
https://doi.org/10.31449/inf.v49i14.7937 Informatica 49 (2025) 63–78 63

Using DTL-MD with GANs and ResNet for Malicious Code Detection

Yiming Li*, Tao Xie, Dongdong Mei

Department of Computer Science and Technology, School of Computer Science and Engineering, Ningxia Institute of

Science and Technology, Shizuishan 753000, China

Email: Liyiming0206@163.com
*Corresponding Author

Keywords: malicious code detection, transfer learning, feature selection, online learning, intelligent detection

Received: December 31, 2024

This study proposes a malicious code detection model DTL-MD based on deep transfer learning, which

aims to improve the detection accuracy of existing methods in complex malicious code and data scarcity.

In the feature extraction process, the weighted sum method of GIST and LBP features is used to combine

the advantages of the two features. Online transfer learning is used to reduce the data distribution

difference between the target domain and the source domain. The model uses ResNet50V2 as the backbone

network and combines SimAM to enhance the feature extraction and representation capabilities. In

addition, in order to further improve the robustness of detection, GAN is used to generate malicious code

variants and expand the training data set. In the experiment, the public CICIDS 2017 data set is used for

model training and testing. The performance test results show that when the threshold is 0.7, the accuracy

of DTL-MD is 95.8% and the F1 score is 0.93. In a performance test involving 30,000 samples, the

throughput of the DTL-MD model under Trojans, viruses, worms, and adware is 11, 12, 11, and 12 tasks/s,

respectively, and the inference time is 211, 225, 239, and 234 samples/s, respectively. Compared with

GAN, DTL-MD increases the throughput by about 10% and the inference speed by about 15%. The

research aims to provide new ideas for improving the intelligence and automation level of malicious code

detection technology, which has certain application value and practical significance.

Povzetek: A deep transfer learning-based model (DTL-MD) enhances malicious code detection using

ResNet50V2, GAN-generated variants, and online learning, achieving 95.8% accuracy and improving

detection speed and robustness against evolving threats.

1 Introduction
As the Internet becomes more widespread and

information technology advances rapidly, the

transmission routes of malicious code (MC) have

become increasingly complex, and the impact of

malicious software in modern society is becoming

increasingly significant [1]. MC not only affects the

security of personal information, but also poses a

serious threat to the network environment of enterprises,

government agencies, and society [2]. In recent years,

the types of MC have increased exponentially, from

traditional viruses, Trojans, and spyware to ransomware

and worms in recent years, showing a trend of

diversification and high complexity [3]. With the

continuous advancement of MC attack technology, the

existing signature matching-based detection methods

have been unable to effectively cope with the challenges

of variant MCs and new attacks [4]. Furthermore, as

MC samples continue to pile up, the challenge lies in

efficiently extracting discernible features from a vast

array of samples and enhancing the model's ability to

adapt to novel attack types via transfer learning. This

has become crucial for boosting detection precision and

tackling variant attacks effectively [5]. In this context,

scholars have proposed various innovative methods for

detecting MC to cope with the constantly changing MC

environment. Kim proposed an MC detection technology

combining dynamic and static analysis to address the

diversification of MC propagation channels and the

increasing intelligence of propagation technology.

Through dynamic and static analysis of Trojan-type

downloaders and MC of deliverers, the accuracy of

detection was effectively improved [6]. Kim et al. raised

an approach for detecting and classifying MC based on

application programming interface sequences to address

the problem of the proliferation and diversification of

malware. Research showed that the proposed method

showing high detection efficiency and accuracy [7]. Wang

et al. proposed an efficient detection method combining

CNNs and generative adversarial networks (GANs) to

address the accuracy issues caused by the complexity of

MC families and the rapid growth of variants in malware

detection. Research showed that this method significantly

improved detection accuracy by generating MC variants

and performing lightweight classification [8]. Li et al.

proposed an MC detection method based on feature fusion

and machine learning. They extracted multidimensional

features through static analysis and statistical analysis,

extracted feature vectors using the n-gram model and TF-

IDF, selected the best feature vectors with the classifier,

and finally built an automatic detection model. The results

showed that the recognition accuracy of this method could

reach 98.0%, with an F1 score of 0.969 [9].

64 Informatica 49 (2025) 63–78 Y. Li et al.

Online Transfer Learning (OTL) is a technique that

combines the advantages of online learning and transfer

learning. It improves the adaptability of models in

dynamic environments by receiving new data in real

time and using source domain knowledge to transfer to

the target domain. Li et al. raised an evolutionary multi-

objective Bayesian optimization algorithm combined

with multi-source OTL to address the challenge of

limited fitness evaluation in multi-objective

optimization problems. Through the comparison of

multiple multi-objective optimization benchmark

problems and real-world problems, it was proved that

transfer learning could effectively improve the

optimization performance of the problem [10]. Cherifi

et al. proposed an automatic classification method for

chest CT scans based on machine learning and deep

learning. CT images were classified into COVID-19 or

non-COVID-19 categories, and different machine

learning models were used. The results showed that the

accuracy of the ResNet50V2 model was 86.67% on a

small data set and 97.52% on a large data set,

demonstrating the potential of OTL in rapid detection [11].

Cui proposed a performance test of target detection and

motion recognition algorithms in combination with OTL.

In addition, the study also compared the recognition

accuracy of 3D-CNN and dual-resolution 3D-CNN models

under different video frames. The results showed that when

the number of video frames was 20, the accuracy of the two

algorithms in recognizing basic basketball movements was

89.6% and 95.8%, respectively [12]. Qin et al. proposed an

OTL-based estimation method to address the problem of

data domain distribution differences caused by changes in

temperature, aging, and other conditions in battery state of

charge estimation. Through the design of a transfer

conversion mechanism and a new Hoeffding-based

extreme learning machine algorithm, research showed that

this method could effectively reduce negative transfer and

accurately estimate under complex conditions [13]. Table

1 summarizes the above related studies, including the

proposed models, key indicators, and limitations.

Table 1: Literature review summary.

Reference Method Key Results Limitations

Kim [6]

Combination of

dynamic and static

analysis

Solve the problem of the

diversification of the malware

propagation method.

Poor detection

performance on complex

malware.

Kim, Lee [7]
API aequence-based

detection

The more complex the malicious

behavior, the higher the detection

efficiency.

Limited adaptability to

large data sets

Wang et al. [8] CNN + GAN Classification accuracy: 97.78%
High computational

complexity

Li et al. [9]
Feature fusion and

machine learning

Recognition accuracy: 98.0%,

F1 score: 0.969,

AUC: 0.973.

More suitable for static

samples

Li et al. [10]

Adaptive online

multisource transfer

learning method

The performance gains brought by

transfer learning are demonstrated on

multiple benchmarks and real-world

problems.

