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Multi-object detection and classification are essential tasks in computer vision, with applications in 

autonomous navigation, healthcare diagnostics, and surveillance. Current models are confronted with 

problems such as intricate object boundaries, class imbalance, and real-time extension. To overcome these 

limitations, a new deep learning model—EL-MODC (Enhanced Learning-based Multi-Object Detection 

and Classification) architecture —is introduced. This architecture comprises a SegNet for accurate pixel-

wise image segmentation and a modified ResNet-50, based on transfer learning. The architecture begins 

with robust data preprocessing and augmentation to enhance model capacity and robustness. With SegNet, 

the spatial localization of object regions can be efficiently carried out, and ResNet-50 can utilize the pre-

trained weights of ImageNet to enhance the efficiency of learning and prediction. The performance of the 

proposed model was tested by comparing it with several baseline models, including UNet, Baseline CNN, 

and LeNet, showing that the proposed architecture achieved an accuracy of 96.40%, a precision of 96.02%, 

a recall of 96.32%, and an F1-score of 96.16%. EL-MODC slightly outperforms LeNet with a 95.19% F1-

score and 95.07% accuracy, demonstrating enhanced performance in the test conditions described in the 

complex scenarios. Additionally, the model achieves an IoU of 86.5%, further reinforcing its strong 

generalization capability across object boundaries. Moreover, we present an in-depth performance 

analysis based on confusion matrices, detection visualization, and class distribution, which further 

demonstrates the robustness of the proposed system. EL-MODC is generalizable and applicable to varied 

domains and real-world environments. It can be deployed for real-time purposes, featuring a modular and 

efficient computational architecture. The proposed framework not only outperforms existing state-of-the-

art models but also paves the way for potential improvements in multi-object detection, particularly in 

terms of interpretability and cross-domain adaptation. 

Povzetek: Članek s področja računalniškega vida predstavlja okvir EL-MODC, ki združuje SegNet in 

ResNet50 za večobjektno detekcijo. Novost je učinkovita integracija segmentacije in transfernega učenja, 

kar zagotavlja bolj kvalitetno razmejevanje meja in klasifikacijo kot metoda YOLOv3. 

 

1   Introduction  

One of the significant ways this smoother approximation 

is utilized is for object detection and classification, which 

are essential to computer vision applications across 

various domains, including surveillance, autonomous 

driving, healthcare, and robotics. While there has been a 

virtuous process of improving the principles of deep 

learning for the epigraph, there are still significant 

drawbacks to accurate segmentation like our inability to 

identify complex object boundaries, the considerable 

variability in object sizes and orientations, as well as real-

time applicability for computer vision systems which do 

not treat their data source as a stack of images but a stream. 

Although methods like YOLO,  

SSD and ResNet have demonstrated effectiveness, but 

multi-object detection and classification for diverse and 

complex scenarios still suffer from accuracy issues. The 

literature is reviewed, and significant advances in the field 

are discussed. For example, hybrid models such as YOLO-

ResNet and segmentation-integrative frameworks have 

enhanced the detection performance. The challenges, such 

as dealing with background complexity, real-time 

processing, and multiclass imbalance, remain. 

Furthermore, current approaches are primarily brittle 

across various application contexts, highlighting the 

necessity for more adaptive and accurate procedures. 

To mitigate these challenges, we introduce a deep learning 

framework and an Enhanced Learning-based Multi-Object 

Detection and Classification (EL-MODC) algorithm in the 

present research. The purpose is to create a more efficient 
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and highly skilled logistics system that integrates SegNet 

for accurate segmentation and ResNet50 with transfer 

learning for hierarchical feature extraction and multi-class 

CSS classification. Our proposed framework prioritizes 

accuracy, computational efficiency, and scalability. The 

pilot study contributes original innovation by leveraging 

transfer learning in a well-established precision 

segmentation model and sophisticated feature extraction to 

improve processing performance. The algorithm, designed 

to provide precise solutions for these components, enables 

their integration without risk, offering high accuracy and 

low computational effort. Here are the primary 

contributions: (1) Proposal of the EL-MODC framework, 

(2) Experimental validation on the VOCdevkit dataset, and 

(3) Benchmarking against state-of-the-art models. The 

paper presents extensive evaluation metrics to demonstrate 

the framework's superiority. The remainder of the paper is 

organized as follows: Section 2 contains relevant work; 

Section 3 outlines the suggested technique; Section 4 

discusses the experimental findings; Section 5 presents our 

work and discusses the study's limitations; and Section 6 

concludes with suggestions for future research. 

2  Related work 

The literature demonstrates notable developments in deep 

learning (DL) frameworks for detecting and categorizing 

multiple objects, including YOLO, SegNet, and ResNet-

based models. These works address challenges in 

accuracy, real-time processing, and complex scenarios, 

setting the foundation for innovative solutions in this 

domain. Kuppuswamy and Hung [1] highlighted the better 

performance of CNN in object recognition by comparing 

it with the Firefly algorithm and SVM with the Adam 

optimizer. Video action recognition will be a focus of 

future research. Lu et al. [2] presented a hybrid network 

called YOLO-ResNet for enhanced multi-object 

identification, beating conventional techniques with an 

accuracy of 75.36%. To improve accuracy, Alazeb et al. 

[3] developed a scene recognition framework including 

UNet, DWT, and AlexNet. Further work addresses 

challenges in handling complex backgrounds and further 

explores deep learning techniques. Pal et al. [4] examined 

developments in deep learning for tracking and object 

detection, emphasizing breakthroughs, present difficulties, 

and potential lines of inquiry. Pramanik et al. [5] 

Introduced the G-RCNN and MCD-SORT models, which 

show remarkable performance, to improve movie object 

detection and tracking. Future studies will look at 

applications of SAR imaging. 

Naseer et al. [6] offered improved multi-object recognition 

methods that produce outstanding accuracy by utilizing 

Gaussian mixture models and MLP models. Future 

research efforts are concentrated on enhancing real-time 

image analysis and supporting different scenarios. Fink et 

al. [7] addressed issues with identifying different object 

sizes and balancing class biases to improve multi-object 

recognition for autonomous driving by improving SSD 

design. Upcoming projects will focus on managing various 

situations and improving real-time capabilities. Mhalla et 

al. [8] provided a robust embedded traffic surveillance 

system that utilizes a novel deep detector to improve multi-

object detection accuracy. Upcoming studies will enhance 

the spatiotemporal data and visual signals. Mohandoss and 

Rangaraj [9] employed a LuNet and YOLOv2-based 

technique to enhance multi-object tracking, achieving a 

94% accuracy rate. This approach aspires to future 

developments and comprehensive testing. Elhoseny [10] 

presented a MODT approach based on Kalman filtering, 

which achieves 86.78% tracking accuracy and 76.23% 

detection accuracy; more improvements are required. 

Ahn and Cho [11] addressed accuracy and error concerns 

by introducing a CNN and optical flow-based method for 

real-time multi-object tracking and identification. Yuan et 

al. [12] presented an approach called the Multi-Path 

Extraction Network (MPEN) to enhance the accuracy of 

millimeter-wave SAR picture detection and recognition. 

Li et al. [13] demonstrate outstanding accuracy, but their 

limitations become apparent when applied to dynamic 

settings. To enhance multi-object detection in complex 

traffic, VGG16 accelerates R-CNN. Ravindran et al. [14] 

examined sensor fusion and DNN-based multi-object 

tracking and detection in autonomous vehicles, 

highlighting issues related to sensor reliability and real-

time efficiency. Premanand and Dhananjay [15] proposed 

using MRNN with the PS-KM algorithm to achieve 

precise and effective Multiple-Object Tracking (MOT) 

with 97% accuracy in navigating complex surroundings. 

