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Accurate and timely underwater object detection is crucial in the field of marine environmental engineering.
The detection of such targets has been improved recently using techniques based on Convolutional Neural
Networks (CNN). However, the processing performance of deep neural networks is typically inadequate
due to their high parameter requirements. Accurate detection is difficult with current techniques when
dealing with small, close-packed underwater targets. In order to overcome these problems, the proposed
work combined YOLOv8 with different attention modules and proposed a novel neural network model to
enhance underwater object detection capabilities. In this research, AB-YOLOv8 is proposed, which adds
the attention mechanism to the original YOLOv8 design. To be more precise, the proposed work introduced
four attention modules, Convolutional Block Efficient Channel Attention (ECA), Shuffle Attention (SA),
Global Attention Mechanism (GAM), and Attention Module (CBAM), to create the enhanced models and
train them in the aquarium dataset. Each of the attention blocks is combined with YOLOv8 to improve the
performance of the entire object detection. The residual block is introduced into the CBAM to optimize the
performance of the CBAM. The detailed experiments are conducted on the aquarium dataset, and various
performance assessment parameters are used, like mAP, FLOPS, Params, inference time, etc. After per-
forming the experiment, it was found that ECA gives the best result out of all attention blocks and improved
mAP value by 8%, also reduced the number of parameters generated during training. To validate the work,
we also performed the experiment on the Brackish dataset, and we found that ECA outperforms other at-
tention mechanisms with YOLOv8.

Povzetek: Zasnovan je nov model AB-YOLOv8 z mehanizmi pozornosti (ECA, CBAM, SA, GAM) za
izboljšanje zaznavanja podvodnih objektov. Model ECA-YOLOv8 je izkazal najboljše rezultate: izboljšal
je metriko mAP v primerjavi z osnovnim YOLOv8 in zmanjšal število parametrov.

1 Introduction

Underwater object recognition is a crucial stage in image
processing that is important for a number of applications,
including marine sciences and the upkeep and repair of sub-
aquatic infrastructure. One of the most difficult study ar-
eas in modern computer vision technologies is the detec-
tion of underwater objects [1]. Specifically, the widespread
deployment of digital cameras on Autonomous Underwa-
ter Vehicles (AUVs) and Unmanned Underwater Vehicles
(UUVs) has led to an exponential increase in the availabil-
ity of underwater imagery in recent years [2]. The primary
obstacles to underwater vision are the increased expense of
the devices, their intricate configuration, and the distortion
of light and signal propagation caused by the water medium
[3]. The propagation of light in underwater environments is
particularly affected by phenomena such as absorption and

scattering, which have a significant impact on visual per-
ception [4, 5]. In recent years, generic object detection al-
gorithms have demonstrated their exceptional performance.
In digital image processing for object recognition and clas-
sification, deep learning, also referred to as deep machine
learning or deep structured learning-based techniques, has
recently seen significant success [6]. Thus, they are attract-
ing the interest and popularity of the computer vision re-
search community rather quickly [7]. However, these ap-
proaches are not sufficiently capable of handling underwa-
ter object detection due to the following challenges: (1)
Real-world applications typically feature small objects with
hazy photos [8], and (2) real-world applications and un-
derwater datasets have images with heterogeneous noise
[9]. When taking into account underwater variables like
sufficient light, reasonable current intensity, and clear un-
derwater eyesight, simple underwater target-detection tech-
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niques can be used more effectively. The primary features
extracted by early conventional detection techniques were
color, texture, and geometry. As the deep learning tech-
nique continues to advance, neural networks have emerged
as underwater target-detection frameworks that enable tar-
get detection by identifying and locating objects in pho-
tos [10]. However, underwater image quality deteriorates
due to less-than-ideal conditions in practice, which conse-
quently impairs the accuracy of detection. Convolutional
Neural Networks (CNNs) [11] havemade significant strides
in object detection in recent years due to their potent fea-
ture learning and transfer learning capabilities, which have
drawn increasing attention from the discipline of computer
vision. The application of CNN to object detection for im-
proved performance is therefore a significant domain of re-
search work [12]. YOLOv8 differs from previous YOLO
models in several significant ways. Its transformer-based
architecture, which improves accuracy and performance,
especially for small and difficult-to-detect objects, is one
of the biggest upgrades.
In order to effectively address the challenges associated

with underwater object detection, the proposed research in-
tegrates the YOLOv8 [13] architecture with various atten-
tion modules, culminating in the development of a novel
neural network model designed to significantly enhance
detection capabilities in underwater environments. The
unique combination of YOLOv8 with sophisticated atten-
tion mechanisms and the calculated improvements made to
the CBAM constitute the work’s originality. The following
are the primary contributions of this paper:

1 This innovative approach is encapsulated in the newly
introduced model, termed AB-YOLOv8, which incor-
porates an attention mechanism into the foundational
design of YOLOv8. This study introduces four dis-
tinct attention modules: Convolutional Block Effi-
cient Channel Attention (ECA) [14], Shuffle Attention
(SA) [15], Global Attention Mechanism (GAM) [16],
and Convolutional Block Attention Module (CBAM)
[17]. Each of these modules is strategically com-
bined with the YOLOv8 framework to create en-
hanced models that are specifically trained on the
aquarium dataset. The integration of these attention
blocks is aimed at improving the overall performance
of object detection tasks, particularly in the challeng-
ing underwater context, where visibility and clarity are
often compromised.

