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In recent years, neural network-based differential distinguishers have demonstrated significant 

advantages in accuracy and effi-ciency over traditional differential distinguishers in symmetric cipher 

differential analysis. However, when dealing with ciphers involving a higher number of encryption 

rounds, neural network differential distinguishers still struggle to accurately identify ci-phertext pairs. To 

address this issue, this study proposes a neural network differential distinguisher model based on attention 

mechanisms and optimized ciphertext input structures. Specifically, the model first innovates the residual 

structure within the attention mechanism to maximize the weight of highly discriminative features, 

enhancing the feature extraction capability of the improved model. Secondly, a multi-scale convolution 

method is employed, integrating the network structure ideas of RegNet, with the addition of convolutional 

branches and optimization of activation functions, which further enhances the model's feature ex-traction 

capability. Finally, a multi-ciphertext input pattern is introduced to improve the input data information, 

and random key encryption is applied to the input ciphertext structure to construct multi-feature 

information representations of the ciphertext and encryption functions. The results from 5-8 rounds of 

experiments on Speck 32/64 indicate that the proposed new neural distinguisher can significantly improve 

discrimination accuracy to a maximum of 1.65%. On this basis, we carried out an optimization study on 

the construction method of the multi-ciphertext-pair dataset. The new dataset can increase the accuracy 

of the distinguisher by 49.16% compared to that of the single-ciphertext-pair case, and can extend the 

number of attack rounds from 7 to 8. 

Povzetek: Raziskava predlaga izboljšan nevronski diferencirnik za Speck32/64, ki s pozornostjo in 

večvhodnimi šifratnimi pari poveča kvaliteto klasifikacije in število razpoznavnih krogov. 

 

1   Introduction 
At the 2019 US Secret Conference, Gohr [1] introduced a 

novel cryptanalysis approach using a deep learning neural 

network. Targeting the block cipher Speck, the strategy 

constructed a differentiator using a neural network, which 

aimed to exploit machine learning pattern recognition 

capabilities to enhance cryptanalysis beyond traditional 

methods. This groundbreaking research ignited significant 

interest, inspiring numerous cryptographic researchers to 

delve deeper into the field. Building on Gohr’s work, 

Baksi [2] modified the input data structure from a single 

ciphertext pair to multiple pairs sharing the same 

differential value. The application of this approach to 

large-block ciphers such as ASCON and KNOT yielded 

impressive results. Researchers have compared the 

performance of multilayer perceptron (MLP) [3], 

convolutional neural networks (CNN) [4], and long short-

term memory (LSTM) [5] networks for differential 

analysis and concluded that MLP is the most effective,  

 

while the other architectures have limitations in accuracy 

and training speed. 

Aayush Jain [6] further refined Baksi’s research by 

maintaining the original input data structure while 

optimizing the MLP network. Additionally, following M. 

Wang’s [7] findings, the optimal input difference for the 

PRESENT cipher was incorporated as a fixed input 

difference, which resulted in improved differential 

analysis accuracy for three to five rounds of the PRESENT 

cipher. Emanuele Bellini [8] integrated cryptographic 

algorithm characteristics into the neural network 

architecture to provide prior knowledge. The proposed 

neural network differentiator comprised two components: 

a time distinguisher and a feature extractor. The input 

ciphertext pair was divided into four equal segments, with 

each segment processed by two dense layers of 32 

neurons. This approach aimed to independently extract 

features from each ciphertext block, minimizing inter-

block interactions and aligning more closely with the 

cryptographic algorithm’s structure. In the second part of 
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their research, the authors employed an MLP network for 

prediction. They introduced a novel neural network 

distinguisher to conduct a differential analysis on 4–7 

rounds of TEA and RAIDEN encryption algorithms, 

surpassing the performance of three traditional differential 

distinguishers. Subsequent research has primarily focused 

on enhancing the neural network’s acquisition of prior 

cryptographic knowledge. For instance, Lijun Lyu [9] 

integrated mixed-integer linear programming (MILP) to 

construct a neural network differential distinguisher. By 

pre-determining the required difference value (δ) using 

MILP, the authors processed reduced ciphertext and 

extracted ciphertext pairs with the difference δ as the 

neural network input, resulting in more regular input data. 