Wen et al. [16] highlighted the effect of detection accuracy 

on tracking performance and presented the UA-DETRAC 

dataset for assessing MOT systems. Štruc et al. [17] 

designed a novel deep learning framework called deep 

residual learning for object classification and localization. 

They demonstrated that deep residual learning extracts 

strong features that generalize well across datasets for 

highly image-dense recognition. Mauri et al. [18] 

presented a high-accuracy real-time 3D object recognition 

technique for rail and road settings utilizing YOLOv3. 

Upgrading to YOLOv5 and improving ROI forecasts are 

among the following tasks. Rong et al. [19] employed an 

updated K-means algorithm to enhance the speed and 

accuracy of YOLOv3 object detection. Subsequent 

research endeavors will tackle constraints in severe 

scenarios and incorporate contour recognition. Arora et al. 

[20] presented a real-time object identification prototype 

that utilizes deep learning and vocal cues to enhance 

mobility for individuals who are blind. Future 

developments will provide additional cameras, more 

sophisticated algorithms, and lower latency. 

Sun et al. [21] improved SSD-based target identification 

by combining attention processes with multi-scale feature 

extraction, resulting in a 7.4% increase in accuracy at the 

same speed. Further accuracy enhancements and 

integration with additional datasets will be investigated in 

further work. Rahman et al. [22] proposed an enhanced 

CNN-based image identification technique that improves 

accuracy and reduces processing overhead. Future efforts 

will primarily focus on striking a balance between 

accuracy and processing time. Mauri et al. [23] developed 
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a YOLOv3-based system for real-time multi-object 

tracking and recognition in road scenarios by integrating 

depth estimates. The primary goal of further work will be 

to obtain new datasets for training setups. Mhalla et al. 

[24] introduced a novel Multi-Object Tracking-by-

Detection (MOT-bD) framework utilizing deep 

convolutional neural networks (DCNN) and interlaced 

images. Future work on automatic specialization will be 

focused on this topic. Wang et al. [25] utilize the RFD 

technique to enhance target detection accuracy and 

decrease false alarm rates by employing region-focused 

feature extraction. Future work will focus on novel item 

types and various scenarios. 

Ahmed et al. [26] suggested that the scene categorization 

method uses logistic regression, MFCS, and MSS to 

increase accuracy. Subsequent research will use deep 

learning to minimize complexity and improve accuracy. 

Wang et al. [27] proposed a model that improves upon 

YOLOv3 for real-time multi-object detection, 

outperforming traditional methods in terms of speed and 

accuracy. In subsequent development, these systems will 

undergo significant improvements. Liu et al. [28] 

enhanced the YOLOv3 algorithm to quickly and precisely 

recognize multiple license plates in complicated scenarios. 

The dataset's class imbalance will be addressed later in the 

work. Ramya and James [29] suggested utilizing spatial 

pyramid matching in conjunction with SURF and MSER 

to enhance the efficiency and accuracy of item recognition. 

More advancements will be investigated in subsequent 

research. Du et al. [30] combined semantic corner 

detection with customized datasets to enhance YOLOv3 

for multi-object grabbing recognition, achieving high 

accuracy. 

 

Table 1: Summary of literature findings 

Refere

nces 

Authors & 

Year 

Technique

s 

Algorithm Dataset Limitations 

[1] Kuppusam

y and 

Hung 

[2021] 

Convoluti

onal 

Neural 

Network 

Support Vector 

Machine (SVM) is 

optimized using the 

Firefly Algorithm 

(FA) 

VOC2012 

dataset 

Subsequent research would be 

expanded to determine the action 

from a video's frame sequence. 

 

[3] Alazeb et 

al., [2024] 

deep 

learning 

Object recognition PASCALVOC-

12 dataset 

By applying various deep learning 

approaches, we aim to enhance 

object and scene identification and 

overcome the challenges presented 

in this study. 

 

[4] Pal et al., 

[2021] 

Deep 

learning 

weakly supervised 

object detection 

(WSOD) 

algorithms 

MS COCO 

dataset and 

PASCAL VOC 

12 dataset  

Additionally, ANN-based 

machine learning models are 

referred to as "black-box" models, 

as even their creators may not be 

able to explain how the AI reached 

a particular conclusion. 

 

[5] Pramanik 

et al., 

[2022] 

RCNN MCDSORT 

algorithm 

MCD-SORT, 

SOP, AMIR15, 

and AM over 

the dataset 

PETS 

As a potential future research 

direction for the suggested G-

RCNN, among other applications, 

the current use of deep CNNs for 

change detection [31] in SAR 

images may be explored. 

 

[6] NASEER 

et al., 

[2024]  

GMM 

Segmentat

ion 

Feature 

Fusion 

Approach 

GMM and MEAN 

SHIFT 

SEGMENTATIO

N algorithm 

(Multilayer 

Perceptron) 

MSRC and 

Corel 10k 

datasets. 

Our subsequent work will focus on 

enhancing scene recognition and 

object identification. We are 

focusing on refining algorithms to 

accurately and sensitively analyze 

scenes, optimizing them for real-

time use, and adapting to diverse 

environments. 
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[9] Mohandos

s and 

Rangaraj 

[2024] 

Deep 

learning 

LuNet algorithms MOT20 

dataset. 

The suggested approach and maps 

for vehicle identification and 

categorization will be updated and 

improved. Our proposed 

architecture will also be tested for 

additional object detection uses, 

such as identifying unusual 

activity. 

 

[13] Li et al., 

[2021] 

R-CNN 

model 

Soft-NMS 

algorithm 

KITTI datasets In the future, we'll investigate the 

most effective Generative 

Adversarial Network (GAN) 

model to address item 

identification and recognition in 

more intricate traffic situations. 

 

[15] Premanan

d* and 

Kumar 

[2023] 

MRNN 

and PS-

KM 

Models 

Pearson Similarity-

centred Kuhn-

Munkres (PS-KM) 

algorithm 

MOT dataset The suggested approach will be 

further enhanced by employing 

more advanced tracking 

techniques for monitoring 

occluded objects in complex 

environments. 

 

[18] Mauri et 

al., [2021]  

Deep 

Learning 

Not specified KITTI’s road 

dataset 

In addition to conducting specific 

tests on an NVIDIA Jetson TX2 

embedded system devoted to real-

time artificial intelligence 

applications, we will close the 

accuracy gap between our 

methodology and the state-of-the-

art techniques. 

 

[25] Wang et 

al., 

Deep 

Recurrent 

Learning 

convolutional 

neural network 

(CNN) algorithm 

ROI datasets Its drawback is the inability of the 

suggested RFD model to handle 

novel object types. 

 

 

Table 2: Datasets used for object detection in prior works 

Dataset References 

VOC2012 dataset [1][31] 

PASCALVOC-12 dataset [3][20] 

MS COCO dataset and PASCAL VOC 12 dataset  [4] 

MCD-SORT, SOP, AMIR15, and AM over the dataset 

PETS 

[5] 

MSRC and Corel 10k datasets. [6][26] 

MOT20 dataset. [9] 

KITTI datasets [7][13][18][23] 

MOT17 datasets [15][32] 

EDS dataset [21] 

ROI dataset [25] 

Vehicle License Plate Dataset [28] 

(UA-DETRAC) dataset. [16] 

PASCAL, CIFAR 10, IMAGENET, SUN, and MS 

COCO 

[17] 

The TUM RGB-D data [19] 

Novak and Radovanović [31] investigated several transfer 

learning approaches utilizing deep convolutional networks 

and demonstrated that transfer learning techniques can 

significantly enhance image classification accuracy, even 
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with inadequate training data. Alagarsamy and 

Muneeswaran et al. [32] showed that the RSOADL–

MODT model, which addresses complex situations, 

outperforms existing methods in multiple-object tracking 

by leveraging deep learning. Marolt and Korošec [33] 

presented a hybrid deep learning architecture for real-time 

object segmentation, striking a balance between semantic 

accuracy and efficiency suitable for deployment in 

resource-limited computer vision environments. Afroze et 

al. [34] presented a system that requires eye gaze 

integration yet achieves excellent accuracy in evaluating 

the visual center of attention using head positions. Rafique 

et al. [35] presented a robust RGB-D object detection 

system that performs well in challenging situations and is 

expected to improve further with the application of deep 

learning. 

