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Abstract: With the increasing global emphasis on ecological conservation and the sustainable use of 

resources, the effective utilization of mineral resources has become a pressing priority. Accurate mineral 

classification helps reduce resource waste, mitigate ecological impact, and improve processing efficiency. 

This paper proposes a deep learning model for mineral image classification based on the YOLOv8-CLS 

architecture, specifically targeting seven minerals: bornite, quartz, malachite, pyrite, muscovite, biotite, 

and chrysocolla, which are the focus of this study. The model was trained and tested on an open-source 

mineral image dataset, achieving Top-1 and Top-5 accuracy rates of 0.92053 and 0.99399, respectively, 

after 120 training epochs. During the testing phase, the model was evaluated on the test set, achieving a 

Top-1 accuracy of 0.90681 and a Top-5 accuracy of 0.99283, demonstrating high accuracy and stability. 

Although a decline in Top-1 accuracy to 0.80219 was observed when testing the model against a new 

batch of data and comparing it to the classic ResNet50 and ResNet101 models, the YOLOv8-CLS model 

still outperforms these models by 0.00684 and 0.04278, respectively, while also having lower performance 

overhead. Despite some remaining flaws, this study demonstrates that the YOLOv8-CLS model is more 

efficient than traditional models in intelligent mineral classification, contributing to resource efficiency 

and promoting the development of sustainable mining practices. 

Povzetek: YOLOv8-CLS z optimizirano ekstrakcijo značilk in podatkovno augmentacijo omogoča bolj 

kvalitetno razvrščanje mineralnih slik kot ResNet50/101. 

 

1  Introduction 
Mineral resources play a vital role in economic and social 

development [1]. Intelligent mineral classification 

technology has actually made considerable developments 

in helping with mineral source research study, mining, 

and administration[2]. Existing mineral identification 

techniques predominantly rely on manual evaluations and 

expert judgments, resulting in reduced efficiency and 

potential biases, which are inadequate for massive 

expedition needs. However, the progression in deep 

learning technology has made intelligent mineral 

acknowledgment systems [4] a popular research study 

location and advanced subject. Specifically, we propose 

the use of the YOLOv8-CLS model to enhance the 

precision of mineral identification under real-world 

conditions, thereby optimizing resource utilization and 

supporting sustainable mining practices. 

Deep learning, which uses the concepts of artificial 

neural networks, has actually changed the area of pattern 

acknowledgment through its multi-layered structure that 

automatically learns information patterns and 

relationships [5] Zeng et al. (2020) [6] suggested an 

ingenious approach by incorporating mineral image 

information and Mohs hardness into neural network 

architectures to improve classification accuracy. Their 

model showed excellent outcomes, achieving a Top-1 

precision of 90.6% and a Top-5 precision of 99.6% when 

related to 36 generally encountered minerals. This 

method not only improves the precision however also 

expands the spectrum of identifiable mineral types. 

Building on these advancements, Wang et al. (2023) [7] 

checked out the application of a deep residual semantic 

network with a contractive architecture for classifying 

volcanic rock thin sections. Their research study, which 

included 12,000 high-resolution thin section images 

covering 11 significant sorts of volcanic rock, reported a 

classification precision exceeding 92% on the test 

collection, highlighting the effectiveness of this deep 

learning approach in geological image assessment. In 

parallel, Zhang et al. (2019) [8] developed a wise 

recognition model specifically made for the evaluation of 

rock and mineral images under a microscopic lense. This 

model shows considerable possibility in enhancing the 

accuracy and effectiveness of mineral classification in 

tiny monitoring. This model, utilizing the Inception-v3 

architecture combined with conventional machine 

learning techniques such as logistic regression, help 

vector devices, and multilayer perceptrons, attained a 

precision of 90.9% for minerals consisting of quartz, 

feldspar, potassium feldspar, and plagioclase. Zhang et al. 

(2023) [9] furthermore increased this job by having a look 

at electrochemical methods for mineral recognition, 

highlighting the crucial task of exact identification 
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methods in geological research study. These looks into 

jointly highlight the expanding value of deep learning and 

expert system approaches in the specific classification of 

geological products, showing durable performance 

throughout different mineral and rock types. 

Image classification jobs, which assign input photos 

to predefined groups, are generally utilized in medical 

diagnostics, self-governing driving, smart production, 

and other domains. In recent years, image classification 

models have actually progressed from standard machine 

learning techniques to innovative deep learning 

approaches utilizing convolutional neural networks 

(CNNs)[10]. Conventional image classification 

approaches depend on handcrafted feature extraction 

methods like SIFT and HOG, which face performance 

restrictions when handling facility, high-dimensional 

image information. However, with the widespread 

fostering of deep learning, specifically CNNs, automatic 

function learning has revolutionized image classification. 

Models such as ResNet, DenseNet, and EfficientNet 

represent modern improvements in image classification, 

resulting in significant renovations in precision and 

efficiency. ResNet makes use of recurring blocks to 

alleviate the disappearing slope concern in deep 

networks, which boosts both training depth and precision 

[11] DenseNet fully makes use of features from 

preceding layers through thick links, making it possible 

for much more reliable function reuse [12]. EfficientNet, 

created through neural architecture search (NAS), 

masters both efficiency and computational efficiency, 

causing its extensive application throughout numerous 

domains [13]. In the last few years, the Transformer-

based Vision Transformer (ViT) model has additionally 

emerged in image classification tasks. By separating 

photos right into patches and applying the Transformer 

architecture initially made use of in natural language 

processing, ViT attains remarkable classification 

accuracy. Despite the high information and 

computational needs, ViT's ability to capture global 

image context improves classification performance. In 

the field of image classification, maximizing models for 

details application situations has actually become a key 

study focus. Networks like MobileNet provide high 

precision with less criteria and reduced computational 

prices, making them suitable for gadgets with restricted 

sources, such as smart devices and embedded systems 

[15]. As deep learning models remain to advance, image 

classification tasks are becoming significantly precise 

and efficient. Future study will concentrate on 

maximizing models for large-scale datasets and 

computational sources. In cases of source restraints, 

models will certainly be fine-tuned to supply efficient and 

exact services across different application circumstances. 

The YOLO algorithm household [17] has obtained 

considerable traction throughout different markets 

because of its convenience and real-time item detection 

abilities. In the biological sciences, Abdullah et al. [18] 

made use of the YOLO algorithm in mix with underwater 

electronic cameras to identify fish varieties in real-time, 

significantly improving the accuracy and efficiency of 

aquatic biodiversity evaluations. This approach has set 

new criteria for eco-friendly monitoring, specifically in 

underwater environments. In web traffic management, 

Zuraim et al. [19] incorporated YOLO right into a 

website traffic surveillance system, making it possible for 

specific vehicle discovery and tracking. This 

improvement has actually offered beneficial insights 

right into traffic patterns, aiding in urban planning and 

congestion analysis, eventually contributing to enhanced 

framework development. In the farming industry, Vilar-

Andreu et al. [20] carried out YOLO to create an insect 

discovery system that can determine and take care of 

plant bugs with high precision. The prompt control of 

insects has actually caused significant improvements in 

both plant top quality and return, underscoring the 

algorithm's influence on farming productivity. At the 

same time, in the clinical area, Prinzi et al. [21] applied 

YOLO to bust X-ray image evaluation, substantially 

boosting the detection of early-stage tumors. The 

enhanced accuracy in growth acknowledgment has 

actually resulted in far better treatment results and 

increased survival costs for people, revealing the 

formula's significance in medical diagnostics. In 

semiconductor production, Reddy et al. [22] utilized the 

YOLO formula to recognize concerns throughout 

manufacturing, which reduced product waste and 

increased functional efficiency. This application shows 

the formula's worth in high-precision commercial jobs. 