HengChuan Su [10] transitioned from independent 

differential pairs to polyhedral differential pairs, utilizing 

polyhedral differences to establish closer connections 

between input data, thereby enabling the neural network 

to extract more ciphertext features. In 2021, Adrien 

Benamira [11] analyzed Gohr’s cryptanalysis research, 

and by shifting the input from differential pairs to 

differential values and dynamically adjusting these values 

during testing, three key conclusions were drawn: (1) a 

neural network distinguisher’s performance is directly 

proportional to its acquired cryptographic information; (2) 

the performance of binary differential discriminators is 

influenced by the penultimate round’s differential 

distribution; (3) while a neural network structure cannot 

be entirely replaced by other machine learning algorithms, 

incorporating local network modifications using machine 

learning techniques can enhance differential analysis 

accuracy. Benamira’s study marked the first exploration 

of the working principles of neural network distinguishers. 

In 2022, Hayato Kimura [12] continuously cracked the 

low-pass cipher algorithm, iteratively refining network 

parameters based on experimental results to realize white-

box attacks. Unlike previous research focusing on 

improving neural network structure and input data, 

Kimura’s work emphasized interpretability by examining 

the neural network’s decision-making process from a 

cryptographic perspective. Additionally, neural network 

differential distinguishers have achieved significant 

results in the differential analysis of various lightweight 

encryption algorithms [13-15].  

However, there are noticeable issues in the existing 

research. For instance, the neural network structures used 

are still relatively simple, and most studies only perform 

basic parameter tuning on the networks. There is limited 

research on modifying the neural network structures by 

incorporating prior knowledge of cryptographic 

algorithms. The feature information provided by single or 

multiple fixed differential ciphertext pairs is limited, and 

the current input data structure fails to offer more feature 

information to the neural network, which restricts the 

accuracy of the network in distinguishing between 

ciphertext pairs. 

To address these issues, this paper proposes a 

differential cryptanalysis model based on an attention 

mechanism and residual structure. The goal is to enhance 

the discriminative capabilities of neural network 

differential distinguishers, broaden the diversity of input 

data, and strengthen the model's learning and 

generalization abilities. We optimize the neural network 

structure by designing an attention-based residual module 

to enhance feature extraction capabilities and improve the 

model's discriminative power. We also expand the 

structure of input data by extending single ciphertext pairs 

to multiple concatenated ciphertext pairs, combined with 

encryption and decryption using random keys. This 

optimizes the input ciphertext structure, enhances the 

network's ability to learn ciphertext features, and improves 

the effectiveness of multi-round encryption algorithms. 

The results from 5-8 rounds of experiments on 

Speck32/64 indicate that the proposed distinguisher model 

achieves an improvement in accuracy of 0.16% for 

individual ciphertext pairs, and 0.85% for multiple 

ciphertext pairs. The number of rounds recognized can be 

extended to eight. 

The specific contributions of this paper are as follows: 

(1) Design of an Attention-based Residual 

Improvement Scheme: We propose a novel neural network 

distinguisher model that combines multi-layer 

convolutions and convolutional branches, exploring the 

impact of different network structures on the 

distinguisher's accuracy. This significantly enhances the 

network's feature extraction capabilities in complex 

encryption environments. 

(2) We propose an innovative model for a multi-

scale convolutional enhancement scheme that integrates 

RegNet's multi-scale convolution method and network 

design principles. By utilizing stacked 3x3 convolutions 

and adding convolutional branches, we investigate the 

impact of these modifications on the accuracy of the 

distinguisher. This approach significantly enhances the 

model's feature extraction capabilities. 

(3)  Development of a multi-ciphertext pair input 

structure-based encryption method: by utilizing random 

keys for one-round encryption, we achieve diversity in 

input data, strengthening the neural network's learning 

capabilities regarding ciphertext features. This 

significantly improves the model's generalization 

capabilities and training efficiency. 

The structure of the paper is as follows: Section 2 

introduces the fundamentals of the Speck32/64 cipher 

system, differential analysis, and the design and operation 

of differential distinguishers. Section 3 delves into the 

optimization of neural network distinguishers, including a 

comparative analysis of various neural network 

architectures, optimization of network parameters, and 

improvements in ciphertext input format. Section 4 

presents the experiments and analysis. Finally, Section 5 

provides the conclusion and directions for future work. 

2   Preliminaries 

2.1 Speck32/64 
Speck [16] is a lightweight block cipher introduced by Ray 

Beaulieu et al. from the National Security Agency (NSA) 

in June 2013. This study focuses on Speck 32/64, which 

employs a 32-bit block size and a 64-bit key. The 

algorithm’s core is a combination of modular addition, 
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shift, and bitwise XOR operations. The encryption process 

for Speck 32/64 is shown in Figure 1. The internal 

structure of this cipher comprises two 16-bit blocks: a left 

ciphertext block (Li) and a right ciphertext block (Ri). The 

subkey for the i-th round is denoted as Ki. The left 

ciphertext block is right-shifted by 7 bits and then 

modularly added to the right ciphertext block, followed by 

an XOR operation with the current round’s subkey to 

produce a new left ciphertext block. The left-shifted right 

ciphertext block is XORed with this new left block to 

generate a new right ciphertext block. This process iterates 

for 22 rounds, resulting in the final ciphertext. 

