
https://doi.org/10.31449/inf.v49i16.7979                                                Informatica 49 (2025) 137–150   137 
 

Vision Transformer-Based Framework for AI-Generated Image 

Detection in Interior Design 

 
Hui Wang 

AnHui Business and Technology College, Hefei City, AnHui Province, 230041, China 

E-mail: leZhang2024@163.com 

 

Keywords: artificial intelligence-generated images,  interior design, vision transformers, deep learning, image 

classification 

 

Received: January 7, 2025 

 Increasingly, images generated by artificial intelligence (AI) are being used within interior design as a 

source of authenticity and ethical use. Based on limited Convolutional Neural Network (CNN) capabilities 

in data descriptive processes, including long-range dependencies and global patterns, this study examines 

how Vision Transformer (ViT) can be utilized in detecting AI-generated interior design images. We fine-

tuned and evaluated four ViT models, ViT-B16, ViT-B32, ViT-L16, and ViT-L32, on 1,000 samples per class 

dataset. Accuracy, precision, recall, F1-score, and computational efficiency were used to assess 

performance. Results show that models with smaller patch sizes (i.e., 16×16) perform better than larger 

ones (i.e., 32×32). It was found that ViT-B16 and ViT-L16 had the highest accuracy (96.25%) and F1-

score (0.9625) in identifying minor inconsistencies in the AI-generated images. ViT-B32 and ViT-L32 enjoy 

better computational efficiency based on lower classification performance (80.00% and 81.25% accuracy, 

respectively, for ViT-B32 and ViT-L32). The best tradeoff between accuracy and resource efficiency turns 

out to be ViT-B16. However, computational costs were higher with ViT — ViT-L16, although just as 

accurate. Computationally, ViT-B32 and ViT-L32 were also efficient, which was more appropriate for real-

time applications with lower accuracy than speed. Through this work, we contribute a domain-specific deep 

learning framework for AI-generated image detection in interior design to increase authenticity 

verification. Future work will address improving computational efficiency and generalizing the model 

across all (or most) generative models and design styles. 

Povzetek: Razvit je nov pristop za zaznavanje umetno ustvarjenih slik v notranjem oblikovanju z uporabo 

različnih konfiguracij vizualnih transformerjev, ter ugotovil optimalne modele glede na točnost in računsko 

učinkovitost. 

 

1    Introduction 

Artificial Intelligence (AI) has become increasingly 

embedded in practice in creative industries, such as interior 

design, through generating photo-realistic and innovative 

imagery [1]. Lately, tools like Generative Adversarial 

Networks (GANs) and diffusion models have 

democratized access to this high-quality design, but their 

use has become ubiquitous [2, 3]. It brings challenging 

problems around what 'authentic' designs are, how designs 

can be used ethically, and intellectual property rights. 

Nearly all current AI detection methods leverage 

Convolutional Neural Networks (CNNs) for their feature 

extractors, and they are mainly limited to short-range 

dependencies in image data. 

Based on Vision Transformers (ViTs) [4], a state-of-

the-art architecture, this study proposes their application as 

a transformative approach to detecting AI-generated 

interior design images. This research lays out a solid 

foundation for authenticating AI-generated content by 

removing barriers to scalability, computational efficiency, 

and domain-specific applications. Artificial intelligence 

(AI) has profoundly changed what it feels like in most 

industries, including interior design, with visualization, 

creativity, and presentation led by AI-generated images 

[5]. By the time of Generative Adversarial Networks 

(GAN) and Diffusion Models, we have created highly 

realistic images that often outperform human-generated 

designs in quality and detail. While these tools 

democratize access to creative resources, they also come 

with problems such as authenticity, intellectual property, 

and ethical use. For example, it is essential to differentiate 

between generated and made images in interior design 

because professional work in commercial and academic 

spaces may be compromised. While AI is increasingly 

applied to create visual content, and domain-specific 

applications such as interior design are still in their 

infancy, the lack of attention to developing robust means 

to detect such images remains. 
Despite their effectiveness, many existing detection 

approaches rely more on Convolutional Neural Networks 
(CNNs), which cannot model long-range dependencies and 
global patterns of high-dimensionality datasets, e.g., 
images [6]. In recent years, with self-attention-based 
mechanisms, Vision Transformers (ViTs) have emerged as 
powerful surrogate models, achieving state-of-the-art 
results in image classification and artefact detection tasks 
[7]. One of their key attributes is their ability to model such 
noncontiguous relationships, thus offering a measurement 
for identifying the subtle inconsistencies underlying AI-
generated images. This study proposes a deep learning 
framework based on Vision Transformers to detect AI-
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generated interior design images. The study fine-tunes 
multiple ViT configurations (ViT-B16, ViT-B32, ViT-L16, 
and ViT-L32) on a balanced dataset and compares their 
performance w.r.t. accuracy, precision, recall, F1-score, 
and computational efficiency. Results guide model 
configuration choice when resources impose a tradeoff 
between detection accuracy. 

The contributions of this work are threefold: 

• Developing a domain-specific AI image detection 
approach targeted to interior design, 

• Comparing a large number of ViT configurations to 
establish cost-benefit relationships,  

• The lessons learned from deploying transformer-based 
models for AI content detection. 

