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The increasing complexity of urban infrastructure demands innovative solutions for effective management.
This paper proposes an intelligent management system for urban underground pipe galleries, integrat-
ing Internet of Things (IoT) sensors and digital twin technologies to enhance operational efficiency in
smart cities. The system enables real-time monitoring, predictive maintenance, and optimization of public
services by creating a virtual replica of the underground infrastructure. The methodology involves de-
ploying IoT sensors for continuous data collection and feeding this information into a digital twin model
that simulates and predicts potential failures and maintenance needs, as well as measuring flow rate and
temperature. This allows for proactive decision-making, minimizing downtime, and reducing maintenance
costs. Experimental results demonstrate the effectiveness of the proposed system in optimizing urban in-
frastructure management. The system achieved a 92% prediction accuracy in identifying potential failures,
enabling proactive maintenance, and reducing service disruptions by 40%. Predictive analytics minimized
maintenance costs by 35%, while resource optimization improved task prioritization, significantly enhanc-
ing operational efficiency. These results highlight the transformative potential of integrating IoT and dig-
ital twin technologies for smarter and more sustainable city management. This research underscores the
transformative potential of integrating advanced technologies like IoT and digital twin models in managing
complex urban systems, with significant implications for smart city development and sustainability

Članek predlaga inteligentni sistem za upravljanje podzemnih cevodov v pametnih mestih, ki združuje IoT
senzorje in digitalne dvojčke. Sistem omogoča nadzor v realnem času, napovedno vzdrževanje in opti-
mizacijo javnih storitev.

1 Introduction

Infrastructures, especially underground pipe galleries, en-
able modern urban cities to address fundamental needs
ranging from water supply and sewage to gas and telecom-
munication services—simple but indispensable elements of
functionality [1]. However, the growing control of these
subsurface systems is complex between urbanization and
the growth of new-age cities and old-age infrastructure [2]
[3]. This has made the traditional methods of periodic
checkups and remnant manual interferences very costly and
unproductive in their operations; they lead to frequent sys-
tem breakdowns and a slow response to system breakdowns
[4]. Smart solutions based on data are crucial to address the
escalating challenges of cities and guarantee the effective-
ness of such critical networks [5].
This paper proposes an innovative solution by integrat-

ing the Internet of Things (IoT) and Digital Twin technolo-
gies to develop an intelligent management system for ur-
ban underground pipe galleries. By leveraging the capabil-
ities of real-time data monitoring, predictive maintenance,
and system optimization, this research aims to enhance un-

derground infrastructure’s efficiency, reliability, and sus-
tainability, ultimately contributing to the development of
smarter, more resilient cities.

Urban underground pipe galleries are essential to the nor-
mal functioning of cities and accommodate urban utilities
necessary for daily life. Effectively managing these sys-
tems is critical for maintaining public health, safety, and
convenience [6].

1.1 Role of underground pipe galleries

These systems are vital for the public’s safety, health, and
convenience. Tunnels provide lifelines for clean water,
sewage disposal, and energy [7]. With the growth of cities,
these systems experience more stress and require sophisti-
cated management capability to maintain efficient perfor-
mance. Traditional approaches, based on manual inspec-
tions and reactive repairs, no longer meet the demands of
modern cities [8] [9].
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1.2 Challenges in managing underground
infrastructure

The management of urban underground pipe galleries
presents a range of challenges:

– Aging Infrastructure: Many underground systems
are decades old, with wear and tear leading to higher
failure rates and frequent maintenance needs [10].

– Limited Real-Time Monitoring: System failures of-
ten go unnoticed without continuous data collection
until they cause major disruptions [11].

– High Maintenance Costs: Reactive maintenance is
costly and inefficient, leading to increased operational
expenditures and prolonged downtimes [12].

To overcome these issues, developmental technologies
must ensure the right time for monitoring, diagnosing, and
efficiently handling all basic requirements.

1.3 Technological advancements in
infrastructure management

The last few years have seen the emergence of IoT and the
digital twin, changing how infrastructure systems are moni-
tored. These technologies enable real-time monitoring, an-
alyzing, and optimizing complex systems that characterize
the urban context [13].

1.3.1 IoT in urban infrastructure

IoT technology combines the physical world and the Inter-
net, continuously transferring captured and exchanged in-
formation. In an urban context, IoT devices can measure
attributes such as flow, temperature, pressure, or the state
of the structures and materials involved [14].

– Real-Time Monitoring: IoT sensors provide contin-
uous monitoring, ensuring that any anomalies, such as
leaks or blockages, are detected immediately.

– Predictive Maintenance: Data from IoT devices can
be used to predict potential system failures, allowing
for proactive maintenance that reduces the need for
emergency repairs.

– Improved Operational Efficiency: IoT enables data-
driven decisions, helping to optimize resource alloca-
tion and system operations.

1.3.2 Digital twin technology

A digital twin is a realistic representation of a physical sys-
tem that could emulate its functioning in real-time [15]. It
also integrates Internet of Things data and digital twin mod-
els to create solutions with broad possibilities and more ac-
curate decision-making [16].

– Predictive Maintenance: Digital Twins can simulate
the behavior of underground infrastructure and predict
when components are likely to fail, minimizing un-
planned maintenance.