Insufficient focus on the

specific domain of

malware detection

Cherifi et al.

[11]

ResNet50V2 transfer

learning

The accuracy is 86.67%, sensitivity is

93.94%, specificity is 81%, F1 score

is 86% on the small dataset.

Affected by

hyperparameter adjustment

Cui [12]
SSD with 3D-CNN

architecture

The best recognition accuracy of

95.8% was achieved using 3D-CNN

at 20 video frames.

Applicability needs to be

verified

Qin et al. [13]
OTL framework and

Hoeffding-based ELM

Accurate SOC estimation results can

be obtained even under complex

application conditions.

Target space differences

lead to negative transfer

According to Table 1, although existing MC

detection methods have made some progress in the

fields of static analysis and signature matching,

traditional methods still have insufficient adaptability

and detection accuracy when faced with rapidly

increasing MC variants, complex attack patterns, and

scarce target domain samples. Specifically, existing

methods usually rely on fixed feature extraction rules

and cannot effectively deal with new MC variants. In

addition, the model has poor data adaptability in the

target domain, resulting in reduced accuracy when

migrating to new data sets. Due to limited training data,

many methods have insufficient generalization capabilities

and are difficult to meet actual application needs. To this

end, a Deep Transfer Learning-based Malware Detection

Model (DTL-MD) is proposed. The novel aspects of this

research include the following. Firstly, by employing a

feature selection strategy, the process of extracting features

from MC samples is refined, thereby enhancing the

model's discriminatory capabilities. Secondly, through

OTL, the model can effectively cope with the situation of

insufficient MC samples in the target domain and adapt to

Using DTL-MD with GANs and ResNet for Malicious… Informatica 49 (2025) 63–78 65

new MC variants. The objective of this research is to

offer a more efficient, intelligent, and adaptable solution

for detecting MC.

The contributions of the research are as follows:

First, DTL-MD reduces the impact of sample scarcity in

the target domain by introducing the OTL strategy.

Second, an improved feature selection mechanism is

designed to more effectively extract key features that

are helpful for MC identification. Finally, DTL-MD

improves detection speed and computational efficiency

by optimizing the computational structure, combining a

simplified attention mechanism and an efficient

convolutional module.

2 Methods and materials

2.1 Design of visual texture feature

extraction based on feature fusion

It is assumed that OTL can effectively reduce the

data distribution differences between the source domain

and the target domain, thereby improving the adaptability

of the model in the target domain, especially in the case of

insufficient data. Meanwhile, feature selection is assumed

to optimize feature extraction, remove redundant features,

and improve model accuracy and robustness. Based on

these assumptions, the DTL-MD model is designed, and

the model construction and optimization process will be

introduced in detail below.

In MC detection, the visualization technology of MC

based on image processing can provide powerful support

for detection models by converting the binary data of MC

into images and extracting texture features from them.

Global Image Structure Feature (GIST) and Local Binary

Pattern Feature (LBP) are two common texture features.

GIST can capture the global structural information of an

image, while LBP focuses on local texture details [14].

Therefore, a visual texture feature extraction scheme based

on feature fusion is proposed, which combines GIST and

LBP to better capture the multidimensional features of MC

samples. First, the MC is converted from a byte stream to

a visual image, as shown in Figure 1.

(a) Bitstream data extraction from malicious code file

(b) Visualization process of malicious code bytestream

Malicious code file Bitstream data Bytestream data

Malicious code

bytestream data

Binary unsigned

integer data

Grayscale image

pixel points

Convert byte data

and arrange it

Figure 1: Visualization of MC.

Figure 1(a) shows the extraction process of MC bit

streams or byte streams. By extracting byte stream data

from MC samples, their binary representations are

obtained. These data reflect the basic structure and

behavior patterns of the program. Figure 1(b) shows the

process of further processing the byte stream data into a

grayscale image. In the standardization process, each byte

is mapped to a pixel value in the grayscale image,

preserving the local features and global structural

information in the MC. Therefore, the preprocessing

process of MC detection combining the two is shown in

Figure 2.

Malicious code

file

Byte stream

extraction and

normalization

Data cleaning
Grayscale image

generation

Image

standardization

Image

enhancement

Image

segmentation

Texture feature

extraction

66 Informatica 49 (2025) 63–78 Y. Li et al.

Figure 2: Detailed data preprocessing process in MC detection.

As shown in Figure 2, after inputting MC, noise or

irrelevant information is first removed through data

cleaning. Next, byte stream extraction and

normalization are performed to make the data format

consistent. Then, the standardized byte stream data is

converted into a grayscale image, with each byte

corresponding to a pixel's grayscale value, completing

the graphical representation of the data. First, a

grayscale image is generated from the MC file, and

GIST extracts the global structural information of the

image through a Gabor filter. Gabor filter can

effectively capture the local structure and texture

information of the image. The expression is shown in

equation (1) [15].
2 2 2

2
(, , , , ,) exp cos 2

2

x y x
x y

 +
= − +

(1)

In equation (1), x and y are the image

coordinates. is the the rotating angle of the filter.

is the wavelength, and is the spatial aspect ratio.

is the standard deviation, and is the phase offset.

Applying multi-scale and multi-directional Gabor

filtering to an image results in response maps for

different directions and frequencies, reflecting the

comprehensive texture information of the image. Next,

the response map is subjected to pooling processing to

extract features representing the global structure, as

shown in equation (2).

, (,) (,) (, , , , ,)F x y G x y x y= (2)

In equation (2), , (,)F x y is the filter response

diagram. (,)G x y is a grayscale image. indicates a

convolution operation. Furthermore, in LBP extraction,

the local texture information of the image is extracted

by calculating the relationship between the gray value

of each pixel and its neighboring pixels, as shown in

equation (3).
1

0

(,) () 2
P

p

p c

p

LBP x y s I I
−

=

= − (3)

In equation (3), pI and cI are the values of the

neighboring pixels and the central pixel, respectively.

()s x is a symbolic function. P is neighboring pixel.

By encoding the texture features of local images, each

local region of the image is converted into a binary

number, thereby extracting local texture features. In

addition, in order to reduce the dimensionality of

features and enhance the discriminative power of

features, the information gain and L1 regularization

strategies are introduced to construct a feature selection

strategy. Information gain measures the contribution of

a feature to the target class information. The calculation

of information gain ()iIG x is shown in equation (4).

() () ()i iIG x H y H y x= − (4)

In equation (4), ()H y is the entropy of the target

variable y . ()iH y x is the entropy of the target variable

y under the given feature condition ix . Subsequently,

Lasso regression selects features through the L1

regularization term, thereby avoiding the interference of

redundant features. For example, after L1 regularization,

features with higher scores include certain image texture

features, while features with a score of zero are excluded.

