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As society continues to evolve, there is an increasing demand for energy. Solar energy is a clean and 

renewable alternative, but the photovoltaic conversion efficiency of calcite solar cells is low. Therefore, 

the study proposes a new material screening method for chalcocite using an improved gradient boosting 

regression tree (GRBT) model and migration learning. It adopts weighted averaging instead of the initial 

simple averaging to make complete use of the information between all the data, and at the same time 

introduces an adaptive step reduction to optimize the algorithm, which is fused with the support vector 

machine (SVM) algorithm is fused to construct a hybrid model, using hierarchical migration learning to 

divide the source domain data and train the model separately. Experiments showed that the astringent 

loss function values of the improved method were 0.115 and 0.160 lower than those of the GBRT algorithm 

and SVM, respectively. Moreover, and the root mean square errors and coefficients of determination for 

predicting the caliche band gap of the hybrid model were 0.017 and -2.2 and 0.023 and -3.7% lower than 

those of GBRT and SVM, respectively. The average pairwise decision error, root mean square error, and 

coefficient of determination of the improved transfer learning method were 0.0097, 0.0205, and -5.06% 

lower, respectively, than those of the ordinary method, and the running speed was 1.92 s faster than that 

of the ordinary method. The study screened out six halogenated bis-calcitonite new materials with band 

gap values in the range of [1.14-1.62] eV, and the formation energies were all below 0.05. It can be 

concluded that the improved method can effectively enhance the screening accuracy and speed of 

perovskite materials, and promote the high speed development of solar cells. 

Povzetek: Članek se osredotoča na izboljšan algoritem Gradient Boosting Regression Tree (GBRT) in 

prenosno učenje za obvladovanje in iskanje novih perovskitnih materialov s prilagodljivimi širjenji 

pasovnih lukenj. Eksperimenti so pokazali, da izboljšani model znižuje napako napovedi in povečuje 

učinkovitost iskanja novih materialov, s poudarkom na halogeniranih perovskitih. 

 

1 Introduction 
With the continuous development of human society, 

people's demand for various energy sources is also 

increasing dramatically, and traditional fossil energy 

sources such as coal, oil, and natural gas are non-

renewable resources, and their reserves are being depleted 

at an alarming rate [1]. According to the international 

energy agency (IEA), the world's fossil energy resources 

will last less than a century at the current rate of extraction 

[2]. At the same time, according to the United Nations 

report, there are 685 million people around the world who 

face the dilemma of not having electricity, and there is a 

short-term problem of energy. Furthermore, solar energy 

as an almost endless energy source, complete can become 

a key means to solve the human energy shortage [3]. 

However, ordinary solar power generation materials are 

usually monocrystalline or polycrystalline silicon 

materials, whose photoelectric conversion efficiency is 

about 25%, while its preparation environment requires 

high requirements, which cannot be promoted on a large 

scale [4]. As an important material for new solar cells,  

 

perovskite has attracted much attention. Its photoelectric 

conversion efficiency can reach 25.7%. Its preparation 

cost is lower than that of traditional silicon solar materials,  

and it is not restricted by the preparation environment [5]. 

However, its stability is poor, so there is a need to screen 

for more superior combinations of components among the 

perovskite fraction. The traditional experimental trial-and-

error and first-principle calculations are too time-

consuming and costly. Instead, computerized techniques 

can be used to quickly screen perovskite materials with 

suitable band gap and stability [6]. In an attempt to 

improve the model's prediction performance, Yang et al. 

developed a gradient boosting regression tree (GRBT) 

model based on the enhanced sparrow search algorithm to 

solve the GRBT algorithm improvement challenge. The 

sparrow search algorithm was improved by the model 

using chaotic sinusoidal mapping and Student t 

distribution mutation. The gradient-enhanced regression 

number model was then optimized using the revised 

algorithm to increase the model prediction accuracy (PA). 

In comparison to the unimproved model, experiments 
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showed that the improved model's correlation coefficient 

increased by 0.015 and its root mean square error (RMSE) 

decreased by 0.09 [7]. When data is few, Zhang et al. 

suggested a novel way to increase PA by adding missing 

values for gradient-enhanced regression numbers. The 

method generated different copies of the masked dataset 

according to the degree of missing data in the 

preprocessing stage and pre-interpolated them, and 

regressed the time residuals in the input stage to input the 

missing values into the masked dataset. According to 

experiments, the technique could successfully increase PA 

in the absence of data [8]. 

To address the screening problem of new perovskite 

materials, Diao et al. proposed a new high-throughput data 

calculation method in order to find out the efficient, stable 

and non-toxic combinations among many perovskite 

materials. The method introduced the data mining 

algorithm into the high-throughput calculation to 

investigate the photovoltaic conversion performance and 

stability of 42 materials. The experiments showed that 39 

of the perovskite materials had high stability with 

tolerance coefficients between 0.8 and 1.1, and three ideal 

cell materials were chosen wrongly [9]. To increase the 

conversion efficiency of solar cells, Zhi et al. suggested a 

machine learning (ML)-based approach for perovskite 

molecular characterisation and conversion efficiency. The 

method constructed a ML model using relevant data of 19 

materials. It was shown that hydrogen bond donors, 

hydrogen atoms, and octane-water partition coefficients 

were important features for the selection of perovskite 

materials [10]. Liu et al. proposed a new ML-based 

screening method in order to enhance the screening 

efficiency of perovskite passivation materials. The method 

mapped the relationship between conversion efficiency 

and interfacial passivation materials at the atomic level 

and utilized density flood theory for high-throughput 

prediction. The results of the experiments showed that the 

high-performance materials could successfully contribute 

to the significant passivation effect, and the method 

offered screening guidelines for interfacial materials at the 

atomic level interface [11]. Lai proposed a new high-

throughput screening strategy in an attempt to enhance the 

flux and reduce the time cost of the new halide perovskite. 

To spatially encode particle size and composition, 

respectively, the approach combined defect-engineered 

anion-exchange techniques with evaporative 

crystallization polymer pen lithography (EC-PPL). To 

quickly create 3-particle libraries, it selectively changed 

the defect concentration of particular particles. 

Experiments demonstrated that this strategy was effective 

in faster screening of new materials [12]. Liu et al. 

proposed a new ML based model in an attempt to reduce 

the trial and error cost of double perovskite oxides. The 

model utilized the band gap data of 236 perovskite 

materials to form a dataset, and used features such as ionic 

radius to screen stable perovskite materials with suitable 

band gaps from a variety of candidate combinations. 