2 Additionally, the study improves the CBAMby adding
a residual block, which helps to maximize its effi-
ciency. This innovation makes better feature extrac-
tion and representation possible, which enhances the
model’s capacity to identify items in intricate under-
water environments.

3 The success of the suggested models is evaluated us-
ing a range of performance assessment metrics, such
as mean Average Precision (mAP), FLOPS (Floating

Point Operations Per Second), number of parameters
(Params), and inference time [18]. In real-time under-
water detection applications, these measures are cru-
cial for understanding the trade-offs between accuracy
and processing efficiency.

The structure of the paper is as follows. In Section 2,
the relevant literature is discussed. The network architec-
ture and adopted approach are presented in Section 3. The
dataset description is given in Section 4, and the experi-
mental evaluation parameters are shown in Section 5. Ex-
perimental results and discussions are included in Section 7
and 8 respectively. Future work, our findings, and research
outlook are summed up in Section 9.

2 Literature review
Underwater object detection can be accomplished by differ-
ent two-stage and single-stage object detectors. The most
popular two-stage detectors are R-CNN, Fast R-CNN, and
Faster R-CNN. R-CNN [19] is performing better for small
object detection, but it is not suitable for real-time object
detection. So, many researchers have selected the single-
stage object detectors, i.e., YOLO series, as the foundation
for future development in order to accomplish real-time un-
derwater object identification. The YOLO-UOD [20] op-
timization algorithm, a unique underwater object identifi-
cation technique based on YOLOv4-tiny research, is pre-
sented in the article [21]. The suggested approach, which
combines the symmetric FPN-Attention module and the
symmetric dilated convolutional module, may efficiently
collect important characteristics and contextual informa-
tion while maintaining deep features, according to exper-
imental results on the Brackish undersea dataset. Its un-
derwater object detection mAP score of 87.88% is superior
to YOLOv5s and YOLOv5m and higher than YOLOv4-
Tiny’s score of 77.38%. In [22], the Transformer en-
coder and a coordinate attention module were integrated
into YOLOv5 to create a new detection network called
TC-YOLO. Underwater picture enhancement was done us-
ing the CLAHE [23] algorithm, while label assignment in
training was done using the optimal transport assignment
approach. By combining these methods, our suggested
strategy maintained computational efficiency for real-time
underwater detection tasks while achieving state-of-the-
art performance on the RUIE2020 [24] dataset. The at-
tachment of the coordinate attention module to the end of
the neck was found to be a very successful and efficient
method of enhancing detection networks’ performance in
the ablation experiments. Article [25] includes the plug-
and-play mDFLAM with YOLO detectors to satisfy the
high-precision and real-time demands for underwater ob-
ject detection. By enhancing the quality of feature fusion
between scales, the full-port embedding significantly re-
inforces the expression of semantic information. Using a
lightweight backbone network built on deformable convo-
lution YOLOv3, article [26] proposes a dynamic YOLO de-
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tector with certain specialized designs for small item iden-
tification. Experimental findings on the Pascal VOC and
MS COCO datasets further support the superiority of the
suggested model. Article [27] proposes a high detection
accuracy cascade model based on the UGC-YOLO net-
work structure. Additionally, PPM pooling is added to the
top layer network for the purpose of aggregating seman-
tic data, and deformable convolution is utilized to capture
long-range semantic dependencies. Lastly, a multi-scale
weighted fusion method for learning semantic data at vari-
ous scales is introduced. The suggested approach has been
shown through experiments on an underwater test dataset to
be able to identify aquatic targets in intricately deteriorated
underwater images. In order to decrease feature interfer-
ence and increase detection accuracy, an enhanced YOLO
detection technique without anchor points is presented [28],
in which the detection and recognition features are kept
apart. Additionally, a technique for improving underwater
photos based on Retinex is also suggested. To confirm the
efficacy of the suggested improved YOLO detection tech-
nique, pertinent tests based on underwater datasets are car-
ried out.In order to create a quick, precise, and compact
neural network model that can identify goldfish breeds in
real time, the authors of the research [29] examine the im-
pact of shrinking the size of the pre-trained MobileNetV2,
which serves as the foundation of the YOLOv2 object de-
tection framework. Paper [30] proposes the YOLO-SC al-
gorithm as a solution to the problem of finding the sub-
marine cable’s position and feature information using the
YOLOv3 [31, 32] prototype network because of the blurry
and blue-green underwater images. Three enhanced mod-
ules work together to address the aforementioned issues.
The multi-structured multi-size feature fusion module im-
proves the efficiency of feature information extraction; the
light-weighted module streamlines the prediction network
and reduces identification duration; and the skip connec-
tion module, which is included in the residual network,
enhances the extraction of position information. Another
modified