The present variation, YOLOv8 [23], presented structure 

renovations and much more enhanced its discovery 

capabilities, making it a much more reliable gadget 

throughout these different locations. These 

improvements have actually widened its applicability, 

reinforcing YOLO's standing as a leading formula in real-

time detection across industries. 

YOLOv8 builds upon the foundational YOLO style 

by consisting of several advanced approaches that 

enhance its detection abilities. At its core, YOLOv8 

employs the Darknet53 network as its backbone, a key 

element that substantially boosts the responsive area and 

reinforces feature depiction. This design enables the 

model to capture more extensive information, boosting its 

performance in things detection jobs. This backbone 

supplies a robust framework for looking after intricate 

pictorial information. Along with the Darknet53 

backbone, YOLOv8 integrates ingenious function blend 

modules, including Spatial Pyramid Pooling (SPP) and 

Path Aggregation Network (PAN). These modules are 

created to enhance the network's capacity to remove and 

process attributes throughout many ranges, as a result 

boosting its ability to handle different and elaborate 

visual details. This multi-scale function removal is 

particularly beneficial for finding little and 

comprehensive targets that might be challenging for 

earlier models. YOLOv8 a lot more fine-tunes its 

discovery capacities with the adoption of waterfall 

multiscale function maps, which increase the accuracy 

and efficiency of target detection in various real-world 

situations, such as untidy atmospheres. The algorithm 

also enhances discovery performance by changing the 

size and element ratio of support frameworks and 

integrating numerous model optimization strategies. 
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Figure 1 provides a relative analysis of the YOLO 

collection, illustrating YOLOv8's substantial 

improvements in mean Average Precision (mAP) and 

dealing with time (ms/img). This comparison highlights 

the substantial developments obtained with YOLOv8, 

showing both its enhanced precision and decreased 

computational time relative to previous variations. These 

enhancements highlight YOLOv8's remarkable 

performance and performance in product detection tasks. 

He et al. (2024) [16] developed an ingenious deep 

learning model using the YOLOv8, specially produced 

the target detection of 7 normal minerals. The model 

undertook significant training, extending 258 epochs, 

during which it showed significant performance 

improvements. By the end of the training treatment, the 

style got to stable and exceptional metrics: 0.91766 in 

accuracy, 0.89827 in recall, 0.94300 in mAP50, and 

0.91696 in mAP50-95. These metrics mirror the model's 

strong capacity to precisely determine and categorize 

mineral samples. Moreover, in the screening stage, the 

variation efficiently acknowledged all samples, with a 

notable 83% of these examples revealing a self-

confidence degree above 87%. This high degree of 

efficiency stresses the model's strength and reliability in 

specifically discovering and categorizing minerals in 

different conditions. 

The YOLOv8-CLS algorithm used in this research 

study is a variation of the YOLOv8 algorithm collection 

particularly created for image classification tasks, which 

has unique benefits in this area. YOLOv8-CLS shares a 

number of function extraction layers with the YOLOv8 

network and adapts them to the specific features of image 

classification tasks. Contrasted to the conventional 

ResNet network, the YOLOv8-CLS model has less 

specifications, reduced computational demands, and 

equivalent identification accuracy. The following seven 

minerals were selected for this study based on their 

geological significance and classification challenges: 

bornite, quartz, malachite, pyrite, muscovite, biotite, and 

chrysocolla. 

1. Bornite: As a prominent copper sulfide 

mineral, bornite is widely distributed in copper deposits 

and plays a critical role in copper exploration and 

metallurgical processes. Its complex texture and variable 

appearance under different lighting conditions make it 

challenging to classify accurately. 

2. Quartz: Quartz is one of the most abundant 

minerals in the Earth's crust, with significant industrial 

applications in glass manufacturing and construction. 

However, its transparency and diverse morphological 

forms often lead to misclassification, especially under 

complex lighting conditions. 

3. Malachite: Known for its vibrant green color 

and ribbon-like texture, malachite is a key indicator of 

copper oxide mineralization. Its unique appearance 

facilitates identification, but its color similarity to other 

green minerals (e.g., chrysocolla) poses classification 

challenges. 

4. Pyrite: Commonly referred to as "fool's gold," 

pyrite is a widespread iron sulfide mineral with a 

distinctive golden luster and cubic structure. Its visual 

similarity to other metallic minerals increases the 

difficulty of accurate classification. 

5. Muscovite: A common silicate mineral found 

in metamorphic and granitic rocks, muscovite is 

characterized by its bright white luster and plate-like 

structure. However, its reflective properties and 

similarity to other mica minerals complicate its 

identification. 

6. Biotite: Biotite is a dark, plate-like silicate 

mineral often found in igneous and metamorphic rocks. 

Its dark color and reflective surface make it prone to 

misclassification, especially under poor lighting 

conditions. 

7. Chrysocolla: This copper silicate mineral is 

typically associated with copper oxide deposits and is 

valued for its bright blue-green color. Despite its 

distinctive appearance, chrysocolla can be confused with 

malachite due to their similar coloration and co-

occurrence in nature. 

The selection of these minerals reflects their 

geological importance in mineral exploration and 

processing, as well as the technical challenges associated 

with their accurate classification. By addressing these 

challenges, our study aims to contribute to the 

development of more robust and reliable mineral 

identification systems. 

 

 
Figure 1: Performance comparison of different versions of the YOLO algorithm 
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2 YOLOv8 series model 
YOLOv8, developed by Ultralytics, is the most widely 

used variant in the YOLO series, supplying notable 

enhancements in real-time discovery, classification, and 

division tasks. The YOLOv8 style incorporates a 

streamlined foundation network with a head network to 

improve both speed up and precision, keeping the 

performance of the YOLO series while boosting 

efficiency metrics, which has gathered considerable 

interest [24] YOLOv8 is versatile, sustaining a variety of 

jobs such as things discovery, image classification, 

circumstances division, and present estimate. This 

flexibility makes it incredibly versatile for a broad variety 

of computer system vision applications, from spotting 

objects in real-time to analyzing elaborate information in 

images and comprehending human positions. Its detailed 

capacities allow it to resolve varied difficulties in the field 

of computer system vision successfully. The total 

framework layout is highlighted in Figure 3. 