– System Optimization: The digital model allows sim-
ulations that help optimize system performance and
inform decisions about infrastructure upgrades and
maintenance strategies.

– Scenario Testing: Digital Twin models facilitate test-
ing scenarios without altering the physical system, en-
abling better planning and risk management.

1.4 Review of existing research
Many works have been done on IoT and digital twin tech-
nology in infrastructure management. However, most of
these studies are limited to reference systems or single in-
frastructure domains, e.g., water supply or waste [17]. Lit-
erature reviews on incorporating IoT and Digital Twin into
a single management system for urban underground pipe
galleries are limited [18].

1.4.1 IoT in infrastructure management

Related Work on IoT for Applications of Infrastructure
Management In infrastructure management, existing re-
search literature provides extensive insights into real-time
monitoring and enabling better performance systems [19].
IoT-based systems are widely used in water supply and
sewage systems to monitor pressure, flow, temperature, etc.
However, these systems are usually siloed; they work in
isolation without being integrated across various infrastruc-
ture elements [20].

1.4.2 Digital twin technology in infrastructure

As with many technologies, digital twins are well adopted
in large-scale manufacturing industries but are still quite
nascent in the infrastructure context of cities. Research in-
dicates that the real-world complexity of individual systems
can be improved by using digital twins to predict perfor-
mance under various conditions [21]. However, the investi-
gations regarding integrating IoT data with digital twins for
embedded, coupled, multi-utility systems remain in their in-
fancy.

1.5 Research gaps and motivation
Despite advancements in IoT and digital twin technologies,
there is a significant gap in their integrated use for man-
aging urban underground pipe galleries. Existing research
often addresses these technologies in isolation or focuses
on specific infrastructure sectors, such as water systems
or sewage. The absence of a comprehensive, integrated
management system for urban pipe galleries motivates this
study.
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1.5.1 Integration challenges

Integrating IoT and digital twin technologies into a unified
management system presents several challenges:

– Data Integration: Ensuring seamless data flow be-
tween IoT devices and digital twin models.

– Predictive Algorithms: Developing accurate predic-
tive maintenance models based on real-time data.

– System Scalability: Designing an adaptable and scal-
able system for use across different urban environ-
ments.

1.5.2 Motivation for the study

The research aims to remove gaps through the develop-
ment of an IoT-based intelligent management system that
implements digital twins. The system ensures more ef-
ficient monitoring and maintenance operations of under-
ground pipe galleries throughout cities, which produces
better infrastructure results. Our research focuses on solv-
ing three core infrastructure management problems that
stem from manual inspections, reactive maintenance, and
faulty detection inefficiency [22]. Through the proposed
system, agents can conduct real-time observation while per-
forming predictive maintenance operations and making im-
proved choices. The project concentrates on implementing
this intelligent management system in urban underground
pipe galleries since these elements represent crucial infras-
tructure for city operations that experience poor manage-
ment.

1.6 Research objectives and scope
The main objectives of this research are:

1. To design and develop an intelligent management sys-
tem for urban underground pipe galleries that inte-
grates IoT-based monitoring with digital twin technol-
ogy.

2. To implement real-time monitoring to detect under-
ground infrastructure leaks, blockages, and pressure
drops.

3. To create a digital twin model of the underground in-
frastructure, enabling simulation and optimization of
system performance.

4. To evaluate the system’s effectiveness in reducing
maintenance costs and improving operational effi-
ciency.

5. To assess the scalability of the proposed system for use
in different urban environments.

The research will focus on developing and testing this inte-
grated system in a simulated environment.

1.7 Contributions and novelty of the
research

This research contributes to the field of urban infrastructure
management in several ways:

1. Novel Integration: Integrating IoT and digital twin
technologies into a unifiedmanagement system for un-
derground pipe galleries is a novel approach that has
not been widely explored.

2. Proactive Management: The system incorporates
predictive maintenance, which improves operational
efficiency and reduces the costs associated with reac-
tive repairs.

3. Scalability and Practicality: The proposed system
is scalable and practical, offering a solution for cities
looking to optimize their infrastructure management
strategies and contribute to the development of smart
cities.

The paper is structured as follows: Section 1 introduces
the research, providing background, objectives, and signif-
icance of the study. Section 2 presents related work, dis-
cussing the application of IoT and digital twin technolo-
gies in infrastructure management and highlighting existing
gaps. Section 3 describes the methodology, detailing the
design and development of the proposed intelligent man-
agement system. Section 4 presents the results and discus-
sion, showcasing the system’s implementation and perfor-
mance evaluation outcomes. Finally, Section 5 concludes
the paper by summarizing the research contributions and
suggesting potential areas for future work.