 
Figure 1: The round function and key schedule algorithm 

of Speck 32/64. 

 

In one round of Speck cipher encryption, the input 

data are denoted as (𝐿𝑖 , 𝑅𝑖), and the output data are denoted 

as (𝐿𝑖+1, 𝑅𝑖+1). The encryption process can be described 

as follows: 

𝐿𝑖+1=((𝐿𝑖 >>> α) + 𝑅𝑖)⊕𝑘𝑖                      (1) 

𝑅𝑖+1 = (𝑅𝑖 <<< β) ⊕ 𝐿𝑖+1                  (2) 

where ⊕  represents modular addition,  <<<, >>> 

represent bitwise cyclic shifts to the left and right in the 

version of Speck 32/64, α = 3, and β = 7. 

 

2.2 How differential cryptanalysis and 

differential distinguishers work 
Differential cryptanalysis is a potent technique for 

breaking block ciphers. The ability of a block cipher to 

resist this attack is a critical measure of its overall security. 

The core principle of differential cryptanalysis involves 

exploiting the non-uniform probability distribution of 

ciphertexts resulting from specific input differences [17]. 

By analyzing these patterns, an attacker can gather 

information about the key, significantly reducing the 

search space for potential keys. 

Introduced by Biham [18] and Shamir in 1990, 

differential cryptanalysis is a plaintext attack that 

differentiates encrypted ciphertext from random data. The 

method hinges on identifying high-probability differential 

paths within the cipher’s structure and constructing a 

differential distinguisher based on these paths. Due to its 

effectiveness against iterative cryptosystems, differential 

cryptanalysis is a standard tool for analyzing block 

ciphers. As a result, it is a fundamental metric for 

evaluating cipher security, and it has made significant 

contributions to the field of cryptanalysis and 

cryptographic security. 

Differential cryptanalysis is a chosen-plaintext attack 

technique that exploits the statistical properties of block 

ciphers [19]. A differential distinguisher identifies high-

probability differential patterns within the encryption 

algorithm, distinguishing valid ciphertext pairs from 

random ones. This information is used to filter potential 

key values. Specifically, a distinguisher for γ − 1 rounds 

can differentiate valid ciphertext pairs from random ones, 

enabling a key recovery attack on the full γ-round cipher. 

A differential divider refines the distinguisher’s 

output by identifying ciphertext pairs that align with a 

high-probability differential propagation path. This 

maximizes the number of “correct pairs” while 

minimizing the number of “wrong pairs”, thereby 

reducing the key search space. The distinguisher’s 

accuracy is crucial; higher accuracy leads to fewer false 

positives, a faster key search, and a more effective 

cryptanalysis. 

Recent advancements in deep learning have led to the 

development of deep learning-based cipher distinguishers 

capable of achieving high accuracy. These distinguishers 

can be used to improve subsequent cryptanalytic efforts. 

 

2.3 Differential analysis based on deep 

learning 
Deep learning [20] is a machine learning technique 

predicated on artificial neural networks (ANNs) that 

process and analyze data by mimicking the interconnected 

structure and function of the human brain. It excels in 

handling complex tasks such as image and speech 

recognition, as well as natural language processing. 

Within this domain, convolutional neural networks 

(CNNs) constitute a critical branch specifically designed 

for image data processing. CNNs extract image features 

through convolutional, pooling, and fully connected 

layers. Convolutional layers employ convolutional kernels 

(filters) to scan input images and extract local features, 

while pooling layers reduce dimensionality and 

computational load, enhancing model generalization. 

In 2015, He Kaiming et al. introduced the ResNet 

model [21], a convolutional neural network architecture 

incorporating skip connections. The residual module 

comprises two or more convolutional layers and a skip 

connection, directly summing the input and output to 

transmit the shallow network output to deeper layers, 

mitigating the vanishing gradient problem. Figure 2 

illustrates the ResNet network structure. Despite its 

advancements, ResNet still presents opportunities for 

enhancing recognition accuracy, computational 

efficiency, and model parameter count. This study 

incorporates numerous residual structure design principles 

into the optimization of the neural network differential 

distinguisher’s architecture. 
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Figure 2: ResNet model structure 

 

In 2019, Gohr pioneered the integration of deep 

learning with differential cryptanalysis. This study 

proposes a binary classification method for analyzing 

ciphertext pairs, building upon existing techniques for 

Speck encryption. Focusing on the input differential of 

(0x0040/0000), the goal is to distinguish between genuine 

and random ciphertext pairs. Real pairs originate from 

plaintext pairs with a specified difference, while random 

pairs stem from arbitrary plaintext pairs. When applied to 

Speck 32/64, this method surpasses traditional approaches 

in accuracy. Its applicability extends beyond Speck to 

other lightweight ciphers. 