Here is an example: After L1 regularization feature

selection, the model selected feature 1 (score: 0.85),

feature 2 (score: 0.72), and feature 4 (score: 0.91),

excluding features with lower scores (such as feature 5,

score: 0.02). The optimization objective of Lasso

regression is given in equation (5).

2

1 1

ˆ arg min ()
pn

T

i i j

i j

y x
= =

= − +

 (5)

In equation (5), ix is the eigenvector. j is the

weight coefficient of the feature. is the regularization

parameter, which controls the strictness of feature

selection. Through Lasso regression, the unimportant parts

of the feature weight coefficients will be compressed to

zero, automatically selecting features with high

discriminative power. During the feature selection process,

the threshold of information gain was set to 0.05, and only

features with information gain greater than this threshold

were retained to remove low-contribution features.

Subsequently, L1 regularization (=0.01) further

compressed the feature space, reducing the number of

features from 512 to 128.

After feature selection, GIST and LBP are fused. After

feature fusion, the model selected fused features with high

scores, such as GIST feature 1 (score: 0.88) and LBP

feature 2 (score: 0.79), which played a key role in the

classification of MC. To better combine the advantages of

the two features, a weighted sum is used to obtain the final

feature vector fusionF , as shown in equation (6).

1 2fusion GIST LBPF F F = + (6)

In equation (6), GISTF and LBPF represent the GIST

and LBP vectors after feature selection. 1 and 2 are

the feature weights, which are determined by cross-

validation and manual tuning. In the cross-validation

process, the data set is divided into multiple subsets, and

the model is evaluated on different training and validation

sets to select the best weight combination. For certain

specific weights, manual tuning is performed to optimize

the model's performance in MC detection. Therefore, after

the above calculations, a general framework for MC

detection based on combined features is finally obtained,

as shown in Figure 3.

Using DTL-MD with GANs and ResNet for Malicious… Informatica 49 (2025) 63–78 67

Malicious code
Grayscale image

generation
GIST

L1 regularizationWeighted sumEigenvectorDetection model

V A

GIST

LBP

Figure 3: A common framework for MC detection based on combined features.

As shown in Figure 3, the first input MC file

undergoes data cleaning and byte stream extraction, and

after normalization processing, it is converted into a

grayscale image, with each byte corresponding to a

pixel's grayscale value. Subsequently, GIST and LBP

are extracted from the generated grayscale image. Next,

the study uses information gain screening and L1

regularization to further complete feature selection and

remove redundant features. Subsequently, the GIST and

LBP are fused through weighted summation to form the

final feature vector, which is then input into the

detection model for MC detection.

2.2 MC detection method based on OTL

In the previous section, the feature extraction and

fusion methods of MC provide important input data for

subsequent detection tasks. OTL combines the

advantages of online learning and transfer learning. It

can receive new data in real time and use the source

domain knowledge to optimize the target domain

model. Specifically, online learning enables the model

to be updated in real time and adapt to changing attack

patterns and MC variants. Meanwhile, transfer learning

can transfer knowledge from the rich data in the source

domain to solve the problem of scarce samples in the target

domain. In this way, OTL not only improves the

generalization ability of the model, but also enhances its

ability to respond to new attacks in practical applications.

To guarantee the effectiveness of OTL, feature selection is

crucial. Through the feature selection method in Section

2.1, the GIST and LBP features are optimized to provide

efficient input data. These refined features make the

application of OTL in the target domain more efficient.

Feature selection ensures that the OTL model can focus on

the most discriminative features by removing redundant

information, thereby improving detection accuracy and

adaptability [16]. Therefore, the research attempts to

propose an MC detection method based on OTL. By

combining the advantages of online learning and transfer

learning, it can achieve incremental updates when new

samples arrive, and improve the detection accuracy of the

target domain with the help of source domain knowledge.

The framework of the two is shown in Figure 4 [17].

(a) Online learning (b) Transfer learning

Machine-learning model

Training

stream

Test

stream

Score

Source data

Source

domain model

Task

Target data

Target

domain model

New task

Transfer

learning

Source domain Target domain

Figure 4: Schematic diagram of online learning and transfer learning.

Figure 4(a) shows the online learning mechanism,

which performs incremental updates by receiving

training data streams in real time and performs real-time

predictions on test data streams. In the transfer learning

mechanism of Figure 4(b), the source domain model

utilizes transfer learning to adapt to the target domain,

addressing the issue of limited sample availability in the

target domain. The essence of OTL lies in transferring

knowledge from the source domain to the target domain.

Assuming that the source domain data is

()
1

,
Sn

S S

S i i
i

D x y
=

= and the target domain is

()
1

,
Tn

T T

T i i
i

D x y
=

= , where
S

ix and
T

ix represent the input

data of the source and target domains, respectively.
S

iy

68 Informatica 49 (2025) 63–78 Y. Li et al.

and
T

iy are the corresponding labels. The goal is to

optimize model performance in the target domain by

minimizing the discrepancy in distribution between the

source and target domains. The measurement method is

the Maximum Mean Discrepancy (MMD), which

quantifies the distribution difference between the source

domain and the target domain, as shown in equation (7)

[18].

1 1

1 1
(,) () ()

S Tn n
S T

S T i i

i iS T H

MMD D D x x
n n

= =

= − (7)

In equation (7), () is the mapping function. Sn

and Tn are the numbers of samples for the source

domain and target domain. By minimizing MMD, OTL

can minimize the difference between the source domain

and the target domain, ensuring that the model can be

transferred to the target domain. In the incremental

learning and online updating steps, the model needs to

gradually receive new data and continuously update.

Assuming that the parameters of the model are , in

each step t , the goal of the model is to continuously

update the parameters through incremental learning.

Whenever new data arrives, assuming that the loss

function of the current step is ()tL , the model is

updated at time step t as shown in equation (8) [19].

1 ()t t t t tL+ = − (8)

In equation (8), t is the learning rate, and ()t tL

is the gradient of the loss function with respect to the

parameter . Through this incremental update process, the

model only updates the part related to the new data without

retraining the entire model. This method ensures that OTL

improves the adaptability of the target domain through

local updates without retraining the entire model. The OTL

framework is developed based on TensorFlow and Keras,

combined with a custom gradient update rule to adapt to

online incremental learning scenarios. In the domain

adaptation process, OTL uses minimizing MMD as the

objective function and adjusts model parameters in real

time through back propagation. Existing experimental

results showed that incremental updates had significant

advantages in dynamic environments. Reference [20]

proves that the incremental learning strategy can

effectively improve the real-time update capability of the

model and enhance performance and response speed. To

further improve the performance of MC detection in the

target domain within the OTL framework, a DTL-MD MC

detection model is developed. It combines the GAN and

the Residual Network (ResNet), while introducing the

Group Convolution and the Simple Attention Module

(SimAM). Group convolution improves computational

efficiency by reducing model parameters, providing faster

adaptation capabilities for fine-tuning in the target domain.

