologies. Table 4 presents the ranking
results under different weight configurations.
The results in Table 4 show that while Technology D:

Performance Monitor remains the top-ranked choice un-
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Table 4: Ranking sensitivity analysis with varied criterion weights

Configuration Weight Distribution (Accuracy, Usability, Cost-effectiveness, Feedback) Top-ranked Technology
Baseline Weights (0.3, 0.2, 0.2, 0.3) Technology D: Performance Monitor
Configuration 1 (0.4, 0.2, 0.1, 0.3) Technology D: Performance Monitor
Configuration 2 (0.3, 0.3, 0.2, 0.2) Technology B: Speed Tracker
Configuration 3 (0.25, 0.25, 0.25, 0.25) Technology B: Speed Tracker

Figure 5: Ranking sensitivity analysis across weight con-
figurations

der baseline and Configuration 1, Configuration 2 and 3,
which emphasize usability and cost-effectiveness, favor
Technology B: Speed Tracker. This sensitivity analysis
underscores the model’s adaptability to different decision-
making priorities, validating its application in dynamic de-
cision contexts. The exact evaluation demonstrated that
the HBFSMCDMmodel matched expert preferences better
than both TOPSIS and AHP, specifically when expert de-
cisions included uncertain elements. The HBFS MCDM
model showed improved accuracy compared to its rivals
and offered better capabilities for handling expert uncer-
tainty but took slightly longer to execute.

4.4 Comparative analysis with traditional
MCDM models

To validate the novel contributions of the proposed hesi-
tant bipolar fuzzy model, a comparative analysis was con-
ducted with traditional MCDM approaches such as analytic
hierarchy process (AHP) and technique for order preference
by similarity to ideal solution (TOPSIS). Table 5 shows the
rankings produced by eachmodel, alongwith the calculated
alignment with expert preferences.
The results affirm the efficacy of the hesitant bipolar

fuzzy approach for swimming technology evaluation. Key
findings are as follows:

– Technology D: Performance Monitor emerges as
the top choice, achieving the highest overall score

and demonstrating robust performance across accu-
racy and feedback quality.

– Technology B: Speed Tracker is favored under con-
ditions that prioritize usability and cost-effectiveness,
ranking as the preferred option in configurations with
adjusted weights.

– The sensitivity analysis reveals the model’s flexibil-
ity, as rankings adapt meaningfully to shifts in crite-
rion weight distribution.

– The comparative analysis with traditional models
highlights the superiority of HB-FIA in alignment with
expert preferences, validating the model’s practical
utility in subjective decision-making environments.

The evaluation process used the structured approach
known as the Delphi method to obtain weights from experts
during multiple feedback sessions. A group of experts pro-
vided their criterion evaluations in successive rounds with
feedback between rounds to reach consensus during the
Delphi technique process. A final set of weights emerged
through averaging the expert assessments of criterion im-
portance because it served to establish weights that prop-
erly captured collective expert agreement. The defined se-
lection standards for swimming analysis technologies form
the basis of this evaluation process. Expert evaluations of
the technologies occurred through assessments of accuracy
together with usability alongside affordability and real-time
feedback abilities. The selected criteria hold essential value
in research evaluation because they demonstrate critical
performance analysis of swimming technology according
to expert consultations and published studies.
An expert evaluation dataset included four swimming

analysis technologies that hold widespread recognition in
the field. This specifically curated set of four technolo-
gies targets the major analytical tools employed by swim-
ming specialists despite the restricted number. The profes-
sional panel included experts who possessed strong qual-
ifications in swimming performance analysis, which pro-
vided reliable assessment data. The data collection repre-
sents all current market-available technologies sufficiently
well; therefore, generalizing study results to similar types
of tools is possible. They specifically described their selec-
tion of computational parameters that included the usage
of λ values within the hesitant bipolar fuzzy set (HBFS)
model. After preliminary experiments, the analyst chose λ
= 0.5 as the value since this setting proved to be a reason-
able balance of positive and negative evaluation detection.
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Table 5: Comparative analysis of rankings across MCDM models

Technology HB-FIA Rank AHP Rank TOPSIS Rank Expert Preference Alignment (HB-FIA)
Technology A: Stroke Analyzer 3 2 3 98.5%
Technology B: Speed Tracker 2 1 1 97.3%

Technology C: Posture Corrector 4 4 4 95.1%
Technology D: Performance Monitor 1 3 2 99.2%

Having selected 0.5 as the λ value protected the decision-
making process from the unilateral influence of member-
ship or non-membership values to provide balanced expert
opinion representation. Additional studies using different λ
values will improve the model’s sensitivity detection while
optimizing its parameter configurations for various applica-
tion domains. These results demonstrate that the proposed
model not only aligns with the study’s novel contributions
but also provides a valuable framework for evaluating com-
plex sports technologies where subjective preferences and
objective performance factors both play essential roles.