Gohr’s neural network architecture, illustrated in 

Figure 3, comprises four modules: input, initial 

convolution, residual, and prediction modules. The input 

module feeds ciphertext data to the initial convolution 

module, structured as a ResNet network with 1 × 1 

convolution kernels for feature extraction. The residual 

module enhances feature extraction using ten two-

convolution neural networks and residual connections to 

minimize information loss. The prediction module 

employs multiple fully connected layers to map input 

features to output labels, classifying pairs as genuine or 

random and ultimately determining accuracy. 

3   Methodology 
As shown in Figure 3, the neural network-based 

differential distinguisher is composed of four modules: the 

input module (Module 1), initial convolution module 

(Module 2), residual module (Module 3), and prediction 

module (Module 4). This study focuses on optimizing and 

improving the network structure of the input module and 

the residual module to enhance the classification accuracy 

of the neural network-based differential distinguisher. 

In this section, the structure and advantages of the 

network model proposed in this study are described in 

detail. The overall network structure is shown in Figure 4. 

In the process of improving the neural network differential 

distinguisher, the focus is primarily on optimizing the 

residual module and input data structure to enhance the 

model's distinguishing accuracy and performance. To 

improve the network architecture, attention-based [22] 

improvements were introduced to the residual module, 

enhancing feature extraction capabilities. This allows the 

neural network to better focus on important features, thus 

improving accuracy when distinguishing ciphertext pairs. 

Additionally, integrating RegNet’s multi-scale 

convolution method into the neural network differential 

discriminator enhances feature extraction capabilities by 

incorporating convolution branches within the network 

architecture. By concatenating multiple ciphertext pairs 

and encrypting with a random key for one round, the input 

data are extended from single ciphertext pairs to multiple 

concatenated ciphertext pairs, and differential values are 

introduced with one round of random key encryption. This 

improvement not only increases the diversity of input data 

but also enhances the neural network's ability to learn 

ciphertext features, thereby improving the model's 

generalization ability and training efficiency. Based on 

multiple ciphertext pairs, further optimizations were made 

to accommodate higher rounds of the Speck encryption 

algorithm, improving the overall distinguishing accuracy. 

These improvements, achieved through network structure 

and input data optimization, significantly enhance the 

neural network differential distinguisher's performance in 

analyzing high-round cryptographic algorithms. 

 

 
Figure 3: Gohr neural network 
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Figure 4: The overall structure of B-C3-HSwish. 

 

3.1 Improvement of network architecture 
Based on the original Gohr neural network differential 

distinguisher, we constructed a more accurate neural 

network differential distinguisher tailored for Speck 32/64 

encryption reduced to 5–7 rounds. The specific 

improvements are detailed in Sections 3.1.1 and 3.1.2, 

where the differential classification accuracy for the 5–7 

rounds of the Speck encryption algorithm is tested to 

validate the optimal improvement strategy. In Section 3.2, 

after determining the optimal structure for the 

distinguisher, the input ciphertext structure is further 

optimized to enhance the performance of the 

distinguisher. 

 

3.1.1. Improvement of residual module based on 

channel attention 

Typically, differential neural distinguishers are 

constructed using multiple cascaded residual structures 

[23]. The input of each residual structure is added to the 

input of the next, which helps reduce the risk of overfitting 

and improves the model's generalization capability. 

Meanwhile, the SENet attention mechanism aids the 

model in better utilizing information across different 

channels, allowing the network to adaptively adjust the 

importance of various channels and enhance the focus on 

significant features, thereby improving the classification 

performance [24]. 

In this study, we conducted extensive experimental 

investigations on the network width and depth of the 

residual module, aiming to determine the optimal number 

of filters, the optimal number of residual towers, and the 

optimal size of convolutional kernels. This was done so 

that the differential distinguisher could optimally acquire 

ciphertext feature information and achieve the highest 

possible distinguishing accuracy. However, after an in-

depth analysis of the experimental results, we found that 

these adjustments did not significantly enhance the 

model's performance. 