Experiments demonstrated that the model was able to 

effectively reduce the cost of trial and error for new 

materials [13]. 

In summary, existing studies have explored the 

improvement of the GRBT algorithm and the screening of 

new perovskite materials from various aspects, and have 

achieved certain results. However, the existing methods 

for screening halogenated chalcogenides continue to face 

challenges, including inadequate PA. The root-mean-

square error in band gap prediction remains substantial, 

necessitating the reduction of this error to below 0.05 to 

enhance the accuracy of chalcogenide predictions. 

Therefore, the study proposes a perovskite screening 

model based on GBRT algorithm and transfer learning, 

which innovatively adopts weighted averaging instead of 

the initial simple averaging to utilize all the information 

between the data completely. Meanwhile, adaptive 

reduction step size is introduced to optimize the algorithm, 

which is fused with support vector machine (SVM) 

algorithm to construct the hybrid model. Hierarchical 

transfer learning is used to divide the source domain data 

(SDA) and train the model separately. The goal of study is 

to improve the screening accuracy and speed of perovskite 

new materials, promote the rapid development of solar 

power generation, and reduce carbon emissions. 

Based on the above related studies, Table 1 

summarizes the research methodology, RMSE, 

calculation time, and shortcomings of the related studies.

Table 1: Summary of relevant information of relevant studies 

Author Research methods RMSE Calculation time (ms) Insufficient 

Literature [7] 

Improvement of 

GBRT based on 

sparrow search 

algorithm 

0.072 97.5 
Reduced computation speed 

when data volume is too 

large 

Literature [8] 
Pre-interpolation 

GBRT 
0.066 86.2 

Higher requirements for pre-

interpolation 

Literature [9] 
High-throughput data 

computation 
0.094 247.5 

Higher hardware 

requirements 

Literature [10] 
Machine learning 

models 
0.107 89.4 

Requires more precise 
parameterization 

Literature [11] 

Machine learning and 

density functional 
theory  

0.065 155.2 
Requires high quality data 

for training 

Literature [12] 

EC-PPL and defect-

engineered anion 
exchange techniques 

0.058 586.4 

Higher equipment 

requirements and more 
difficult to operate 
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Literature [13] 
Machine learning 

models 
0.079 58.3 

Insufficient generalization 
ability when facing new 

materials 

This text 
GBRT and transfer 

learning 
0.032 62.5 / 

As illustrated in Table 1, while extant studies have 

attained specific outcomes in the context of chalcogenide 

material screening, their RMSE and computational 

efficiency performances remain unsatisfactory. Moreover, 

the experimental requirements are more stringent. 

Therefore, this study innovatively proposes a 

chalcogenide material screening method based on GBRT 

and migration learning, which effectively improves the 

screening speed and accuracy of new chalcogenide 

materials. To realize the screening and band gap 

regulation of new chalcogenide materials, the study 

proposes a chalcogenide screening model based on GBRT 

and migration learning. The general structure of which is 

shown in Figure 1.

A new material screening model for 

chalcogenide based on GBRT and 

migration learning

Introduction 

and current 

state of 

research

Improvement 

of the GBRT 

algorithm

GBRT 

algorithm 

combined with 

SVM

hierarchical 

transfer 

learning

Experimental 

analysis of 

chalcocite band 

gap screening

Experimental 

analysis of multi-

property screening 

of chalcocite

Full text 

summary

(a) Article Structure Chart

(b) Article Flowchart

 

Figure 1: Overall architecture and flowchart of the article

In Figure 1(a), the study first explains the relevant 

research background, the current status of domestic and 

international research, and the innovation of the 

manuscript. The first chapter focuses on how to improve 

the GBRT algorithm and use it for chalcocite band gap 

screening. The second chapter focuses on the hierarchical 

migration learning of the model and the screening of 

chalcocite materials for multi-properties. The third chapter 

carries out a comprehensive test on the above methods. 

The fourth chapter carries out a full text summary as well 

as the future prospects. In Figure 1(b), the GBRT 

algorithm is selected as the fundamental prediction model, 

with the KNN algorithm employed to enhance it. The 

weighted average of the KNN classification algorithm is 

capable of emphasizing the correlation between variables, 

thereby enhancing the model's PA. Concurrently, the 

adaptive reduced step size optimization algorithm is 

implemented, which can employ a larger learning rate to 

expedite the identification of the optimal solution in the 

initial training phase and progressively diminish the 

learning rate in the subsequent phase to circumvent 

oscillatory behavior near the optimal solution or the 

occurrence of overfitting. The improved GBRT model is 

combined with the SVM model to improve the complex 

data processing capability and robustness of the hybrid 

model, and to achieve stable prediction results. The target 

domain data is input into the hierarchical migration model 

using a sliding window for training to obtain the initial 

training model, and the hierarchical migration can 

effectively reduce the computation time. The optimized 

GBRT-SVM hierarchical migration learning model first 

uses the low-level features of the data obtained by 

migration learning as input to the GBRT, then initializes 

the SVM with the final weights obtained by migration 

learning, and finally uses the features generated by the 

GBRT as input to the SVM for classification. Finally, the 

two models are used to screen the chalcogenide materials 

separately to obtain the best screening results. 
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2 Methods and materials 