Hou et al. [36] addressed occlusions and enhanced 

YOLOv4 for identifying construction machinery, although 

at a minor speed decrease (97.03% mAP). Ke et al. [37] 

recommended a combined detection and identification 

motion tracking (MOT) architecture using ConvGRU to 

enhance video-based detection and tracking performance. 

Ali et al. [38] explored advanced indoor and outdoor 

object localization and recognition algorithms, reviewing 

methods and addressing multimodal data fusion for 

improved accuracy. Wang and Chen [39] proposed a 

superior 3D object detection technique called ECA 

Modules-PointPillars, which enhances accuracy through 

channel attention. However, real-time performance and 

pedestrian detection still require improvement. Padmaja et 

al. [40] presented a YOLOv3-based model that learns 

slowly on large datasets and achieves outstanding real-

time human action recognition accuracy. Rani et al. [41] 

compared YOLOv5 with Faster R-CNN for the 

classification of solid waste. It finds that YOLOv5 

achieves high accuracy and recommends lightweight 

networks for future use. The foundational models alluded 

to are highly effective in applications such as object 

detection and classification tasks. Redmon and Farhadi 

developed YOLOv3 [43], a real-time object detection 

architecture that focuses on speed and accuracy by 

redefining object detection as a simple regression problem. 

Ronneberger et al. [44] introduced U-Net, a robust 

architecture for biomedical image segmentation that 

combines an asymmetric encoder and a symmetric 

decoder, incorporating skip connections, which achieves 

excellent performance in pixel-level localization. 

Simonyan and Zisserman [45] introduced VGGNet, which 

focused on a deep yet simple network (stacking small 

convolutional filters) and had a significant impact on the 

following CNN architectures. LeCun et al. [46] paved the 

way for modern CNNs with LeNet, demonstrating the 

application of deep learning in document recognition. 

Together, these models serve as the foundation for 

benchmarking and downstream deep learning research 

based on contemporary systems. Table 1 presents a 

summary of the literature findings, while Table 2 provides 

details of the datasets used in prior works. Table 3 

compares selected related methods, including the data 

used, the accuracy obtained, and their limitations. It 

demonstrates how the proposed EL-MODC algorithm 

effectively addresses the problems associated with 

accurate object boundary detection, large-scale changes, 

and real-time scalability, outperforming current deep 

learning methods for object detection. 

Table 3: Comparative Summary of Existing Methods and Proposed EL-MODC Framework 

Ref Method Dataset Accuracy 

(%) 

Key Limitations Addressed by EL-

MODC 

[1] CNN + SVM (Firefly 

Optimization) 

VOC2012 ~90 Limited segmentation ability, weak on 

boundary accuracy 

[2] YOLO-ResNet Hybrid ICARM 75.36 Poor feature hierarchy and low 

generalization 

[3] UNet + DWT + AlexNet PASCALVOC-

12 

Not reported High complexity, lacks real-time 

capability 

[5] G-RCNN + MCD-SORT PETS High recall Not evaluated for diverse object scales 

[9] LuNet + YOLOv2 MOT20 94.00 Underperforms on occlusion and 

overlapping objects 

[13] Faster R-CNN + Soft-NMS KITTI 86.78 Fails in dense traffic conditions 

— EL-MODC (Proposed) VOCdevkit 96.40 Accurate segmentation, robust feature 

extraction, scalable 

 

The reviewed studies emphasize advancements in 

segmentation, feature extraction, and object detection 

techniques, including SegNet, YOLO variants, and 

transfer learning models such as ResNet. Challenges such 
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as handling complex scenarios, optimizing accuracy, and 

ensuring real-time processing persist, motivating the 

development of the enhanced multi-object detection and 

classification framework presented in this paper, which 

utilizes SegNet and transfer learning.  

 

3  Proposed framework 

Figure 1 illustrates the design of the proposed framework, 

which addresses the aforementioned challenges in multi-

object detection and categorization in realistic 

environments, taking into account the object's scale, 

background, and real-time processing requirements. 

Current techniques lack both accuracy and computational 

efficiency. To resolve these issues, the framework 

proposes utilizing SegNet for segmentation, leveraging its 

encoder-decoder architecture to separate different object 

boundaries accurately. Additionally, ResNet50 is 

employed with transfer learning for robust feature 

extraction and multi-class classification, utilizing pre-

trained weights to reduce the time required for model 

training and enhance overall performance. These design 

choices ensure the detection framework is highly scalable, 

precise, and efficient, making it suitable for several object 

detection and categorization methods task applications. 

 

Figure 1: Proposed enhanced deep learning framework for multi-object detection and classification using SegNet and a 

pre-trained model with transfer learning 

This framework proposes a new deep learning approach 

that combines segmentation using SegNet with a pre-

trained ResNet-50 model for classifying and extracting 

features of multiple objects in a single image. First, the 

component uses the VOCdevkit image dataset. This data is 

then subjected to a detailed data preprocessing phase, 

wherein several pivotal problems, such as missing images 

against labels, data normalization, and corrupted images, 

are addressed. This process removes useless photos and 

other issues, thereby maintaining the quality of the input 

data. First, the framework preprocesses the data and then 

enriches training and validation datasets by applying data 

augmentation. This step is crucial for enriching the variety 

of information and enhancing the model's robustness 

against variations in object classification, including 

orientation, scale, and differences in illumination. Next, 

the augmented datasets proceed to the segmentation stage, 

where SegNet accurately separates the boundaries of each 

object. The encoder-decoder structure that SegNet utilizes 

is well-suited for this application, and therefore enables 

pixel-level segmentation, which is essential for closely 

following features. 

Then, the extracted features are fed into the improved 

ResNet-50 model, leveraging the advantages of transfer 

learning to accelerate training and improve performance. 

This model is pre-trained and fine-tuned for your specific 

multi-object detection and classification. The model 

parameters are iteratively refined based on the training 

data, while the test dataset is used to evaluate the model's 

generalization capability. Finally, all framework 

components will be integrated to identify and categorize 

many objects in real-time. The results highlight the success 

of this new approach, which achieves object-level 

grouping, even in complex visual representations. The 

framework is designed for accuracy, efficiency, 

scalability, and compatibility with various types of 

applications. This automatically addresses problems 

associated with multi-object detection and classification 

tasks. 