Through comprehensive and systematic 

experimental analysis and comparison, we identified the 

optimal residual module and its internal residual tower 

structure, as detailed below. Based on experimental 
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testing, we first selected a residual tower comprising three 

one-dimensional convolutional layers, with each layer 

having a convolutional kernel size of 3×3. Additionally, 

we integrated an attention mechanism module, combining 

the channel attention extraction structure with the residual 

tower. After the residual tower learned from the ciphertext 

data, the outputs from the convolutional layers within the 

tower were concatenated. This transformed the two-

dimensional data (16, 32) into three-dimensional data (16, 

32, n). Subsequently, the data was pooled to form a tensor 

of shape (1, 1, n), which was then passed through a 

convolutional neural network for further learning and 

feature extraction. The resulting weights were multiplied 

with the original concatenated data. The adjusted channels 

were summed to restore the data to its original two-

dimensional form, while maintaining the overall data 

volume throughout the process. The network structure is 

shown in Figure 5. 

 
Figure 5: residual tower structures. 

 

 
Figure 6: Branch-CNN3. 

 

3.1.2. Structure of feature enhancement module based 

on convolution branch 

RegNet is an efficient convolutional neural network 

architecture renowned for its systematic design and 

uniform network structure. It facilitates multi-scale 

learning through diverse building blocks, effectively 

enhancing the depth and breadth of feature extraction, 

while also improving learning efficiency through 

parameter optimization [25]. In this study, we integrate the 

multi-scale convolution approach of RegNet into a 

traditional neural network differential distinguisher, using 

only two stacked 3x3 convolutional layers for feature 

extraction. The effect of stacking two 3x3 convolutions is 

equivalent to the receptive field of a single 5x5 

convolution. Thus, we adopt a multi-scale convolution 

strategy, incorporating RegNet's network design 

principles by adding convolutional branches to the 

network structure of the differential distinguisher. 

Additionally, we modify the activation functions to further 

optimize the feature extraction quality of these branches, 

thereby enhancing the distinguisher's feature extraction 

capabilities. The detailed architecture is shown in Figure 

6. 

 

3.2 Improvement of the input module 
The experiments in the previous section demonstrated that 

modifying the neural network differentiator architecture 

can significantly enhance differential discrimination 

accuracy. However, it was also observed that optimizing 

the neural network structure alone is insufficient for 

achieving higher-round differential attacks. To further 

improve model accuracy and overall performance, this 

section focuses on optimizing the input dataset. By 

manipulating the dataset structure, the neural network can 

extract more ciphertext information and structural 

characteristics of the encryption function. This leads to 
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higher-quality, more diverse input data, enhancing the 

model’s generalization ability, training efficiency, and 

overall performance. 

Previous research (i.e., [26, 27]) has proposed to 

change the input mode from a single ciphertext pair to the 

input of multiple ciphertext pairs concatenated together. 

Experiments have shown that if the input mode is changed 

from inputting a single ciphertext pair at a time to 

inputting multiple concatenated ciphertext pairs, the 

differential distinguisher will learn more feature 

information, resulting in a significant improvement in the 

discrimination accuracy. In this paper, we improve on this 

idea by using multiple ciphertext pairs, namely p1, p2, ⋯, 

p32. After encrypting them for one round with a random 

key, c1, c2, ⋯, c32 are obtained. The differential values of 

these multiple ciphertext pairs and the differential values 

after one-round encryption (d1, d2, ⋯, d32) are 

concatenated and input into the neural network differential 

distinguisher. This model is named RKMP (Random Key 

Multi-Cipher Pairs), and is shown in Figure 7. 

 

 
Figure 7: New input structure RKMP. 

 

4 Experiments 

4.1. Dataset 
To ensure a fair and consistent experimental 

environment, the dataset and hyperparameters remain 

fixed throughout the study. Additionally, the neural 

network’s random seed parameter is stabilized to mitigate 

the impact of potential floating-point variations on the 

results. 

Network parameters: The neural network was trained 

on the training set for 200 epochs. The batch size was set 

to 5000. The Adam algorithm with default parameters in 

Keras was used to optimize the cross-entropy loss 

function, with a small penalty for L2 weight regularization 

(regularization parameter c = 10−5 ). The learning rate 

uses a cyclical learning rate, with the learning rate 𝑙𝑖 for 

𝑒𝑝𝑜𝑐ℎ𝑖  set to 𝑙𝑖 = 𝛼 +
(𝑛−𝑖) mod (𝑛+1)

𝑛
·  (𝛽 − 𝛼), where α 

= 10−4, 𝛽 = 2 · 10−3 , n = 9 [28]. At the end of each 

epoch, the obtained network is saved, and the best network 

is evaluated based on the test set. 