2.1 C3 module and c2f module 

The C2f component, unlike YOLOv5's C3 component, 

includes fewer criteria and enhanced feature removal 

capabilities. In C2f, the input initially undergoes a 

convolutional layer with parameters k = 1, s = 1, p = 0, c 

= out, and is then processed with multiple Bottleneck 

layers complying with the recurring and backbone 

outputs. This upgrade enhances gradient circulation, 

therefore improving training rate and general model 

efficiency. This adjustment yields a model that is both 

lighter and a lot more robust, achieving superior 

efficiency in intricate circumstances. As shown in Figure 

2(a), the C3 module substantially enhances the model's 

abilities by incorporating the shunt device with the 

BottleNeck recurring module. This assimilation is built 

on the style concepts of CSPNet and residual networks, 

leading to boosted feature extraction and enhanced 

general model efficiency. This module consists of three 

layers integrating convolution, batch normalization, and 

SiLU activation functions, plus a variable number of 

BottleNeck devices. The last convolutional layer boosts 

the network count by a variable of two, incorporating 

inputs from both the primary and second gradient flow 

branches. 

 
Figure 2: The framework diagram of C3 component and C2f module 

 

Caption: 

(a) C3 Module: This part of the diagram illustrates the C3 

module, which integrates the shunt concept of CSPNet 

with a recurrent architecture to enhance feature extraction 

capabilities. This configuration aids in managing gradient 

flow more effectively, contributing to improved model 

resilience and learning efficiency. 

(b) C2f Module: This section shows the C2f module 

designed to keep the model architecture lightweight while 

enriching feature representation. It optimizes gradient 

flow across different layers, thus enhancing both the 

training and inference efficiency of the model. This 

module plays a crucial role in processing multi-scale 

features and maintaining high computational 

efficiency.[33] 

As shown in Figure 2(b), the C2f module consists of 

a series of BottleNeck blocks, each containing two 

convolutional layers. The first layer is used to process the 

input function map, which is then split right into multiple 

parts, refined individually before being merged. Such a 

design enables the model to capture richer contextual 

information, thereby enhancing the accuracy of target 

recognition. Next, the second convolutional layer further 

refines the output of the merged feature map. The C2f 

component considerably boosts the model's expressive 

ability and precision, bring about outstanding efficiency 

in functional target detection applications. By enhancing 

feature depiction and refining discovery accuracy, the 

C2f module makes certain that the model masters 
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identifying and assessing complicated and varied targets 

in real-world scenarios. 

2.2 Head network, neck network, and 

backbone network 

As depicted in Figure 3, the YOLOv8 model comprises a 

head network responsible for producing last predictions 

and a neck network that works as an intermediary 

between the foundation and the head, concentrating on 

feature fusion and handling. YOLOv8 achieves boosted 

model performance through a number of style 

developments. Structure on the ELAN structure of 

YOLOv7, YOLOv8 introduces the innovative C2f 

module, which replaces the previous C3 component. This 

improvement improves gradient flow and optimizes 

feature usage through added cross-layer connections. 

Moreover, YOLOv8 readjusts channel numbers to much 

better accommodate numerous discoveries demands and 

transitions from a 6x6 to a 3x3 convolutional kernel. This 

modification minimizes computational load while 

enhancing feature extraction efficiency. The network 

structure has likewise been structured by removing two 

convolutional layers. The C2f component additionally 

augments the model's abilities by incorporating added 

miss connections and splitting operations, thereby 

boosting function diversity and total expressiveness. 

Collectively, these innovations contribute to YOLOv8's 

superior accuracy, efficiency, and robustness in complex 

target detection tasks [16]. 

 

 
Figure 3: YOLOv8 overall model structure [16] 

2.3 Uncoupling magnetic head 

As illustrated in Figure 4, YOLOv8 introduces a well-

considered design concept in task division, significantly 

advancing the architecture over traditional object 

detection frameworks. Traditionally, these frameworks 

combine classification and localization tasks, sharing the 

same parameter sets across both tasks. This commonality  

 

 

often leads to mutual interference, where the optimization 

of one task can adversely affect the accuracy of the other. 

However, YOLOv8 engineers have innovated with the 

adoption of a "decoupled head structure" that distinctly 

separates the parameter sets for classification and 

localization tasks. This strategic separation allows each 

network component—the classification subnetwork and 

the regression subnetwork—to focus intensively on its 

specific function: 
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• Classification Subnetwork: This part is 

solely responsible for predicting the probability 

distribution of object classes. It specializes in discerning 

the varied categories of objects within an image, 

optimizing the network to handle the subtleties of class 

differentiation efficiently. 

• Regression Subnetwork: Conversely, this 

subnetwork focuses exclusively on estimating the offsets 

for bounding box coordinates. It is finely tuned to 

improve the precision of object localization within the 

spatial domain of the image. 

This decoupled approach mitigates the conflict 

inherent in performing these tasks concurrently within a 

single shared network. By reducing the inter-task 

interference, YOLOv8 enhances the model's overall 

precision and robustness—particularly under complex 

scenarios where traditional models might struggle with 

accuracy.The implementation of this decoupled head 

structure does not merely segregate the tasks; it refines 

the model's architecture to ensure that both classification 

and localization are handled more effectively without 

compromising on either. This design shift leads to a 

notable enhancement in model performance and 

accuracy, providing a more reliable system that excels in 

varied and dynamic environments. Thus, YOLOv8's 

decoupled head model significantly contributes to the 

model's efficacy, affirming its architectural evolution as 

a major leap forward in object detection technology. 

 
Figure 4: Flow chart of decoupled-head 

2.4 SPPF module 

Figure 5 highlights the capabilities of the Spatial Pyramid 

Pooling Fusion (SPPF) module in enhancing target 

detection. By refining feature maps across various 

dimensions, it significantly improves function extraction. 

The module utilizes a pyramid layer that captures and 

processes features at multiple scales, which helps to 

address the typical information loss seen with fixed-size 

pooling.At the start of its operation, the SPPF module 

applies multi-scale pooling techniques to the input 

feature map, segmenting it into grids of varying 

dimensions. Each grid is processed separately, enabling 

the creation of unique feature representations for each 

scale. This method enhances the module's ability to 

gather and integrate data from different spatial 

resolutions, leading to a richer and more robust feature 

extraction process. These multi-scale features are then 

combined using methods like concatenation or 

summation, merging them into a unified dataset that 

offers a detailed representation of the input. This 

integration is crucial for boosting the model's ability to 

detect and classify objects across diverse scales. To 

manage computational demands and reduce parameter 

count, the SPPF module incorporates a dimensionality 

reduction step, typically through a convolutional or fully 

connected layer. This reduction is essential for 

streamlining the processing phases. Finally, the enriched 

features, which contain extensive spatial and semantic 

details, are passed on to the next layers of the network. 

This transition significantly improves the model’s 

effectiveness in identifying and classifying targets, 

thereby enhancing its performance and accuracy in 

complex detection scenarios. 