 

 

 

 

Data 

Augmentation 

 

 

 

 

 

Data Pre-processing 

 

 

 

 

 

 

VOCdevkit  

Image 

Dataset 

Results of 

Multi-Object 

Detection and 

Classification 

Missing Images 

for Labels 

Normalization 

Removing 

Corrupted 

images 

Train data 

Augmentation 

Validation 

Data 

Augmentation 

 Model Setup 

 

 

Enhanced 

ReseNet-50 

Multi-Object 

Detection 

Model  

Training 

 

Model Testing on 

Test Data 

Segmentation Using 

SegNet  

Feature Extraction  

  



EL-MODC: A SegNet and ResNet50-Based Deep Learning Framework…                              Informatica 49 (2025) 313–332     319 

 

3.1 Data Pre-processing 

Initial data processing was implemented to provide high-

quality inputs to the proposed framework while increasing 

the reliability and accuracy of the model. Image Dataset: 

The VOCdevkit image dataset was initially used, 

employing a systematic process to handle missing or 

inconsistent data. To maintain consistency between the 

data and the labels, we filtered out images that lacked 

corresponding labels. Additionally, a normalization 

method was applied to all pixel values to ensure that all 

images had a similar range of values. This process created 

standardization and removed biases that would arise from 

using different photos with different brightness and 

contrast. These included corrupted and incomplete images, 

which could have negatively affected the training. These 

steps significantly reduced noise and improved data 

quality, yielding a uniform and complete dataset for further 

processing. These pre-processing steps enabled the 

framework to effectively utilize data augmentation and 

segmentation, thereby boosting its confidence levels in 

scenes involving multiple objects that require detection 

and classification. 

The data augmentation stage follows directly after the pre-

processing operations. Preprocessing: All input images 

and their corresponding segmentation masks are resized to 

the same dimension and normalized to the intensity range 

of [0, 1]. These manipulated image-mask pairs then serve 

as input for the augmentation pipeline. Each augmentation 

operation (rotation, flip, scale, and noise) is performed 

simultaneously on the image and its corresponding 

segmentation mask to maintain pixel-wise registration. 

This helps ensure that the semantic consistency between 

image features and their labels is preserved throughout the 

pipeline. The way the method chains preprocessing and 

augmentation in most cases ensures consistent and realistic 

training samples, leading to better generalization of the 

model. 

3.2 Data augmentation 

A full range of data augmentation was also implemented 

during training to enhance model robustness and 

generalize the model across various input conditions. Key 

to Detection: All these transformations were selected due 

to their applicability to the complications faced in multi-

Object detection in the real world, such as areas with 

varying lighting, object orientation, and scale. 

Augmentation began with random rotations, where the 

images were rotated from −15 to +15 degrees. This serves 

to mimic small rotations, often encountered under natural 

conditions, and allows the model to learn rotation 

invariance. After this, both horizontal and vertical flipping 

were independently performed with a 50% probability. 

These flips prevent the model from learning any biases 

concerning object orientation, which is particularly useful 

in domains such as surveillance or autonomous navigation, 

where objects can appear from any direction. 

Scaling operations were used to simulate zooming and 

changes in distance. One hundred twenty percent is then 

sampled from the Uniform ([0.9, 1.1]) – i.e., 90% to 110% 

– to provide the scaling applied to each image that we 

randomly scale, preserving the aspect ratio. Spatial 

changes were combined with intensity adjustments. To 

avoid a uniform stimulus, a brightness range of ±20% and 

a contrast change of ±15% were used. These differences 

simulate diverse lighting conditions and sensor 

configurations, thereby enhancing the model's robustness 

to illumination variations. 

In addition, Gaussian noise was added to the images to 

simulate existing factual errors. The noise was a normal 

distribution with a mean of zero and a standard deviation 

of 0.01, mimicking minor sensor noise or image artifacts. 

This requires the model to employ a deep and fine-grained 

encoding scheme, such that it can discard patterns that 

appear in a textual corpus but don’t represent linguistic 

variation. All of these augmentations were performed only 

on the training set, ensuring that the validation and test 

evaluations accurately describe the model's generalization 

to real data. We selected a combination of spatial and 

intensity augmentations by tuning in isolation, with a focus 

on enhancing performance without overfitting the model 

to specific perturbations. 

The augmentation we applied included rotation (±15°), 

horizontal/vertical flip, scale transformation (90–110%),  

variation of brightness (±20%), and contrast adjustment to 

simulate the real-world variability in the appearance of 

objects, as a result of change in viewpoint, lighting, and 

scale. These transformations enhance the model’s ability 

to generalize under various conditions. To make the 

trained model robust to real sensing data, we also 

employed noise injection with Gaussian noise (mean = 0, 

variance = 0.01)  to simulate sensor imperfection. We do 

not include advanced augmentation approaches (such as 

CutMix and MixUp) as it is essential to preserve semantic 

consistency in multi-object scenarios, which is crucial for 

accurate segmentation. 

A comparison was made by training the model with (i) 

preprocessed data and (ii) augmented data. The results 

have shown an overall performance improvement, as all 

indicators achieved their best results to date. The F1-score 

increased from 93.62% to 96.16%, and accuracy improved 

from 93.90% to 96.40%. This verifies that the 

augmentation techniques can improve the learning ability 

and robustness of the designed EL-MODC model. 

3.3 Image segmentation 

SegNet, a convolutional encoder-decoder architecture 

(Figure 2), is used in the proposed framework to achieve 

high-resolution image segmentation. It takes input images 

and applies an encoder that progressively extracts 

hierarchical feature representations using convolutional 

layers, batch normalization, and rectified linear unit 

(ReLU) activations. The pooling layers capture the spatial 

hierarchies, and the indices are stored for perfect decoder 

reconstruction. These are used for upsampling in the 
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decoder to restore the spatial dimensions of the segmented 

image. Lastly, a softmax layer is applied, yielding pixel-

level class probabilities that result in the segmentation of 

the image into object classes. 

 

Figure 2: Architecture of the SegNet Model Used for Pixel-Wise Object Segmentation 

A critical component of the suggested system is 

segmentation. It is used to distinguish between multiple 

objects within an image, enabling multi-object detection 

and classification, while focusing on specific features. 

Using SegNet also provides pixel-level accuracy in a 

typical deployment where sensors providing direct depth 

measurements are not available, making this approach 

suitable for even challenging environments where objects 

may overlap or be occluded (partially/somewhat. This 

facilitates the following processing steps, such as feature 

extraction using ResNet50, ensuring that the extracted 

features correspond to meaningful and distinct areas. In 

this context, segmentation also improves accuracy and 

computational efficiency. Segmentation provides a level 

of detail that enables multi-object detection and 

classification stages to work in redundancy, achieving the 

structure's target while eliminating ambiguity regarding 

the nature of the object and rendering irrelevant 

background data, thereby working more reliably. 

SegNet, as shown in Figure 2, is an encoder-decoder 

architecture that is well-suited for highly detailed pixel-

wise segmentation. The encoder compresses the input 

features using the convolutional and pooling layers that 

aggregate high-level semantics. These 10 features are fed 

to the decoder, which up-samples feature maps in a non-

linear way using pooled indices to preserve spatial 

accuracy. It is especially effective to restore object 

boundaries because it keeps blur to a minimum, which can 

occur in naïve interpolation. Finally, a pixel-wise softmax 

classifier is applied, which assigns a class label to each 

pixel to achieve fine separation of the object and 

background. It is this boundary-aware segmentation that is 

vital for the subsequent classification with the ResNet50 

module. The figure is replaced with complete annotations 

that include all mentioned components. 

In this paper, we utilize SegNet as the primary 

segmentation module in specific configurations tailored to 

the dataset and object detection task. The encoder was a 

pre-trained VGG16 network copy, and the decoder was 

symmetric to the encoder, used to restore the spatial 

resolution by utilizing max-pooling indices. We trained the 

network using a batch size of 16, a learning rate of 0.001, 

and with the Adam optimizer over 50 epochs. With pixel-

wise supervision, we employed the cross-entropy loss. The 

core SegNet architecture has been modified only for the 

final layer to produce class-wise segmentation mappings 

to the multi-object dataset. Each decoder layer was 

followed by a dropout layer to help with overfitting. Such 

an implementation enables the accurate pixel-level 

localization of objects, which in turn provides structured 

input to the downstream classifier and consequently leads 

to better context learning during training. 