SimAM further enhances the expression of key features

and improves the detection performance on the target

domain. Its structure is shown in Figure 5.

Grouped convolution SimAM ResNet
Detection

result

Target

domain

data

Source

domain

data

Feature

processing

External

Generation

Figure 5 DTL-MD model structure.

As shown in Figure 5, the DTL-MD model first

generates target domain data through GAN and inputs it

into the model for processing together with the source

domain data. Next, ResNet extracts features, which are

then further processed and enhanced through Group

Convolution and SimAM to finally generate detection

results. The data generated by GAN is generated outside

the model and then input into the model together with

the source domain data, thereby improving the

adaptability and detection capabilities of the target

domain. In DTL-MD, the study combines grouped

convolution to further improve computational

efficiency and model performance, as shown in

equation (9).
1 1 / 1

, , , , , , ,

0 0 0

K K C G

i j k i p j q r p q r k

p q r

Y X W
− − −

+ +

= = =

= (9)

In equation (9), , ,i j kY is the k th channel at position

(,)i j in the output feature map. , ,i p j q rX + + is the

convolution window value of the input feature map's r th

channel. , , ,p q r kW is the convolution and weight of the r th

channel. C and G are the number of channels and the

number of groups in the input feature map. Then, the

SimAM attention mechanism is introduced to enhance the

representation of important features by weighting the

features of each channel. Furthermore, GAN enhances the

diversity of target domain data by generating new MC

samples. Compared with the original dataset, the samples

generated by GAN are customized for specific MC

categories, such as Trojans, viruses, and worms. The

feature distribution of the generated samples is similar to

that of the original dataset, aiming to supplement the lack

of samples and improve the performance of the model in

detecting specific categories of MC. OTL, by updating

Using DTL-MD with GANs and ResNet for Malicious… Informatica 49 (2025) 63–78 69

model weights in real time, enables the model to quickly

adapt to new feature distributions when receiving new

target domain samples.

DTL-MD employs transfer learning techniques to

pre-train on source domain data to capture its

underlying features, followed by fine-tuning on the

target domain to align with its specific characteristics.

The comprehensive loss function is outlined in equation

(10) [21].

() () (,)total S T S TL L L MMD D D = + + (10)

In equation (10), ()SL and ()TL are the loss

functions of the source domain and target domain,

respectively. and are hyper-parameters. The errors

of the source domain and the target domain are calculated

as the prediction errors of the source domain data and the

target domain data, respectively. The MMD term is used

to measure the distribution difference between the source

domain and the target domain features. By minimizing the

loss function, the model optimizes the source domain task

while minimizing the MMD to minimize the difference

between the source domain features and the target domain

features, helping the model to better adapt to the target

domain data. Therefore, the final framework of the DTL-

MD MC detection model is shown in Figure 6.

Grayscale imageMalicious code file Feature selection Source data

Source domain

Target domain

Source domain Histogram relevance

Transfer learningMalicious code feature
Recognition and

classification

Softmax

Figure 6: The framework of the DTL-MD MC detection model.

As shown in Figure 6, in the DTL-MD MC

detection model, the source domain and target domain

data are processed in a hierarchical and parallel manner.

After the source domain data undergoes feature

selection, the importance of the features is evaluated

through histogram correlation analysis, and features

with strong task relevance are screened out to provide

support for subsequent feature extraction. The target

domain data is combined with new samples generated

by GAN, and the feature distribution is optimized

through transfer learning. Finally, the feature extraction

module processes the source domain and target domain

features in parallel, and Softmax generates the detection

results. Finally, the pseudo code of DTL-MD is shown

in Figure 7.

Through this pseudo-code, the specific

implementation methods of the model in data

processing, feature extraction, feature fusion and OTL

are more clearly understood, and the replicability and

transparency of the model implementation are

improved.

3 Results

3.1 Parameter impact analysis and

ablation experiments

To evaluate the effectiveness of the raised DTL-

MD MC detection model, the research built a hardware

and software environment that meets the requirements of

the experiment. The experimental platform uses the

Ubuntu 20.04 operating system, the algorithm

development language is Python, and the model

construction and optimization are based on the TensorFlow

and Keras frameworks. The hardware configuration

includes an AMD Ryzen 7 5800H processor, an NVIDIA

GeForce RTX 3070 graphics card, and 16 GB of memory.

The experimental data is sourced from the publicly

available MC dataset CICIDS 2017 dataset, which

contains a variety of network attack types and malware

samples and is suitable for malware classification and

variant detection tasks. The dataset was divided into a

training set (70%), a validation set (15%), and a test set

(15%). The validation set was used to tune

hyperparameters. There was no sample overlap between

the training set and the test set to ensure the fairness of the

model performance evaluation. In the experiment, MC

samples and normal samples in the training data were

evenly distributed. GAN-generated samples were used to

enhance sample data of specific categories in the target

domain, improving classification accuracy and the

generalization ability of the model.

First, the hyperparameters and in the loss function

were jointly tuned, and the results are shown in Table 2.

70 Informatica 49 (2025) 63–78 Y. Li et al.

Pseudocode for DTL-MD Model

Step 1: Data Preprocessing

def preprocess_data(file):

 byte_data = extract_byte_data(file) # Extract byte data from the file

 normalized_data = normalize(byte_data) # Normalize the data

 grayscale_image = convert_to_grayscale(normalized_data) # Convert to grayscale image

 return grayscale_image

Step 2: Feature Extraction

def extract_features(image):

 gist_features = extract_gist(image) # Extract GIST features

 lbp_features = extract_lbp(image) # Extract LBP features

 return gist_features, lbp_features

Step 3: Feature Selection

def select_features(gist_features, lbp_features):

 selected_features = select_important_features(gist_features, lbp_features) # Feature

selection

 optimized_features = apply_regularization(selected_features) # Apply L1 regularization

 return optimized_features

Step 4: Feature Fusion

def fuse_features(gist_features, lbp_features, weights):

 fused_features = weights[0] * gist_features + weights[1] * lbp_features # Feature fusion

 return fused_features

Step 5: Online Transfer Learning

def online_transfer_learning(model, source_data, target_data):

 mmd_value = compute_mmd(source_data, target_data) # Calculate MMD

 model.update_parameters(mmd_value) # Update model parameters with new data

 return model

Step 6: Train and Detect

def train_and_detect(model, train_data, test_data):

 model.train(train_data) # Train model on the data

 detection_results = model.detect(test_data) # Detect using the trained model

 return detection_results

Main Execution

def main():

 input_file = "malicious_code_sample"