2.1 Improved GBRT algorithm for 

screening hybrid perovskite band gap 

In solar cells, the band gap of perovskite materials is 

one of the direct influences on the photovoltaic conversion 

efficiency. The width of the band gap determines the 

wavelength range of light absorbed by perovskite 

materials, which in turn affects the photovoltaic 

conversion [14]. A hybrid perovskite is a heterogeneous 

material that combines organic and inorganic substances, 

which reacts when the two substances are interspersed, 

resulting in its unique properties. The general formula is 

ABX3. The A site (A-S) is usually a cation with a large 

radius, such as Cs+, Rb+, and MA+. The B site (B-S) is 

usually a relatively small radius cation, such as Pb2+, Sn2+, 

and Ge2+. The X site (X-S) is for anions, commonly 

halogenated elements such as I-, Cl-, and Br-. Solar cells 

made of hybrid perovskite material have the advantages of 

simple process and low cost. Their photoelectric 

conversion efficiency is generally more than 20%, but 

there is still room for further improvement. The material 

components can be continuously adjusted to change its 

band gap width to enhance the photoelectric conversion 

efficiency [15]. Therefore, corresponding ML techniques 

are needed to screen perovskite materials with suitable 

band gaps, and the GBRT algorithm is selected for the 

study. Because GBRT can achieve high PA by integrating 

multiple weak learners, and when combined with SVM 

models, it can handle nonlinear relationships and complex 

data structures, making it suitable for scenarios with more 

features and complex relationships. Lower PA results 

from the platform GBRT algorithm's overly simplistic 

prediction function on the leaf node, which is also 

susceptible to changes in data quality. Therefore, by 

replacing the original simple average with the weighted 

average of the K-nearest neighbor (KNN) classification 

algorithm, the study enhances the technique and fully 

utilizes the information between all the data. The KNN 

algorithm first needs to calculate the distance from the 

training sample to the predicted sample in each node. A 

sample is selected which is closer to the predicted sample 

and the output variable of the sample is shown in Equation 

(1) [16]. 

 ( )1 2 1, ,..., ,x xf f f f−  (1) 

 

In Equation (1), xf  denotes the output variable of the 

x th training sample. The weights calculated for each 

sample weighting are shown in Equation (2). 
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In Equation (2), iw  is the weight of the training 

sample. id  is the distance from the training sample to the 

predicted sample. The weighted average is calculated as 

shown in Equation (3). 
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In Equation (3), W  denotes the weighted average of 

the samples. The study choose Equations (1)-(3) to 

compute the weighted average of the KNN algorithm 

instead of the simple average, which improves the 

utilization of data and is suitable for initial data 

processing. The K value of the KNN algorithm by plotting 

the classification error rate curve corresponding to 

different K values, the error rate in a certain range of K 

values will first decrease and then increase, when the 

lowest point corresponding to the K value is the best 

choice. The study uses the weighted average of the KNN 

classification algorithm to be able to focus on the 

correlation between variables and effectively enhance the 

PA of the model. The reduction step size of GBRT 

algorithm, i.e., the learning rate, is usually kept constant, 

which increases the risk of overfitting of the algorithm, as 

well as reduces the training efficiency and so on. The 

study introduces an adaptive shrinkage step to optimize 

the algorithm. Firstly, Equation (4) illustrates how the 

algorithm's loss function (LF) is defined [17]. 
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In Equation (4), L  denotes the LF of the algorithm. 

N  denotes the number of random subsamples. ( )j iH x  

denotes the strong learner consisting of the first j  

residual trees.   denotes the reduced step size. ( )1j ih x+  

denotes the weak learner of the 1j + th residual tree. 

When the strong and weak learners are deterministic 

values, the LF is used to derive the reduced step size, as 

shown in Equation (5). 

 

 ( ) ( )( ) ( )1 1

1

2 n

i j i j i j i

i

L
f H x h x h x

N



+ +

=


 = − − + 
 

  (5) 

 

In Equation (5), the value of the adaptive reduction 

step can be computed using Equation (6) when the 

derivative equals zero. 
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Adaptive scaling of the step size allows a larger 

learning rate to be used in the early stages of training to 

quickly solve the optimal solution, and a progressively 

smaller learning rate in the later stages to avoid oscillation 

around the optimal solution or overfitting. The study 
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selects Equations (4)-(6) to improve the GBRT algorithm 

with adaptive reduced step size, which can improve the 

training efficiency and reduce the risk of overfitting of the 

algorithm, and is applicable to the training process of the 

GBRT algorithm. The specific operation flow of GBRT 

algorithm improved with KNN is shown in Figure 2.

Parameter setting
Input training 

sample

Initial step size 

reduction
Subsample training

Weighted 

average

Prediction 

residual

Dynamic 

update

The residual tree is 

smaller than the 

trained residual tree

Yes

Minimum 

residual tree of 

prediction error

Construct 

regression model

No  

Figure 2: Specific operation flow of improved GBRT algorithm

In Figure 2, the training samples are entered first, the 

parameters such as the number of training times and the 

random sampling rate of the residual tree are set, and the 

initial reduction step is set to 0.01. The smaller reduction 

step modulates the model by only a small amount each 

time, which can effectively prevent the model from 

overfitting during training. Relevant studies have shown 

that although a larger reduction step can converge quickly, 

it is only applicable to simple data sets. Moreover, in the 

screening of chalcocite materials, the accuracy of the 

model with a reduction step of 0.01 is usually greater than 

that with a reduction step of 0.1, and the samples are 

initialized after the reduction step setting is completed. A 

sub-sample is randomly selected and trained on the 

residual tree, and a weighted average is used to find the 

prediction function. The output variable values are 

updated using the predicted residuals, and the size of the 

reduction step is dynamically updated. When the number 

of remaining residual trees is smaller than the number of 

trained residual trees, the residual tree with the smallest 

prediction error is extracted. This residual tree and all 

previous residual trees are used to form a regression 

model. To address the modeling problem when the 

relevant sample data is insufficient and to enhance the 

model PA, the research adopts the fusion of SVM 

algorithm and GBRT algorithm to construct the hybrid 

model. This approach effectively improves the complex 

data processing ability and robustness of the hybrid model 

and provides stable prediction results through the stronger 

generalization ability and high-dimensional data 

processing ability of SVM. The SVM algorithm, through 

the nonlinear mapping function, maps the low-

dimensional. The SVM algorithm maps the low-

dimensional training sample data into the high-

dimensional space by means of a nonlinear mapping 

function, and performs linear regression of the data in the 

high-dimensional space, and the regression constructor of 

the SVM is shown in equation (7). 

 

 ( ) ( )f x x b= +  (7) 

 

In Equation (7), ( )f x  denotes the regression 

constructor.   is the weight vector. ( )x  denotes the 

NMF. S denotes the bias term. The weight vector and bias 

term are solved as shown in Equation (8). 
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In Equation (8), C  denotes the regularization 

constant. Both   and    denote slack variables. 

Equation (9) is used to determine the solution high spatial 

data. 

 

 ( ) ( ) ( ),i i i jf X q q X X b= − +  (9) 

 

In Equation (9), both iq  and 
iq

 denote Lagrange 

multipliers. ( ),i jX X  is the kernel function (KF). The 

selection of the kernel function is contingent upon the 

particular circumstances of each case. This study posits 

that the radial basis kernel function requires a smaller 

number of parameters and is adept at effectively 

addressing nonlinear, differentiable problems by mapping 

the data points of the input feature. Space into an infinite-

dimensional feature space. At the same time, the kernel 

function has a wider scope of applicability, and it can 

make the SVM model have a wide range of accuracy, so it 

is selected as the kernel function of SVM. Which is 

calculated as shown in Equation (10). 