3.4 ResNet50 with transfer learning 

The ResNet50 architecture we employed in this pipeline is 

a deep 50-layer convolutional network composed of 

residual blocks. The architecture begins with a 7×7 

convolutional layer with max-pooling and consists of four 

stages of residual blocks, each including convolutional 

Pooling Indices 

Convolutional Encoder-Decoder  

Conv + Batch Normalisation + ReLu Pooling  

Upsampling Softmax  
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layers with identity skip connections. These are not skip 

connections to the original Pyramid (i.e., back to the low-

level features, such as in SPP-Net or FPN), but to the skip 

connections of FCN-8s, allowing the gradients to be 

propagated through the deeper layers without attenuation, 

which helps stabilize and accelerate the training. 

Earlier in the network, the first convolutional layers and 

the first few residual blocks compute lower-level features, 

such as edges, corners, and textures. These are learned 

using small kernels applied over local receptive fields. The 

receptive fields are enlarged as we progress through the 

network, and later layers begin learning more complex and 

abstract high-level representations, such as object shapes, 

patterns, and semantic parts. 

 

The answer to the final convolutional block is a 3D tensor 

(of shape (7, 7, 2048)) on which we can stick a a small 

FCN, which would then run across our grid and output 

some scores (one for every class that we have in the 

training set) for every grid cell. To obtain a 1D vector from 

this, the model uses a Global Average Pooling (GAP) 

layer. The average value over each of the 2048 feature 

maps is computed by the GAP layer, effectively 

summarizing each feature map into a single scalar. This 

yields a 1D feature vector of length 2048, which is then fed 

into the fully connected layer or classification head. 

Therefore, the conversion from 2D to 1D is performed via 

the GAP process, not immediately after the convolutions. 

This progressive process of learning, from low-level 

spatial textures to high-level semantic concepts, is an 

indicator of the effectiveness of ResNet for transfer 

learning tasks, making it a suitable classifier component 

for the EL-MODC architecture. 

 

Figure 3: ResNet50 model with transfer learning used for feature extraction and multi-class classification 

Figure 3. After extracting the features, a dense layer that is 

entirely linked and has a softmax function is employed to 

classify them. It could also be a thick layer to explain how 

many objects could be there (keep multi-class 

classification in mind). The softmax function ensures that 

the total of the output probabilities equals one, allowing 

the correct class of the object to be predicted. Transfer 

learning is employed here to enhance the model's 

functionality and training duration on the target dataset by 

initializing it from pre-trained ResNet50 weights. Using 

Input 

Image (224x224 RGB) 

 

ResNet50 (Base 

Model) 

Convolutional layers, 

Residual connections, 

Pooling layers 

Global Average 

Pooling2D  
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Transfer learning, this ResNet50 integration enhances the 

framework's ability to detect and classify multiple objects. 

It proposes a comprehensive and practical approach that 

tackles detection challenges across various environments 

by extracting rich and robust features to recognize and 

classify objects. This helps to make the framework 

accurate & scalable. 

The ResNet50 model was adopted through a transfer 

learning technique with pre-trained weights from 

ImageNet. The first layers (up to the fourth convolutional 

block) were frozen to preserve the low-level features 

learned during training on ImageNet. In contrast, the last 

convolutional block and the fully connected [email 

protected] @tabl@sentences were tuned to the target 

dataset. GAP was applied after the convolutional layers to 

reduce the dimensionality of the feature maps, followed by 

a dense layer with ReLU activation and a final output layer 

(Softmax) for multi-class classification. The Adam 

optimizer was used for training with a learning rate of 

0.0001, a batch size of 32, and categorical cross-entropy 

loss over 50 epochs. We used dropout at a rate of 0.5 before 

the final dense layers to prevent overfitting. Such 

representation-based portions of the architecture enable 

the model to maintain generalist feature extraction 

capabilities while learning object-specific features for this 

classification task. 

3.5 Training of the model and detection of 

multiple objects 

In this step, segmented images from SegNet are input into 

ResNet50 (with transfer learning) for model training. This 

mechanism ensures that the model focuses on the relevant 

object regions, thereby improving the accuracy of feature 

extraction. A well-known deep learning model, ResNet-

50, a pre-trained model on ImageNet, is employed to 

extract features from the segmented images. Residual 

connections overcome the vanishing gradient problem, 

thus allowing efficient learning in deeper networks. In 

multiple layers, features are gradually extracted, and both 

low-dimensional features and high-level features (e.g., 

edges, object working modes) are essential for accurate 

multi-object detection and classification—globally 

Misleading. After including the feature extraction feature 

maps, the dimensionality reduction technique used is 

global average pooling (GAP), which retains the essential 

spatial information. A final dense layer with softmax 

activation maps these features into the specific object 

classes, allowing for multi-class classification. The pre-

trained weights of ResNet50 are fine-tuned on the target 

dataset during training. Transfer learning ensures faster 

convergence and increased precision when training data is 

scarce. The framework segments the input image into 

regions and processes each area separately, enabling 

YOLOv1 to fully utilize its capabilities, even for multi-

object detection in a single image. By integrating SegNet 

for accurate segmentation and ResNet50 for feature 

extraction, the framework ensures accurate detection and 

classification even in diverse and complex scenarios, 

thereby improving the overall effectiveness and 

dependability of the system. Here is the essential 

mathematical model of the framework. Label counting is 

carried out as follows. For a set of labels 𝐿 =
 {𝑙1, 𝑙2, . . . , 𝑙𝑛}, the count of each label 𝑙𝑖 is done as in Eq. 

1.  

𝑙𝑎𝑏𝑒𝑙𝑐𝑜𝑢𝑛𝑡(𝑙𝑖) = ∑ 1{𝑙𝑗 = 𝑙𝑖}
𝑛
𝑗=1                          (1) 

Randomly select a subset 𝑆 of 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 images 

from a set of images Images as in Eq. 2.  

𝑆 =  𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑎𝑚𝑝𝑙𝑒 (𝐼𝑚𝑎𝑔𝑒𝑠, 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒𝑠)                            

(2) 

The size (𝑤i , ℎ𝑖) of image 𝑖𝑚𝑔𝑖 is expressed as in Eq. 3.  

(𝑤i, ℎ𝑖)  =  𝐼𝑚𝑎𝑔𝑒. 𝑔𝑒𝑡𝑠𝑖𝑧𝑒(𝑖𝑚𝑔𝑖)                             (3) 

The framework checks for  missing images, as shownin 

Eq. 4. 

𝑀 =  {𝑖𝑚𝑔𝑖  | ⇁ 𝑜𝑠. 𝑝𝑎𝑡ℎ. 𝑒𝑥𝑖𝑠𝑡𝑠(𝑖𝑚𝑎𝑔𝑒_𝑝𝑎𝑡ℎ +
 𝑖𝑚𝑔𝑖)}                 (4) 

The number of missing images is is then expressed as 

Missing Count = |𝑀|.Regarding data preprocessing using 

rescaling, for each pixel 𝑝 in an image, the rescaling 

formula is in Eq. 5.  

𝑝rescaled =
𝑝

255
                                 (5) 

The loss function is categorical cross-entropy for multi-

class classification, found in Equation 6.  

𝐿 = − ∑ 𝑦𝑖 log(𝑦̂𝑖)
𝐶
𝑖=1                             (6) 

The actual label (one-hot encoded) is denoted by 𝑦̂𝑖, the 

projected probability for class I is denoted by 𝑦𝑖 , and C is 

the number of classes. As seen in Eq. 7, the softmax 

function transforms logits 𝑧𝑖 into probabilities 𝑝𝑖 . 

𝑝𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐶

𝑗=1

                                        (7) 

In model training, the optimizer adjusts the model 

weights 𝑤 using gradient descent as in Eq. 8. 