3 Methodology

Recently, the attention mechanism has achieved outstand-
ing outcomes in the domain of object detection. Atten-
tion blocks are capable of selecting most significant fea-
tures and discarding irrelevant features. This study inte-
grates the attention module into the neck and head com-
ponent of YOLOv8 in order to improve the detection of
important characteristics and reduce the impact of irrele-
vant information. We have chosen four attention mech-
anism like Efficient Channel Attention (ECA), Convolu-
tional Block Attention Module (CBAM), Shuffle Attention
(SA) and Global Attention Mechanism (GAM) for feature
aggregation. ECA was selected because of its lightweight
design and capacity to enhance channel-wise feature re-
calibration without appreciably raising model complexity.

CBAM combines both channel and spatial attention, mak-
ing it well-suited to capture complex underwater textures
and cluttered scenes. SA helps in capturing long-range
dependencies, which is beneficial when objects are par-
tially occluded or dispersed. GAM enhances global context
aggregation, helping to better differentiate between back-
ground and foreground in low-visibility underwater condi-
tions.
YOLOv8 Architecture consists of different key compo-

nents like backbone, neck, head and loss function as shown
in figure 1. CSPDarknet used as backbone which contains
CSP connections to increase information exchange. The
neck work as a feature extractor, neck uses C2f architecture
which integrates C3 modules. Neck aggregate features for
detecting three different size of objects. YOLOv8 makes
use of a number of detection modules to predict class prob-
abilities, bounding boxes, and objectness scores for every
grid cell in the feature map. The final detection are then ob-
tained by averaging these forecasts. There are three types
of loss funtion used during object prediction in YOLOv8 to
optimize object detection those are: Binary Cross-Entropy
(BCE), Distribute Focal Loss (DFL) and Complete Inter-
section over Union (CIoU) Loss. The classification compo-
nent of YOLOv8 utilizes the Binary Cross-Entropy (BCE)
Loss as its loss function, which is represented by the fol-
lowing equation:

BCE = −wt[xn.logyn + (1− xn).log(1− yn)] (1)

wt represents weight, xn is labeled and yn is predicted
value. A DFL function is specifically developed to high-
light the amplification of probability values about p. The
equation is given as follows:

DFL = PA + PB (2)

Where PA is shown in eq(3) ans PB Shown in eq(4)

PA = −[(pn+1 − p)log(
pn+1 − pn
pn+1 − pn

) (3)

PB = (p− pn)log(
p− pn

pn+1 − pn)
) (4)

Incorporating the dimensions between the predicted
bounding box and the ground truth bounding box, the CIoU
Loss adds an influence factor to the Distance Intersection
over Union (DIoU) Loss. The equation is as specified be-
low:

CIoU = 1− IoU +
l2

c2
+

v2

1− IoU + v
(5)

IoU is intersection over union, d is Euclidean distance be-
tween predicted value and ground truth, l is diagonal length
of predicted box, v is aspect ration of bounding box. In Fig-
ure 1 BBox-loss is combination of DFL and CIoU whereas
Cls-loss represents BEC loss.
This work made modification on existing YOLOv8 ar-

chitecture by adding attention module in neck and head of



306 Informatica 49 (2025) 303–318 P. Sarkar et al.

YOLOv8 as illustrated in Figure 1. We have added one
attention block in neck and rest all are added in head of
YOLOv8. In proposed work used four different attention
blocks i.e. Efficient Channel Attention (ECA), Convolu-
tional Block Attention Module (CBAM), Shuffle Atten-
tion (SA) and Global Attention Mechanism (GAM). Af-
ter incorporating these four different attention module into
YOLOv8 analysed the performance of YOLOv8 with At-
tention block or AB-YOLOv8.

3.1 Attention modules

3.1.1 Efficient channel attention (ECA)

ECA mainly involves cross-channels and the use of 1D
convolution with an adaptive single-dimensional convolu-
tion kernel as shown in Figure 2. Cross-channel interac-
tion is an innovative method of merging characteristics to
improve the representation of certain meanings. The input
feature map I, which has dimensions RC×H×W , is trans-
formed into the aggregated feature F through the processes
of Global Average Pooling (GAP) and cross-channel inter-
action. For the following equation, C refers to the cross-
channel interaction.

F = C(GAP (I)) (6)

ECA captures the local cross-channel interaction in aggre-
gated data by examining the interaction between the fea-
tures of each channel and their nearby k channels. The
ECA method avoids utilizing 1D convolution for reducing
dimensionality and effectively achieves multi-channel in-
teraction. where the weights of the features Fi can be cal-
culated as [14]:

wi = σ(W ) (7)

where, W is a weight matrix and σ. is sigmoid function.