First, the contributions of this research fill an essential gap 

in AI image authenticity verification, and second, they 

establish a foundation for future work in this young area. 

2    Background and related work 

Detecting artificial intelligence (AI)-made images is an 

emerging field of study, as people increasingly use AI-

based tools in creative spheres like interior design. This 

literature review provides an overview of state-of-the-art 

AI-generated content detection, specifically 

methodologies and techniques that can be applied to using 

Vision Transformers (ViTs) to discriminate between AI-

generated and human-created images. 

Thanks to the integration of AI, photo-realistic images, 

which resemble human-placed designs, are generated. The 

advanced generative models used by tools such as DALL-

E, MidJourney, and Stable Diffusion make images more 

indistinguishable from real things. These democratizing 

advancements to creativity are a concern as they also put 

it into the public domain, worrying about authenticity and 

intellectual property rights [8-10]. There have been few 

attempts to identify the key difficulties of detecting AI 

interior design images, leaving a vacant area for studying 

this field. 

AI-generated image detection usually relies on machine 

learning or deep learning models to identify little things 

about artificial intelligence-generated images that would 

not have come from them. Some commonly used 

techniques include:  

Convolutional Neural Networks (CNNs): In the past, 

CNNs have been a core piece of image classification tasks. 

They have been shown to learn spatial hierarchies in 

images and to detect AI artefacts. For example, we 

successfully used CNNs to detect GAN-generated images 

[11, 12]. Global contextual relationships in high-

dimensional data can be solved tremendously well with 

CNNs [13], but they are commonly challenging. 

Transformer-Based Architectures: Based on our 

Transformers, which were initially designed for natural 

language processing [14], we adapt them for vision tasks. 

Self-attention mechanisms used by Vision Transformers 

(ViTs) to capture local and global image patterns result in 

ViTs being very powerful for detecting minute 

inconsistencies in AI-generated content [5, 15, 16]. In this 

work, we build upon the success of ViTs by extending it to 

interior design image classification. Ensemble Models: 

Others have combined CNNs and transformer-based 

architectures to provide the best of both worlds. For 

example, hybrid architectures such as DeiT (data-efficient 

image transformer) and feature extract early features via 

convolutional blocks [17-20], subsequently using 

transformer layers to perform global attention. 

Image classification and manipulation detection have 

become the state of art using Vision Transformers. On 

high-dimensional datasets, they can divide the images into 

patches and apply self-attention to the relationships 

between them, leading to better performance [4, 21]. 

Several studies have highlighted their applicability: ViTs 

were introduced to demonstrate their scalability in 

challenging image classification tasks, outperforming 

traditional CNNs on large-scale datasets [4, 22]. 

References [23-26] indicate that Vision Transformers are 

adequate detectors of subtle image manipulations, 

including deepfake detection. They, therefore, are a natural 

choice of methodology for tasks where subtle minute 

image artefacts are exceedingly sensitive. The present 

study extends this foundation to a binary classification of 

AI-generated and authentic images in interior design while 

fine-tuning ViT models. 

The success of deep learning models and effective 

preprocessing is critical. Standard techniques to make 

models robustly include image resizing, normalization, 

and data augmentation. References [27, 28] have 

researched that dataset balancing is necessary and that 

working with augmentation strategies is a better way to 

tackle class imbalances. In this study, we adopt these 

practices: samples per class were capped at 1,000, and the 

dataset was set up for diversity. Metrics like accuracy, 

precision, recall, F1-score, and loss are used to evaluate 

detection models, commonly called metrics. These are 

used to find misclassification patterns using confusion 

matrices [29, 30]. In line with best current practice in the 

field, it suggested using a range of metrics to capture 

distinct aspects of model performance, which justifies the 

choice of metrics made by the study. 

Despite the advancements, several challenges persist in 

detecting AI-generated images: (i) Subtle Artifacts: 

Detections of high-quality AI-generated images are 

complex because they are often not marked with visual 

artefacts. Generative models studied have recently 

demonstrated their ability to learn and generate 

increasingly higher-quality actual image samples 

seamlessly. (ii) Computational Complexity: Despite being 

highly accurate, transformer-based models are 

computationally expensive, making it a difficult task for 

resource-constrained environments. (iii) Dataset 

Limitations: The generalization or transferability of 

detection models for a specific domain, such as interior 

design, is limited by the lack of standardized datasets. 

We compare deep learning-based methods to detect AI-

generated images, particularly in interior design, as shown 

in Table 1. Then, it compares those approaches' strengths, 

accuracy, precision, recall, and limits. 
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Table 1: Comparison of AI-generated image detection 

methods 
Methodol

ogy 

Key 

Strengths 

Accura

cy 

Precisi

on 

Reca

ll 

Limitations 

CNN-

Based 

Approach

es 

Intense 

feature 

extraction 

for local 

patterns; 

effective 

for GAN-
based 

images 

85–

92% 

High High Struggles 

with long-

range 

dependencie

s; limited 

effectivenes

s on high-
quality 

textures 

Hybrid 

CNN-

Transfor

mer 

Models 

Combines 

CNN's 

spatial 

awareness 

with 

Transform

er's self-
attention 

89–

94% 

High High Increased 

computation

al cost; 

complex 

model 

training 

Ensemble 

Models 

Enhances 
classificati

on 

robustness 

by 

integratin

g multiple 

architectur
es 

91–
95% 

High High Requires 
large-scale 

datasets; 

computation

ally 

expensive 

Vision 

Transfor

mers 

(ViTs) 

(Our 

Approach

) 

Captures 
fine-

grained, 

global 

dependenc

ies via 

self-

attention; 
excels at 

detecting 

subtle 

artefacts 

96.25% 0.9637 0.96
25 

High 
computation

al cost 

requires 

extensive 

pretraining. 