5 Discussion

This study put forward an evaluation methodology based
on hesitant bipolar fuzzy MCDM technology for swim-
ming technology assessment through analysis of diverse
swimming tools. A comparison between our method and
four cutting-edge methods (AHP, TOPSIS, Fuzzy AHP,
and Spherical Fuzzy Sets) from the Related Works section
took place. The evaluation method showed multiple essen-
tial performance contrasts that receive further analysis. The
accuracy of our method reached 99.2% in expert prefer-
ence alignment, while traditional MCDM techniques such
as AHP reached accuracy limits based on crisp judgments
and TOPSIS required an ideal solution. The commonly
employed evaluation methods lack proper representation
of expert evaluation hesitancies, particularly when analyz-
ing swimming techniques or other complex subjective ele-
ments. This hesitation-based bipolar fuzzy approach solves
the present gap by combining positive together with nega-
tive expert judgments, which leads to enhanced decision-
making flexibility and accuracy. The performance gap ex-
ists because traditional methods feature single-directional
precise preferences as opposed to our hesitant bipolar fuzzy
sets (HBFS) method, which represents both positive and
negative expert evaluation aspects. Sports technology eval-
uation benefits from this approach to handle subjective
judgments because expert opinions in such fields often con-
tain varying degrees of uncertainty. A decision-making
model becomes more realistic as well as robust by integrat-
ing hesitation and bipolarity behavioral approaches. Our
approach becomes the initial method in applying HBFS to
MCDM evaluations of swimming technology because of its
novelty aspect. The new approach allows experts to express
their preferences in a more detailed manner, thus resulting
in superior decisions for swimming performance analysis
technologies. HBFS proves to be a vital MCDM contri-

bution because it develops an adaptive technique suitable
for complex decision-making processes within sports tech-
nology domains. The outcome of our research brings es-
sential benefits to the sports technology selection process.
This evaluation method provides sport organizations with
a precise and adaptable tool to analyze swimming analysis
technologies so they can make better final decisions about
their selection. Athletes alongside coaches can use the de-
veloped method to choose technology solutions that maxi-
mize their performance improvement and enhance training
efficiency as well as accuracy in feedback delivery. The
capacity to deal with expert uncertainty enhances the relia-
bility of technology assessments, particularly with respect
to novel or emerging tools.

5.1 Real-world applicability and
implementation considerations

In real sports training environments, swimming benefits
from the deployment of HBFS-MCDM framework appli-
cations. The HBFS system works through standard compu-
tational equipment, which includes medium-grade personal
computers or workstations running an Intel i5 processor or
equivalent with 8GB RAM, because it handles manageable
computational processes for typical-size decision sets. The
existing coaching software or analysis platforms integrate
with the system throughmodular implementations based on
Python or MATLAB programming languages. The soft-
ware allows administrators to collect data through intu-
itive user interfaces and maintains aggregation functions
as a part of backend operations. Automation through the
model enables instant processing of data alongside the ca-
pacity to execute programmed sequences according to hard-
ware capabilities. The cost structure consists primarily of
software development time together with expert consulta-
tions about criteria weightings along with staff training.
Hardware updates become necessary only when compre-
hensive real-time monitoring for large samples is pursued.
The framework delivers affordable decision-making solu-
tions through systematic subjective evaluations, which en-
able sports analytics to make more informed decisions at
moderate financial expenses.