2 Related work
The integration of IoT and digital twin technologies has
been extensively explored in recent years, particularly in
infrastructure management. Adreani et al. [23] developed
a Smart City Digital Twin framework capable of real-time
multi-data integration and wide public distribution, empha-
sizing its applicability in urban planning and public safety.
Duran et al. [24] proposed a digital twin-native AI-driven
service architecture for industrial networks, highlighting
significant processing time savings and improved learning
models [25]. Isah et al. [26] introduced a data-driven digital
twin network architecture for Industrial Internet of Things
(IIoT) applications, focusing on data integration and proto-
col standardization. Becattini et al. [27] provided empirical
insights into industrial data and service aspects of Digital
Twin networks, discussing the dual nature of Digital Twins
as both digital replicas and networks of interconnected
models. Arezza [28] examined the impact of IoT, Digital
Twin, and Artificial Intelligence in transforming process in-
dustries towards a circular economy, emphasizing the need
for standardization and interoperability. The Industrial In-
ternet Consortium [29] reported on various testbeds demon-
strating real-world implementations of Industrial Internet
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solutions, including Track and Trace and Asset Efficiency,
which utilize IoT and Digital Twin technologies for en-
hanced operational efficiency. The National Institute of
Standards and Technology (NIST) [30] discussed the ac-
celeration of the IoT digital economy with trusted value
chains driven by significant investments in semiconductor
manufacturing and traceability infrastructure [31]. The In-
ternational Telecommunication Union (ITU) [32] provided
an overview of Study Group 20’s work during the 2022-
2024 study period, focusing on developing standards for
IoT, Digital Twin, metaverse, AI/ML, and other emerging
technologies to enhance digital services through innova-
tion. Table 1 presents the summary of the related work.

3 Research methodology
The proposed intelligent management system incorporates
IoT and digital twin technologies to overcome urban un-
derground pipe gallery management inefficiencies. This
section describes the system’s architecture, data flow, pre-
dictive maintenance algorithms employed, and evaluation
framework.
Conventional management of underground pipe galleries

is based on manual inspection and reactive maintenance.
However, these methods are ineffective and do not avoid
service downtime and high ownership costs. To go be-
yond these constraints, this paper proposes a new system
that incorporates online monitoring, virtual simulation, and
predictive maintenance. This method proactively affiliates
management. The underground pipe network information
data classification may be viewed in Figure 1.

Figure 1: Integrated network information

3.1 System architecture

Our suggested system architecture encompasses three main
elements: Internet of Things (IoT) sensors for real-time
monitoring, a cloud-based data processing unit, and a dig-
ital twin predictive analysis. With IoT sensors deployed in
the pipe galleries, flow, pressure, and temperature (generic
critical parameters) could be monitored continuously. The
data gathered through the devices is sent to a cloud-based

platform, aggregated, processed, and provided as input to
the Digital Twin model.

IoT Sensors
(Pressure, Flow

Rate, Temperature)

Gateway
(Data Aggregation)

Cloud Platform
(Data Processing and Integration)

Digital Twin
(Simulations and Predictions)

User Interface
(Maintenance and Alerts)

Real-time Data

Aggregated Data

Synchronized Data

Alerts
and Recommendations

Figure 2: System architecture showing the integration of
IoT, cloud, and digital twin

The Digital Twin, a virtual replica of the physical pipe
gallery, mirrors real-time data from the IoT sensors. By
providing a means to create virtual representations of the
system, it facilitates predictive maintenance by running
simulations of how the systemswill behave in different con-
ditions. Figure 2 illustrates the system’s architecture, where
data flows seamlessly between IoT sensors, the cloud, and
the Digital Twin.
Real-time IoT sensor data moves through a cyclic pat-

tern, beginning with gathering data in real-time from sen-
sors and sending it to the cloud for computation. The
digital twin receives processed data during this stage to
run simulations and make future failure predictions under
diverse operational conditions. The digital twin delivers
processed data to the user interface, which enables users
to make maintenance choices through a cycle of continu-
ous feedback. We explain how the Digital Twin functions
through its operation of building a virtual underground fa-
cility model from real-time data while executing perfor-
mance simulations using sensor information. The simu-
lation, together with its predictive maintenance functions,
plays a vital role in the research domain.

3.2 IoT-based monitoring
The IoT subsystem comprises a network of sensors strate-
gically deployed across the pipe galleries to monitor oper-
ational conditions [33]. Pressure sensors detect abnormal-
ities that may indicate potential leaks or blockages. Flow
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rate sensors measure the volume of fluids passing through
the pipes, while temperature sensors provide data on ther-
mal fluctuations that could signal structural issues.
New information about IoT-based monitoring sensors

has been added to the document by specifying sensor prop-
erties, including measurement range alongside accuracy
levels, sensitivity values, and sampling frequency. The
pressure sensors reveal a sensing range between zero and
one hundred bar together with an accuracy of 0.5% and
a sampling period of one Hertz. The flow rate sensors
measure within a 0-50 L/min range while providing 1%
accuracy and sampling measurements at a rate of 0.5 Hz.
Temperature sensors work between -20°C to 100°C with
a ±0.2°C accuracy level at a 2 Hz sampling frequency.
The established threshold for designating abnormal pres-
sure measurements was determined as any deviation higher
than 10% compared to normal operating pressure through
the use of field data. The temperature sensors operate to
identify temperature variations that signal structural prob-
lems, particularly corrosion or fatigue, by alerting users to
any rapid temperature shifts that exceed 5°C.
Data is transmitted using low-power communication pro-

tocols such as LoRaWAN. The transmission model is rep-
resented mathematically as follows:

Td =
Pt ·D
B

(1)

where:

– Td is the data transmission time,

– Pt is the transmitted power,

– D is the distance from the sensor to the gateway,

– B is the bandwidth of the communication channel.