Previous literature has discussed the detection of AI-

generated images across the more general areas at length, 

with little focus on the domain-specific application, 

interior design. Furthermore, most of the studies employ 

CNN-based solutions, while others, looking at the full 

capability of Vision Transformers, are less central. This 

study evaluates multiple ViT configurations for detecting 

AI-generated interior design images to fill these gaps. 

This literature review points out the significance and 

importance of Vision transformers as a current state-of-

the-art approach for detecting AI-generated images. This 

study benefits from this capability since it helps to grow 

the body of work on the authenticity of AI-generated 

content. Future work will then need to make computational 

efficiency improvements, tackle domain-particular 

challenges, and standardize benchmarks for performance 

evaluation in interior design and more generally. 

3    Proposed method 

The proposed method uses deep learning to distinguish AI-
generated images in interior design from human-created 
ones, as shown in Figure 1. Given that, for preprocessing 
and balancing the input images, we limit samples per class 
to be uniform and split the data into training and validation 
sets. The system uses the features extracted by Vision 
Transformer (ViT) models (ViT-B16, ViT-B32, ViT-L16, 
ViT-L32) and classifies images. The defined parameters 
are used to train the model, and then you evaluate the 
metrics such as accuracy and F1 score. Performance 
analysis is realized through visualization of training 
samples, predictions, and validation metrics, leading to a 
robust and interpretable approach. 

 

 

Figure 1: Pipeline of the proposed methodology for AI-generated image detection in interior design. It consists of 

dataset collection, preprocessing, the Vision Transformer (ViT) feature extraction, training with AdamW optimization, 
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and evaluating using accuracy, precision, recall, and F1 score to maintain an optimal tradeoff between efficiency and 

performance. 

Different sizes of network depth, hidden 

dimension size, self-attention heads, and total params are 

Base (B), Large (L), and Huge (H) Vision Transformer 

(ViT) models. ViT-B (Base) has 12 layers, 768 hidden 

dimensions, and 86 million parameters, achieving good 

performance and computational cost tradeoffs and being 

practical in real-world AI-generated image detection. The 

better feature extraction performance results in ViT-L 

(Large) with 24 layers, 1024 hidden dimensions, and 

307M parameters, which comes with higher computational 

cost. The most resource-intensive ViT is ViT-H (Huge), 

which comes with 32 layers, a hidden dimension of 1280, 

and 632 million parameters. It was left out for its high 

computational demands with no proportional accuracy 

gains. For this reason, Base and Large models have been 

addressed in this study, as they ensure the optimal balance 

between accuracy and efficiency, consequently making 

them feasible for AI-generated image detection in interior 

design. 

Deep learning algorithms-based methodology to 

detect artificial intelligence (AI) generated images in 

interior design. The process consists of multiple steps, 

which are described in detail below: 

The first step in collecting the image dataset is to get 

an extensive collection of images. This dataset comprises 

two main categories: 

• AI-Generated Images: AI tools and algorithms 

images for interior design pictures. 

• Real Images: Actual interior designs captured 

using cameras or professionally curated 

photographs. 

The dataset must be diverse in design styles, lighting 

conditions, and resolutions to generalize new images well. 

Raw input images are standardized to make them 

appropriate for input into the ViT model and for better 

performance. Each image is resized to 224 ×  224 pixels: 

𝐼′ = Resize(𝐼, 224,224)    (1) 

Where 𝐼 is the original image and 𝐼′, is the resized image. 

To prevent overfitting and improve robustness, performed 

data augmentation, which includes: 

• Random Rotation (±15°) was applied to introduce 

random image orientation variability, where 15° — 

rotational deviation. 

• To simulate mirroring of interior design perspectives, 

simulate Horizontal Flipping (50% probability). 

• The effect of random cropping (90% of the original 

size) forces the model to pay attention to different 

image portions. 

• By applying Color Jitter (±0.2 on the Brightness, 

Contrast, and Saturation adjustments), I'm simulating 

the variations that might occur through lighting 

conditions. 

• Random Rotation (±15°) was applied to introduce 

random image orientation variability, where 15° — 

rotational deviation. 

• To simulate mirroring of interior design perspectives, 

simulate Horizontal Flipping (50% probability). 

• The effect of random cropping (90% of the original 

size) forces the model to pay attention to different 

image portions. 

• Applying Color Jitter (±0.2 on the Brightness, 

Contrast, and Saturation adjustments) simulates the 

variations that might occur through lighting 

conditions. 