 

Data generation: A fixed random seed Linux random 

number generator was used to generate the required key, 

and the sizes of the training and test sets were set to 107 

and 106 , respectively. The fixed differential ciphertext 

pair was obtained by encrypting the plaintext pair with a 

difference of (0x0040, 0x0000) for n rounds, while the 

random ciphertext pair was encrypted with uniformly 

distributed plaintext pairs. The fixed-difference cipher 

was marked with a Y label of «1», and the random 

ciphertext was marked with a Y label of «0». 

Feature Extraction: The network takes two ciphertexts 

(𝐶𝐿
𝑟1,𝐶𝑅

𝑟1) and (𝐶𝐿
𝑟2,𝐶𝑅

𝑟2) as inputs, which were fed into the 

network in the form of (𝐶𝐿
𝑟1 ,𝐶𝑅

𝑟1, 𝐶𝐿
𝑟2, 𝐶𝑅

𝑟2 ). It predicts 

whether the ciphertext pair conforms to the initial 

difference (0x0040, 0x0000). In the initial convolutional 

layer, a single-layer convolution operation with a kernel 

size of 1 is used to extract features from the input 

ciphertext matrices. The purpose of this step is to mimic 

the XOR operation in cryptographic computations. 

Therefore, this convolutional layer learns the convolution 
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of the four-bit pairs that are XORed in cryptographic 

operations, thereby extracting their features. 

Training cost: According to the above basic training 

plan, in a batch size of 5000 cases, a single GTX 3090 

graphics training epoch takes about 90 s. Therefore, a 

complete training cycle can be finished in less than a day. 

 

4.2. Improvement of residual module 
4.2.1. Improvement of residual module based on 

attention idea 

To investigate the effect of the number of convolutional 

layers inside the residual tower on the performance, we 

designed three different residual structures (S1, S2, and 

S3) containing two, three, and four 3*3 one-dimensional 

convolutional layers, respectively. These structures are 

shown in Figure 8 (a), (b) and (c). We added the attention 

mechanism to these basic structures to form three new 

structures, SeNet-S1, SeNet-S2, and SeNet-S3, as shown 

in Figure 8 (d), (e), and (f), respectively. The above six 

residual structures were tested for differentiation against 

five rounds of Speck ciphertext pairs; the results are 

shown in Table 1. 

 

Table 1: The accuracy of different distinguishers 

with the improved model 
Network Structure Network Depth Accuracy 

S1 10 92.95% 

S2 10 92.95% 

S3 10 92.92% 

SeNet-S1 10 93.01% 

SeNet-S2 10 93.04% 

SeNet-S3 10 93.00% 

 

 

 
Figure 8: Six residual structures. 
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As shown in Table 1, SeNet-S2 demonstrates optimal 

performance in convolution operations. By enhancing 

feature representation, introducing automatic weight 

learning, optimizing gradient flow, reducing feature 

redundancy, integrating local features, and improving 

network stability, the model significantly outperforms its 

predecessors. Experimental results indicate that a three-

layer convolution strikes an ideal balance between feature 

extraction, selection, gradient propagation, redundancy 

reduction, local feature integration, and model flexibility, 

surpassing both two-layer and four-layer configurations. 

This equilibrium enables the model to effectively capture 

complex features while maintaining computational 

efficiency, resulting in superior classification accuracy. 

 

4.2.2. Structure of feature enhancement module based 

on convolution branch 

The authors experimented with different weight learning 

structures and neuron counts, as summarized in Table 2. 

 

 

Table 2: The accuracy of different distinguishers with the improved model 

Network Structure 
Add a 

Branch 

The Structure Used for Weight 

Learning 

Number of Neurons per 

Layer 
Accuracy 

NoBranch-MLP1(SeNet-

S3) 
NO MLP 64, 3 93.04% 

NoBranch-MLP2 NO MLP 32, 3 93.01% 

NoBranch-CNN1 NO Convolution 64, 3 93.07% 

Branch-MLP1 YES MLP 64, 4 93.09% 

Branch-CNN1 YES Convolution 128, 4 93.09% 

Branch-CNN2 YES Convolution 256, 4 93.07% 

Branch-CNN3 YES Convolution 32, 4 93.11% 

 

Table 3: Comparison of accuracy of different parameters 

Activation Function Normalization Accuracy 

ReLU BatchNorm 93.11% 

PReLU BatchNorm 93.06% 

Swish BatchNorm 93.14% 

Gelu BatchNorm 93.14% 

ELU BatchNorm 93.06% 

Selu BatchNorm 92.99% 

LeakyReLU (0.3) BatchNorm 92.96% 

Hard_swish BatchNorm 93.16% 

Hard_swish LayerNorm 92.91% 

Hard_swish InstanceNorm 92.63% 

 