 

 ( ) ( )2

, expi j i jx x x x = − −  (10) 

 

In Equation (10), ( ),i jx x  denotes the radial basis 

KF.   denotes the width of the radial basis kernel. 
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i jx x−  denotes the Euclidean distance between two 

points. The study selects Equations (7)-(10) for SVM and 

GBRT fusion, which can improve the model's high-

dimensional data processing ability and is suitable for the 

analysis of complex data. Figure 3 depicts the hybrid 

model's operational flow.

Regression tree 

construction Training sample 

classification

Simple data

Complex data

Improved GBRT 

training model

SVM training 

model

Simple sample 

prediction

Complex sample 

prediction

Training sample 

labeling

K nearest neighbor 

algorithm classification
 

Figure 3: Operation flow of the hybrid model

In Figure 3, after constructing the regression tree 

using the GBRT algorithm, the training samples are 

divided into simple data and complex data based on the 

prediction deviation of the leaf nodes. The first 1/2 leaf 

nodes with large prediction deviation are categorized as 

complex data, and the remaining 1/2 leaf nodes are 

categorized as simple data. In the study, the simple data is 

input to the GBRT model for training, and the complex 

data is input to the SVM model for training. After labeling 

the two training data with categories, the test samples are 

classified using the classification algorithm based on K-

nearest neighbor algorithm, which classifies the test 

samples into simple and complex data, and then the two 

models are used to predict the test samples after the 

training is completed. 

2.2 Multi-property screening of halogen 

double perovskite based on 

hierarchical transfer learning 

Despite the advantages of low manufacturing cost and 

high photovoltaic conversion efficiency, the presence of 

heavy metals such as lead in their composition renders 

heterogeneous chalcogenide materials environmentally 

and biotoxic. Leakage of these materials can result in soil 

and water contamination, thereby affecting the ecosystem 

and human health. Adverse effects may include 

neurological damage, reproductive toxicity, and 

hematologic disorders. Therefore, there is a need to screen 

non-toxic and environmentally friendly chalcogenide 

materials [18]. Halogen double perovskite is an effective 

alternative to lead-based perovskite materials due to its 

lead-free nature and high stability and dimmability. The 

general formula for the structure of halogen double 

perovskite is A2BB'X6. Among them, the A-S is an 

inorganic cation. The B-S is a monovalent metal ion (MI), 

the B' site is a trivalent MI, and the X-S is a halogen ion 

(HI). The B' site is a trivalent MI and the X-S is a HI. The 

X-S is a HI. The octahedral factor of A2BB'X6 is 

calculated as shown in Equation (11). 

 

 
B

X

r

r
 =  (11) 

 

In Equation (11),   denotes octahedral factor. Br  

denotes radius of B-S ion. Xr  is the radius of the X-S HI. 

The calculation of tolerance factor is shown in Equation 

(12). 

 

 
( )

( )2

A X

B X

r r
TF

r r

+
=

+
 (12) 

 

In Equation (12), TF  denotes the tolerance factor. 

Ar  denotes the radius of the A-S ion. Equations (11) and 

(12) are chosen for the study to evaluate the stability in 

chalcogenide structures. However, the available data 

samples of A2BB'X6 materials are small, and most of the 

ML methods are unable to obtain the prediction results 

with high accuracy in the limited data. Therefore, the 

study uses transfer learning algorithm for A2BB'X6 

material screening. Transfer learning can improve the 

model's generalization capacity, lessen reliance on a lot of 

labeled data, and adapt to the target domain by using the 

knowledge of the source domain. Figure 4 illustrates the 

fundamental architecture of transfer learning in artificial 

neural networks.
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Figure 4: Basic structure of transfer learning neural network

In Figure 4, the neural network is divided into five 

layers in total, which are the input layer, two hidden 

layers, one output layer, and one error calculation layer. 

Equation (11) is used to connect the data in the input layer 

amongst all of the neurons in each layer, and the two 

hidden layers are used to extract the input data's features 

layer by layer. Then, the nonlinear inertia in the data is 

learned and expressed by the activation function. 

Moreover, the study selects the ReLU activation function 

that possesses computational simplicity, can avoid 

gradient vanishing, as well as performs well in deep 

networks. Finally, it converts the data into predictions 

through the output layer. However, the ordinary transfer 

learning algorithm needs to be carried out step by step 

many times, which takes a long time. Therefore, the 

algorithm is improved hierarchically. The hierarchical 

transfer learning firstly needs to divide the SDA, calculate 

the fit of the SDA and sort it according to the size. The 

target domain data (TDA) is input into the GBRT-SVM 

model using a sliding window for training, and the initial 

training model is obtained. The SDA partitioning process 

for hierarchical transfer learning is shown in Figure 5.

Source domain data

Target domain data Data partitioning

Low fit data is eliminated

Residual data sort

 

Figure 5: Source domain data partitioning process of hierarchical transfer learning

In Figure 5, the study also used a sliding window to 

input the SDA into the model. Among them, a single 

prediction is available in each window, and R², the 

goodness of fit, is used to indicate the degree of 

correctness of the prediction results. The study sets the fit 

threshold at 0.7, removes data with a fit less than the 

threshold, and uses the size of the R² to rank the data, with 

the higher the fit the higher the ranking. The study is based 

on the number of layers of the hierarchical migration 

model. The SDA that meets the fit requirements is divided 

into a total of K groups of data, the K1 group of data with 

a lower fit is used to train the K1 layer of the model. The 

weights of the training results are recorded, the rest of the 

layer is frozen, and the K2 group of data is used to train 

the K2 layer of the model. Moreover, the K2 layer of the 

training is used to load the previous layer of the weights 

and to determine the loss of prediction results in the target 

dataset in whether or not to decline. If it decreases, 

unfreeze the current layer and all previous layers, and vice 

versa, continue training until all layers of the model are all 

unfrozen. The prediction effect of each layer is judged and 

the weight of the layer with the largest increase in 

prediction effect is recorded. The operation flow of 

hierarchical transfer learning is shown in Figure 6.
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No  