5.2 Implications of the proposed model
The results of this study showed that using a hesitant bipo-
lar fuzzy Multi-Criteria Decision-Making (MCDM) frame-
work to evaluate swimming analysis technologies is valu-
able in practice and theory. By the way, the model not



Hesitant Bipolar Fuzzy MCDM Framework for Evaluating Swimming… Informatica 49 (2025) 69–82 79

only envisages the way of handling the subjective and of-
ten contradictory opinions but also captures the inherent
uncertainty of the expert opinions using hesitant bipolar
fuzzy logic. Compared to conventional approaches, this
created model is more suitable for portraying the realism
of expert appraisal since the effective membership and non-
membership functions are established by including the pos-
itive and negative variables of electric vehicle adoption.
The implications of this model are particularly relevant
for technology evaluation in sports science, where accu-
racy, usability, cost-effectiveness, and feedback quality are
paramount. For example, in competitive swimming, an ath-
lete’s performance can be significantly influenced by using
appropriate analysis tools. The results suggest that Tech-
nology D: Performance Monitor ranks as the optimal tech-
nology due to its high accuracy and feedback quality, key
attributes in enhancing athlete training and performance.
This outcome underlines the model’s capability to assist
stakeholders, such as coaches and sports organizations, in
making informed decisions regarding technology invest-
ments. Moreover, the sensitivity analysis provided further
insights into how decision outcomes could vary with dif-
ferent weight configurations. The model proved adaptable
to changes in criterion importance, indicating its flexibil-
ity in responding to evolving priorities or specific training
needs. For instance, when usability and cost-effectiveness
were weighted more heavily, Technology B: Speed Tracker
emerged as the preferred choice. This adaptability is valu-
able for stakeholders who may prioritize different attributes
based on specific requirements or budget constraints.

5.3 Practical applications and contributions

The practical contributions of this model extend beyond
swimming technology evaluation and have potential appli-
cations in broader sports science and other industries where
technology assessments are crucial. The hesitant bipolar
fuzzy MCDM approach can be a valuable tool for evalu-
ating sports equipment, wearable devices, and other high-
stakes technology-driven solutions in fields requiring nu-
anced decision-making. Given its ability to balance subjec-
tive opinions with objective performance data, this model
could be highly beneficial in healthcare, finance, and en-
gineering industries, where multiple stakeholders with po-
tentially opposing views influence decision outcomes. Ad-
ditionally, this model could be applied to scenarios where
expert hesitation or conflicting judgments are common. For
example, in wearable health technology assessment, where
feedback from both healthcare providers and patients is crit-
ical, the hesitant bipolar fuzzy model could capture the
diverse and sometimes contradictory viewpoints of each
group, enabling a balanced evaluation. The model’s dual
membership framework provides a robust foundation for
handling complex evaluations where positive and negative
opinions must be incorporated into the decision-making
process.

5.4 Limitations of the study
Even though the hesitant bipolar fuzzy MCDM model
showed great potential, the following limitations should not
be unnoticed. First, the model mainly depends on the ex-
pert’s feedback to assess the criteria weight and scoring.
This will result in biases due to the limited knowledge or
experience of the expert. While attempts can be made to
map criteria elements to universally acceptable benchmarks
with the help of domain expertise, specific quantitative es-
timations can be viewed from one expert. In contrast, from
another perspective by another expert, this could influence
the overall rating obtained at the final stage. Better work
may be done in future where methods used for weighting
are not much dependent on the judgment of the persons
concerned, better options can be used like neural net algo-
rithms trained on decision datasets. Another limitation is
the model’s reliance on hesitant bipolar fuzzy logic, which
all potential users may not understand well. This complex-
ity could limit its adoption among practitioners unfamil-
iar with fuzzy logic and advanced decision-making mod-
els. Developing user-friendly software or tools to simplify
the implementation of this model for non-specialist users
could enhance its accessibility and encourage broader ap-
plication. The methodology revealed the capability to han-
dle shifts in determining criteria significance through an au-
tomated process of decision priority adjustment that main-
tained framework stability. The outcomes of the assess-
ment primarily depend on expert evaluations that serve as
model input. Such analysis reveals that the method shows
two fundamental traits: first, it allows flexible modeling of
preferences, and second, it shows responses that depend on
expert-subjective judgments. The model possesses func-
tionality that spans diverse decision situations, yet its de-
pendent outcomes heavily rest on the quality of evaluations
provided by subject matter experts. The next stage of devel-
opment should incorporate methods to evaluate evaluator
confidence levels and establish group agreement methods,
which will improve decision stability.
Finally, this study focused on specific criteria relevant to

swimming analysis technology. While these criteria were
carefully chosen for their importance in competitive swim-
ming, different sports or applications might require addi-
tional or alternative criteria. Future research could ex-
pand the model by incorporating more dynamic and cus-
tomizable criteria to meet the needs of other domains, such
as biomechanics, injury prevention, or psychological feed-
back in training.