This ensures efficient and reliable data transfer, even in
challenging underground environments.

3.3 Digital twin development
The Digital Twin is a three-dimensional virtual model of
the pipe gallery system. It incorporates geometric, struc-
tural, and operational data to accurately represent the phys-
ical infrastructure.
Real-time synchronization between the IoT sensors and

the digital twin ensures that the virtual model reflects the
system’s current state [34]. The Digital Twin also performs
simulations to predict system behaviors under various con-
ditions. For example, fluid dynamics equations are used to
model the flow within the pipes:

∇ · (ρv) = 0, ∇ · (vv) = −∇P + µ∇2v (2)

where:

– ρ is the fluid density,

– v is the velocity vector,

– P is the pressure, and

– µ is the dynamic viscosity.

3.4 IoT-digital twin integration

IoT and Digital Twin components are integrated through
a middleware framework that ensures seamless data ex-
change. IoT data is pre-processed at the edge to reduce
latency before being transmitted to the cloud. The cloud
platform updates the digital twin in real time using REST-
ful APIs. Their integration may also be viewed in Figure 3
The synchronization equation models this integration:

S(t) =

∫ t

0

D(t′) dt′ (3)

where S(t) is the synchronized state of the Digital Twin
at time t, and D(t′) represents the incoming data stream.
Time-accurate simulations function because IoT sensor

inputs continuously send data to the Digital Twin system.
The data processing unit works as a filter before model in-
put to handle sensor errors and sensor noise contamination.
The system parts form an operational network that allows
active prediction of system behavior and proactive mainte-
nance capabilities with optimized resource utilization. The
system maintains scalability and quick response times by
using cloud computing with RESTful APIs, which enables
it to adapt to different data flow levels and operational con-
ditions in real-world environments.

3.5 Predictive maintenance and
optimization

The predictive maintenance module leverages machine
learning algorithms to analyze historical and real-time data,
identifying patterns that indicate potential failures. The
steps for predictive maintenance are detailed in Algo-
rithm 1.

Algorithm 1 Predictive Maintenance Workflow
Require: Historical data H , Real-time data R
Ensure: Failure predictions and recommended mainte-

nance actions
1: NormalizeH and R to remove noise
2: Extract features such as pressure anomalies and flow

deviations
3: Train a Random Forest classifier onH
4: Use R as input to the trained model
5: Predict failure probabilities for each monitored compo-

nent
6: Generate maintenance alerts and recommendations

based on predictions

Optimization is achieved byminimizing themaintenance
cost function:
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Table 1: Summary of related work

Author(s) Year Focus Area Key Contributions Limitations Prediction Accu-
racy

System
Costs/Scalability

Adreani et
al. [23]

2023 Smart City Digital Twin
Framework

Developed a framework for real-
timemulti-data integration and pub-
lic distribution in urban planning.

Implementation challenges
in diverse urban contexts.

75% High operational
costs due to complex
integration

Duran et
al. [24]

2023 Digital Twin-native AI-
driven Service Architecture

Proposed an architecture with sig-
nificant processing time savings and
improved learning models.

Limited testing in real-world
industrial networks.

78% Moderate scalability,
requires additional
infrastructure

Isah et al.
[26]

2023 Data-driven Digital Twin
Network Architecture

Introduced an architecture focus-
ing on data integration and proto-
col standardization for IIoT applica-
tions.

Scalability concerns in
large-scale deployments.

70% High cost and com-
plex setup in large-
scale environments

Becattini
et al. [27]

2024 Industrial Data and Service
Aspects of Digital Twin Net-
works

Provided insights into the dual na-
ture of Digital Twins and their ap-
plication in industrial networks.

Need for further empirical
validation.

80% Costly implemen-
tation and limited
scalability

Arezza
[28]

2022 IoT, Digital Twin, and AI in
Process Industries

Examined the impact of these tech-
nologies in transforming industries
towards a circular economy.

Emphasis on standardiza-
tion and interoperability
challenges.

72% Moderate scalability
and high operational
costs

Industrial
Internet
Consor-
tium [29]

2024 Industrial Internet Testbeds Reported on testbeds demonstrating
real-world implementations of IoT
and Digital Twin solutions.

Generalized findings; spe-
cific industry applications
may vary.

74% High initial setup
costs and moderate
scalability

NIST [30] 2023 IoT Digital Economy and
Trusted Value Chains

Discussed acceleration of the IoT
digital economywith investments in
semiconductor manufacturing.

Focused on economic as-
pects; technical challenges
less addressed.

65% Limited scalability
and high mainte-
nance costs

ITU [32] 2024 Standards Development for
Emerging Technologies

Provided an overview of standards
development for IoT, Digital Twin,
and other technologies.

Broad scope; specific im-
plementation guidelines lim-
ited.