Figure 6: Operation flow of hierarchical transfer learning

In Figure 6, the input data are SDA, TDA, and GBRT-

SVM hybrid model. The study first divides the SDA, 

trains the TDA in the model to get the initial prediction 

model, and sorts the SDA according to the coefficient of 

determination and divides them into K groups. The study 

uses the data of the division number for hierarchical 

transfer learning, using the loss value as a judgment 

criterion for the prediction effect. The training is 

continued if the loss value decreases until all layers of the 

model are fully unfrozen. After the model transfer learning 

is completed, the study uses the TDA to adjust the model 

parameters, initialize the final fully connected layer 

weights, and set a smaller learning rate to train only the 

fully connected layer. The optimized GBRT-SVM model 

with hierarchical migration learning first uses the low-

level features of the data obtained from migration learning 

as inputs to the GBRT, then initializes the SVM with the 

final weights obtained from migration learning, and 

finally uses the feature inputs generated by the GBRT in 

the SVM for classification. The study, in an effort to 

deduce the complexity of the model and the occurrence of 

overfitting situations, uses a feature subset-based 

approach for feature dimensionality reduction after 

comprehensive consideration. The method utilizes the 

Pearson coefficient between different feature subsets to 

reduce the linear feature correlation. The Pearson 

coefficient is calculated as shown in Equation (13) [19]. 
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In Equation (13), r  denotes the Pearson coefficient. 

iX  is the i th observation of variable (OV) X . X  is the 

mean of variable (MV) X . iY  is the i th OV Y . Y  is 

the MV Y . n  is the total quantity of observations. The 

Pearson's coefficient takes values between [-1, 1], when it 

takes a value of 1, it indicates a fully positive linear 

correlation. When it takes a value of -1, it indicates a fully 

negative linear correlation, and when it takes a value of 0, 

it indicates no linear relationship. The study calculates the 

Pearson coefficient of each characteristic with respect to 

the target variable and retains the characteristics with high 

linear correlation. The study retains features with Pearson 

coefficients greater than 0.5 as a subset of features, and 

feature dimensionality can be reduced. The data are 

normalized to ensure comparability between data 

magnitudes. The study uses the normalization method to 

convert the initial data to standard data, as calculated in 

Equation (14) [20]. 

 std

X
X





−
=  (14) 

In Equation (14), stdX  denotes the normalized feature 

data (FD). X  denotes the initial data.   the mean value 

of the FD.   is the standard deviation of the FD. After the 

screening of the materials is completed, the study employs 

the formation energy (FE) to validate the materials with 

first-principle calculations. The relevant parameters of the 

materials are the same as the model in the training set. The 

FE of a perovskite compound is the energy released or 

absorbed by an atom to form a compound from a free state. 

The FE of a compound is calculated as shown in Equation 

(15). 
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In Equation (15), bE  is the FE of the compound. 

( )m n kE A B C  denotes the total energy of the compound. 

( )E A , ( )E B , and ( )E C  denotes the energy of the free 

atom A , B , and C , respectively. m , n , and k  

denotes the number of atoms A , B , and C , 

respectively. The study selects Equations (13)-(15) for 

data feature reduction and normalization, which can 

reduce the complexity of the model, ensure the 

comparability between data magnitudes, and apply to data 

processing of different dimensions. The pseudo-code for 

the improved GBRT-SVM hybrid model is shown in 

Figure 7.
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# Import necessary libraries

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.svm import SVC

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error, accuracy_score

# Assume the dataset is already prepared

# X: Feature matrix

# y: Target variable

# Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Step 1: Feature extraction using GBRT

gbrt = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)

gbrt.fit(X_train, y_train)

# Extract features from the training and testing sets using the GBRT model

X_train_features = gbrt.apply(X_train).reshape(X_train.shape[0], -1)

X_test_features = gbrt.apply(X_test).reshape(X_test.shape[0], -1)

# Step 2: Classification or regression using SVM

svm = SVC(kernel='rbf', gamma='scale', C=1.0)  # For classification tasks

# For regression tasks, use SVR instead

# svm = SVR(kernel='rbf', gamma='scale', C=1.0)

# Train the SVM model

svm.fit(X_train_features, y_train)

# Step 3: Evaluate model performance

# For classification tasks

y_pred = svm.predict(X_test_features)

accuracy = accuracy_score(y_test, y_pred)

print(f"Test set accuracy: {accuracy:.4f}")

# For regression tasks

# y_pred = svm.predict(X_test_features)

# rmse = mean_squared_error(y_test, y_pred, squared=False)

# print(f"Test set RMSE: {rmse:.4f}")

 

Figure 7: Pseudo-code for improved GBRT-SVM hybrid modeling

3 Results 

3.1 Experimental analysis of screening of 

hybrid perovskite band gap 

In order to verify the prediction effect of the GBRT-

SVM hybrid model, the study adopts the Perovskite 

Database, which contains more than 16,000 chalcocite-

related thesis data, covering more than 42,400 chalcocite 

materials with detailed information, which is of high 

quality and good reliability, and the database can 

effectively simplify the process of literature search and 

data analysis to improve the experimental efficiency. The 

database can effectively simplify the process of literature 

search and data analysis, and improve the experimental 

efficiency. Table 2 Advantages of the two datasets used in 

the experiment over other datasets.

Table 2: Advantages of the two datasets used in the experiment over other datasets 

Characterization Perovskite Database  Materials Project 

Scale Covering more than 42,400 chalcogenide materials Over 1 million inorganic materials 

Type To include the structure, properties and other data of 

chalcogenide materials 

Provide crystal structure, energy properties, 

electronic structure, thermodynamic properties, etc. 