 # Step 1: Data Preprocessing

 image = preprocess_data(input_file)

 # Step 2: Feature Extraction

 gist, lbp = extract_features(image)

 # Step 3: Feature Selection

 selected_features = select_features(gist, lbp)

 # Step 4: Feature Fusion

 fused_features = fuse_features(gist, lbp, [0.7, 0.3])

 # Step 5: Online Transfer Learning

 model = initialize_model() # Initialize the model

 model = online_transfer_learning(model, source_data,

target_data)

 # Step 6: Train and Detect

 detection_results = train_and_detect(model, train_data,

test_data)

 # Output final results

 print("Detection Results: ", detection_results)

if __name__ == "__main__":

 main()

Figure 7: Pseudocode of DTL-MD

Table 2 Hyperparameter joint tuning experiment.

 Accuracy (%) F1 Score (%) Training time (s)

0.1 0.01 90.3 88.4 1117

0.1 0.05 91.8 89.2 1162

0.1 0.1 93.1 90.5 1213

0.1 0.5 92.6 89.7 1263

0.1 1.0 91.9 89.1 1318

0.5 0.01 92.7 90.8 1214

0.5 0.05 94.2 91.8 1267

0.5 0.1 95.7 93.4 1316

0.5 0.5 94.8 92.3 1374

0.5 1.0 94.1 91.9 1427

1.0 0.01 92.4 90.1 1263

1.0 0.05 93.4 91.3 1311

1.0 0.1 93.3 90.9 1373

1.0 0.5 92.8 90.5 1426

1.0 1.0 91.7 89.8 1482

Using DTL-MD with GANs and ResNet for Malicious… Informatica 49 (2025) 63–78 71

From Table 2, when was 0.5 and was 0.1,

the model had the best performance on the verification

set, with an accuracy of 95.7%, an F1 of 93.4%, and a

training time of 1316 s. Meanwhile, an excessively high
 significantly increased the training time, while a low

 might weaken the utilization efficiency of source

domain features.

Secondly, by testing the performance of a single

feature and the fusion of the two features at different

iteration times, the research analyzed the independent

contribution of each feature and its performance

improvement after fusion. The results are shown in Figure

8.

75

80

90

95

85

100

100 200 400 500
Iterations

GIST Only
LBP Only

GIST + LBP

(b) Training time test

D
et

ec
ti

o
n

 a
cc

u
ra

cy
/%

300
550

650

750

850

700

950

Iterations

T
ra

in
in

g
 T

im
e

/s

900

800

(a) Accuracy test

600 100 200 400 500300 600

600

GIST Only
LBP Only

GIST + LBP

Figure 8: Ablation experiment.

As shown in Figure 8(a), when the number of

iterations was 600, the detection accuracy of the fused

feature reached 95.8%. The fused feature can more

comprehensively characterize the characteristics of the

MC sample. In Figure 8(b), when the number of

iterations was 600, the training time of the fused feature

was 932 s, which was about 200 s longer than that of the

GIST and LBP features. Although the fused feature

increased the training time, the improvement in its

detection accuracy showed that this computational

overhead was reasonable in MC detection tasks that

required high precision.

3.2 Performance test of DTL-MD MC

detection model

GAN, Extreme Gradient Boosting (XGBoost), and K-

Nearest Neighbors (KNN) are selected as comparison

algorithms. First, the classification ability of the MC

detection model was evaluated, and the results are shown

in Figure 9.

KNN

GAN XGBoost

DTL-MD

84

88

92

96

80

A
cc

ur
ac

y
 /

%

0.20.1 0.3 0.4 0.6

(a) Accuracy test

Threshold
0.5 0.7

84

86

88

90

92

94

78

F
1

S
co

re
 /

%

0.20.1 0.3 0.4 0.6

(b) F1 test

Threshold
0.5 0.7

82

80

94

90

86

82

KNN

GAN XGBoost

DTL-MD

Figure 9: Classification performance test results.

Figures 9(a) and (b) show the accuracy and F1 score

of each model as a function of the threshold value. The

F1 score can balance the precision and recall, and is

particularly suitable for MC detection in unbalanced

data sets, ensuring fewer missed detections and false

positives. In Figure 9(a), when the threshold was 0.7, the

accuracy of GAN, XGBoost, KNN, and DTL-MD were

91.2%, 91.3%, 87.9%, and 95.8%, respectively. In Figure

72 Informatica 49 (2025) 63–78 Y. Li et al.

9(b), when the threshold value was 0.7, the F1 scores of

each model were 92.1%, 91.9%, 85.9%, and 93.2%

respectively. DTL-MD had the highest accuracy and F1

score at high thresholds, effectively reducing false

positives through strict classification criteria and

avoiding erroneous classification of MC. In contrast, the

accuracy and F1 score of XGBoost and GAN were

similar, but slightly lower than that of the DTL-MD

model, which was due to their conservative decision

boundary at high thresholds. Although the number of false

positives was reduced, some more complex malicious

samples was missed. To ensure the reliability of the results,

the standard deviation and 95% confidence interval of the

accuracy and F1 score of each model at a threshold of 0.7

were calculated, see Table 3.

Table 3: Standard deviation and confidence interval of accuracy and F1 score.

Model
Accuracy

/%

F1 Score

/%

Accuracy

Std Dev

Accuracy

confidence

interval

F1 Score

Std Dev

F1 Score

confidence

interval

GAN 91.2 92.1 ±0.3 [90.9, 91.5] ±0.2 [91.8, 92.4]

XGBoost 91.3 91.9 ±0.2 [91.1, 91.5] ±0.3 [91.6, 92.2]

KNN 87.9 85.9 ±0.4 [87.5, 88.3] ±0.3 [85.6, 86.2]

DTL-MD 95.8 93.2 ±0.2 [95.6, 96.0] ±0.2 [93.0, 93.4]

According to Table 3, the DTL-MD model showed

smaller fluctuations in the standard deviation and

confidence interval of the accuracy and F1 score,

indicating that it had higher stability under different

experimental conditions, higher accuracy and smaller

fluctuation range.

Subsequently, the False Negative Rate (FNR) and

training time of each model as a function of the number of

iterations are shown in Figure 10.