3.1.2 Convolutional block attention module (CBAM)

The CBAM [17] module has two attention sub-modules:
the Channel Attention Module (CAM) and the Spatial At-
tention Module (SAM) as presented in Figure 3. The Chan-
nel Attention Module (CAM) is designed to enhance infor-
mative elements in the channel dimension, while the Spatial
Attention Module (SAM) is designed to emphasize impor-
tant features along the spatial axes. CBAM successfully
captures the channel and spatial dependence in the input
feature map by integrating these two attention processes.
Input of CBAM is a feature map I ∈ RC×H×W then it is
converted into 1D channel attention map FC ∈ RC×1×1

and 2D spatial map FS ∈ R1×W×H . So CBAM is a com-
bination of following equations:

F = FC ⊙ I (8)

F ′ = FS ⊙ F (9)

where ⊙ is element wise multiplication.

In order to efficiently calculate the channel attention,
compress the spatial dimension of the input feature map.
CBAM employed both Global Average Pooled (GAP) and
Global Max Pooled (GMP) features concurrently. Empiri-
cal findings have demonstrated that the utilization of both
features significantly enhances the representational capac-
ity of networks, as opposed to using each feature indepen-
dently. Then element wise sum (+) and sigmoid (σ) func-
tion is used to find channel attention(FC). Equation for
channel attention is as follows:

FC(I) = σ(MLP (GAP (I)) +MLP (GMP (I))) (10)

In this equation I is input feature matrix and MLP is Multi
Layer Perception. CBAM utilizes GAP and GMP along the
channel axis for spatial attention, and subsequently com-
bines them by concatenation (⊕). The concatenation output
is passed through a convolutional layer, and the resulting
output is then used as the input for the sigmoid (σ) function.
The spatial attention (FS) is calculated using the following
method.

FS(I) = σ[CONV (GAP (I)⊕GMP (I))] (11)

3.1.3 Global attention mechanism (GAM)

GAM [16] adopts similar architecture as CBAM. GAM
added additional shortcut connections between channel at-
tention and spatial attention as depicted in Figure 4. The
following equation represents GAM:

Fout = I + [FS(FC(I))× I)× (FC(I))× I)] (12)

where, I is input feature, FC channel attention block and
FS is spatial attention block.
To focus on specific channels, the GAM technique uti-

lizes a 3D permutation from the beginning to preserve
three-dimensional information. Afterwards, it utilizes a
MLP to enhance the channel-spatial interdependence across
dimensions. Following expression shows channel attention
block representation:

FC(I) = σ[RevPermutate(MLP (Permutate(I)))]
(13)

GAM utilizes two 7×7 convolution layers to combine spa-
tial information for spatial attention as hown in eq. (14).

FS(I) = σ[BN(f7×7(BN +ReLU(f7×7(I))))]. (14)

where, σ is sigmoid function, BN is batch normalization.

3.1.4 Shuffle attention (SA)

SA [15] divides the input featuremaps into different groups,
employing the Shuffle Unit to integrate both channel atten-
tion and spatial attention into one block for each group as
shown in 5. Then these features are aggregated using spa-
tial and channel attention. The channel attention mecha-
nism utilizes the Global Average Pooling (GAP) technique
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Figure 1: AB-YOLOv8 model architecture

Figure 2: Efficient channel attention

Figure 3: Convolutional block attention module

Figure 4: Global attention mechanism

to acquire and incorporate global information for the spe-
cific sub-feature sb1. Furthermore, a straightforward gating
mechanism employing sigmoid functions is utilized to gen-
erate a concise function that enables accurate and adaptable
selection. Final output of channel attention is as follows:

CA = σ[fc(GAP (sb1))]⊙ sb1 (15)

In spatial attention first step involves applying Group Nor-
malization (GN) to the sub-feature sb2 in order to calcu-
late spatial-wise statistics. Afterwards, the output sub-
feature sb2 is improved through fully connected layer fc,
as demonstrated in the following equation.

SPA = σ[fc(GN(sb2))]⊙ sb2 (16)
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Algorithm 1 Attention-Integrated YOLOv8 for Object Detection

Require: Input image I ∈ RH×W×3, Ground truth labels (for training)
Ensure: Predicted bounding boxes and class labels

Backbone Feature Extraction:
1: F1 ← Conv(I, k = 3, s = 2, p = 1)
2: F1 ← Conv(F1, k = 3, s = 2, p = 1)
3: F1 ← C2f(F1)
4: F2 ← Conv(F1, k = 3, s = 2, p = 1)
5: F2 ← C2f(F2)
6: F3 ← Conv(F2, k = 3, s = 2, p = 1)
7: F3 ← C2f(F3)
8: F4 ← Conv(F3, k = 3, s = 2, p = 1)
9: F4 ← C2f(F4)
10: F4 ← SPPF(F4)

Neck with Attention:
11: U1 ← Upsample(F4)
12: A1 ← Attention(U1)
13: M1 ← Concat(A1, F3)
14: M1 ← C2f(M1)
15: U2 ← Upsample(M1)
16: A2 ← Attention(U2)
17: M2 ← Concat(A2, F2)
18: M2 ← C2f(M2)
19: D1 ← Conv(M2, k = 3, s = 2, p = 1)
20: D1 ← Concat(D1,M1)
21: D1 ← C2f(D1)
22: D2 ← Conv(D1, k = 3, s = 2, p = 1)
23: D2 ← Concat(D2, F4)
24: D2 ← C2f(D2)