Update Frequency Continuously updated The data is continuously updated to keep it up-to-

date 

Openness Open Data Open Data 

Collaboration Data sharing Encourage user collaboration and cooperative 

research 

User Interface Interactive graphical interface, easy to use User-friendly interface, easy to search and browse 

In Table 2, the two datasets selected for the 

experiment possess greater advantages in terms of data 

size, data type, and openness, and the data are well-

targeted and easy to find. The filtered, dimensionality 

https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=Perovskite%20Database&rsv_pq=b15471d700033983&oq=%E9%92%99%E9%92%9B%E7%9F%BF%E6%95%B0%E6%8D%AE%E9%9B%86%E6%9C%89%E5%93%AA%E4%BA%9B&rsv_t=9049MUuxSmIrfyow7YVTMvwY0cldblKmK4PqbMTTapHpJT5lc6DJiXAYy4druPBW91LOAsM&tn=34046034_10_dg&ie=utf-8
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reduced, and normalized data are divided into training set, 

validation set, and test set in 8:1:1 manner. The penalty 

parameter of the SVM model is set to 0.1 and the kernel 

function parameter is set to 0.001. The comparison 

algorithms used in the study include SVM and GBRT 

algorithms. Figure 8 compares the variations in loss values 

of several algorithms.
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Figure 8: Comparison of loss value changes of different algorithms

In Figure 8(a), the LF of the GBRT-SVM hybrid 

model decreases faster in the training set and is able to 

obtain the astringent LF value in 30 iterations. The 

minimum value is 0.108, which is 0.115 and 0.160 lower 

than the GBRT and SVM algorithms, respectively. The 

optimization speed is faster than the other two algorithms 

by 35 and 20 iterations, respectively. In Figure 8(b), the 

astringent loss function value of all three algorithms 

increases when faced with the test set data. However, the 

GBRT-SVM hybrid model has the smallest increase in 

loss value, with an astringent loss function value of 0.125, 

which is lower than the other two algorithms by 0.139 and 

0.173, and its increase is lower than the other two 

algorithms by 0.024 and 0.013, respectively. The 

optimization speed of the hybrid model remains basically 

unchanged, while the other algorithms have decreased. 

Comparison of perovskite band gap prediction results of 

different algorithms is shown in Figure 9.
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Figure 9: Comparison of prediction results of perovskite band gap by different algorithms

In Figure 9(a), the RMSE and coefficient of 

determination of the prediction of chalcocite band gaps of 

the GBRT-SVM hybrid model are 0.032 and 99.4%, 

respectively. Furthermore, the predicted values all 

converge to the vicinity of the diagonal of the horizontal 

and vertical coordinates, and there are no prediction points 

with large deviations. The more the model's predicted 

values dissolve the diagonal line, the closer the predicted 

values are to the true values and the higher the model's PA. 

In Figure 9(b), there are some points with large prediction 

deviations between the true band gap values [1.2, 1.8], and 

the RMSEand coefficient of determination of the GBRT 

model are 0.049 and 97.2%, respectively. In Figure 9(c), 

there are points that deviate from the convergence 

diagonal for band gap values below 2.0, and the RMSE 

and coefficient of determination of the SVM model are 

0.055 and 95.7%, respectively. UV-Vis diffuse reflectance 

spectroscopy is used to determine the band gap of 

chalcogenide materials using a UV-Vis spectrophotometer 

and an integrating sphere attachment. A chalcogenide 

sample is first prepared as a thin film and placed in an 

integrating sphere where the reflectance spectra in the UV-

Vis region are recorded and then converted to absorption 

spectra by the Kubelka-Munk function to measure the 

band gap value of the sample. Table 3 displays the hybrid 

model's band gap prediction results for various hybrid 

perovskite samples. 
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Table 3: Band gap prediction results of mixed models for 

different hybrid perovskite samples 

Serial 

number 

Pbe_band 

gap 

Ml_band 

gap (eV) 

Prediction 

error 

1 1.534 1.520 0.014 

2 0.015 0.004 0.011 

3 0.000 0.013 -0.013 

4 2.745 2.713 0.032 

5 1.036 1.107 -0.071 

6 0.000 0.005 -0.005 

7 1.527 1.535 -0.008 

 

In Table 3, the band gap prediction values of GBRT-

SVM hybrid model for hybrid perovskite are all between 

[0.004, 2.713]. The highest and lowest value of the 

prediction error is 0.071 and 0.005, which both satisfy the 

requirement that the error range is less than 0.1 eV. 

Among them, there are only two that satisfy the band gap 

requirement of solar cell materials, which are serial 

numbers 1 and 7, with BGVs in the range of 1.1eV-1.7eV. 

The prediction errors of the hybrid model for sample #1 

are 0.031 and 0.28 lower than those of the GBRT and 

SVM models, respectively, and 0.004 and -0.0042 lower 

for sample #2. 

3.2 Experimental analysis of multi-

property screening of halogen double 

perovskite 

The inorganic halogen double perovskite dataset used 

for the experiments is Materials Project. Other parameters 

and treatments are the same as in Section 2.1, and the 

transfer learning model is used to compare the results of 

FE, bulk modulus, and shear modulus predictions of 

perovskite materials, respectively. Figure 10 compares the 

FE prediction outcomes of perovskite materials using 

various techniques.
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Figure 10: Comparison of prediction results of perovskite material formation by different methods

In Figure 10(a), the ordinary transfer learning method 

can achieve a certain PA for the FE prediction of 

perovskite. Its average decision error, RMSE, and 

coefficient of determination are 0.0472, 0.0609, and 

94.35%, respectively. However, transfer learning takes a 

long time, running once for 2.89 s. In Figure 10(b), the 

average decision error, RMSE, and coefficient of 

determination of the improved transfer learning method 

are lower than that of the ordinary method by 0.0097, 

0.0105, and -5.06%, respectively, and the running speed is 

faster than that of the ordinary method by 1.92 s. Figure 

11 compares the modulus and shear modulus prediction 

findings of various techniques for perovskite materials.
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Figure 11: Comparison of prediction results of bulk modulus and shear modulus of perovskite materials by different 

methods 

In Figure 11(a), the halogen double perovskite 

material has less relevant data and the feature dimension 

reaches 132 dimensions, which leads to lower PA using 

direct prediction methods. The RMSE and coefficient of 

determination are 0.092 and 87.25%, respectively. The 

RMSE of the bulk modulus measured using the improved 

transfer learning method is 0.037 lower and the coefficient 

of determination is 11.18% higher than the direct 

prediction. The prediction results of ordinary transfer 

learning methods are more scattered and further away 

from the diagonal, indicating that the predicted values are 

less consistent with the true values and their PA is lower. 