The experimental results in Table 3 demonstrate that 

incorporating branch structures significantly enhances 

convolutional network performance, particularly for 

smaller neuron counts (e.g., 32 and 4). The convolutional 

networks consistently outperformed the MLPs in these 

experiments. Increasing network width proved more 

effective than depth in capturing input data characteristics, 

leading to improved model performance. Wider networks 

achieved higher representational capacity with fewer 

layers, mitigating the gradient vanishing and training 

challenges associated with deep networks. The shared 

convolution kernel in the difference distinguisher’s 

convolutional layers effectively detected patterns across 

the entire input, enhancing model generalization and 

feature recognition. Consequently, branch addition 

emerges as a valuable optimization strategy. 

 

4.3. Improving the activation function 
Activation functions and normalization are crucial 

components in neural networks, enhancing expressivity, 

prediction accuracy, stability, and convergence speed 

[29]. Building upon the improved distinguisher in Section 

3.2, this section investigates activation functions, 

normalization methods, and their neural network 

applications. Residual structures typically aim for 

numerical results within a specific interval in the 

"residual" branch. However, using the ReLU activation 

function at the end of this branch leads to non-negative, 

increasing "residual" values, potentially impacting 

representational power. To address this, the authors 

adjusted the activation function’s placement or replaced 

ReLU with Swish, LeakyReLU, or other alternatives. 

Table 3 presents specific test results for five-round Speck 

encryption ciphertext pairs.  

Normalization can improve the stability and 

convergence speed of the model and reduce the risk of 

overfitting. After an experimental comparison and 

analysis, it is found that the activation technic BatchNorm 

used in the distinguisher in this section is the optimal 

solution at present. Therefore, BatchNorm is still used in 

the distinguisher in this section, and the specific test 

process is shown in Table 3. 

This section focuses on enhancing the neural network 

differential distinguisher by refining the activation 

function and normalization operation within the initial 

convolution module, residual module, and prediction 
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module. Employing activation functions such as 

Hard_swish and GeLU in place of the ReLU function 

yields superior outcomes for discrimination. Furthermore, 

the normalization method significantly impacts the 

performance of the Hard_swish activation function, with 

the activation technic BatchNorm outperforming 

LayerNorm and other alternatives. Consequently, the 

authors replace the ReLU function with Hard_swish in the 

initial convolution module, residual module, and 

prediction module of the Branch-CNN3 architecture while 

retaining BatchNorm. Figure 9 illustrates the overall 

structure of this distinguisher. 

 
Figure 9: Activation function versus normalization improvement for Branch-CNN3. 

 

Table 4: Comparison of accuracy of various differentiators 

Round of Speck 32/64 Neural Distinguisher Accuracy 

5 

CSYY22 [14] 92.6% 

Gohr [1] 92.9% 

B-C3-HSwish 93.2% 

6 

CSYY22 [14] 78.4% 

Gohr [1] 78.8% 

B-C3-HSwish 79.0% 

7 

CSYY22 [14] 60.7% 

Gohr [1] 61.6% 

B-C3-HSwish 61.7% 

 

4.4. Comparative analysis of the accuracy of 

different distinguishers 
At this point, the overall differential discriminator is 

completed and named B-C3-HSwish. The detailed 

structure diagram is shown in Figure 8. It was used to 

differentiate between five and seven rounds of the Speck 

encryption algorithm. A comparison of B-C3-HSwish 

with existing distinguishers is presented in Table 4. 

In the 5-7 rounds of the Speck 32/64 encryption 

discrimination experiment, compared with the Gohr and 

CSYY22 models, the B-C3-HSwish model exhibited an 

accuracy advantage in different rounds. In the fifth round, 

the rate of improvement was approximately 0.32% 

compared to the Gohr model and approximately 0.65% 

compared to the CSYY22 model. In the sixth round, these 

rates were approximately 0.25% and 0.77% respectively. 

In the seventh round, they were approximately 0.16% and 
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1.65% respectively. It can be observed that under the 

conditions of an increasing number of encryption rounds, 

greater discrimination difficulty, and generally high 

accuracy levels, the B-C3-HSwish model can consistently 

maintain its advantage, thus demonstrating its 

effectiveness as a Speck 32/64 encryption discriminator.  

4.5. Improvement of the input module 
We conducted a pairwise test experiment to validate the 

performance of the novel ciphertext structure RKMP 

(random key multi-cipher pairs) in conjunction with the 

new splitter B-C3-HSwish, as detailed in Table 5. The 

results indicate that the B-C3-HSwish distinguisher 

outperformed the Gohr distinguisher across various round 

numbers, substantiating the claim that the RKMP 

ciphertext structure combined with the B-C3-HSwish 

distinguisher constitutes an optimal pairing. Despite a 

decrease in accuracy at higher rounds, this combination 

still provides effective discrimination. 