Detection Head with Attention:
25: for H ∈ {M2, D1, D2} do
26: H ′ ← Attention(H)
27: H ′ ← Conv(H ′, k = 3, s = 2, p = 1)
28: BBox← Conv2D(H ′) {Bounding box regression}
29: Cls← Conv2D(H ′) {Classification}
30: end for
31: if training then
32: Lossbbox ← ComputeLoss(BBox)
33: Losscls ← ComputeLoss(Cls)
34: TotalLoss← Lossbbox + Losscls
35: else
36: Predictions← NMS(BBox,Cls)
37: return Predictions
38: end if

After concatenating these features the final output of Shuf-
fle attention is:

SA = CA⊕ SPA (17)

Figure 5: Shuffle attention block
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4 Pre-processing and data
augmentation of dataset

aquarium Dataset is used for performing experiment with
different attention mechanism using YOLOv8. The aquar-
ium Dataset, provided by Roboflow, consists of underwa-
ter images captured in controlled environments with lim-
ited variation in brightness. This homogeneity in image
characteristics poses a challenge for the generalization of
the trained model to other underwater images with different
lighting conditions. To deal with this issue data augmenta-
tion technique is used to improve training dataset. The pro-
posed work used fine-tuning of contrast and brightness so
that different lightening levels are present with varying en-
vironment during training. The balance of the class of the
aquarium dataset is shown in Table 1. To validate the work,

Table 1: Class balance for aquarium dataset

Class Annotation

Fish 2669
Jellyfish 694
Penguin 516
Shark 354
Puffin 284
Stingray 184
Starfish 116

an experiment was also performed on the Brackish dataset
and the class balance is shown in Table 2.

Table 2: Class balance for brackish dataset

Class name Annotations
Crab 12,348
Smallfish 10,768
Starfish 7,912
Fish 3,352
Jellyfish 637
Shrimp 548

A popular data augmentation method in computer vision,
HSV Augmentation modifies an image’s Hue (H), Satu-
ration (S), and Value (V) components to replicate differ-
ent lighting and color conditions is used for augmentation
[33]. Because underwater images frequently include un-
even lighting and color distortion from light absorption and
dispersion in water, this approach works especially well for
underwater item detection. HSV augmentation improves
the resilience and generalization of models to real-world
underwater environments by randomly adjusting hue, sat-
uration, and brightness during training. This helps mod-
els learn to distinguish objects under diverse visual appear-
ances.

Since the dataset publisher did not give any predeter-
mined training, validation, and test sets, we randomly di-
vide the aquarium Dataset. More precisely, we assign 70%
of the dataset to the training set, 20% to the test set, and
10% to the validation set.

5 Assessment parameters
Evaluation of proposed work is performed based on pre-
cision, recall, F1 score, mAP, Params(parameters), infer-
ence time, floating point operations (FLOPs) and frames
per second (FPS). Precision, recall, F1 score and mAP are
calculated based on True Positive(TP), True Negative(TN),
False Positive(FP), False Negative(FN). Equation (18), eq
(19), eq (20) presents formula for precision, recall, F1-score
respectively.

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1− score =
2× Precision×Recall

Precision+Recall
(20)

Category-wise Average Precision is calculated as equation
(21)

AP (Ci) = (1/n)× (

n∑
i=1

Pi) (21)

where Pi is ith the image of the Ci category and n is
number of iterations.

Mean Average Precision is computed as equation (22)

mAP = (1/N)×
n∑

i=1

AP (Ci) (22)

where N is number of classes.
Params are the numbers of parameters involved during

training and in this work parameters are calculated using
Millions. The number of layers, neurons per layer, archi-
tectural complexity, and other variables all affect howmany
parameters a model has. A larger model size is typically as-
sociated with more parameters. In most cases, the larger the
model, the better the performance of the model, but it also
requires the use of additional data and processing power
for training. The connection between computing cost and
model complexity must be balanced in real-world applica-
tions.
The computational complexity of neural network mod-

els is frequently assessed using floating-point operations,
which are a metric to evaluate computer or computing sys-
tem performance. FLOPs show the number of floating-
point operations per second of floating-point calculations,
offering a vital measure of the model’s speed and computa-
tional efficiency.
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Frames Per Second (FPS) is an important statistic for ob-
ject recognition, especially for real-time processing appli-
cations like interactive gaming, surveillance, and driver less
cars. The responsiveness and efficacy of the detection sys-
tem are strongly impacted by the frame rate (FPS), which
shows how many frames a model can process in a second.
The inference time of a trained object identification model
is the amount of time it takes to process an input image and
provide predictions.

6 Experimental setup
The experiment is conducted on PyTorch 2.1.2, utilizing
CUDA 11.7 framework. The training is carried out on a sin-
gle NVIDIA Tesla T4 GPU, which provides a balance be-
tween computational power and accessibility. The models
are validated after training using the best checkpoint saved
during the training process. Validation includes metrics
such as precision, recall, mean Average Precision(mAP),
and inference speed. Training hyper-parameters are shown
in Table 3.