Pixel values are normalized to the range [0,1]  or 

standardized using the mean 𝜇 and standard deviation 𝜎 of 

the dataset: 

𝐼norm =
𝐼′−𝜇

𝜎
         (2) 

Images are divided into non-overlapping patches of size 

𝑃 × 𝑃(e.g., 16 × 16 or 32 × 32: 

Patch = {𝑝𝑖,𝑗: 𝑝𝑖,𝑗 ∈ 𝑅𝑃×𝑃},  ∀𝑖, 𝑗 ∈ [1, 𝑁] 

Where 𝑁 s is the number of patches per dimension, 

calculated as:  

𝑁 =
Image Size

Patch Size
      (3) 

For an image of 224×224 and a patch size 16, N=14 (i.e., 

14×14=196 patches). Each patch is flattened into a 1𝐷 

vector and linearly projected into a 𝐷 -dimensional 

embedding space using a learnable matrix, 𝑊𝑒: 
 

𝑧𝑝 = 𝑊𝑒 ⋅ Flatten(𝑝𝑖,𝑗)    (4) 

 

Where 𝑧𝑝 ∈ 𝑅𝐷 , is the embedded representation of a patch. 

To encode spatial information, a positional embedding 

𝑒pos is added to each patch embedding: 

𝑧𝑝
′ = 𝑧𝑝 + 𝑒pos      (5) 

Where 𝑒pos,  is a learnable positional embedding vector. 

The sequence of patch embeddings is passed through 

multiple Transformer encoder layers. Each layer consists 

of Multi-Head Self-Attention (MHSA) scores are 

computed as follows:  

Attention(𝑄, 𝐾, 𝑉) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉   (6) 

where:  

• 𝑄 = 𝑊𝑞 ⋅ 𝑧𝑝
′  (query) 

•  𝐾 = 𝑊𝑘 ⋅ 𝑧𝑝
′  (key), 

•  𝑉 = 𝑊𝑣 ⋅ 𝑧𝑝
′  (value) 

•  𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣  , are learnable weight matrices. 

•  𝑑𝑘, is the dimensionality of the key. 
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Multi-head attention is computed as: 

MHSA(𝑧𝑝
′) = Concat(head1, … , headℎ)𝑊𝑜  (7) 

where 𝑊𝑜, is an output projection matrix.  

Feed-Forward Neural Network (FFN): Each patch 

embedding is processed through a two-layer fully 

connected network with activation: 

FFN(𝑧) = ReLU(𝑧𝑊1 + 𝑏1)𝑊2 + 𝑏2   (8) 

where 𝑊1, 𝑊2 and 𝑏1, 𝑏2, are learnable parameters. 

Residual Connections and Layer Normalization: Each 

block includes skip connections and normalization: 

𝑧𝑝
𝑙+1 = LayerNorm (𝑧𝑝

𝑙 + MHSA(𝑧𝑝
𝑙 ))   (9) 

𝑧𝑝
𝑙+1 = LayerNorm (𝑧𝑝

𝑙 + FFN(𝑧𝑝
𝑙 )) 

 (10) 

A unique learnable classification token 𝑧cls
𝑙 , is prepended 

to the patch sequence: 

𝑧cls
𝑙+1 = Transformer(𝑧cls

𝑙 , {𝑧𝑝
𝑙 })   

 (11) 

where 𝑧cls
𝑙 , aggregates global information for 

classification. 

The output of the classification token is passed through a 

softmax layer to produce probabilities for the two classes, 
(𝑦real, 𝑦AI): 

ŷ = Softmax(Wc ⋅ zcls + bc)   

 (12) 

Where 𝑊𝑐 and 𝑏𝑐, are learnable parameters. 

The binary cross-entropy loss is: 

L = −
1

N
∑ [yi log(yî) + (1 − yi) log(1 − yî)]N

i=1  

 (13) 

Where 𝑦𝑖 , is the ground truth label. 

The model is trained using the Adam optimizer: 

θt+1 = θt − η∇L(θt)    

 (14) 

Θ represents model parameters, η is the learning rate, and 

∇ℒ is the loss gradient. 

We provide a detailed breakdown of 

hyperparameters and training configurations of our 

experiments to guarantee reproducibility in Table 2. 

Similar to AdamW, which is known for its good 

generalization of Transformer-based architectures, we use 

the version of AdamW. A weight decay of 0.01 helps to 

prevent overfitting. Beginning with a warm-up at the first 

five epochs, we apply a cosine annealing schedule with a 

warm-up to avoid early instability and then gradually 

decay the learning rate in the rest of the training. A 

memory-efficient yet stable update is done in a batch size 

of 16. These hyperparameters are detailed and mimic in 

training, especially in deep ViT models; gradient clipping 

of 1.0 ensures numerical stability and is easy to replicate 

and adapt from in future studies. 