68% Scalability issues and
high infrastructure
costs

IoT Sensors
(Pressure, Flow

Rate, Temperature)

Cloud Platform
(Data Aggrega-

tion and Processing)

Digital Twin
(Real-Time Synchroniza-
tion and Simulations)

User Interface
(Feedback and Control)

Sensor Data

Processed Data

Alerts and Commands

Configuration Updates

Figure 3: IoT-digital twin integration framework showing
real-time data flow and feedback mechanisms

C =

n∑
i=1

cixi + λ

n∑
i=1

(1− xi)di (4)

where:

– ci is the cost of maintaining component i,

– xi is a binary variable indicating whether i is main-
tained (xi = 1) or not (xi = 0),

– di is the downtime cost for i, and

– λ is a penalty factor for downtime.

3.6 Evaluation framework
The system is evaluated based on key performance metrics,
including prediction accuracy, cost reduction, and down-
time minimization. Simulations are conducted under two
scenarios:

1. A sudden pressure drop simulating a potential leak.

2. A blockage causing abnormal flow rates.

The system’s response is analyzed for each scenario,
and the results are compared to traditional maintenance ap-
proaches. A new intelligent management platform inte-
grates digital twin and IoT technology to resolve problems
in managing underground pipe galleries in urban areas. The
IoT sensors must be placed at essential points within the
pipe galleries to track essential parameters such as pres-
sure, flow rate and temperature through their positions at
entry/exit points and joint and bend sections. The system
places its sensors directly at important points, which en-
able the detection of vital system anomalies such as leaks or
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blockages. The system hardware ensemble contains pres-
sure sensors along with flow rate sensors in addition to tem-
perature sensors for conducting system operational moni-
toring. The data aggregation process begins on computing
units, including Raspberry Pi 4 along with comparable edge
computing devices, which prepare data before cloud trans-
mission occurs. Random Forest classifier requires labeled
data for training, which contains sensor measurements ob-
tained from normal and faulty system conditions, includ-
ing leaks and blockages. A training process executes on
the dataset to develop the classifier so it learns failure-
indicative patterns. The different periods of data in the test-
ing dataset help evaluate howwell the model can generalize
its performance. Predictive accuracy is calculated as:

Accuracy =
True Positives+ True Negatives

Total Predictions

where True Positives (TP) and True Negatives (TN) re-
fer to the correctly predicted failure and non-failure events,
respectively. Cost reduction is calculated by comparing the
maintenance costs of the proposed system with those of tra-
ditional maintenance methods using the formula:

Cost Reduction (%) =
(
Traditional Maintenance Cost− Proposed System Maintenance Cost

Traditional Maintenance Cost

)
× 100

where Traditional Maintenance Cost refers to the total
cost under conventional reactive maintenance, and Pro-
posed System Maintenance Cost refers to the total cost as-
sociated with proactive predictive maintenance enabled by
the system.
A sensitivity analysis of the predictivemaintenance algo-

rithm establishes its resistance to errors found in IoT mon-
itoring instruments. During this analysis, we introduced
errors in pressure, flow rate, and heat data, adding ran-
dom variations to the sensor measurements. The model re-
ceived performance evaluations while monitoring different
sensor imprecision quantities to understand how the algo-
rithm responds to measurement inaccuracies. The predic-
tive maintenance system will provide reliable operation be-
cause it has been designed to tolerate variations between
sensor measurements and their actual values, which often
occur in practical environments.
The flow rate operations of IoT sensors span from 0 to

50 L/min at pressures ranging from 0 to 100 bar while ex-
ceeding 10% of the normal operating value, defining device
anomalies. Themodel features an underground pipe gallery
design that matches regular urban patterns by incorporat-
ing multiple junctions while incorporating bends together
with specific entry/exit points to achieve realistic model-
ing. The modern system maintenance method is clearly
identified as manual periodic inspections coupled with re-
active repair techniques. The simulations implement stan-
dard inspection schedules (occurring monthly or quarterly)
and wait for important anomalies before initiating mainte-
nance without real-time prediction systems. Through these
complete simulation capabilities, researchers can perform

an extensive examination that demonstrates how the pro-
posed IoT-Digital Twin system outperforms conventional
maintenance approaches in terms of operational efficiency
as well as reduced downtime and maintenance cost reduc-
tions.

4 Results and discussion
This section demonstrates the analysis of the performance
of the implemented intelligent management system for effi-
cient management of the urban underground pipe galleries.
The performance of the proposed system was evaluated on
actual and synthetic data sets, and the emphasis was made
on themost important areas that directly affect the result, in-
cluding, for instance, the accuracy of the forecast, the cost
of operating the system, and the time that the system takes
to recover after a failure. These results provided ample evi-
dence to show that the system canmanage the inefficiencies
of traditional infrastructure management.
A predictive model manages dynamic infrastructure con-

ditions by getting updated through constant online learning
processes and periodic model re-training with the newest
sensor inputs. The model employs adaptive methods that
enable continuous calibration of parameters for maintain-
ing top-level predictive accuracy while conditions in op-
erations transform. The system implements error correc-
tion algorithms that work together with sensor calibration
routines to reduce the influence of sensor drift and exter-
nal disturbances. The results of sensitivity analyses help
determine the effects of measurement uncertainties so the
model receives necessary adjustments. Multiple signifi-
cant measures work together to make our predictive main-
tenance module more resistant, thus enhancing its capabil-
ity to accurately forecast equipment failures and support
proactive maintenance choices in constantly changing op-
erational settings.