KNN

GAN XGBoost

DTL-MD

0.10

0.20

0.30

0.00

F
al

se
 n

eg
at

iv
e

ra
te

 /
%

200100 300 400 600

(a) FNR test

Iterations
500

0.25

0.15

0.05

500

900

1300

100

T
ra

in
in

g
 ti

m
e

/s

200100 300 400 600

(b) Training time test

Iterations
500

1100

700

300

KNN

GAN XGBoost

DTL-MD

Figure 10: FNR and training time test results.

In Figures 10, the training time reflects the

deployment efficiency of the model in practical

applications, ensuring high accuracy while having good

real-time and operability. In Figure 10 (a), when the

number of iterations was 600, the false detection rates

of each model were 0.10%, 0.08%, 0.16%, and 0.05%,

respectively. In Figure 10 (b), when the number of

iterations was 600, the training time of each model was

1049 s, 1282 s, 901 s, and 1257 s respectively. As the

number of iterations increased, the false detection rate of

the DTL-MD model decreased from 0.12% to 0.05%. In

terms of training time, the DTL-MD model required 1257

seconds for training. More iterations of training improved

the model's accuracy, but also led to an increase in

computational overhead. Finally, the test results of each

model under various sample sizes are in Table 4.

Table 4: Test outcomes with various sample sizes.

Model Sample size
Samples per

second

Memory usage

/MB

Model size

/MB

Computational complexity

/GFLOPS

GAN

5000 319.7 1603.5 134.8 47.2

10000 310.3 1645.7 139.1 48.1

15000 299.6 1697.4 144.5 50.2

20000 289.8 1746.2 149.3 52.3

Using DTL-MD with GANs and ResNet for Malicious… Informatica 49 (2025) 63–78 73

XGBoost

5000 329.1 1449.3 124.6 42.8

10000 314.7 1497.2 129.3 43.6

15000 308.2 1547.6 134.9 45.1

20000 299.4 1598.4 139.8 46.9

KNN

5000 229.4 1202.6 109.5 28.3

10000 219.8 1246.5 113.6 29.5

15000 209.3 1299.4 117.9 30.8

20000 199.6 1349.8 122.1 31.9

DTL-MD

5000 199.7 1702.5 160.3 39.9

10000 209.4 1804.6 164.2 41.8

15000 219.8 1906.1 168.9 44.2

20000 229.3 2008.3 173.4 47.1

In Table 4, computational complexity measures the

computational efficiency of the model in processing

data in GFLOPS (billion floating-point operations per

second), reflecting the computational resources required

by the model to complete a specific task. This value is

related to the model architecture and the size of the

dataset. The computational complexity reflects the

computing resources required by the model to process

each task. A lower FLOPs value means that the model

has better scalability and can run efficiently on large-

scale datasets or real-time applications. The processing

speed of XGBoost reached 299.4 samples/second with

a sample size of 20,000. In contrast, the processing

speed of DTL-MD was relatively slow, especially at

20,000 samples, which was only 229.3 samples/s. The

complex deep learning structure required more

computing time and resources to complete the detection

of MC. In terms of memory usage, DTL-MD consumed

2008.3 MB with a sample size of 20,000. In terms of

model size, the size of DTL-MD remained at 160 MB.

In terms of computational complexity, GAN reached

52.3 GFLOPS at 20,000 samples, while DTL-MD had a

computational complexity of 47.1 GFLOPS at 20,000

samples, which is suitable for deployment in

environments with sufficient computing resources. As

the dataset increased, the processing speed of DTL-MD

increased. For small datasets (such as 5,000 samples), its

processing speed was slow, but the memory usage and

computational complexity were low. As the sample size

increased, although the training time and memory usage

increased, DTL-MD still maintained high accuracy,

especially in the 20,000 sample dataset, where it performed

well and showed good generalization ability.

3.3 MC detection simulation experiment

based on DTL-MD model

Furthermore, the research conducted simulation

experiments on DTL-MD to test its practical application

effect. The comparison models were selected from the

more advanced models in the field, namely Malware GAN-

enhanced Network (MGANet), Sequence GAN for

Malware Detection (SeqGAN-Malware), and Deep

Reinforcement Learning for Malware Detection (DRL-

Malware). The research team constructed a self-built MC

dataset containing 30,000 samples, of which 20,000

malware samples covered various types such as Trojans,

viruses, and ransomware, and 10,000 normal software

samples were from commonly-used applications. Firstly,

the throughput and inference speed results of each model

under the detection of four types of MC, namely Trojans,

viruses, worms, and adware, are shown in Figure 11.

320

6
Trojan

8

9

10

11

14

T
h
ro

u
g
h
p
u
t

(d
et

ec
ti

o
n
 t
as

k
s/

s)

(a) MGANet

Throughput Inference speed

7

Virus Worm Adware
200

240

260

280

300

340

220

In
feren

ce sp
eed

 (sam
p
les/s)

12

13

6
Trojan

8

9

10

11

14

T
h
ro

u
g
h
p
u
t

(d
et

ec
ti

o
n
 t
as

k
s/

s)

(b) SeqGAN-Malware

Throughput Inference speed

7

Virus Worm Adware
200

240

260

280

300

340

220

In
feren

ce sp
eed

 (sam
p
les/s)

12

13 320

320

6
Trojan

8

9

10

11

14

T
h
ro

u
g
h

p
u

t
(d

et
ec

ti
o
n

 t
as

k
s/

s)

(c) DRL-Malware

Throughput Inference speed

7

Virus Worm Adware
200

240

260

280

300

340

220

In
feren

ce sp
eed

 (sam
p
les/s)

12

13

6
Trojan

8

9

10

11

14

T
h
ro

u
g

h
p
u

t
(d

et
ec

ti
o
n
 t

as
k
s/

s)

(d) DTL-MD

Throughput Inference speed

7

Virus Worm Adware
200

240

260

280

300

340

220

In
feren

ce sp
eed

 (sam
p
les/s)

12

13 320

Figure 11: Throughput and inference time tests under different attack types.

74 Informatica 49 (2025) 63–78 Y. Li et al.

Figures 11 (a)-(d) show the throughput and

inference time test results under different attack types.

Throughput measures the task processing capability of

the model, while inference speed reflects the single-

sample processing efficiency. Throughput is calculated

as the number of tasks completed per second, while

inference speed represents the number of samples

processed per second. The two are closely related,

because a task usually contains detection operations for

multiple samples, so throughput is usually lower than

inference speed.