In Figure 11(b), the RMSE and coefficient of 

determination of shear modulus prediction by the 

improved transfer learning method are 0.057 and 98.65%, 

which are 0.042 and -12.36% lower than the direct 

prediction, respectively. To quantify the uncertainty of the 

model, the study uses 5-fold cross-validation for model 

evaluation. Among them, the experimental data set is 

randomly divided into five mutually exclusive subsets of 

equal size, each of which is an independent test set. The 

results of the 5-fold cross-validation of the formation 

energy and modulus of the material are shown in Figure 

12.
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Figure 12: Formation energy and modulus of materials 5-fold cross validation results

In Figure 12(a), the RMSE of the improved transfer 

learning method after 5-fold cross-validation is 0.0417. It 

is 0.0013 higher than the validation result of the 

independent test set, but still less than 0.05, which meets 

the relevant requirements. In Figure 12(b), the RMSE of 

body modulus after 5-fold cross-validation is 0.057, and 

the RMSE of shear modulus is 0.059, which is higher than 

that of the independent test set. However, both are within 

the acceptable range, indicating that the model is more 

reliable. A comparison of the importance of component 

features on perovskite materials modulus and shear 

modulus is shown in Figure 13.
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Figure 13: Comparison of the importance of component characteristics to the bulk modulus and shear modulus of 

perovskite materials

In Figure 13(a), the factors affecting the material's 

importance from Cc1 to Cc8 are Mendeleev number, 

electronegativity, ionic radius, octahedral factor, p-orbital 

valence electrons, total valence electrons, tolerance factor, 

and s-orbital valence electrons, respectively. Among 

them. The greatest degree of influence on the modulus of 

perovskite materials is the Mendeleev number. The 

Mendeleev number is most important because of its ability 

to quickly identify combinations of materials with 

characteristic properties, and electronegativity because of 

its role in the formation and stability of chemical bonds in 

materials. In Figure 13(b), the degree of influence on the 

shear modulus of the materials above 0.04 includes 

Mendeleev number, electronegativity, octahedral factor, 

total valence electrons. The study screens new 

chalcogenide materials with compliant elemental 

compositions based on the thermal stability, band gap 

value, and B/G ratio of the materials. The screened new 

halogenated bis-chalcogenide materials that meet the 

relevant conditions are shown in Table 4.

Table 4: Comparison of properties of halogen double perovskite new materials 

Element combination Band gap value Formation energy Bulk modulus Shear modulus B/G 

Cs2AuNiF6 1.52 0.042 52.64 6.87 7.66 

K2CuInF6 1.14 0.018 66.51 9.95 6.68 

Cs2AuOsF6 1.55 0.049 60.75 11.09 5.48 

K2InMoCl6 1.25 0.037 27.95 4.87 5.74 

Cs2CuRhF6 1.62 0.054 79.27 15.93 4.98 

K2InCrF6 1.44 0.012 70.25 14.98 4.69 

Rb2InRuF6 1.21 0.009 61.54 16.89 3.64 

In Table 4, the BGVs of the seven halogen double 

perovskite new materials are between [1.14-1.62] eV, 

while the optimum photoelectric conversion efficiency of 

perovskite solar cells is around 1.4 eV, and all of them can 

be used for solar cells at 1.1-1.7 eV. Formation energies 

below 0.05 all meet the stability requirements of the 

material. Except for Cs2CuRhF6, the other six materials 

meet the stability requirements. The ratios of shear 

modulus to bulk modulus of the new materials are all 

greater than 1.75, indicating that the new materials have 

high toughness and can be obtained with good ductility at 

room temperature. The comparison results of ablation 

experiments with different adaptive algorithms and 

improved migration learning methods are shown in Table 

5.
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Table 5: Comparison results of ablation experiments with different adaptive algorithms and improved migration 

learning methods 

Algorithms Ablation Module RMSE 
Coefficient of 

determination (%) 

Predictive accuracy 

(%) 

Adaptive GBRT-

SVM 
/ 0.032 99.4 85.2 

Adaptive SVM / 0.057 94.8 73.5 

Adaptive RF / 0.074 90.3 69.8 

Improved migration 

learning 

/ 0.040 99.4 84.3 

Normalization 0.073 92.6 79.2 

Feature 

dimensionality 

reduction 

0.056 95.7 80.6 

In Table 5, the adaptive GBRT-SVM achieves the 

optimal values for all metrics, and its RMSE is lower than 

that of the adaptive SVM and adaptive random forest (RF) 

by 0.025 and 0.042, respectively. Moreover, the 

coefficients of determination are higher than those of the 

two methods by 4.4% and 9.1%, respectively. For the 

ablation experiment of the improved transfer learning 

algorithm, after removing the normalization processing 

and feature dimensionality reduction module, the 

performance of the algorithm decreases in all aspects. Its 

RMSE increases by 0.033 and 0.016, and the coefficient 

of determination decreases by 6.8% and 3.7%, 

respectively. It indicates that the normalization processing 

has a greater impact on the performance of the model, and 

the feature dimensionality reduction mainly affects the 

computation speed of the model. The relevant terms and 

variables used in the manuscript are shown in Table 6. 

Table 6: Manuscript-related variables and their 

interpretation 

Serial 

number 
Term Detailed Information 

1 GRBT 
Gradient Boosting 

Regression Tree 

2 EC-PPL 

Evaporation 

Crystallization-Polymer 

Pen Lithography 

3 SVM 
Supported Vector 

Machine 

4 KNN K-NearestNeighbor 

5 B/G 
Ratio of shear modulus 

to bulk modulus 

6 
xf  

Output variables of the 

training samples 

7 iw  
Weights of the training 

samples 

8 id  
Distance from training 

samples to predicted 

samples 

9 W  
Weighted average of 

samples 

10 ( )j iH x  

j Strong learners 

consisting of residual 

trees 

11 ( )1j ih x+  
Weak Learner for 

1j +  Residual Trees 

12   step-down 

13 ( )f x  regression constructor 

14 ( )x  
nonlinear mapping 

function 

15 b  bias entry (computing) 

16 C  
Regularization 

constants 

17  and 
 slack variable (math) 

18 iq and
iq

 
Lagrange multiplier 

(math) 

19 ( ),i jX X  kernel function (math) 

20 ( ),i jx x  
radial basis kernel 

function (math) 