 

 

Table 2: Training Hyperparameters 

Parameter Value 

Optimizer AdamW (Decoupled 

Weight Decay) 

Learning Rate 5e-5 (decayed using 

cosine annealing) 

Learning Rate Schedule Cosine Annealing with a 

warm-up for the first five 

epochs 

Batch Size 16 

Weight Decay 0.01 

Dropout Rate 0.1 

Training Epochs 10 

Gradient Clipping Norm Clip at 1.0 

Loss Function Binary Cross-Entropy 

Loss 

Validation Split 80% Train, 20% 

Validation 

The results of the proposed method are  evaluated by using 

the following metrics: 
Accuracy =

TP+TN

TP+TN+FP+FN
   (15) 

Accuracy is a general measure of the total correctness 

of the model. However, as always in machine learning, it 

is not for class imbalance as a model that always predicts 

"AI generated" would still have high accuracy if the 

dataset was skewed. An accuracy score ranging above 90% 

is an indication that the model is working reasonably well 

overall. It does not mean that the model is not biased 

toward one class. 

Precision =
TP

TP+FP
    (16) 

The precision measures how many of the detected AI-

generated images are AI-generated. In an application 

where false positives are to be minimized, such as 

incorrectly labelling accurate interior designs as AI-

generated, such normalization is a must. A high precision 

(>90%) implies the model does not misclassify human-

created images as AI-generated. If the score is less than 

80% (i.e., a precision of less than ~80%, which is a high 

false positive rate), then the model may be too unreliable 

for commercial use. 

         Recall =
TP

TP+FN
             (17) 

The recall measures how much the model fails to 

identify images without missing AI-generated images. 

However, recall is a key metric for applications where 

finding all the AI-generated content is more important than 

avoiding false positives. A high recall (>90%) means the 

model fails to capture AI-generated images. If there is a 

low recall (<80%), the model cannot correctly 'detect' 
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many of these AI-generated images, resulting in many 

false negatives. 

F1-Score = 2 ⋅
Precision⋅Recall

Precision+Recall
   

 (18) 

When precision and recall have an optimal tradeoff, 

the F1 score is a balanced metric. In particular, it is suitable 

for AI image detection, where you want to minimize false 

positives and negatives. A high F1 score (i.e., >90%) 

indicates that the model can balance precision and recall 

well. If the F1-score is low (<80%), then the model is 

overfitting to one class (i.e., giving in precision or recall 

disproportionally). 

Different ViT configurations, such as ViT-B16: Base 

model, patch size 16 × 16, are used. ViT-B32: Base model, 

patch size 32 ×  32. ViT-L16: Large model, patch size 

16 ×  16. ViT-L32: Large model, patch size 32 ×  32. 

Each configuration affects the balance between 

computational efficiency and detection accuracy. 

Consideration of alternative hybrid transformer 

architectures was considered in this study, such as DeiT 

(Data efficient Image Transformer) and Swin 

Transformer. Still, due to the following reasons, they have 

not been part of this study. 

• DeiT models are optimized for datasets on the smaller 

side, and their efficiency is based on knowledge 

distillation. Although they reduce training costs, they 

are less suitable for capturing global dependencies in 

image authenticity verification by AI because they 

rely on CNN-like inductive biases. 

• Applications in object detection: As an object 

detection application, Swin utilizes hierarchical 

feature learning with shifting windows, so it is 

efficient. Nevertheless, our main objective in global 

feature extraction is achieved by standard ViTs owing 

to their pure self-attention mechanism. 

Consequently, we did not explore hybrid transformers 

to examine the effects of patch size and model capacity on 

AI-generated image detection. 

Figure 2 illustrates the proposed method's ability to 

classify images as AI-generated (T: Using Vision 

Transformers, we represent visual tokens to classify 

images as either AI Created (T: AI) or human-created (T: 

Human). The predicted labels (P: Below each 

classification, we have written AI or P: Human. The model 

can distinguish between AI-generated and authentic 

human-created interior design images in different settings. 

 

Figure 2: Authenticity verification results of AI-generated and human-created images in interior design 

applications. 

 

4    Experimental setup 

This research study fine-tuned Vision Transformers 

(ViTs) by classifying human-crested indoor design images 

from AI-crested indoor design images. The experiments 

were conducted with various ViT variants to account for 

the model capacity, achieving different patch sizes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The database of images related to interior design was 

compiled to be balanced, and the images were 

preprocessed to guarantee rigorous training and testing. 

The dataset of AI-vs-human images is available at 

https://www.kaggle.com/datasets/shirshaka/ai-vs-human-

generated-images. Such important values as learning rate, 

batch size, and evaluation criterion were tuned to ensure 

reliability, as shown in Table 3. 

 

 

 

 

https://www.kaggle.com/datasets/shirshaka/ai-vs-human-generated-images
https://www.kaggle.com/datasets/shirshaka/ai-vs-human-generated-images
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Table 3: Overview of the experimental setting, including 

model architectures used, details of the data sets and 

preprocessing, and training and evaluation parameters 

applied in classifying human and AI-generated interior design 

images. 

Aspect Details 

 

 

 

Models  

 

Vision Transformers (ViT) 

variants: 

• vitb16: Base 

model, patch size 

16 

• vitb32: Base 

model, patch size 

32 

• vitL16: Large 

model, patch size 

16 

• vitL32: Large 

model, patch size 

32 

Pretraining  All models were pre-trained 

on ImageNet-21k. 

Fine-tuning Task  

 

Binary classification: 

Class 0: Human-generated 

images 

• Class 1: AI-

generated images 

Dataset  Custom dataset of interior 

design images categorized 

as accurate (human) or fake 

(AI). 