 

 
Figure 5: SPPF flow chart 

2.5 Loss function-based label assignment 

In its approach to loss function assignment, YOLOv8 

introduces innovative strategies that distinguish it from 

conventional object detection systems, which typically 

rely on predefined anchor boxes for label assignment and 

loss computation. These traditional systems often require 

extensive hyperparameter tuning across different 

datasets, a challenge that YOLOv8 addresses with its 

adaptive strategies. 

Task Alignment Learning (TAL): YOLOv8 

incorporates Task Alignment Learning to synchronize the 

classification and regression tasks more effectively. 

Unlike conventional methods where these tasks may 

diverge, TAL aligns these tasks to enhance consistency 

and accuracy in the model's outputs. This alignment 

ensures that the learning objectives for both tasks are 

integrated, which helps in reducing discrepancies 

between classification scores and the predicted bounding 
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boxes' accuracy. The TAL method is not redundant; 

rather, it provides a novel way to ensure that adjustments 

in one task directly benefit the accuracy of the other, 

leading to more reliable and precise detection outcomes. 

Distribution Focal Loss (DFL)[35]: Alongside 

TAL, YOLOv8 utilizes Distribution Focal Loss, which 

differs from standard Focal Loss by allowing the model 

to adapt more dynamically to the varying scales of objects 

within the dataset. DFL calculates loss based on the 

probability distribution of the class predictions, which 

helps in handling class imbalance more effectively — a 

common issue in object detection. This feature is 

particularly useful in mineral classification where object 

sizes can vary greatly. 

CIoU Loss[34]: Furthermore, YOLOv8 combines 

DFL with Complete Intersection over Union (CIoU) loss. 

CIoU loss not only focuses on the overlap between the 

predicted and actual bounding boxes but also includes 

distance metrics between the box centers and aspect ratio 

terms. This comprehensive approach reduces the 

localization error and enhances the alignment of 

predicted boxes with ground truth, which is critical for 

achieving high precision in object detection tasks. 

By integrating these advanced loss functions, 

YOLOv8 significantly refines its ability to detect and 

classify objects accurately across different scenarios and 

scales. The model's focus on dynamically adjusting its 

parameters based on the actual data it encounters makes 

it robust against the variations and complexities often 

found in diverse detection environments. This methodical 

enhancement of the loss function framework not only 

improves detection accuracy but also optimizes the 

overall training efficiency, making YOLOv8 a superior 

choice for modern object detection challenges. 

2.6 Detailed overview of YOLOv8-CLS 

model and comparison with YOLOv8 

2.6.1 Introduction to YOLOv8-CLS 

YOLOv8-CLS is a specialized variant of the YOLOv8 

model, tailored specifically for image classification tasks, 

unlike the broader object detection capabilities of the 

standard YOLOv8. This adaptation allows YOLOv8-

CLS to focus on identifying and categorizing objects 

within an image without the additional computational 

overhead associated with bounding box predictions. 

YOLOv8-CLS incorporates several key 

modifications that optimize it for classification: 

Reduced complexity: The model simplifies the 

network architecture by omitting the Spatial Pyramid 

Pooling Fusion (SPPF) layers and the bounding box 

prediction modules found in YOLOv8. 

Enhanced feature extractor: It employs a 

modified backbone that prioritizes features relevant for 

class categorization, enhancing the discriminative power 

of the network for classification tasks. 

2.6.2 Comparative analysis with YOLOv8 

While YOLOv8 is renowned for its efficiency and 

accuracy in object detection across various domains, 

YOLOv8-CLS refines the architecture to enhance image 

classification. Key differences include: 

• Model architecture: YOLOv8-CLS uses a 

streamlined architecture with fewer convolutional layers, 

focusing solely on classifying the primary content of 

images. This results in faster processing times and 

reduced model size, suitable for deployment in 

environments with limited computational resources. 

• Optimization for classification: The training 

process of YOLOv8-CLS has been optimized to 

maximize classification accuracy by eliminating loss 

functions unrelated to classification, retaining only the 

classification loss function to simplify the computational 

complexity of the loss function. 

Figure 6 represent the architecture of YOLOv8-

CLS, using different colors to distinguish the removed 

and modified components compared to the standard 

YOLOv8. Figure 7 provide a step-by-step visualization 

of the data flow within YOLOv8-CLS, emphasizing how 

input images are processed through the modified network 

to produce class predictions. 
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Figure 6: Architectural differences between YOLOv8 and YOLOv8-CLS 

 

 
Figure 7: Data processing flow in YOLOv8-CLS 
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3 Data preparation and 

augmentation 

3.1 Collection of mineral image data 

The model's capacity to discover deep attributes is highly 

affected by its interior style and the variety within the 

training information. As the training dataset broadens, the 

model removes more thorough attributes. This 

enhancement dramatically enhances the model's 

generalization and projection capabilities, enabling it to 

deal with even more elaborate and tough classification 

issues. By incorporating a varied series of features, the 

model becomes better furnished to handle intricate 

scenarios come across during training, recognition, and 

real-world identification tasks. Such a durable attribute 

collection is essential for ensuring the model's 

performance not just in scientific research yet 

additionally in sensible applications where precision and 

versatility are critical. This dataset was originated from 

an openly readily available mineral recognition dataset 

[27], making up seven minerals: bornite, quartz, 

malachite, pyrite, muscovite, biotite, and chrysocolla, 

causing an overall of 5,536 photographs after screening 

to get rid of unfavorable information. The dataset was 

divided into 3,872 images for the training set, 1,106 

images for the validation collection, and 558 photos for 

the test set. The classification of the dataset for every 

mineral is presented in Table 1, while example pictures 

are shown in Table 2. 

 

Table 1: Composition of the dataset [27] 

Mineral 

species 

Training Set (number 

of photos) 

Validation Set (number 

of photos) 

Test Set 

(number of 

photos) 

biotite 721 206 103 

quartz 812 232 116 

bornite 290 83 42 

chrysocolla 371 106 54 

malachite 698 199 101 

muscovite 235 67 35 

pyrite 745 213 107 

total 3243 1106 558 

 
Table 2: Sample images for each of the 7 minerals in dataset [27] 

Mineral 

species 
training set validation set test set 

biotite 

   

quartz 
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bornite 

   

chrysocolla 

   

malachite 

 
  

muscovite 

   

pyrite 

   

3.2 Data augmentation 

To enhance the accuracy of mineral image classification 

under varying conditions and improve model 

generalization, this study employs the built-in online data 

augmentation techniques provided by the Ultralytics 

library, integrated into the YOLOv8-CLS model. These 

techniques were specifically selected for their 

effectiveness in addressing the unique challenges posed 

by mineral image classification, where significant 

variations in texture, color, and form factor can impact 

classification accuracy. 

Mosaic Stitching: This technique combines four 

different training images into a single composite 

image[37]. In the context of mineral images, which can 

exhibit considerable variability in scale and context 

within a single sample, mosaic stitching introduces 

diversity in background and scale. This method simulates 

a wide range of environmental conditions and teaches the 

model to recognize minerals across different contexts and 

juxtapositions, enhancing its ability to generalize to real-

world scenarios. The mosaic parameter was set to 1.0, 

ensuring full application of this technique during training. 