21   
Width of radial base 

core 

22 i jx x−  
Euclidean distance 

between two points 

23   octahedral factor 

24 Br  
The radius of the B-site 

ion 

25 Xr  
The radius of the X 

halogen ion 

26 TF  Tolerance factor 

27 Ar  
The radius of the A-

position ion 

28 r  Pearson coefficient 

29 stdX  
The feature data after 

normalization 

30 bE  
The formation energy of 

the compound 

31 ( )m n kE A B C  
Total energy of the 

compound 

32 ( )E A  
The energy of the free 

atom A 

33 ( )E B  
The energy of the free 

atom B 

34 ( )E C  
The energy of the free 

atom C 

 
 

https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=Gradient%20Boosting%20Regression%20Tree&rsv_pq=dfcda11d00145b9b&oq=%E6%A2%AF%E5%BA%A6%E5%A2%9E%E5%BC%BA%E5%9B%9E%E5%BD%92%E6%A0%91%E5%85%A8%E7%A7%B0%E6%98%AF%E4%BB%80%E4%B9%88&rsv_t=07233yi26bblqwpv+bIv4PUgAD7TseNeyu+7X8hmGvHrpIzU43NQpsRRLs6mXU+Ui0ffMpg&tn=34046034_10_dg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=Gradient%20Boosting%20Regression%20Tree&rsv_pq=dfcda11d00145b9b&oq=%E6%A2%AF%E5%BA%A6%E5%A2%9E%E5%BC%BA%E5%9B%9E%E5%BD%92%E6%A0%91%E5%85%A8%E7%A7%B0%E6%98%AF%E4%BB%80%E4%B9%88&rsv_t=07233yi26bblqwpv+bIv4PUgAD7TseNeyu+7X8hmGvHrpIzU43NQpsRRLs6mXU+Ui0ffMpg&tn=34046034_10_dg&ie=utf-8
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4 Discussion 
A band gap prediction model for chalcocite materials 

based on the improved GBRT algorithm and migration 

learning was proposed and applied to the actual analysis 

of chalcocite samples, and the validity of the prediction 

model was verified by relevant experimental analysis. The 

GBRT-SVM hybrid model converged faster in both the 

training and test sets, and the final convergence value was 

smaller than that of the other methods, as the adaptive 

reduction of the step size could effectively improve the 

pre-optimization speed and post-optimization accuracy of 

the model. Compared with the improved methods of Yang 

[7] and Zhang [8], the proposed method could 

significantly improve the computational speed while 

guaranteeing the PA. The RMSE and coefficient of 

determination of the band gap prediction of the hybrid 

model were better than those of the basic method, and the 

consistency between the predicted value and the true value 

was higher, with higher PA, compared with the RMSE 

model of Zhi [10]. In cross-validation, the RMSE of the 

improved migration learning method was 0.0417, which 

was 0.0013 higher than that of the independent test set 

validation results. However, it still less than 0.05, which 

could meet the relevant requirements, and the proposed 

method could effectively improve the computational 

efficiency and reduce the cost of screening new materials 

compared with Liu [13]. The GBRT-SVM hybrid model, 

through its powerful classification and regression analysis 

capabilities, could effectively improve the discovery 

efficiency of new chalcogenide materials and quickly 

identify material combinations with potential high 

performance. This could promote the rapid development 

of solar cells. 

5 Conclusion 
Aiming at the problem of insufficient PA of existing 

screening methods for perovskite materials, this study 

proposed the use of an improved GRBT algorithm for 

screening of hybrid perovskite band gap and hierarchical 

transfer learning for halogen double perovskite multi-

property screening. Experiments indicated that the LF of 

the GBRT-SVM hybrid model decreased faster, with the 

astringent LF values being 0.115 and 0.160 lower than 

those of the GBRT and SVM algorithms, respectively. 

The optimization speed was 35 and 20 iterations faster 

than the other two algorithms, respectively. The pedestrian 

band gap prediction RMSE and coefficient of 

determination of GBRT-SVM hybrid model were 0.032 

and 99.4%, respectively. The predicted values all 

converge neared the diagonal of the horizontal and vertical 

axes, with no significant deviation from the predicted 

points. They were 0.017 and -2.2, and 0.023 and -3.7% 

lower than GBRT and SVM, respectively. The maximum 

prediction error of the GBRT-SVM hybrid model for the 

band gap of hybrid perovskite was 0.071, and the 

minimum error was 0.005. The mean absolute error, 

RMSE, and coefficient of determination of the improved 

transfer learning method were 0.0097, 0.0205, and -5.06% 

lower than those of the ordinary method, respectively, and 

the running speed was 1.92s faster. The RMSE of bulk 

modulus measured by the improved transfer learning 

method was 0.037 lower than directly predicted, and the 

coefficient of determination was 11.18% higher. Factors 

that had an impact on the shear modulus of materials 

above 0.04 included Mendeleev number, 

electronegativity, octahedral factor, and total valence 

electrons. The BGVs of seven halogen double perovskite 

new materials were between [1.14-1.62] eV, with 

formation energies all below 0.05, and the ratio of shear 

modulus to bulk modulus greater than 1.75. The present 

study has identified several areas that necessitate further 

refinement. For instance, although the development of a 

screening model for new chalcogenide materials has been 

achieved using a small-scale dataset, enhancing the 

screening accuracy and efficiency to a certain extent, the 

screening accuracy of the model can be further enhanced 

through the integration of density flooding calculation in 

future iterations. 

List of abbreviations 
GRBT: Gradient Boosting Regression Tree 

EC-PPL: Evaporation Crystallization-Polymer Pen 

Lithography 

SVM: Supported Vector Machine 

KNN: K-NearestNeighbor 

B/G: Ratio of shear modulus to bulk modulus 

xf : Output variables of the training samples 

iw : Weights of the training samples 

id : Distance from training samples to predicted 

samples 

W : Weighted average of samples 

( )j iH x : j Strong learners consisting of residual 

trees 

( )1j ih x+ : Weak Learner for 1j +  Residual Trees 

 : Step-down 

( )f x : Regression constructor 

( )x : Nonlinear mapping function 

b : Bias entry (computing) 

C : Regularization constants 

 and  : Slack variable (math) 

iq and
iq

: Lagrange multiplier (math) 

( ),i jX X : Kernel function (math) 

( ),i jx x : Radial basis kernel function (math) 

 : Width of radial base core 

i jx x− : Euclidean distance between two points 

 : Octahedral factor 

Br : The radius of the B-site ion 

Xr : The radius of the X halogen ion 
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TF : Tolerance factor 

Ar : The radius of the A-position ion 

r : Pearson coefficient 

stdX : The feature data after normalization 

bE : The formation energy of the compound 

( )m n kE A B C : Total energy of the compound 

( )E A : The energy of the free atom A 

( )E B : The energy of the free atom B 

( )E C : The energy of the free atom C 
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