Sample Limitation The sample limit is 1000 

samples per class per 

category. 

Data Splitting  80% training, 20% 

validation split. 

Image Processing   

 

Transformation pipeline: 

• Resize to 224x224 

pixels 

• Convert to tensor 

• Normalize using 

ImageNet mean 

and standard 

deviation. 

Optimizer  Adam 

Learning Rate   5e-5 

Batch Size 16  

Epochs  10, epochs 

Evaluation Metrics

  

Accuracy, precision, recall, 

and F1-score. 

Validation Strategy

  

Evaluation performed after 

each epoch. 

5    Results and analysis 

For this task, we evaluate four Vision Transformer 

(ViT) models—ViT-B16, ViT-B32, ViT-L16, and ViT-

L32—to distinguish between real and artificial interior 

design images generated by AI. This section presents the 

validation results and analysis. Based on essential metrics 

like loss, accuracy, F1 score, precision, recall, runtime, and 

computational efficiency, the models were compared in 

Table 4 and Figures 3-6. The results quantify the tradeoff 

between accuracy and efficiency across various model 

configurations, with smaller patch sizes (16×16) achieving 

higher accuracy and F1 scores and larger patch sizes 

(32×32) for more computational throughput. The most 

appropriate model for this classification task is identified 

through a detailed comparison. 

 

Table 4: Validation performance reached by ViT models 

(ViT-B16, ViT-B32, ViT-L16, and ViT-L32) on studying 

AI-generated image classification. 

Metric  ViT-

B16

  

ViT-

B32

  

ViT-

L16

  

ViT-

L32 

Accurac

y  

96.25%

  

80.00%

  

96.25%

  

81.25% 

F1 Score

  

0.9625

  

0.8000

  

0.9625

  

0.8118 

 

Precision

  

0.9637

  

0.8002

  

0.9637

  

0.8175 

 Recall  0.9625

  

0.8000

  

0.9625

  

0.8125 

Loss  0.1154

  

0.4970

  

0.1206

  

0.4469 

 Runtime 

(s)  

15.7407

  

15.3469

  

18.4198

  

15.109

6 

Samples 

per 

Second  

10.165

  

10.426

  

8.686

  

10.589 

Steps per 

Second  

0.635

  

0.652

  

0.543

  

0.662 
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Figure 3: The ViT_B16 model validation results over ten 

epochs with a decline in loss and an accurate convergence 

of accuracy, F1 score, precision, and recall around 96% at 

epoch 8. 
 

 

Figure 4: Validation metrics of the ViT-B32 model 

during ten epochs with loss have converged, and 

accuracy, F1 score, precision, and recall at a plateau of 

80% around the final epoch. 

 
Figure 5: ViT-L16 model validation metrics on ten 

epochs, quickly converging to 3 epochs, with loss of 
around 0.12 and accuracy of around 96%, F1 score, 

precision, and recall of around 96, respectively. 
 

 
Figure 6: Validation metrics of the ViT-L32 model over 

ten epochs show loss declining to 0.44 by epoch 8, while 

accuracy, F1 score, precision, and recall stabilize around 

81% by the final epoch. 

 

The results of four Vision Transformer (ViT) 

models, including the ViT-B16, ViT-B32, ViT-L16, and 

ViT-L32, were tested as a detector for determining 

whether AI generates the images or contains traditional 

interior design. The performance results, which consist of 

accuracy, F1 score, precision, recall, loss, runtime, and 

computational efficiency of each examined model, 

contribute to identifying usable and nonusable 

components. A qualitative analysis follows based on the 

results from Table 3 and the validation trends in Figs 3–6. 

Second, models using patch sizes of 16×16 

(limited patch size) overwhelmingly outperformed those 

using patch sizes of 32×32 (largest patch size). Our 

validation accuracy was 96.25%, F1 score 0.9625, 

precision 0.9637 and recall 0.9625. The results 

demonstrate that these models can accurately discriminate 

between AI-generated and authentic images. It allows for 

better details and a smaller patch size against which 

features can be extracted for more accurate detection of 

subtle artefacts in AI-generated images. 

On the other hand, ViT-B32 and ViT-L32 using 

larger 32×32 patches achieved significantly lower 

accuracy (80.00% and 81.25%) and F1 scores (0.8000 and 

0.8118). These results suggest the models are limited to 

coarse granularity due to their weaker classification 

performance, which is why a 32×32 patch size option is 

offered. 

The validation graphs show interesting 

differences; each model converges quicker and more 

efficiently. At the end of epoch 8, ViT-B16 (Figure 1) 

steadily reduces its validation loss to 0.1154, and we 

observe that the accuracy, precision, recall, and F1 scores 

settle at around 96%. It shows how robust and efficient, in 

theory, it is at learning. 

As shown in Figure 3, ViT-L16 more quickly 

converges to its validation loss (0.1206) as early as epoch 

3. Another is its performance metrics, which reach 96% at 

epoch three, affirming its reasonable capability to 

adequately capture complex patterns in the data in fewer 

epochs. However, this raises the computational price. 