HSV Color Space Adjustment: Adjustments 

within the HSV (Hue, Saturation, Value) color space are 

crucial for mineral classification, as lighting conditions 

and camera settings can introduce substantial variations 

in color and brightness[37]. By randomizing these 

parameters during training, the model becomes more 

robust to such variations, ensuring it focuses on the 

intrinsic properties of the minerals rather than external 
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lighting conditions. The hue (h), saturation (s), and value 

(v) parameters were set to 0.015, 0.7, and 0.4, 

respectively, to simulate a variety of lighting scenarios 

while maintaining consistency in the model's learning. 

Horizontal Flipping: This technique mirrors 

images along the vertical axis[37]. Given the isotropic 

nature of many minerals, where orientation does not 

affect their identity, horizontal flipping prevents 

orientation bias in the model. This helps improve the 

model's performance in environments where minerals 

may appear in arbitrary orientations. The flip horizontal 

(fliplr) parameter was set to 0.5, applying horizontal 

flipping with 50% probability during training. Vertical 

flipping was disabled by setting the flip vertical (flipud) 

parameter to 0.0, as vertical flips are generally not 

suitable for mineral images due to their natural 

orientation. 

These data augmentation techniques address the 

specific challenges of mineral classification by increasing 

the diversity of training data representations. As a result, 

the model can perform robustly under a wide range of 

operational conditions. This approach aligns with recent 

advancements in adaptive data augmentation strategies, 

which dynamically adjust augmentation methods during 

training, thus enhancing the model's ability to generalize 

across various tasks. The chosen techniques and their 

parameters are consistent with the findings of recent 

research, such as Tang et al. [32], which highlights the 

effectiveness of real-time adaptive augmentation in 

improving the generalization capabilities of deep learning 

models. 

4 Development and training of a 

smart mineral classification model 

4.1 Model training and initial settings 

In the training of the mineral classification model, our 

choice of epochs was guided by systematic empirical 

testing to determine the optimal point of convergence. 

Through multiple trials, we progressively adjusted the 

number of epochs and monitored the model's 

performance. We observed that by the 120th epoch, the 

model had already reached a plateau in learning, showing 

no significant gains in accuracy beyond this point. This 

experimental finding led us to set the maximum training 

limit at 120 epochs, as extending beyond this did not yield 

improvement and only increased computational costs 

unnecessarily. 

The batch size of 128 was determined to be the most 

effective through these tests, balancing GPU utilization 

and memory consumption efficiently, thus allowing for 

smooth and effective training sessions. Similarly, the 

choice of an image dimension of 224 pixels was 

empirically optimized. Our tests showed that this 

dimension provided sufficient detail for the accurate 

classification of minerals while maintaining 

computational efficiency, which is critical for handling 

large datasets without compromising on speed or 

accuracy. 

Regarding the learning rate, we settled on 0.00065 

after experimenting with different rates to find a balance 

that allowed steady, effective learning without 

overshooting the model's capacity to converge. The 

application of a cosine scheduler was also an empirically 

motivated choice; it was selected for its effectiveness in 

fine-tuning the learning rate over time, which we noted 

helped in achieving better generalization by allowing 

more precise adjustments to the model weights in the later 

stages of training. 

Additionally, our model uses YOLOv8x-CLS as 

the pre-trained weight, derived from training on a large 

dataset. The “X” option represents the largest model 

variant, with deeper layers and more network parameters, 

which typically leads to improved accuracy. 

These parameters—each rigorously tested and 

chosen based on empirical evidence—collectively 

contributed to the robust performance of our model, 

ensuring that it not only learned efficiently but also 

generalized well to new, unseen data. 

4.2 Model assessment 

Unlike object detection, which utilizes multiple loss 

functions—including bounding box regression, 

classification loss, and objectness loss—to locate and 

categorize objects within an image, our mineral image 

classification model primarily relies on a single loss 

function—classification loss—to categorize each image 

into predefined mineral classes. This distinction 

emphasizes that our task focuses on classifying, not 

identifying individual mineral instances. This loss 

function is crucial for evaluating model performance, 

directing training, and enhancing the model. It measures 

how well the model's predictions match the true labels by 

quantifying the discrepancy between predicted and actual 

values. This measurement influences how the model 

updates its parameters, guiding the adjustment of weights 

and biases through optimization techniques like gradient 

descent to minimize errors and boost classification 

accuracy. As illustrated in Figure 8, the loss is initially 

high, reflecting poor model predictions at the start. Over 

the final 20 epochs, the loss values for both validation and 

test sets decrease and stabilize. For the training set, loss 

reduction is generally steady, though minor fluctuations 

are observed before convergence. The process of loss 

fitting on the validation set plays a crucial role in 

assessing the model’s capacity for generalization. The 

model exhibited robust performance on this set, with the 

loss decreasing steadily and ultimately stabilizing. Final 

loss values were 0.26668 for the training set and 1.25980 

for the validation set. The steady decline and stabilization 

of loss values in both convergence and overfitting 

analyses indicate that the model has likely converged and 

exhibits robust performance on the classification task. 
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Figure 8: Loss curves for training and validation datasets 

 

Top-1 Accuracy measures the rate at which the 

model's most confident prediction matches the actual 

label, while Top-5 Accuracy evaluates how often the true 

label appears among the model’s top five predictions, as 

detailed in formulas (1) and (2). Figure 9 illustrates that, 

after extensive optimization and testing, the final Top-1 

Accuracy and Top-5 Accuracy values reached stable 

levels of 0.92053 and 0.99399, respectively. These 

results demonstrate the model's exceptional precision and 

robustness in mineral image classification tasks. 

Number of correct predictions
Top-1_Accuracy

Total number of predictions
=  (1) 

Number of times the true label is in the top 5 predicted labels
Top-5 Accuracy

Total number of predictions
=

 (2) 

 

 
Figure 9: The curves for top-1 accuracy and top-5 

accuracy 

Confusion Matrix: ① A confusion matrix provides 

a summary of the prediction results for classification 

problems. The key aspect of a confusion matrix lies in its 

ability to quantify both correct and incorrect predictions 

using count values, further breaking them down by class. 

It visually illustrates the extent to which a classification 

model confuses different classes during prediction. 

Beyond merely identifying errors, the confusion matrix 

offers insight into the specific types of mistakes the 

model makes. This decomposition of results helps 

overcome the limitations of relying solely on 

classification accuracy as a performance metric. ② in 

the field of machine learning and statistical classification, 

a confusion matrix is a visualization tool primarily used 

in supervised learning, while in unsupervised learning, it 

is generally referred to as a matching matrix. Each 

column of the matrix represents the predicted instances 

of a given class, while each row corresponds to the actual 

instances of that class. The term "confusion matrix" 

originates from its function—making it easy to observe 

whether the model confuses different classes by 

misclassifying one as another.  