In Figure 11 (a), the throughput of MGANet under

Trojans, viruses, worms, and adware was 12, 13, 11, and

12 tasks/s, respectively, with an inference speed of 320

to 330 samples/s. In Figure 11 (b), the throughput of

SeqGAN-Malware under Trojan, virus, worm, and

adware was 11, 12, 10, and 11 tasks/s, respectively. In

Figure 11 (d), the throughput of the DTL-MD model

under Trojan, virus, worm, and adware was 11, 12, 11, and

12 tasks/s, respectively, and the inference time was 211,

225, 239, and 234 samples/s, respectively. The large

computational resources and complex network structure

resulted in a heavy computational burden during the

inference process, and the throughput performance was

moderate. In Figure 11 (c), the inference speed and

throughput of DRL-Malware were slightly lower. The

training process of deep reinforcement learning required

the model to optimize performance through continuous

policy updates, and the limitations of the learning strategy

led to a decrease in inference speed. Subsequently, the

same test dataset was used, containing five main types of

MC (Trojans, viruses, worms, adware, and ransomware),

and 1,000 samples of each type were randomly selected.

The corresponding robustness and processing delay results

are shown in Figure 12.

1.02

0.87
0.91

0.88

0.95

240

200

160

120

80
Trojan Virus Worm

MGANet DRL-MalwareSeqGAN-Malware DTL-MD

P
ro

ce
ss

in
g

 l
at

en
cy

 /
m

s

Malicious code type

Adware

220

180

140

100

Ransomware

0.62

0.68

0.75 0.61
0.70

0.71
0.79

0.83

0.72

0.80

0.51
0.45

0.55
0.63

0.57

0.62 0.75
0.68

0.61 0.70

0.72

Figure 12: Robustness and processing delay results.

In Figure 12, the robustness of each type of MC was

calculated through 10 experiments, and the standard

deviation reflects the deviation between the

experimental results and the average value. The smaller

the standard deviation, the smaller the volatility of the

model's detection results on the MC type, and the

stronger the robustness. The robustness of DTL-MD

under Trojan, virus, worm, adware, and ransomware

code was 0.71, 0.79, 0.83, 0.72, and 0.80, respectively,

indicating strong adaptability in the face of diverse MC. In

terms of processing delay, the DTL-MD model had a

longer inference time, with a response time of 172 ms

under the worm type. Finally, the detection results of each

model under different network bandwidths are shown in

Table 5.

Table 5: Detection effect under different network bandwidths.

Network

bandwidth
Model

Throughput

(tasks/s)

Latency

variance

/ms

Computational

efficiency

(FLOPs/task)

Stability

/SD

Low

(100 Mbps)

MGANet 11 23 1.5 0.7

SeqGAN-Malware 10 27 1.8 0.8

DRL-Malware 9 30 2.0 0.9

DTL-MD 10 29 1.9 1.1

Medium

(500 Mbps)

MGANet 13 18 1.3 0.5

SeqGAN-Malware 11 21 1.6 0.6

Using DTL-MD with GANs and ResNet for Malicious… Informatica 49 (2025) 63–78 75

DRL-Malware 10 23 1.8 0.7

DTL-MD 11 22 1.7 0.8

High

bandwidth

(1 Gbps)

MGANet 14 15 1.2 0.4

SeqGAN-Malware 12 17 1.5 0.5

DRL-Malware 11 19 1.7 0.6

DTL-MD 12 17 1.6 0.7

In Table 5, the performance of the model in various

practical applications can be evaluated by the

throughput, latency fluctuation, computational

efficiency, and stability under different bandwidths.

Stability is measured by calculating the standard

deviation of the inference latency. A lower SD value

indicates a more stable performance of the model,

especially under low bandwidth conditions. DTL-MD

was 10 tasks/s at low bandwidth. In terms of latency

fluctuation rate, the latency fluctuation rate of MGANet

under high bandwidth conditions was only 15 ms. The

delay fluctuation rate of DTL-MD was 17 ms. In terms of

computational efficiency, DTL-MD had a computational

efficiency of 1.6 FLOPs/task under low bandwidth

conditions. Complex models can lead to higher

computational costs and longer processing times.

Finally, the study introduced the Deep Malware

Detection Network (DMDN), Light Gradient Boosting

Machine (LightGBM), and Adversarial Malware

Detection Network (AMDN). The study also introduced

the MalwareBazaar dataset and designed a cross-domain

migration experiment. The results are shown in Table 6.

Table 6: Performance comparison in diverse datasets and cross-domain migration tests.

Dataset Model Precision (%) Recall (%)

Robustness

(Standard

deviation)

Detection rate

(Tasks/s)

MalwareBazaar

DTL-MD 91.8 92.3 0.73 12

DMDN 89.7 90.5 0.81 10

LightGBM 87.4 88.2 0.86 14

AMDN 88.9 89.8 0.79 11

CICIDS 2017

DTL-MD 90.2 91.0 0.75 11

DMDN 87.6 88.8 0.84 9

LightGBM 85.3 86.5 0.89 13

AMDN 86.7 87.9 0.82 10

Cross-domain

Test

DTL-MD 88.3 89.7 0.75 10

DMDN 85.9 87.0 0.81 8

LightGBM 84.1 85.2 0.85 12

AMDN 86.7 87.9 0.80 9

In Table 6, the Precision and Recall of DTL-MD on

the MalwareBazaar dataset reached 91.8% and 92.3%

respectively. Meanwhile, in the cross-domain migration

experiment, the Recall of DTL-MD remained at 89.7%

with a standard deviation of 0.75, which proved its

robustness in dealing with changes in data distribution. In

contrast, DMDN and AMDN performed second best in

robustness, and although LightGBM had an advantage in

detection rate, its detection accuracy was relatively low.

4 Discussion
In order to improve the accuracy of MC detection, the

study designed a detection model DTL-MD based on OTL

and tested its performance. Compared with the model

proposed by Kim et al. in the literature [6], although it

performed well in the accuracy of MC detection, it was

relatively slow in processing speed and was suitable for

relatively static scenarios. In the DTL-MD performance

test, when the threshold was 0.7, the accuracy of DTL-MD

was 95.8% and the F1 score was 93.2%. Although DTL-

MD was slower than XGBoost and KNN in inference

speed, its high accuracy made it more advantageous in MC

detection tasks that require high reliability. In particular,

on the 20,000 sample dataset, the memory usage of DTL-

MD was 2008.3 MB and the computational complexity

was 47.1 GFLOPS, showing its ability in computationally

intensive tasks. The feature fusion-based method proposed

by Wang et al. in the literature [8] showed a high accuracy

in MC detection, but its computational complexity was

high and the training and inference speeds were slow. In

contrast, DTL-MD optimized computational complexity

while maintaining high accuracy, making it still scalable

in large data sets and real-time detection scenarios. In

application tests, DTL-MD also performed well in the

robustness of MC types such as Trojans, viruses, worms,

and adware. Especially in low-bandwidth environments,

DTL-MD had a throughput of 10 tasks/s and a latency

fluctuation of only 15 ms, which was suitable for real-time

MC detection.