ViT-B32 (Figure 2) and ViT-L32 (Figure 4) take 

longer to converge, losing at 0.4970 and 0.4469 

respectively. These models achieve precision and recall at 
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around 80–81%, whereas the smaller patch-size models 

reach their precision and recall plateau earlier. 

On the other hand, small patch size models (ViT-

B16, ViT-L16), although providing higher classification 

performance, incur higher computational costs. As with 

ViT-L16, the runtime of this setup is 18.4198 seconds, 

with the lowest throughput of 8.686 samples per second 

and 0.543 steps per second, reflecting this setup's high 

computational complexity. Though less efficient than the 

32×32 patch models, ViT-B16 processes 10.165 samples 

per second at a runtime of 15.7407 seconds, making it a 

good balance between performance and efficiency. 

However, a comparison of ViT-B32 and ViT-L32 

reveals that ViT-B32 is considerably more efficient, 

reaching a throughput of 10.589 samples per second and a 

runtime of 15.1096 seconds, which makes it the fastest. 

Nevertheless, their F1 scores and reduced accuracy make 

their application less appropriate for high-precision tasks. 

Further analyses on precision and recall metrics 

highlight the trade between models. The precision and 

recall values of both ViT-B16 and ViT-L16 are in the 96% 

range, meaning they have a low risk of finding false 

positives and false negatives. They are ideal for tasks with 

high accuracy, making them perfect. 

ViT-B32 and ViT-L32, however, have precision and 

recall values in the 80–81% range, which maintains 

performance over the varied scale for ViT-B16. While 

their consistency is excellent, the lower precision implies 

less reliance on accurately identifying AI-generated 

images. The validation metric trends provide additional 

clarity: 

• ViT-B16 (Figure 3): With growing numbers of 

epochs, it shows steady improvement and stable 

performance from epoch 8, and this is an excellent 

balance between the capacity of learning and 

efficiency. 

• ViT-L16 (Figure 5): It converges remarkably fast, 

stabilizing by epoch 3, but at a higher computational 

cost, making it an attractive solution when fast 

training is a top priority. 

• ViT-B32 (Figure 4) and ViT-L32 (Figure 6): Slow 

learning with little ability to capture minute 

differences in the data, all exhibit gradual 

improvement over ten epochs. 

The results reveal the tradeoff between accuracy and 

computational efficiency. ViT-B16 is the most balanced 

model with reasonable throughput, runtime, and accuracy 

(96.25%). Equally accurate, ViT-L16 is too 

computationally intensive for use when accuracy isn't the 

top concern. However, for those tasks that demand a higher 

level of computational efficiency (i.e., speed), ViT-B32 

and ViT-L32 are favourable. Since the reduced accuracy 

renders them unusable for high-precision calculation, the 

entire ViT family may be overkill for some applications. 

ViT-B16 seems to be a better model for detecting AI-

generated images in interior design than the rest, as its 

tradeoff between accuracy and computational efficiency is 

better. While ViT-L16 has a higher computational cost, its 

fast convergence and high accuracy make it ideally suited 

to scenarios seeking the highest precision, with a tradeoff 

in its computational cost. On the other hand, ViT-B32 and 

ViT-L32 pick the path of efficiency over precision, being 

good candidates for real-time applications where speed is 

more important than classification accuracy. The 

importance of choosing the correct model configuration is 

made clear in this comprehensive comparison of the 

'theory' against the specific needs of the task. 

It is a standard evaluation measure of classification 

tasks, which summarizes the model's performance across 

different thresholds in a single graph called the Area Under 

The Curve (AUC) graph. It gives an overall score of model 

effectiveness by providing a measure of the tradeoff 

between the True Positive Rate (sensitivity) and the False 

Positive Rate. In the context of authenticity verification, 

we use evaluation accuracy as a proxy for AUC and allow 

the performance of models to be compared directly in 

Figure 7.  

 

 
Figure 7: Detecting AI-generated images in interior 

design applications by comparing AUC among Vision 

Transformer models (ViT-B16, ViT-L16, ViT-L32, and 

ViT-B32). Although slightly worse, other models have 

comparable outcomes; even ViT-B16 is the strongest. 

This study's results show that Vision Transformers 

(ViTs) outperform conventional CNN-based methods in 

detecting interior design imaging generated by AI. By 

comparing the models, it is concluded that the best-

performing model, ViT-B16, could perform at an accuracy 

of 96.25% and an F1 score of 0.9625, thus proving to 

distinguish AI-generated images from the real ones. While 

these results are promising, it is necessary to contextualize 

them by comparing them to prior AI-generated image 

detection in other fields, such as medical imaging, digital 

art, and deepfake detection, as shown in Table 5.  

 

Table 5: Contextual comparison of AI-generated image 

detection methods 

Domain Best 

Model 

Accur

acy 

F1 

Sco

re 

Key 

Observati

ons 

Medical 

Imaging 

ViT-based 

Histopath

ology 

Model 

94.7% - ViTs 

effectivel

y detect 

synthetic 
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(Arshed et 

al., 2023) 

medical 

images 

but 

struggle 

with 

highly 

high-

resolution 

textures. 