Table 3: Hyper-parameters model training

Parameter Value
Image Size 640 × 640
Epochs 100

Optimizer
Stochastic
Gradient
Descent

Weight Decay 5× 10−4

Momentum 0.937
Initial Learning Rate 1× 10−2

Batch Size 16
Warmup Epochs 3
Warmup Momentum 0.8
Warmup Bias Learning Rate 0.1

Different software’s are used during implementation of
AB-YOLOv8 with Python 3.9. Pytorch and Tensor Board
used to train the model and for visualization. Numpy and
pandas are used for data pre-processing. The base YOLOv8
model is taken from Ultralytics and with it different atten-
tion module are used for proposed AB-YOLOv8.

7 Experimental results
In this section, detailed experimental results of the proposed
work are reported. We train the AB-YOLOv8 model us-
ing training sets with input image size 1024 , to compare
the impact of varying input image sizes on the model’s per-
formance in the underwater item detection task. Table 4
shows the performance of different attention models com-
bined with YOLOv8. YOLOv8 combined with ResCBAM,
GAM, SA and ECA attention block and results are incor-
porated in this section. Table 4 presents the experimen-

tal results with respect to precision, recall, F1 score, and
mAP. From Table 4 it is clear that ECA performs better
than GAM, ResCBAM, SAwhen combined with YOLOv8.
ECA performs 8% better than YOLOv8 and 6% better than
GAM, SA, and ResCBAM.
Table 5 presents another set of AB-YOLOv8 experiment

results showing evaluation of different metrics such as pa-
rameters, GLOPs, inference time and FPS. It is found from
Table 5 in proposed AB-YOLOv8 ECA with YOLOv8 per-
forms better than other techniques. ECA also achieved low-
est inference time i.e. 7.7 ms where as other models attains
12.8ms, 8.7ms, 8.0ms inference time. AB-YOLOv8 when
based om ResCBAM increased number of parameters al-
most 10M but when YOLOv8 is based on ECA its not in-
creasing number of parameters as pooling operations are
used to optimized the number of parameters. It is also clear
that in all the models of AB-YOLOv8 have achieved sim-
ilar FPS as original YOLOv8 but ECA based YOLOv8 at-
tains 59FPS which is better than SA, GAM and ResCBAM.
The aquarium dataset consists of seven categories species
like fish, jellyfish, penguin, puffin, shark, starfish, stingray.
The Table 6 presents class wise precision achieved by us-
ing AB-YOLOv8 models and YOLOv8. Bold results are
showing best result achieved during experiments. Out of all
AB-YOLOv8 models, ECA based model attains best result
in most of the cases. In jellyfish class ResCBAM attains
maximum mAP@50.
A small number of images are chosen at random for this

paper’s evaluation of the attention module’s impact on the
YOLOv8 model’s accuracy in detecting fractures in a real-
world marine environment exploration scenario. Figure 10
shows the prediction results of several AB-YOLOv8 mod-
els. As an object detection model, the AB-YOLOv8 model
is essential to monitor and investigate the marine environ-
ment during research. It’s crucial to remember, though, that
every AB-YOLOv8 model worked flawlessly with tiny,
tightly spaced items as well.
The ablation experiment shown in Table 7 indicates

that the application of different attention mechanisms to
the YOLOv8 model can result in considerable gains in
mAP@50, recall, and precision; the most striking effect
was shown by ECA (Efficient Channel Attention). The pre-
cision, recall, and mAP@50 of the base YOLOv8 model
are 0.464, 0.305, and 0.328, respectively. The best over-
all results are obtained when ECA is applied at both the
neck and the head (D+H), boosting precision to 0.561, re-
call to 0.387, and mAP@50 to 0.400. ECA consistently
performs better than the other attention mechanisms, espe-
cially in terms of recollection and mAP, while SA, GAM,
and ResCBAM show only modest gains, especially at the
neck. D+H (YOLOv8 with ECA at both the neck and
the head) is the best-performing configuration overall, sug-
gesting that using ECA at both phases achieved substantial
gains.
Among the evaluated models, ECA and the SA model

achieve the highest overall F1-score of 0.29, shown in Fig-
ure 9 and Figure 8 respectively, while GAM lags slightly
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Table 4: Experiment results of different attention models for aquarium dataset

Model Precision (P) Recall (R) F1 Score mAP@50 mAP@50-95
YOLOv8 0.464 0.305 0.367 0.328 0.150
YOLOv8+GAM 0.473 0.293 0.363 0.337 0.154
YOLOv8+ResCBAM 0.477 0.301 0.370 0.346 0.152
YOLOv8+SA 0.481 0.321 0.341 0.334 0.151
YOLOv8+ECA 0.561 0.387 0.458 0.400 0.194