4.1 System implementation
The sensors employed were IoT to gather real-time data,
while data was hosted on the cloud platform, and a digital
twin was used for planning and maintenance. Data were
collected in real-time from a mock-up of an urban pipe
gallery to determine usage over six months—some control-
lable parameters measured on the site comprised pressure,
flow rate, and temperature. By integrating IoT data into the
digital twin application, the system’s real-time performance
information was continuously fed back into the system.
The implementation of our system required building a

representative scaled model of an urban pipe gallery with
junctions and bends and entrance points together with exit
points. The system deployed IoT sensors at important
points to obtain instant measurements of operational vari-
ables, which included pressure readings in the bar flow
measurements in L/min and temperature readings in °C.
The sensors operated under controlled parameters that mod-
eled actual field conditions by generating normal opera-
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tional conditions and adverse scenarios, including fast pres-
sure declines, flow blockage signs, and temperature shifts,
which show potential structure defects. The manipulated
system variables that scientists used to study the system’s
responses under diverse experimental conditions fall un-
der the category of controllable parameters. The system’s
performance could be analyzed extensively through six
months of collected data, enabling direct correlations be-
tween sensor readings and actual operational data of urban
pipe gallery systems.

4.2 Performance evaluation
The performance of the system was evaluated using the fol-
lowing metrics:

4.2.1 Prediction accuracy

The predictive maintenance module achieved high accu-
racy in identifying potential failures. Using a Random For-
est model, the system achieved an accuracy of 92% in de-
tecting anomalies such as leaks and blockages. Figure 4
shows the confusion matrix for prediction accuracy. The
evaluation of the Random Forest classifier now incorpo-
rates k-fold cross-validation as a performance enhancement
method. Random substrates of training data are split into k
partitions in k-fold cross-validation. Then, k-1 partitions
are used for training models, while the remaining parti-
tion functions as the test set. The procedure executes k
rounds, during which test sets use k different subsets once.
Cross-validation lets the model demonstrate generalization
by avoiding overfitting any specific data subset. The com-
bination of k-fold test results produces an average perfor-
mance estimate that improves the reliability of evaluating
classifier competence.

Figure 4: Confusion matrix illustrating prediction accuracy

The predictive maintenance module monitored devices
with a 92% effective rate for detecting leaks and blockages

in the system. For complete evaluation purposes, a break-
down of incorrect predictions and correct misses will be in-
cluded. The system produced 10 incorrect failure warnings
referred to as false positives, and eight incidents showing
actual failures that went undetected represented false neg-
atives. The true positives numbered 92 cases showing cor-
rectly detected failures, while true negatives numbered 90
cases indicate correctly identified non-failures. The col-
lected values enable a superior understanding of how suc-
cessfully the model operates, together with a thorough as-
sessment of how operational efficiency might be affected
by wrong predictions.

4.2.2 Maintenance cost reduction

By transitioning from reactive to predictive maintenance,
the system reduced maintenance costs by 35%. The com-
parative analysis is provided in Table 2.

Table 2: Maintenance cost comparison between traditional
and proposed methods

Method Maintenance Cost (USD) Cost Reduction (%)
Traditional 100,000 N/A
Proposed 65,000 35

4.2.3 Downtime reduction

The proposed system minimized downtime by 40%, signif-
icantly improving operational efficiency. Figure 5 shows a
comparative analysis of downtime across different scenar-
ios.

Figure 5: Downtime comparison between traditional and
proposed systems

4.3 Optimization outcomes
The optimization module successfully prioritized mainte-
nance activities, reducing unnecessary interventions and fo-
cusing resources on critical components. Figure 6 illus-
trates the resource allocation optimization achieved by the
system.
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Figure 6: Resource allocation optimization results

4.4 Results contextualization
The study includes confidence intervals for main perfor-
mance metrics of prediction accuracy along with mainte-
nance cost reduction and downtime reduction to present a
complete view of the results. The confidence intervals en-
able researchers to evaluate both result precision and statis-
tical variance for reported data to establish validity. As part
of our statistical analysis, we used t-tests to see if the sys-
tem improvements were believable by showing results that
were different from random variation. We have organized
our assessment of prediction accuracy to separate between
leak detection results and blockage detection results. The
breakdown enables greater accuracy in identifying system
performance results specific to various failure situations.
The separate analysis of anomaly types allows us to show
both system strengths and limitations while handling vari-
ous real-world situations during performance evaluation.

4.5 Discussion
Results show that the intelligent management system in
this study drastically outperforms traditional management
methods for underground pipe galleries, further suggesting
a transformative potential of IoT and digital twin technolo-
gies in sewers and other urban infrastructure [35]. With
92% accuracy, predictions made from the system ensure
that any potential failure, like leakages and blockages, can
be detected early to provide insertions for maintenance.
This is crucial in urban areas where service interruptions,
costly repairs, and public inconvenience can arise within a
matter of minutes due to delays in fault detection. The sys-
tem provides real-time monitoring and predictive analytics,
which allows potential issues to be identified and solved be-
fore they become bigger problems, eliminating operational
risk [36] [37].
The system can also reduce maintenance costs by a no-

table 35% compared to conventional methods. The savings
come mainly from the transition from reactive to predictive