Figure 10 displays the confusion matrix from this 

training experiment, providing several key insights: (1) 

There is no misidentification of backgrounds in the 

images. (2) The rate of false positives, where images are 

incorrectly classified, is maintained below 15%, 

demonstrating the model's overall precision. (3) The true 

positive rates for biotite, bornite, chrysocolla, malachite, 

muscovite, pyrite, and quartz are 0.96, 0.80, 0.90, 0.96, 

0.66, 0.96, and 0.97, respectively. These rates reflect the 

model's accuracy in classifying each mineral, with true 

positive rates being crucial as they measure the model’s 

ability to correctly identify each mineral type as present 

when it indeed is. This metric is particularly important in 

mineral classification to ensure that each type is 

accurately detected and not confused with others, which 

can directly impact mining and processing efficiency. (4) 

Bornite and muscovite have true positive rates below 0.9, 

indicating weaker recognition performance. This 

suggests specific issues with feature extraction for these 

minerals. The lower true positive rate for bornite and 

muscovite can be attributed to their complex physical 

properties, which may not be as distinct or may be similar 

to other minerals in the dataset, leading to challenges in 

effectively distinguishing them from others. This 

highlights the need for targeted improvements in the 

feature extraction process, such as enhancing the model's 

ability to handle variations in color, texture, and shape 

more distinctively for these minerals. 
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Figure 10: Confusion matrix of the validation set 

 

5 Model testing 
To assess the generalization capability of the trained 

model for mineral classification, we conducted testing 

using the test set from Table 1, which consists of 558 

images. These images were not used in the training or 

validation stages, ensuring the evaluation was conducted 

on unseen data. The test set includes samples of 7 

minerals: bornite, quartz, malachite, pyrite, muscovite, 

biotite, and chrysocolla. Each mineral has distinct 

features that challenge the model's identification 

capacities. For example, biotite is determined by its dark, 

plate-like framework, quartz is notable for its openness 

and variety of forms, and bornite is distinguished by its 

copper-green shade and metal sparkle. The performance 

of the model was examined by comparing truth labels 

with the predicted tags for each batch in the test set. The 

comprehensive results of this comparison are 

summarized in Table 3. Additionally, Figure 11 shows 

the complication matrix, which gives an extensive view 

of the model's precision and its efficiency across different 

mineral categories. 

 

Table 3: Original and predicted labels for batches 0-2 in the testing. 

Batch labels predict 

0 
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1 

  

2 

 
 

 

 
Figure 11: Confusion matrix of the test set 

 
An in-depth evaluation of the speculative outcomes 

yields useful insights right into the model's performance 

on numerous mineral samples and uncovers potential 

areas for enhancement: (1) Bornite (TP = 0.79): Bornite's 

complicated texture and the presence of impurities can 

obscure its features. The limited sample size in the 
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training set hampers effective feature learning, resulting 

in some false positives. (2) Quartz (TP = 0.93): The 

transparency and diverse morphology of quartz provide 

abundant feature information for accurate identification. 

However, its transparency can blend with the background 

or other transparent minerals, especially under complex 

lighting conditions, which can slightly affect the true 

positive rate. To address this issue, we attempted to 

simulate such conditions through data augmentation, 

such as adjusting HSV parameters, to enhance the 

model's ability to accurately recognize quartz under 

challenging lighting. The true positive rate of 0.93 for 

quartz in the test set aligns well with our expectations. (3) 

Malachite (TP = 0.96): Malachite’s unique color and 

ribbon-like texture make it relatively easy to identify, 

resulting in a high true positive rate. However, its color 

similarity to silica malachite and their common co-

occurrence can occasionally impact accuracy. (4) Pyrite 

(TP = 0.94): Pyrite’s distinctive golden luster and cubic 

structure allow it to be easily distinguished from other 

minerals, contributing to a high true positive rate. (5) 

Muscovite (TP = 0.57): Muscovite’s bright white luster 

and plate-like structure are prone to reflections, which 

can affect recognition accuracy under varying lighting 

conditions. Additionally, its similarity in color and 

morphology to other mica minerals, such as biotite, 

further complicates differentiation, leading to the lowest 

accuracy for this mineral in the model’s test results. (6) 

Biotite (TP = 0.94): Biotite performed well in the test set 

but encountered certain challenges. Its dark, plate-like 

structure is often mistaken for other dark minerals or even 

shadows, particularly under weak or uniform lighting 

conditions, which may significantly reduce prediction 

accuracy. Moreover, the highly reflective surface of the 

mineral can cause misleading highlights, potentially 

leading to false positives during detection. These 

combined factors challenge the model’s ability to 

accurately classify biotite, highlighting the need for 

improved strategies to address these issues. (7) 

Chrysocolla (TP = 0.93): Chrysocolla’s distinctive bright 

color and fibrous structure facilitate its identification, 

resulting in high accuracy. However, its color similarity 

to other green minerals, such as malachite, can lead to 

reduced recognition accuracy when mixed with them. 

Additionally, overlapping shadows and mineral co-

occurrence may slightly reduce the overall accuracy of 

detection. 

The variations in true positive rates for different 

minerals highlight the model’s varying effectiveness in 

recognizing their distinct physical properties. Minerals 

with unique features, such as pyrite and malachite, 

benefit from their distinct colors and shapes, which result 

in higher classification accuracy. Pyrite, with its golden 

luster and cubic structure, and malachite, characterized 

by its vibrant green color and ribbon-like texture, are 

easily distinguishable, contributing to their high true 

positive rates. In contrast, minerals like muscovite and 

bornite present additional challenges. Muscovite’s bright 

white luster and plate-like structure can reflect light in 

ways that complicate accurate recognition, and its 

similarity to other mica minerals further hinders its 

identification. Bornite’s complex texture and the 

presence of impurities in some samples also add to the 

difficulty, resulting in lower recognition accuracy. These 

discrepancies highlight areas where the model’s 

performance can be improved. To address these issues, 

future optimization efforts should focus on refining 

feature extraction techniques and incorporating a broader 

range of training examples. Enhancing the model’s 

ability to handle varying lighting conditions and 

overlapping mineral characteristics will be crucial for 

improving its precision and efficiency in real-world 

applications. 

6 Model comparison 
To further investigate the performance gap between the 

YOLOv8-CLS model and classical models, we also 

introduced another open-source dataset with pre-defined 

training, test, and validation sets (as shown in Table 4) to 

explore the differences in generalization capabilities 

across various models. The following presents the 

specific experimental procedures and results. 

 

Table 4: Composition of the dataset [36][27] 

Mineral species 
Training Set 

(number of photos) 

Validation Set 

(number of photos) 

Test Set 

(number of photos) 

biotite 306 11 5 

quartz 309 10 5 

bornite 306 8 5 

chrysocolla 639 21 9 

malachite 318 10 5 

muscovite 459 15 8 

pyrite 585 17 10 

total 2922 92 47 

 

We compared the YOLOv8-CLS model with the 

classical ResNet50 and ResNet101 architectures. To 

control for variables and ensure the richness of the test 

samples, we used the dataset from Table 1 for training 

ResNet50 and ResNet101 with the same training 

parameters and data augmentation settings. The models 
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were tested using the test set portion from Table 1 and the 

training set portion from Table 4. The test results are 

shown in Figures 12 and 13, and the performance 

comparison between the models is summarized in Table 

5. 