Table 5: Experiment results of different attention models for aquarium Dataset

Model Params(M) GFLOPs Inference(ms) FPS
YOLOv8 43.67 164.37 7.7 60
YOLOv8+GAM 49.89 183.54 12.8 57
YOLOv8+ResCBAM 53.46 196.29 8.7 55
YOLOv8+SA 43.76 165.20 8.0 58
YOLOv8+ECA 43.54 165.34 7.7 59

Table 6: Category wise mAP@50 for different models for aquarium dataset

Category YOLOv8 YOLOv8+SA YOLOv8+GAM YOLOv8+ResCBAM YOLOv8+ECA
All 0.328 0.336 0.317 0.326 0.400
Fish 0.356 0.317 0.289 0.312 0.378
Jellyfish 0.614 0.561 0.566 0.682 0.656
Penguin 0.227 0.215 0.336 0.245 0.336
Puffin 0.114 0.183 0.105 0.182 0.249
Shark 0.283 0.281 0.207 0.291 0.295
Starfish 0.333 0.410 0.439 0.420 0.512
Stingray 0.372 0.152 0.274 0.150 0.381

Table 7: Ablation experiment for AB-YOLOv8 using aquarium dataset

Model Precision Recall mAP@50
YOLOv8 0.464 0.305 0.328
A: YOLOv8+ SA at neck of YOLOv8 0.469 0.289 0.330
B: YOLOv8+ GAM at neck of YOLOv8 0.470 0.300 0.338
C: YOLOv8+ResCBAM at neck of YOLOv8 0.469 0.318 0.333
D: YOLOv8+ ECA at neck of YOLOv8 0.521 0.367 0.347
E: YOLOv8+ SA at head of YOLOv8 0.462 0.283 0.334
F: YOLOv8+ GAM at head of YOLOv8 0.476 0.291 0.342
G: YOLOv8+ResCBAM at head of YOLOv8 0.471 0.311 0.332
H: YOLOv8+ ECA at head of YOLOv8 0.541 0.367 0.381
A+E : YOLOv8 +SA 0.473 0.293 0.337
B+F: YOLOv8+ GAM 0.477 0.301 0.346
C+G: YOLOv8+ResCBAM 0.481 0.321 0.334
D+H: YOLOv8+ECA 0.561 0.387 0.400
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Figure 6: F1-confidence curve for YOLOv8 with GAM at-
tention mechanism using aquarium dataset

Figure 7: F1-confidence curve for YOLOv8 with CBAM
attention mechanism using aquarium dataset

Figure 8: F1-confidence curve for YOLOv8 with SA atten-
tion mechanism using aquarium dataset

Figure 9: F1-confidence curve for YOLOv8 with ECA at-
tention mechanism using aquarium dataset

at 0.27 as depicted in Figure 6. ECA stands out with the
lowest optimal confidence threshold (0.027), offering supe-
rior early-stage detection and the smoothest confidence-F1
curve, making it ideal for robust predictions. CBAM and
GAM contribute more toward improving per-class balance,
with CBAM enhancing spatially diverse classes like puffin
and starfish, and GAM excelling in classes with complex
contextual dependencies like penguin, as shown in Figure
7. Although GAM does not reach peak F1 performance,
it demonstrates the best inter-class balance. Overall, ECA
provides the best trade-off between accuracy, stability, and
efficiency, making it the most effective enhancement in this
setting.
Statistical analysis The proposed work used an ANOVA

test for performing statistical analysis. We have performed
the same experiment 4 times and calculated mean, stan-
dard deviation, standard error and found YOLOv8+ECA
performing better than others as shown in Table 8. Also as-
sumed significance level as 5%. Table 9 shows that the p-
value is 0.0004, which is much less than 0.05, so the result
is significantly good. Moreover, the mean of YOLOv8 +
ECA is maximum, so the performance of the ECA attention
mechanism is performing well for the aquarium dataset.

8 Discussion
The AB-YOLOv8 compared with SSD and Faster R-CNN
and results are shown in Figure 11, Figure 12 and Figure 13.
With respect to precision, recall, and mAP, Faster R-CNN
gives better results than YOLOv8, but after using the atten-
tion mechanism with YOLOv8, it is possible to outperform
Faster R-CNN. Although Faster R-CNN is well-known for
its high accuracy in object identification tasks, it has a num-
ber of drawbacks that limit its usefulness in real-time appli-
cations. Due to its two-stage detection architecture, which
consists of a Region Proposal Network (RPN) followed by
a classification and bounding box regression step, its main
disadvantage is its lengthy inference time as shown in Fig-
ure 13. Because of this, it is computationally demanding
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Figure 10: Sample images of object detection on aquarium dataset, (a-c) object detection by YOLOv8, (d-f) object detec-
tion by GAM, (g-i) object detection by ResCBAM, (j-l) object detection by SA, (m-o) object detection by ECA

Table 8: Statistical analysis based on aquarium dataset to calculate mean, standard deviation, standard error