maintenance and avoiding unnecessary inspections and in-
terventions. Rather than rely on pre-scheduled tasking or
react ad hoc to events as they arise, the system uses insights-
driven knowledge acquisition to prioritize tasks. This ef-
ficient allocation of resources is of interest, especially for
budget-constrained municipalities, as they can achieve the
largest possible return on their infrastructure management
investments [38].
This 40% reduced downtime reflects the system’s capac-

ity to sustain nonstop operations, an essential need for copi-
ous assets in urban communities. For instance, a disruption
to essential service streams like the water supply or waste
management can put daily life at a halt, expose the public
to health risks, and harm economic productivity. The sys-
tem reduces the number of service interruptions, thereby in-
creasing operational efficiency and the reliability and qual-
ity of services provided to citizens. This aligns with the
overall agenda of a smart city that focuses on resilience,
sustainability, and citizen satisfaction [39].

4.5.1 Role of IoT and digital twin integration

The integration of IoT and digital twin technologies is cru-
cial for the intelligent management system, providing dis-
tinct benefits that traditional methods cannot achieve [40].
First, by continuously collecting real-time sensor data—
such as pressure, flow rate, and temperature—the system
immediately detects anomalies (e.g., sudden pressure drops
or abnormal temperature spikes), thereby enhancing real-
time anomaly detection. Second, the digital twin processes
this data to simulate potential failure scenarios, which en-
ables optimized resource allocation by prioritizing mainte-
nance tasks based on predicted impact and urgency. Third,
these predictive capabilities facilitate improved mainte-
nance scheduling by identifying and addressing potential
issues before they escalate, thus reducing downtime and
overall maintenance costs. These targeted advantages high-
light how the integrated approach not only minimizes re-
liance on direct inspections but also drives proactive, effi-
cient infrastructure management [41].
The predictive analytics system helps forecast equip-

ment failures in advance, facilitating preventive action be-
fore breakdowns occur. The predictive accuracy, together
with operational efficiency, rises to higher levels, making
the system cost-effective through reduced maintenance ex-
penses and downtime. The incorporation of continuous
surveillance with simulation technologies produces sub-
stantial benefits, improving live system performance as-
sessment beyond traditional monitoring approaches.

4.5.2 Impact of optimization module

The optimization module served as an addition to improv-
ing the system’s performance by directing resources rela-
tive to data analysis. The maintenance strategies include
time-based or a combination of time-based and condition-
based, which are ineffective since they employ resource uti-
lization in a fixed-dated method or even based on some-
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one’s estimation. This is different from the optimization
one, where the applied algorithms are sophisticated to esti-
mate the degree of failure risk, degrees of operations disrup-
tion, and resource availability, among other things. Thus,
all the important problems receive proper attention, and ex-
tra money is saved to pay only for the less important and
urgent work [42]. One direct example that I would like
to demonstrate from the optimization module is handling
multiple maintenance tasks simultaneously. For example,
suppose the system escalates a pressure drop in one section
of the pipe gallery and a small temperature variation in an-
other. In that case, the optimization module will address the
pressure problem without delay, and the temperature prob-
lem might be scheduled later. This intelligent resource al-
location lowers the potential for pinpointing critical failures
and ensures that maintenance teams are at optimum produc-
tivity [43].

4.5.3 Scalability and adaptability

The above-shown proposed system has flexibility that
makes it adaptable to different kinds of city settings. Un-
like systems developed for some unique applications, the
sketched system can be easily redesigned for various in-
frastructure and operational schemes. For instance, in the
case of the IoT sensors and the Digital Twin model, extra
parameters, including structural conditions, corrosion lev-
els, or meteorological conditions such as soil humidity, can
be included. For this reason, the system is scalable and
flexible enough to accommodate the needs of both small-
scale municipal and extensive metropolitan systems. An-
other feature that refers to scalability is crucial in the case
of the needs of smart cities, which are growing occasion-
ally. Cities are to continuously increase their capacity due
to the growing population density of urban residents and
aging critical infrastructure. This challenge is dealt with in
the proposed system through the adaptive design that allows
the integration of more sensors, enhanced data analysis and
modeling functions, and higher complexity simulations if
required. This versatility enables the system to stay appro-
priate and useful when urban surroundings evolve [44].
Our research plans to include adaptive machine learning

models, particularly neural networks that perform anomaly
prediction functions. The current Random Forest imple-
mentation in the model would benefit from deep learning
models with both spatial data pattern analysis through Con-
volutional Neural Networks (CNNs) and temporal pattern
analysis through Recurrent Neural Networks (RNNs) for
complex and changing systems because this would boost
prediction precision. The discussion included an evalua-
tion of scalability issues within real urban situations. The
deployment Data processing efficiency together withmodel
optimization and integration strategies stand necessary for
successful implementation of such systems within actual
urban environments.
Our system achieves high performance and scalability in

big urban areas by implementing multiple essential strate-

gies together with specific technologies. The systemmakes
use of edge computing to execute immediate real-time pro-
cessing on sensor data. Edge devices operate lightweight
algorithms that eliminate unnecessary data while reduc-
ing data send volume before cloud transmission. The data
processing at the edge layer cuts network delays while di-
recting only purposeful data toward subsequent analytical
steps. The cloud platform operates using RESTful APIs
that enable quick data synchronization with digital twin
functions while being constructed on scalable infrastruc-
ture. Our system architecture includes modular features
that let users integrate new sensors and data streams effi-
ciently while maintaining operational efficiency. Our sys-
tem addresses scalability challenges by using these mea-
sures to keep performances efficient throughout big, com-
plex urban areas that usually face data volume increases and
network latency issues.