 

Table 5: Comparison of model performance [27] 

Model 
GPU memory 

usage(training) 

Top1 Accuracy 

in Table 1 test set 

Top1 Accuracy in 

Table 4 train set 
Parameters GFLOPs 

Resnet50 8.69GB 0.90502 0.79535 26113159 
68.8 

GFLOPs 

Resnet101 12.52GB 0.90322 0.75941 45079175 
129.4 

GFLOPs 

YOLOv8-

CLS 
1.68GB 0.90681 0.80219 1443847 3.3GFLOPs 

 

 
Figure 12: Comparison of TP rates for different models on table1’s test set 

 

 
Figure 13: Comparison of TP rates for different models on table4’s train set 

 

In Table 5, we compare model performance using 

the memory usage during training, model parameter 

count, GFLOPs, and Top-1 Accuracy on both the test set 

from Table 1 and the training set from Table 4. Since 

Top-1 Accuracy is a stricter metric and more reflective of 

model performance differences, it was used as the 
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primary comparison criterion. From the results in Table 

5, the YOLOv8-CLS-trained mineral classification 

model achieves the highest Top-1 Accuracy on both the 

Table 1 test set and the Table 4 training set compared to 

all other models, with values of 0.90681 (Top-1 Accuracy 

on Table 1 test set) and 0.80219 (Top-1 Accuracy on 

Table 4 training set), respectively. In comparison, 

ResNet50 and ResNet101 show a Top-1 Accuracy 

improvement over YOLOv8-CLS of 0.00179 and 

0.00359 on the Table 1 test set, and 0.00684 and 0.04278 

on the Table 4 training set, respectively. 

In terms of memory usage during training, 

YOLOv8-CLS uses only 1.68GB of GPU memory, while 

ResNet50 and ResNet101 both exceed 6GB. 

Additionally, YOLOv8-CLS has the lowest model 

parameter count and GFLOPs. Specifically, YOLOv8-

CLS has 20.85 and 39.21 times fewer GFLOPs than 

ResNet50 and ResNet101, respectively, which highlights 

the significant performance advantage of YOLOv8-CLS. 

By analyzing Figure 12, we found that YOLOv8-

CLS outperforms ResNet50 and ResNet101 in terms of 

true positive rates for bornite in the Table 1 test set by 

0.08 and 0.1, respectively. However, for other minerals, 

the true positive rates were comparable. In Figure 13, 

YOLOv8-CLS shows a clear advantage in true positive 

rates for bornite and pyrite, but it lags behind ResNet50 

and ResNet101 in the true positive rate for biotite. This 

indicates that YOLOv8-CLS has superior generalization 

ability compared to ResNet50 and ResNet101. 

Furthermore, a comparison of Figure 13 with Figure 

12 shows a significant decline in true positive rates for 

biotite and pyrite, while the true positive rates for bornite 

and muscovite improved. The true positive rates for other 

minerals showed slight declines. This change can be 

attributed to the shift in the test dataset. Upon visually 

inspecting the images in the Table 4 training set, we 

observed that the images in this set came from more 

complex environments that better reflect real-world 

application scenarios. This exposed a challenge for the 

model in accurately identifying biotite under complex 

lighting conditions, particularly low light, which aligns 

with our analysis in Section 5. The decrease in 

recognition accuracy for pyrite may be due to the intense 

reflections caused by its unique golden luster under 

strong lighting conditions with high contrast, which could 

also have contributed to the drop in performance. 

Overall, YOLOv8-CLS demonstrates higher 

accuracy, lower performance overhead, and stronger 

generalization capability compared to ResNet50 and 

ResNet101 in the mineral classification task. However, it 

also exposes potential issues, as discussed in Section 5, 

particularly in handling specific lighting conditions and 

mineral feature overlap. 

7 Discussion 
The model developed in this experiment demonstrated an 

exceptionally high accuracy in mineral classification 

when tested on images from the Table 1 test set, 

achieving a Top-1 accuracy of approximately 90.68%. 

This result highlights the model's significant performance 

advantages in a controlled environment, demonstrating 

its effectiveness in both theoretical research and practical 

applications. The high precision not just verifies the 

model's robustness in controlled speculative setups yet 

likewise highlights its possibility for real-world usage, 

where accurate mineral classification is essential. 

Nevertheless, the model showed misclassification when 

managing mineral classification under particular 

illumination conditions. For instance, as shown in Figure 

12, the model misclassified quartz as pyrite. This 

misclassification may arise from the openness buildings 

of quartz under particular illumination conditions 

engaging with the history, causing characteristics that 

carefully appear like those of pyrite. Although the 

confusion matrix in Figure 11 shows that the model 

achieves a high true positive rate of 0.93 for quartz, the 

misclassification examples in Figure 14 and the decline 

in true positive rate to 0.84 during model comparison 

indicate that there is still room for improvement in the 

model’s recognition accuracy for quartz. This example 

also highlights performance issues under certain lighting 

conditions, which aligns with the conclusions from 

previous experiments. This points to a key area for 

improvement in our future work and emphasizes the 

limitations of relying solely on existing confusion 

matrices and other performance metrics to expose model 

weaknesses. Therefore, it is essential to test the model in 

real-world mineral classification scenarios, where 

practical testing in real-world environments can identify 

and address potential defects—this will be a primary 

focus of our future research. Similar challenges have been 

observed in Salima’s research[30], where environmental 

factors such as lighting variations and image quality can 

significantly impact model performance. 
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Figure 14: Miscalculation sample (real mineral classification on left, misclassification on right) 

 

Through the model comparison section, we further 

analyzed the performance of the YOLOv8-CLS model in 

mineral classification. This analysis demonstrates that the 

YOLOv8-CLS model, in comparison to ResNet50 and 

ResNet101, not only achieves higher accuracy and 

stronger generalization capabilities in mineral 

classification but also reduces hardware performance 

demands. However, it also reveals that the model's 

misclassification issues are not only related to minerals 

with similar visual features but are also closely tied to 

environmental lighting conditions. This highlights the 

model's limited ability to accurately distinguish mineral 

types in complex environments, emphasizing specific 

areas where its efficiency can be improved and providing 

insights for future improvements aimed at addressing 

these issues. SHE’s study has suggested that integrating 

enhanced image processing techniques, such as Retinex-

based image enhancement, can mitigate these challenges 

by improving feature extraction and contrast in low-light 

conditions [31]. To overcome these limitations, several 

improvements could be explored in future research study: 

(1) Expand the training dataset to consist of a larger range 

of minerals with similar appearance features, which will 

certainly help the model compare refined differences 

more effectively. (2) Enhance the model architecture by 

incorporating innovative techniques like deeper 

convolutional networks and interest devices. Deeper 

convolutional networks can boost function extraction by 

capturing a lot more intricate patterns and information, 

while interest mechanisms allow the model to focus on 

one of the most relevant parts of the image, even in the 

middle of intricate backgrounds. These improvements are 

expected to substantially improve the model's ability to 

process and properly identify complicated visual 

circumstances, leading to more trusted mineral 

identification. (3) Incorporate advanced post-processing 

techniques, such as sophisticated image segmentation 

and enhancement methods, to successfully lower 

misclassification prices and dramatically enhance total 

precision. Image division can assist isolate private 

minerals for more precise analysis, while improvement 

methods can clear up image information and improve 

feature visibility. SHE’s research has demonstrated that 

image enhancement methods, particularly those designed 

for low-contrast environments, can improve 

classification accuracy in vision-based tasks [31]. (4) 

Increase image sampling rates to capture more detailed 

mineral features, thereby providing the model with 

additional information for better feature extraction.  