 

Table 5: Tests of B-C3-HSwish distinguisher combined with the new ciphertext structure RKMP 

 

Round 

of Speck 32/64 

Ciphertext 

Structure 

Neural 

Distinguisher 
Accuracy 

7 

single-ciphertext pair Gohr 61.6% 

single-ciphertext pair B-C3-HSwish 61.7% 

random key multi-

cipher pairs 
Gohr 91.25% 

random key multi-

cipher pairs 
B-C3-HSwish 92.03% 

8 

single-ciphertext pair Gohr Unrecognizable 

single-ciphertext pair B-C3-HSwish Unrecognizable 

random key multi-

cipher pairs 
Gohr 63.01% 

random key multi-

cipher pairs 
B-C3-HSwish 63.32% 

 

5   Conclusions 
The focus of this study was to explore how neural 

networks can be utilized to replace traditional differential 

distinguishers for ciphertext pair classification. Current 

neural network-based differential distinguishers exhibit 

several significant limitations, primarily characterized by 

a low classification accuracy and a limited number of 

distinguishable encryption rounds. To address these 

issues, this study concentrated on two key aspects: the 

design of the neural network architecture for the 

differential distinguisher and the design of the input 

ciphertext structure. Building on extensive experience and 

existing neural network structures, the authors optimized 

the network architecture by improving residual modules 

based on channel attention, multi-scale convolutions, and 

activation functions in the distinguishers. We also propose 

a new input data structure by optimizing the input 

ciphertext structure, enabling the neural network to 

capture more ciphertext features and encryption structure 

information. These improvements led to the successful 

design of a more performant differential distinguisher, 

achieving an accuracy of up to 92.03% for distinguishing 

seven rounds of the Speck 32/64 block cipher. 

Furthermore, the number of distinguishable rounds was 

extended to eight, with an accuracy of 63.32%. The 

simulation results validate the effectiveness and 

superiority of the deep learning-based differential 

distinguisher design proposed in this paper for the Speck 

32/64 cipher system. 

In the field of cryptography, where information 

technology is developing rapidly and data security is of  

 

paramount importance, the security assessment of 

cryptographic algorithms forms the core of data security. 

The Speck series of cryptographic algorithms are widely 

used in the Internet of Things (IoT) and embedded systems 

due to their high efficiency and adaptability to resource-

constrained environments. Taking IoT devices as an 

example, many sensor nodes use Speck 32/64 algorithms 

to encrypt and transmit data to prevent theft and 

tampering. However, if the algorithms' security is not 

secure, attackers may analyze the number of encryptions 

rounds to crack the encryption, resulting in privacy 

leakage and illegal access to data, so improving the 

accuracy of distinguishing between the encryption rounds 

of Speck 32/64 will help researchers to accurately assess 

the security of the encryption rounds and find loopholes, 

thus supporting security hardening of the devices. In 

embedded systems, such as smart meters and smart home 

control centers, which also rely on this algorithm and are 

closely connected to daily life, cracking the encryption 

will lead to serious consequences, such as confusion in 

energy management and threat to home security. 

Therefore, it is of great significance to accurately 

distinguish the Speck 32/64 encryption rounds to ensure 

the safe operation of embedded systems and maintain 

order. The accuracy of the distinction achieved in this 

study can provide a more reliable basis for the security 

assessment of the relevant systems in the practical 

applications and promote the development and 

improvement of the data security guarantee technology in 

the real world. 
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Although this research has made significant progress 

in designing differential distinguishers based on neural 

networks, some limitations remain. First, this study 

primarily focuses on the Speck 32/64 block cipher, and its 

applicability to other encryption algorithms has not yet 

been validated. Second, despite improvements in 

classification accuracy, performance may still be limited 

when dealing with higher rounds or more complex 

encryption algorithms. Finally, issues related to 

computational efficiency and resource consumption in 

practical applications require further optimization, and 

future research could explore several directions. First, the 

model's applicability should be tested across a broader 

range of encryption algorithms to verify its 

generalizability; second, the network architecture should 

be further optimized to enhance its ability to distinguish 

higher-round encryption; additionally, computational 

efficiency should be improved to make the model suitable 

for large-scale real-world applications, which is crucial; 

lastly, adaptive mechanisms should be explored that allow 

the model to automatically adjust to different encryption 

scenarios, which could significantly increase its practical 

value. 
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