5.5 Future research directions
Several avenues for future research emerge from the find-
ings of this study. One promising direction is the integra-
tion of machine learning with hesitant bipolar fuzzy logic
to develop adaptive decision models. It is suggested that
by integrating historical decision data and expert evalua-
tion, machine learning algorithms could effectively reduce
the overdependence of expert judgment while ensuring the



80 Informatica 49 (2025) 69–82 X. Liang

refined evaluation that it provides. This could improve the
general performance and flexibility of the model for use in
dynamic environments like the up-and-coming technologi-
cal and sporting industries.
One more direction for further study is related to ad-

vanced means for bringing real-time data inputs and their
analysis. There is something that we have to understand
about the model at the moment: it uses static expert knowl-
edge, and this does not necessarily consider the fact that
the real world is constantly changing. Real-time and dy-
namic reductions of criteria scores and weights by gaining
information from the athletes’ performance data or environ-
mental factors will be more accurate and efficient than the
present system. This advancement could benefit friendly
sports with instant responses toward different contingent
stimuli necessary in competitive games. Also, further stud-
ies could explore the extension of the hesitant bipolar fuzzy
MCDMmodel for groupMC-DM environment, where con-
flicting objectives of the multiple decision makers might
exist. For instance, in team sports, it would be necessary to
consider various stakeholder’s needs to certain technology
investment decisions. Simulating the model in such struc-
tures would expose its working and show where changes
are necessary to handle many, usually conflicting, decision-
makers, a common feature in group structures.
Lastly, the generalization of the proposed model to a

broader spectrum of sporting disciplines and technological-
based situations may enhance the utilization of the research.
Although the research in this paper has concentrated on
competitive swimming, the model proposed herein could
be generalized to other activities, like running, cycling, or
team games, that would present different sets of load and
performance parameters. Analyzing the predictive capa-
bilities of the model about various sporting disciplines and
updating the model to meet individual sports requirements
would further enhance the usefulness of the model as a de-
cision support tool.

6 Conclusion

This study introduces a unique hesitant bipolar fuzzyMulti-
Criteria Decision-Making (MCDM) model to evaluate and
rank swimming analysis technologies, using expert assess-
ments across essential criteria such as accuracy, usabil-
ity, cost-effectiveness, and feedback quality. Unlike tra-
ditional MCDM methods, this model captures both pos-
itive and negative aspects of subjective judgments, en-
hancing the precision and depth of evaluations in complex
decision-making scenarios. The results indicate that the
proposed model effectively identifies optimal technologies,
with Technology D: Performance Monitor emerging as the
top choice based on performance metrics. The model’s
adaptability was also demonstrated through a sensitivity
analysis, where weight adjustments allowed rankings to re-
flect evolving priorities—an invaluable feature for dynamic
fields such as sports technology. The practical applica-

tions of this model extend beyond swimming technology
evaluation, offering a robust decision-making framework
suitable for industries where technology assessments re-
quire balancing multiple criteria and managing conflicting
stakeholder opinions. Recognized limitations, including re-
liance on expert input and the complexity of hesitant bipolar
fuzzy logic, point to areas for future enhancement, such as
machine learning integration to streamline weighting pro-
cesses and adaptive systems for real-time decision-making.
In conclusion, this study provides a comprehensive, flexi-
ble, and accurate tool for technology assessment, offering
value to researchers and practitioners across fields where
precision in multi-criteria decisions is essential.

Supplementary table

Table 6: Summary of parameters used in HBFS-MCDM
framework

Parameter Description
wj Weight assigned to criterion Cj ,

derived using entropy method
hij Hesitant bipolar fuzzy element

for alternativeAi under criterion
Cj

µ+, µ− Positive and negative member-
ship degrees for HBFE

Aggregation Operator HBFWA or HBFPWA as appli-
cable

Decision Matrix Size m × n (where m = number of
alternatives, n = number of cri-
teria)

Threshold θ (if used) Set to 0.5 for robustness sensi-
tivity check

Ranking Rule Comparison based on score
function S(h∗) = µ+ + µ−
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