Furthermore, the testing conducted in this research 

study was mainly performed under regulated speculative 

conditions, which gave an organized setting for 

evaluating the model's performance. Nevertheless, the 

model's performance in real-world applications has 

actually not yet been completely examined. This 

constraint suggests that while the design demonstrates 

encouraging lead to managed settings, additional 

research study and recognition are needed to analyze its 

integrity and accuracy in different and practical 

scenarios. Real-world applications often involve 

unpredictable environmental factors, and Salima’s study 

have highlighted the importance of adaptive deep 

learning approaches in handling such variations [30]. So 

Real-world testing will be crucial for validating the 

model’s effectiveness and adaptability to varying 

environmental conditions and practical use cases. Given 

the challenges inherent in real-world settings-- such as 

varying lighting issues, history noise, and the exposure of 

many overlapping minerals-- it is important to carefully 

check and verify the variation under a lot more varied and 

dynamic conditions. This will help ensure that the model 

carries out dependably throughout a more comprehensive 

series of circumstances. Such useful examinations will 

certainly use a clearer understanding of the model's 

efficiency and its capability to get used to real-world 

complexities. This will certainly make certain the 

variation's durability and stability in diverse and much 

less regulated situations. For example, performing 

experiments in real mineral arranging manufacturing 

environments or in field treatments for geological 

exploration would provide a much more precise 

examination of the style's effectiveness and applicability. 

These real-world tests will certainly enable scientists to 

evaluate the style's effectiveness under differing 

conditions and recognize prospective problems related to 

complex histories, lighting changes, and mineral 
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problem. These field tests not just offer helpful 

suggestions for style optimization yet likewise expose its 

restraints and areas for improvement in reasonable 

applications, therefore making sure safe and reputable 

effectiveness in more variable and dynamic atmospheres. 

Owing to constraints imposed by existing 

experimental infrastructure, our current investigation 

lacks extensive field validation in operational industrial 

settings to empirically evaluate the performance 

boundaries of our mineral identification framework under 

unconstrained environmental parameters. Through 

rigorous analysis of experimental datasets complemented 

by theoretical foundations established in SHE's seminal 

research on environmental interference mitigation in coal 

mining applications [31], we postulate that the primary 

challenges during practical deployment likely stem from 

four interdependent mechanisms: (1) suboptimal lighting 

conditions characterized by inadequate illumination 

intensity and reduced contrast ratios; (2) complex light-

matter interactions arising from the anisotropic optical 

properties of translucent mineral specimens; (3) inter-

class feature ambiguity in crystalline morphology 

descriptors; and (4) resolution-dependent attenuation of 

discriminative textural signatures. These compounded 

photometric and geometric variabilities could engender 

nonlinear error propagation through the feature extraction 

pipeline, potentially inducing cascading effects that 

degrade critical classification performance indicators 

such as Top-1 Accuracy and Top-5 Accuracy. 

Finally, while the model demonstrates notable 

efficiency under the current experimental conditions, 

further research is essential to fully realize its potential. 

To ensure the model's broader application and 

performance, it is crucial to address possible 

misclassification issues and enhance its adaptability to 

real-world scenarios. By tacking these challenges, the 

model's robustness will be significantly improved. As 

suggested by SHE and Salima’s prior research, 

integrating adaptive learning techniques and real-time 

enhancement algorithms may provide a viable path 

forward in enhancing classification accuracy in 

challenging environments[30] [31]. This, in turn , will 

provide a solid theoretical foundation and the necessary 

technical support for the widespread adoption of mineral 

recognition technology. As the model is further tested and 

refined in diverse practical settings, mineral recognition 

modern technology is expected to play an increasingly 

significant role in both industrial and research contexts. 

This methodological advancement demonstrates 

significant potential for enhancing precision in automated 

mineral categorization systems. The industrial 

implementation of our model could optimize operational 

efficiency in ore processing workflows through 

streamlined mineral classification processes, thereby 

mitigating resource depletion and minimizing material 

wastage. Furthermore, the framework exhibits extensible 

applicability in geological prospecting domains, where it 

may serve as a decision-support tool for field geologists 

by enabling real-time mineralogical analysis through 

integration with portable multispectral imaging devices. 

The architecture's inherent adaptability also suggests 

promising applications in automated petrographic 

analysis and remote sensing-based mineral mapping 

initiatives. 

8 Conclusion 
This paper presents an advanced intelligent mineral 

image classification model using deep learning 

techniques, specifically leveraging the YOLOv8-CLS 

algorithm. The model is designed to efficiently identify 

seven usual mineral kinds: bornite, quartz, malachite, 

pyrite, muscovite, biotite, and chrysocolla. After training 

for 120 epochs, the model's performance metrics showed 

substantial stabilization, with Top-1 precision and Top-5 

accuracy reaching 0.92053 and 0.99399, particularly. 

These outcomes highlight the model's remarkable 

precision and robustness in mineral image classification 

tasks. The high-performance metrics highlight the 

variation's effectiveness and capacity for useful 

application in correctly figuring out a range of mineral 

types, showcasing its viability for use in different mineral 

acknowledgment situations. 

Although the model performs excellently overall, 

some limitations were revealed when testing with an 

additional dataset during the model comparison section. 

The observed misclassifications are primarily attributed 

to the visual similarities among specific minerals such as 

shade, shape, and appeal. This similarity complicates the 

style's job of exactly distinguishing between these 

minerals, for that reason evaluating its total effectiveness 

in classification. Particularly when the mineral to be 

identified shares similar morphology and color with other 

minerals recognized by the model, the model may 

struggle to distinguish the subtle differences between 

them, leading to biased classification results. The 

decrease in the model's robustness under complex 

lighting conditions may be attributed to strong reflections 

and refractions occurring when light strikes the minerals. 

The conclusions drawn from this research study deal 

significant insights that are important for advancing 

smart mineral classification techniques. These findings 

provide a basic understanding that can help future r & d 

in this area. Via a thorough analysis of the source of 

model’s errors and targeted optimization instructions, 

this research reveals the application possibility of deep 

learning models in mineral classification and information 

paths for enhancing variation efficiency in future research 

study. These results develop a solid basis for advancing 

clever mineral classification innovation and encouraging 

its functional release and more comprehensive use in 

real-world applications. 
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