4.5.4 Implications for smart city development

This study’s findings can be applied to smart city devel-
opment in general. Consequently, this research will help
other cities that seek to implement IoT and digital twins
know what to expect by giving a step-by-step guide on how
to implement them. Applying the proposed system helps
to achieve the goals of smart city development, as the set
priorities presuppose optimizing the operation of municipal
services, increasing their reliability, and working on sus-
tainability [45]. A major benefit of implementing the pro-
posed system is providing timely and useful information
from current data. In a smart city context, such informa-
tion may be shared between various departments and other
stakeholders to have a well-coordinated city management
regime. For instance, information obtained from IoT sen-
sors installed in underground pipe galleriesmay also be use-
ful for water management decision-making, urban drainage
systems, or environmental issues. This cross-functional
utility adds even greater value to the system within the
broad smart city management and support concept.

4.5.5 Challenges and future directions

The proposed system has several challenges that cannot
only be solved with this study but can also be considered
directions for future research. One of the main challenges
is scalability in real urban environments. The system has
worked in simulation but needs further testing to confirm
effectiveness under more complicated and variable real-
world conditions. Successful implementation at scale re-
quires careful consideration of factors like network latency,
data volume, and integration with existing infrastructure.
Cybersecurity is another area of concern. Given that cyber-
attacks are inherent to IoT devices, it is essential to main-
tain the security and integrity of data. Strengthening crypto-
graphic protocols and intrusion detection systems and mea-
suresmust be installed in the system in future research. This
becomes even more critical in smart cities, where infras-
tructure systems are heavily interconnected, and any breach
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in one can cause a domino effect throughout others. Fu-
ture work includes adding additional monitored parame-
ters. It only accounts for pressure, flow rate, and tempera-
ture, but integrating parameters such as structural integrity,
corrosion levels, or environmental factors could improve
its effectiveness—integrating advanced analytics and ma-
chine learning algorithms for better prediction capabilities
and automation in decision-making.

5 Conclusion

The proposed intelligent management system for urban un-
derground pipe galleries integrates IoT and digital twin
technologies, addressing critical inefficiencies in tradi-
tional infrastructure management practices. This research
demonstrated that real-time data collection through IoT
devices and virtual simulation via Digital Twin enables
proactive maintenance, operational optimization, and sig-
nificant cost savings. By achieving a prediction accuracy
of 92%, the system effectively identifies potential failures,
minimizing service disruptions and ensuring the continu-
ous functionality of critical infrastructure. The study high-
lighted the system’s capability to reduce maintenance costs
by 35% and downtime by 40%, showcasing its practical
and economic benefits. Additionally, the modular archi-
tecture of the proposed framework ensures scalability and
adaptability, making it a viable solution for smart cities
aiming to optimize their infrastructure management pro-
cesses. While the results underscore the system’s effec-
tiveness, challenges like scalability in real-world urban en-
vironments and cybersecurity vulnerabilities must be ad-
dressed in future research. Advanced machine learning
models, such as deep learning, can further enhance pre-
dictive capabilities while expanding monitored parameters
like structural integrity and environmental factors, increas-
ing system robustness. Moreover, data security is critical to
safeguarding IoT devices and the system’s integrity against
potential cyber threats. This study provides a foundational
framework for developing intelligent, data-driven systems
in urban infrastructure management, paving the way for
sustainable and resilient smart cities. The proposed system
represents a significant step forward in transforming out-
dated maintenance practices, with the potential for broader
adoption in urban infrastructure projects worldwide. Col-
laborative efforts between academia, industry, and policy-
makers will be essential to unlock the full potential of IoT
and digital twin technologies, advancing urban sustainabil-
ity and operational excellence.
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A Appendix A: Pseudo-Code for
Maintenance Optimization
Algorithm

Algorithm 2Maintenance Optimization Algorithm
1: Collect real-time data from IoT sensors (pressure, flow

rate, temperature)
2: Preprocess data to remove noise and inconsistencies
3: Feed data into the predictive maintenance model (e.g.,

Random Forest classifier)
4: Predict potential failures (e.g., leaks, blockages) using

the trained model
5: if failure predicted then
6: Evaluate the severity of the failure
7: Prioritize failures based on severity and operational

impact
8: Schedule maintenance for high-priority failures
9: else
10: Continue regular monitoring and data collection
11: end if
12: for each maintenance task do
13: Optimize resource allocation (e.g., technicians,

tools)
14: Minimize downtime by scheduling maintenance

during low-traffic periods
15: Calculate the cost of maintenance (labor, parts,

equipment)
16: end for
17: Continuously update the maintenance schedule and op-

timize resource allocation
18: Output: Maintenance schedule, resources allocated,

and cost estimates



192 Informatica 49 (2025) 179–192 Y. Shen