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜂 ∙ ∇𝑤𝐿                        (8) 

Where 𝜂 is the learning rate and ∇𝑤𝐿 is the gradient of the 

loss concerning the weights. 

Preprocessing was carried out first ito improve the 

reliability of the data, excluding images without associated 

annotations and corrupt image entries usingfile existence 

checks and then file integrity checks. All images were 

resized to 224 × 224 × 3 pixels, following which they are 

normalized as described by 𝐼𝑛𝑜𝑟𝑚 =
𝐼𝑝𝑖𝑥𝑒𝑙

255
, to have pixel 

values that lie within the same range and thereby, gradient 

propagation will be stable during learning. Model training 

began with the fine-tuning of the ResNet50 model to the 

conv4_block1_out layer, with all previous layers frozen 

(to maintain the extracted features' generalizability). We 

used the Adam optimizer with a learning rate of 0.0001, β₁ 
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= 0.9, and β₂ = 0.999. We conducted a randomized 

hyperparameter search over batch size and learning rate, 

using early stopping (patience = 5) to prevent overfitting. 

Validation Optimal: We selected the final training 

settings—batch size 32, learning rate 1e-4,  and 30 

epochs—on the basis of the best validation F1-score. This 

architectural choice resulted in a faster convergence rate 

and an increase in generalization on the VOCdevkit 

dataset. 

Equation 6 is the categorical cross-entropy loss employed 

during training to minimize incorrect class assignments. In 

Equation 7, we apply a softmax function to the raw logits 

of the final layer, converting them into a normalized 

probability distribution over all object classes. This leads 

to each image in the model output summing to one, which 

facilitates more rigorous multi-class prediction. Equations 

1 to 5 also represent preprocessing-related logic — label 

validation, missing image detection, normalization, and 

dataset sampling — all culminating in high-quality inputs 

for training. The optimizer computes the explicit weight 

update based on the gradient, as formalized in Equation 8 

. These equations describe the full learning pipeline, from 

unwrapped data to probabilistic output generation and 

backpropagation. 

To ensure consistency between segmentation and 

recognition, the masks produced by SegNet are element-

wise multiplied by the original input images. This 

essentially eliminates non-relevant background regions, 

thereby preserving the areas of interest. The masked 

images are fed into ResNet-50 to extract and classify the 

image features. The cascaded pipeline enables the model 

to concentrate its learning capacity on the most 

informative regions, resulting in higher accuracy with 

reduced noise in the classification. The fine-tuned inputs 

are generated during training for each input image and its 

associated segmentation mask. This architecture 

incorporates a pseudo-attention mechanism, enabling 

ResNet50 to learn object-aware representations without 

the need for a tiered attention module. 

3.6 Proposed algorithm  

The proposed method details the entire training and testing 

process of the EL-MODC framework, which combines 

segmentation and deep learning. This ensures a consistent 

flow, from the preparation and augmentation of the dataset 

to spatial object segmentation and ultimate classification. 

The non-line-of-sight reconstruction process enhances 

robustness, accuracy, and interpretability, resulting in 

reliable multi-object detections in various scenes and 

complex practical environments. 

Algorithm 1: EL-MODC Training and Testing 

Procedure 

Input: Dataset 𝐷 = {𝑥𝑖 , 𝑦𝑖}, SegNet model, 

ResNet50 model 

Output: Trained EL-MODC model, performance 

metrics 

1. Split D into 𝐷𝑡𝑟𝑎𝑖𝑛  and 𝐷𝑡𝑒𝑠𝑡 (80:20 

ratio) 

2. Preprocess 𝐷𝑡𝑟𝑎𝑖𝑛: resize, normalize, 

verify labels 

3. Augment 𝐷𝑡𝑟𝑎𝑖𝑛  to obtain 𝐷𝑡𝑟𝑎𝑖𝑛
′  

4. Apply SegNet on 𝐷𝑡𝑟𝑎𝑖𝑛
′  for pixel-wise 

segmentation 

5. Extract features from segmented outputs 

using pretrained ResNet50 

6. Train classification layers using 

Softmax and categorical cross-entropy 

7. Test model on 𝐷𝑡𝑒𝑠𝑡  and compute 

Accuracy, Precision, Recall, F1-score, 

IoU  

Algorithm 1: EL-MODC training and testing procedure 

Algorithm 1 first partitions the dataset into two: a training 

set and a testing set. As is customary, 80% of the data is 

used for training and the remaining 20% is held for testing. 

The training data is preprocessed – this includes resizing 

the images to a uniform input size, normalising the pixels 

to have values in a similar range, and checking the 

accuracy of the labels assigned to each image. 

After some preprocessing, the data is augmented to 

enhance the model's robustness and address class 

imbalance. We augment the data with methods such as 

horizontal flipping, rotation, brightness changes, and 

scaling to create more synthetic examples. These 

augmented images are combined with the original training 

images to form an augmented training set, which enhances 

the model's ability to generalize. 

Next, a semantic segmentation approach is adopted, and 

the enhanced training data is distributed throughout the 

SegNet decoder-encoder network. This network segments 

object instances at the pixel level and generates spatial 

masks that highlight discriminant object regions in each 

image. These segmented images are then processed 

through a pre-trained, modified ResNet-50 that has been 

specialized for another complex classification task. This 

network captures the high-level semantic cues of the 

segmented regions. 

These extracted features are then fed into a classification 

head, which consists of fully connected layers followed by 

a Softmax function, to predict the corresponding class for 

each object region. During training, the model learns a loss 

function from the difference between the expected and 

actual classes, making correct predictions closer to 1 and 

incorrect predictions closer to 0. 

At last, the test dataset is applied to evaluate the trained 

EL-MODC model. Results are quantified based on 

standard metrics, including accuracy, precision, recall, F1 

Score, and Intersection over Union (IoU). These statistics 

shed light on the model's performance in detecting and 

classifying various objects in diverse and challenging 

scenes. 
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3.7 Dataset details 

The VOCdevkit Image Dataset [42] was developed as one 

of the benchmark datasets for the Pascal Visual Object 

Classes (VOC) challenge and is widely used as a training 

and test set for object detection and classification models. 

This dataset's varied collection of tagged photos 

encompasses twenty different item categories, including 

animals, vehicles, and household items. 3.1: Overview of 

the approaches, datasets, metrics, and annotations in the 

chosen tasks. The dataset comprises over 11,000 images 

and 27,000 annotated objects, featuring significant 

variations in object appearance, scale, and background 

complexity, thereby providing a benchmark for evaluating 

the robustness of deep learning (DL) frameworks for 

multi-object detection. 

3.8 Performance evaluation 

The performance of the EL-MODC model is evaluated 

using four standard classification metrics: accuracy, 

precision, recall, and F1-score, each computed from the 

confusion matrix. Let TP, FP, FN, and TN denote true 

positives, false positives, false negatives, and true 

negatives, respectively. Accuracy measures the overall 

correctness of the model, as shown in Eq. 9.  

       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
          (9)                               

Precision (Positive Predictive Value) quantifies the 

proportion of correctly predicted positive instances among 

all cases predicted as positive, as shown in Eq. 10. 

                  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝑇𝑁
                         (10)  

Recall (True Positive Rate) measures the proportion of 

actual positives correctly identified by the model as in Eq. 

11.  

           𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (11)  

F1-score is the harmonic mean of precision and recall, 

balancing both metrics as in Eq. 12.  

  𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
            (12)  

In the context of multi-class classification, these metrics 

are computed per class and then averaged using a weighted 

or macro-average depending on class distribution. This 

provides a comprehensive evaluation of the model’s ability 

to detect and classify each object accurately. 