76 Informatica 49 (2025) 63–78 Y. Li et al.

The advantage of DTL-MD is that it is highly

adaptable and can handle small data sets. It can also

maintain good detection performance when there are

fewer samples, showing strong generalization ability.

5 Conclusion
The study proposed an MC detection model DTL-MD

that combines OTL and optimized feature selection

strategies, and verified its effectiveness in MC detection.

However, the model's throughput and latency volatility are

high, and its real-time performance is poor in low-resource

environments. In addition, its high computing

requirements make its application on large-scale data sets

face computing cost issues. In the future, the study will

explore lightweight models, optimize the calculation

process, and improve its computing efficiency through

efficient feature extraction and pruning techniques to

solve the problem of high computing overhead in large-

scale data sets. Meanwhile, the experiment used a data set

containing many known malicious samples. In the future,

the study will introduce new MC samples to further verify

the model's capabilities, especially its performance when

detecting new samples.

Funding
This work was supported by the Natural Science

Foundation of Ningxia Hui Autonomous Region in 2022,

project number: 2022AAC03345.

References
[1] Wang R, Gao J, Huang S. AIHGAT: A novel method

of malware detection and homology analysis using

assembly instruction heterogeneous graph.

International Journal of Information Security, 2023,

22(5): 1423-1443. DOI: 10.1007/s10207-023-00699-

7

[2] Li F, Ren J. Suppression of MC Propagation in

software-defined networking. Wireless Personal

Communications, 2024, 135(1): 493-516. DOI:

10.1007/s11277-024-11065-8

[3] Liu T, Neware R, Bhatt M W, Shabaz M. A study on

detection and defence of MC under network security

over biomedical devices. The Journal of Engineering,

2022, 2022(11): 1041-1049.

[4] Dam K H T, Touili T. Extracting malicious

behaviours. International Journal of Information and

Computer Security, 2022, 17(3): 365-404. DOI:

10.1049/tje2.12153

[5] Cui Z, Zhao Y, Cao Y, Cai X, Zhang W, Chen J.

Malicious code detection under 5G HetNets based on

a multi-objective RBM model. IEEE Network. 2021,

35(2): 82-87. DOI:10.1109/MNET.011.2000331.

[6] Kim H W. A study on countermeasures by detecting

trojan-type downloader/dropper MC. International

Journal of Advanced Culture Technology, 2021,

9(4): 288-294. DOI: 10.17703/IJACT.2021.9.4.288

[7] Kim J, Lee S. Malicious behavior detection method

using API sequence in binary execution path. Tehni

Čki Vjesnik, 2021, 28(3): 810-818. DOI:

10.17559/TV-20210202132203

[8] Wang Z, Wang W, Yang Y, Han Z, Xu D, Su C.

CNN‐and GAN‐based classification of MC families:

a code visualization approach. International Journal

of Intelligent Systems, 2022, 37(12): 12472-12489.

DOI: 10.1002/int.23094

[9] Li S, Jiang L, Zhang Q, Wang Z, Tian Z, Guizani M.

A malicious mining code detection method based on

multi-features fusion. IEEE Transactions on Network

Science and Engineering. 2022, 10(5):2731-2739.

DOI:10.1109/TNSE.2022.3155187.

[10] Li H, Jin Y, Chai T. Evolutionary multi-objective

Bayesian optimization based on multisource online

transfer learning. IEEE Transactions on Emerging

Topics in Computational Intelligence, 2023, 8(1):

488-502. DOI: 10.1109/TETCI.2023.3306351

[11] Cherifi D, Djaber A, Guedouar M E, Feghoul A,

Chelbi Z Z, Ouakli A A. Covid-19 detecting in

computed tomography lungs images using machine

and transfer learning. Informatica. 2023, 47(8). DOI:

10.31449/inf.v47i8.4258

[12] Cui Z. Combining the SSD target identification

algorithm with the 3D-CNN architecture for transfer

learning research in basketball training. Informatica.

2024, 48(18). DOI: 10.31449/inf.v48i18.6454

[13] Qin P, Zhao L. An online transfer learning framework

for cell SOC online estimation of battery pack in

complex application conditions. IEEE Transactions

on Transportation Electrification, 2023, 10(3): 5974-

5986. DOI: 10.1109/TTE.2023.3324822

[14] Lu H, Jin C, Helu X, Du X, Guizani M, Tian Z.

DeepAutoD: Research on distributed machine

learning oriented scalable mobile communication

security unpacking system. IEEE Transactions on

Network Science and Engineering, 2021, 9(4): 2052-

2065. DOI: 10.1109/TNSE.2021.3100750

[15] Khan S, Nauman M. Interpretable detection of

malicious behavior in windows portable Executables

using Multi-Head 2D transformers. Big Data Mining

and Analytics, 2024, 7(2): 485-499. DOI:

10.26599/BDMA.2023.9020025

[16] Gurjar A, Voditel P. Transfer learning: a paradigm

for machine assisted knowledge transfer. ECS

Transactions, 2022, 107(1): 7179-7188. DOI:

10.1149/10701.7179ecst

[17] Dai S, Meng F. Addressing modern and practical

challenges in machine learning: A survey of online

federated and transfer learning. Applied Intelligence,

2023, 53(9): 11045-11072. DOI: 10.1007/s10489-

022-04065-3

[18] Zhu Z, Lin K, Jain A K, Zhou J. Transfer learning in

deep reinforcement learning: A survey. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 2023, 45(11): 13344-13362. DOI:

10.1109/TPAMI.2023.3292075

[19] Solís M, Calvo-Valverde L A. Performance of deep

Learning models with transfer learning for multiple-

step-ahead forecasts in monthly time series.

Inteligencia Artificial-Iberoamerical Journal of

Using DTL-MD with GANs and ResNet for Malicious… Informatica 49 (2025) 63–78 77

Artificial Intelligence, 2022, 25(70): 110-125. DOI:

10.48550/arXiv.2203.11196

[20] Belouadah, E, Adrian P, Ioannis K. A comprehensive

study of class incremental learning algorithms for

visual tasks. Neural Networks, 2021, 135: 38-54.

DOI: 10.1016/j.neunet.2020.12.003

[21] Minoofam S A H, Bastanfard A, Keyvanpour M R.

TRCLA: a transfer learning approach to reduce

negative transfer for cellular learning automata. IEEE

transactions on neural networks and learning

systems, 2021, 34(5): 2480-2489. DOI:

10.1109/TNNLS.2021.3106705

78 Informatica 49 (2025) 63–78 Y. Li et al.