Models N Mean Std. Dev. Std. Error
YOLOv8 4 43.88 1.781 0.7965
YOLOv8+SA 4 46.3333 1.2111 0.4944
YOLOv8+GAM 4 45.7833 1.3862 0.5659
YOLOv8+ResCBAM 4 46.85 1.1895 0.4856
YOLOv8+ECA 4 52.0167 5.1148 2.0881
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Table 9: Statistical analysis based on aquarium dataset to calculate p-value

Source Degrees of
Freedom (DF)

Sum of
Squares (SS)

Mean
Square (MS) F-Statistic P-Value

Between Groups 4 211.1774 52.7943 7.5641 0.0004
Within Groups 24 167.5099 6.9796
Total 28 378.6872

and inappropriate for situations requiring quick decisions,
such as autonomous driving or real-time video processing.
SSD has significant limits even if it provides a decent bal-
ance between speed and accuracy. Its inability to detect
small objects is a significant disadvantage, mainly due to
the fact that it employs numerous feature maps with varying
resolutions, whichmay result in the loss of fine features that
are essential for localizing small objects. Furthermore, sit-
uations with dense backgrounds or complicated backdrops,
where object boundaries are less clear, can be difficult for
SSD to handle. Compared to two-stage detectors like Faster
R-CNN, its accuracy is typically lower, but it has improved
inference time to 25ms, depicted in Figure 13.
Figure 11 and Figure 12 clearly shows that GAM’s per-

formance on the AB-YOLOv8 model’s on the aquarium
dataset is poorer than other attention blocks. The one reason
behind the poor performance of GAM is that it has an abun-
dance of pooling layers. The ECA module can be deployed
on devices with limited resources because it is computation-
ally efficient and does not require dimensionality reduction
or completely connected layers, which makes ECA more
efficient and involves fewer parameters. Also, it is visible
from Figure 12 ResCBAM and SA performed well with the
YOLOv8model. In order to improve feature representation
and performance on a range of tasks, ResCBAM adds both
channel and spatial attention, which enables the model to
preferentially focus on the most informative channels and
spatial regions of the feature maps. Another important issue
is the result found on the aquarium Dataset, which consists
only of 638 images, including validation, training, and test-
ing images.
Based on how long it typically takes each object detec-

tion model to process a single image (measured in millisec-
onds), the inference time graph comparison shown in Fig-
ure 13. As can be seen from the graphic, Faster RCNN has
the longest inference time—nearly 80 ms—which suggests
that while it may attain competitive accuracy, its computa-
tional overhead renders it less appropriate for real-time ap-
plications. Even while SSD is faster than Faster RCNN, it
still takes about 25 ms, which is more than the YOLO vari-
ations. The YOLOv8 and YOLOv8+ECA show noticeably
higher inference efficiency than any of the othermodels that
were assessed. Because YOLOv8 has the shortest inference
time (around 7 ms), it is ideal for real-time systems.
The proposed work tested on another dataset to validate

the performance of the proposed work. Brackish dataset
used for the purpose of the experiment is shown in Table
10. It is found that for Brackish datset ECA and ResCBAM

achieved 74% mAP@50. ECA does not perform dimen-
sionality reduction so channel-wise features are intact and
attains better result. ResCBAM efficiently determines the
location and class of the objects by channel attention and
spatial attention block. After inclusion of GAM and SA
also achieved 2-4% improvement on mAP.

9 Conclusion

After the release of the YOLOv8 model by Ultralytics in
2023, researchers commenced utilizing it for object recog-
nition in underwater images. Although the almost re-
cent generation of the YOLO model, the YOLOv8 model,
despite the fact that models performed admirably on the
aquarium dataset, were unable to meet the good perfor-
mance. We added four attention modules GAM, Res-
CBAM, SA and ECA to the YOLOv8 architecture, respec-
tively, to improve the model’s performance in order to over-
come this constraint. Furthermore, we integrate ResBlock
with CBAM to enhance the overall performance of the
model. The proposed work with aquarium dataset achieved
40% maximum mAP@50 for ECA and ECA achieved 7.7
ms inference time with 59 FPS which is better than all other
attention blocks. It is also notable that number of param-
eters not increased for ECA so finally, out of all atten-
tion block ECA performed better. Validation of the pro-
posed work is checked on Brackish Dataset also. The re-
sults for Brackish dataset that shows for ResCBAM and
ECA attention blocked achieved 74% mAP. YOLOv8 with
ResCBAM and ECA achieved 8% better mAP than base
YOLOv8 model.
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Figure 11: Precision and recall comparison for different models for aquarium dataset

Figure 12: mAP comparison with different models for aquarium dataset

Table 10: Evaluation comparison between different models for Brackish Dataset

Network Precision Recall mAP@50:95
SSD 41.19 35.02 30.71
Faster-RCNN 69.23 65.02 61.45
YOLOv8 92.29 91.04 68.21
YOLOv8+GAM 91.10 92.8 69.44
YOLOv8+SA 92.49 90.28 72.30
YOLOv8+ResCBAM 94.80 91.90 74.20
YOLOv8+ECA 95.01 90.90 74.31
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Figure 13: Inference Time comparison with different models
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