4  Experimental results 

Experimental Evaluation: We confirm the effectiveness of 

the recommended Enhanced ResNet-50 model through 

experimental assessments within constrained settings for 

accomplishing multi-object detection and classification 

tasks. Experiments were conducted in Python and 

TensorFlow on a system equipped with an NVIDIA GPU. 

Moreover, it was established that the proposed CNN with 

SNN outperforms the UNet, Baseline CNN, and LeNet, 

which are regarded as state-of-the-art models. The 

comparison models were selected based on their 

widespread use in object detection and categorization 

tasks. The VOCdevkit dataset for evaluation provided 

diverse and annotated images for benchmarking. To 

thoroughly compare the models, we employed the 

performance indicators of Accuracy, Precision, Recall, 

and F1-Score. The outcomes indicated that the Enhanced 

ResNet-50 model outperformed the rest and achieved the 

highest accuracy among different approaches. These 

findings confirm that the proposed framework is robust 

and reliable. 

 

Figure 4: Sample input images from the VOCdevkit dataset illustrating object diversity, scale variations, and multi-

object scenes used for training and evaluation

Figure 4 appears to be a collection of five images, each 

with a filename starting with "2010" or "2011" followed 

by a number. The images are likely screenshots or 

photos related to a research project or experiment. 

Without more context, it's difficult to determine the 

exact subject matter of the images. 
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Figure 5: Distribution of class labels in the VOCdevkit 

dataset. The most common classes include "person," 

"chair," and "car," which may influence class-wise 

prediction bias during training. 

Figure 5 displays a bar graph titled "Class Distribution". 

The x-axis represents various classes or categories, 

such as "person," "chair," "car," "dog," and so on. The 

number of photos linked to each class is indicated on 

the y-axis. Each bar's height indicates the frequency 

with which pictures in a particular class occur, 

providing the graph with a visual representation of the 

distribution of images across classes. In most of the 

pictures, the class "person" is followed by "chair" and 

"car." 

 

Figure 6: (a) Input image. (b) ResNet50 feature maps 

showing semantic abstraction. (c) SegNet decoder 

maps highlighting object boundaries 

Figure 6 illustrates the processing flow of the EL-

MODC framework. Feature maps of the ResNet-50 

encode semantic clues important for classification, 

while the decoder maps of the SegNet capture fine-

grained object boundaries. They jointly demonstrate 

how the integration of segmentation and deep feature 

learning enhances the system's performance for both 

precision and efficient detection and classification of 

multiple objects. 

 

Figure 7: Confusion matrix of predicted vs. actual 

classes. High misclassification is observed between 

visually similar categories, such as "bottle" and 

"chair." Darker off-diagonal regions indicate frequent 

confusions 

The confusion matrix of the EL-MODC model, per 

object category, is shown in Figure 7. The darker off-

diagonal parts represent correctly classified points, and 

the off-diagonal darker points represent 

misclassifications. It is also interesting to note that 

Classes 1 (e.g., 'Car') and Class 2 (e.g., 'Van') are more 

likely to be misclassified, suggesting that the model 

struggles to distinguish similar object categories within 

the image sub-region. This ambiguity may be due to 

standard geometric features, such as shape, contour, 

and overlapping boundary regions in the images, 

especially in cases of illumination degradation or partial 

occlusion. Furthermore, the difference in the number of 

training examples for these classes could explain such 

confusion. This underscores the need to refine in this 

direction, for example, by improving the attention 

mechanism or by providing more discriminant-specific 

features for each class. 
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Figure 8: Qualitative results showing model predictions on five test images. Successful detections (e.g., cat, horse, 

person) are annotated with green bounding boxes.

Figure 8 shows object detection results generated by the 

EL-MODC framework on various real-world test 

examples. Although the model generally localizes and 

classifies objects accurately, several errors can reveal the 

perceptual difficulties the model may encounter. In the 

second image, the model predicts multiple boxes, 

including those for segments of the background with no 

objects. This implies an over-segmentation tendency, 

which may be caused by high texture density or 

background confusion, regarded as object characteristics. 

The bootstrapped model failed to detect the face in the 

fourth image, which may be attributed to poor lighting 

conditions, partial occlusion, or an insufficient number of 

representative examples for such a case in the training set. 

These mistakes indicate that the model's ability to detect 

objects under low-light or complex backgrounds is limited. 

Besides, due to false positives and missed detections, more 

context-awareness or spatial attention models are required 

to alleviate the uncertainty in ambiguous regions. 

These observations further justify the need for future 

efforts to improve robustness through methods such as 

domain-specific data augmentation, adaptive thresholding, 

and attention-based refinement layers, which can suppress 

spurious detections while effectively capturing important 

object regions. 

 

Figure 9: Output visualization on a sample image 

containing both a motorcycle and a person 

Figure 9 illustrates a successful example of multi-object 

detection using the EL-MODC framework, where all 

related objects are accurately detected and located within 

their corresponding bounding boxes. Unlike a few earlier 

cases, the test set used in this example contains well-

illuminated, high-resolution images with clearly defined 

object boundaries, while minimizing background clutter, 

which enables the model to perform well, as supported by 

the predictions. The segmentation module was able to 

effectively segment regions of objects due to the 

uniformity and separation of colors within objects, which 

in turn reduced ambiguity in the feature extraction process 

by the ResNet50 classifier. 

This result demonstrates the model's capacity under ideal 

imaging conditions and, given that both noise, occlusion, 

and inter-class overlap are minimized, reinforces that its 

performance is very high within its detection pipeline. 

However, this is also a drawback: the model relies on 

clean, high-quality input data. Although this case 

demonstrates the potential of the model in structured 

settings, it highlights the necessity to continue tuning 

robustness for complex and unstructured scenes through 

domain adaptation or an attention mechanism in feature 

space. 

Table 4: Performance comparison of object detection and 

classification models 

Object 

Detection 

Model Precision Recall 

F1-

score Accuracy 

UNet 89.12 89.61 89.36 89.52 

 Baseline 

CNN 91.17 91.26 91.21 91.58 

LeNet 95.21 95.17 95.19 95.07 

Enhanced 

ReseNet-

50 96.02 96.32 96.16 96.4 

 

In this study, the proposed EL-MODC model is compared 

with baseline deep learning models, including UNet, 

LeNet, and a standard Convolutional Neural Network 

(CNN). Although UNet is typically used for segmentation, 

its output was combined with a classifier for fair evaluation 

in the multi-object detection and classification context. 

Table 4 presents the performance metrics—accuracy, 

precision, recall, and F1-score—for all models. The EL-

MODC framework achieves the highest values across all 

metrics, demonstrating superior capability in both 

localization and classification. 
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Figure 10: Performance comparison of object detection 

and classification models across accuracy, precision, 

recall, and F1-score 

As can also be seen in Figure 10, the Enhanced ResNet-50 

model outperforms the other three models in all three 

metrics. What stands out is that it has all the highest values 

for Precision, Recall, F1-Score, and Accuracy. Out of the 

four models, the Unet model performs the absolute worst, 

with the lowest value for all metrics. The Baseline CNN 

and the LeNet models have comparable performances, but 

the Baseline CNN is marginally better than LeNet in 

Precision and F1-Score. In conclusion, the Enhanced 

ResNet-50 demonstrates superior performance. 

Table 5: Comparative evaluation with state-of-the-art 

models for multi-object detection and classification 

Model Accur

acy 

(%) 

Precisi

on (%) 

Rec

all 

(%) 

F1-

Sco

re 

(%) 

Refere

nce 

YOLOv

3 

92.30 91.20 90.8

0 

91.0

0 

[43] 

UNet + 

CNN 

93.10 92.00 91.6

0 

91.8

0 

[44] 

Baseline 

CNN 

91.00 89.50 90.0

0 

89.7

5 

[45] 

LeNet 95.07 95.01 94.9

1 

95.1

9 

[46] 

EL-

MODC 

(Propos

ed) 

96.40 96.02 96.3

2 

96.1

6 

This 

Study 

 

A comparison of the proposed EL-MODC model with 

several well-established state-of-the-art models for multi-

object detection and classification is tabulated in Table 5. 

We observed that the proposed EL-MODC outperforms 

state-of-the-art models, such as YOLOv3, UNet, Baseline 

CNN, and LeNet, in most metrics, including accuracy, 

precision, recall, and F1-score. This demonstrates EL-

MODC’s superior performance in complex object 

detection cases, particularly in terms of reliability and 

generality. 

 

Figure 11: Performance Comparison of EL-MODC with 

State-of-the-Art Models 

Figure 11 provides a visual representation and serves as a 

solid foundation for comparing the performance in terms 

of preserved efficiency and robustness with the proposed 

EL-MODC model and benchmark state-of-the-art (SOTA) 

models: YOLOv3, UNet, Baseline CNN, and LeNet. 

Evidently, in each of the metrics presented, EL-MODC 

demonstrates the highest values for model robustness and 

efficiency when conducting multi-object detection and 

classification. At the same time, the consistent level of 

spread presented within each of the object variations 

signifies the model’s no less strong discriminative and 

generalization potential. 

A 5-fold strategy was used in the experiment to ensure the 

robustness and effectiveness of classification. In every 

fold, the dataset was divided into 80% training and 20% 

testing sets, and the splits were rotated. We then averaged 

all the values of performance measures over the folds. A 

paired t-test was performed between the EL-MODC model 

and its best-performing baseline (YOLOv3) over all folds 

to determine statistical significance. The findings were all 

significant (p-value < 0.01 for accuracy, precision, recall, 

and F1-score), which means that the improvement was 

statistically significant. Analysis scores for the metrics 

varied, and 95% confidence intervals (CI) were also 

calculated. EL-MODC had an accuracy range of [95.97, 

96.84%], demonstrating consistency. 

 

5  Discussion 

The experimental results verify that the EL-MODC 

framework is practical, as it outperforms other state-of-

the-art models, such as UNet, BaselineCNN, and LeNet, 

for all performance evaluation metrics. When compared 

with state-of-the-art methods (listed in Table 3), EL-
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MODC exhibits a significantly better accuracy of 96.40%, 

as well as improved precision (96.02%),  recall (96.32%), 

and F1-score (96.16%). These better segmentations are 

primarily obtained by combining the pixel-wise boundary-

reserving ability of the encoder-decoder structure in 

SegNet with the deep feature extraction power provided by 

the deep residual learning in ResNet50, along with 

efficient training through transfer learning. 

In comparison, models such as YOLO-ResNet and CNN-

SVM variants struggle to segment at high resolution or 

exhibit limited generalization capabilities on object scales 

and in complex backgrounds. SegNet also enables robust 

object boundary description in the presence of occlusion 

or cluttered scenes. Additionally, the pre-trained layers of 

ResNet50 are designed to capture hierarchical abstraction, 

which is beneficial for the classifier to generalize to unseen 

data. The extensive data augmentation pipeline also 

significantly contributed to reducing overfitting and intra-

class variance. 

Any performance gap among models could come due to 

dataset bias or the complexity of the test samples as well. 

For instance, models learned from static features only can 

fail to recognize overlapped or low-resolution objects. 

Furthermore, baseline models may be far from being deep 

or may not cover the full range of input entropies for 

confident classification. Together with accurate 

segmentation, efficient feature learning, and an end-to-end 

pipeline, EL-MODC exhibits great generalization ability 

and is computationally efficient, making it suitable for 

scalable, real-time object detection systems. 

Although the current design of the network was with 

SegNet and ResNet50 in mind, as they have been proven 

to be effective in segmentation and hierarchical feature 

extraction, we acknowledge that other architectures, such 

as EfficientNet, MobileNet, and DeepLabv3+, can 

perform more efficiently and accurately depending on the 

particular setting. Moreover, an ablation study comparing 

UNet or PSPNet with SegNet is also planned. In parallel, 

we aim to survey ResNet50 versus light backbones to 

quantify the component-level contributions. In the future, 

we will incorporate noisy and occluded samples to assess 

robustness under realistic deployment conditions. 

 

5.1 Limitations 

This study has several drawbacks. 7. First, the performance 

of the proposed framework is only evaluated on the 

VOCdevkit dataset [37], which may not accurately 

represent real-world diversity. Second, although transfer 

learning improves learning speed, ResNet50 pre-trained 

criteria rely on taught attributes that may be less useful for 

a specific area that requires particular functions. Thirdly, 

their computational needs, even after various 

optimizations for performance, may limit their 

applicability in low-resource environments or real-time 

systems with strict latency constraints. Sustainable 

Network Architecture framework limitations include data 

and domain specificity, as well as computational 

efficiency, given the limitations in computational 

availability, which should remain the subject of future 

research. 

6  Conclusion and future work 

This study proposes a deep learning approach in the form 

of an Enhanced Learning-based Multi-Object Detection 

and Classification (EL-MODC) algorithm, which 

combines SegNet for the segmentation stage and the 

ResNet50 model with transfer learning for the 

hierarchically organized feature extraction and 

classification stage. The experimental results on the 

VOCdevkit dataset showed that this approach is superior 

to other models, achieving 96.40% accuracy and 

outperforming state-of-the-art models in Precision, Recall, 

and F1-Score. The modular nature of your framework 

enables robust, scalable, and adaptable implementations of 

various applications, making it a significant contribution 

to computer vision. While the framework does many 

things well, some aspects do not. The VOCdevkit dataset 

limits the model's applicability to various real-life 

situations. At the same time, the reliance on pre-trained 

ResNet50 weights hinders the model's functionality in 

terms of the domain norms on which it was retrained. Due 

to the architecture of SegNet and ResNet-50, they also 

have high computational requirements, which prevent 

deployment on resource-constrained systems.  

Several strategic improvements are suggested to maximize 

the capabilities of the EL-MODC framework in practical 

applications. Increased methodological transparency can 

be achieved by specifying parameter settings, dataset 

instances, and experimental conditions. Additional testing 

on various datasets could facilitate the generalization of 

performance and demonstrate the robustness of this 

approach. Moreover, model compression methods (e.g., 

pruning or quantization techniques) advanced in the field 

to generate efficient EL-MODC would also make it 

possible to deploy on low-computational-power devices 

and meet runtime requirements without a significant 

performance drop. These lines guide future works towards 

interpretability, domain transfer, and scalable deployment 

of multi-object detection systems. 
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Appendix A: Fold-wise Evaluation and Statistical Analysis’ 

Here is the fold-wise evaluation and statistical comparison table between EL-MODC and YOLOv3: 

Fold EL-

MODC 

Accuracy 

(%) 

YOLOv3 

Accuracy 

(%) 

EL-

MODC 

Precision 

(%) 

YOLOv3 

Precision 

(%) 

EL-

MODC 

Recall 

(%) 

YOLOv3 

Recall 

(%) 

EL-

MODC 

F1-Score 

(%) 

YOLOv3 

F1-Score 

(%) 

Fold 

1 

96.2 94.3 96.0 93.8 96.1 94.0 96.0 94.1 

Fold 

2 

96.4 94.6 96.3 94.1 96.3 94.3 96.2 94.4 

Fold 

3 

96.5 94.5 96.4 94.2 96.5 94.4 96.4 94.3 

Fold 

4 

96.0 94.0 95.9 93.7 96.0 94.1 95.9 94.0 

Fold 

5 

96.6 94.4 96.5 94.0 96.4 94.2 96.5 94.2 
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