Digital 

Art 

Authentic

ation 

GAN-

Based 

CNN 

Model 

(Vivaldi 

& Sutedja, 

2024) 

85–

92% 

- CNNs are 

effective 

but prone 

to false 

positives 

due to 

intricate 

artistic 

patterns. 

Deepfake 

Detection 

ViT-

Based 

Deepfake 

Detector 

(Zhao et 

al., 2023) 

- 0.95 ViTs 

excel at 

capturing 

subtle 

inconsiste

ncies in 

AI-

generated 

human 

faces. 

Interior 

Design 

(Our 

Study) 

ViT-B16 96.25

% 

0.96

25 

ViT-B16 

outperfor

ms 

existing 

methods 

by 

preserving 

fine-

grained 

textures 

and 

capturing 

long-

range 

dependen

cies. 

Table 5 compares training time, memory usage, 

and model performance to ensure the computational 

efficiency of different ViT configurations. The analysis 

must identify the most reasonable model for detecting AI-

generated images in interior design concerning 

computation cost and accuracy. 

Table 5: Computational dfficiency of ViT configurations 

Model Training 

Time 

(per 

epoch, 

sec) 

Memory 

Usage 

(GB) 

Accuracy 

(%) 

F1 

Score 

ViT-

B16 

720 sec 12.5 GB 96.25% 0.9625 

ViT-

B32 

580 sec 10.2 GB 80.00% 0.8000 

ViT-

L16 

940 sec 16.8 GB 96.25% 0.9625 

ViT-

L32 

810 sec 14.3 GB 81.25% 0.8118 

The ViT-B16 configuration achieves the best tradeoff 

between accuracy and computational efficiency. ViT-L16 

gets comparable accuracy but requires much more memory 

and training time than Quilt. ViT-L16, ViT-B16, ViT-B32, 

and ViT-L32 require less computational load than larger 

patch sizes but offer lower accuracy. The results show that 

the most practical model for real-world AI-generated 

image detection in interior design is ViT-B16; they are 

accurate and come with reasonable training time and 

memory usage. 

We also performed additional experimental 

evaluations, using an imbalanced dataset and noisy inputs, 

to test our models' robustness. In both tests, real-world 

samples are simulated, and ViTs are tested to see their 

stability in different data conditions. We had changed the 

class distributions (70% of AI-generated images, 30% 

authentic images). ViT-B16 performance dropped slightly 

(Accuracy: 94.2%, F1 Score: 0.945). The model was 

stable; thus, it was resilient to imbalanced data. We 

degraded the inputs using Gaussian noise (σ=0.05) and 

random occlusions. However, ViT-B16 achieved high 

accuracy (93.5%) while ViT-B32 and ViT-L32 decreased 

below 75%. Self-attention in ViTs helps retain essential 

features; however, larger patch sizes suffer from losing 

fine details in noisy conditions. Inference on challenging 

conditions confirms that ViT-B16 is the most robust 

model. Further work will be pursued to enhance the model 

resilience with adversarial training techniques. 

6    Discussion 

Results from the experiment confirm the incredible 

performance of Vision Transformers (ViTs) in 

distinguishing AI-generated interior design images. For 

smaller patch sizes such as ViT-B16 and ViT-L16, we 

achieve an impressive accuracy of 96.25% in identifying 

subtle artefacts. This makes them an ideal choice for high-

precision authenticity verification. Similarly, 

configurations with larger patch sizes, such as ViT-B32 

and ViT-L32, optimize for speed at the expense of some 

accuracy. Real-time applications, or environments with 

resource constraints, apply generously to these 

configurations. Our findings demonstrate that ViTs can be 

scalable for other creative fields, such as architecture and 

visual art. Future work will concentrate on designing 

hybrid architectures for optimal precision and efficiency. 

This work has shown that ViTs can be a powerful tool 

for distinguishing AI-generated from human-generated 

images in interior design. Its results highlight the promise 

and pain of using them in this way, which can be extended 

to many other application areas. Across four ViT 

configurations (ViT-B16, ViT-B32, ViT-L16, and ViT-

L32), we summarize the findings regarding the tradeoffs 
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between model accuracy, computational efficiency, and 

the nature of data representation. 

Using smaller patch sizes (16×16) like ViT-B16 and 

ViT-L16, the models demonstrate superior performance 

over all the metrics like accuracy, precision, recall, and F1 

score and reach values close to 96.25%. That is to say, 

those models are more capable of discerning the relatively 

subtle inconsistencies and artefacts typical of artificial 

images that are indistinguishable from reality in the human 

eye. ViTs display robust ability in this binary classification 

problem by extracting detailed spatial and contextual 

features. 

However, the computational demands of ViTs became 

a more significant consideration. ViT-L16 converged 

faster (within three epochs) than ViT-B16, which achieved 

high accuracy, but its computation overheads—runtime 

and throughput—make it less practical for resource-

constrained environments. On the other hand, ViT-B16 

also achieved comparable accuracy but with relatively 

lower computational costs. Given applications such as 

interactive design tools or automated verification systems 

that require real-time processing, the efficiency gains 

enabled by models like ViT-B32 may be preferable to less 

precise models, though they would be less accurate. 

The results are essential for real-world deployment in 

interior design and related fields. Integrating high-

accuracy models such as ViT-B16 into quality assurance 

pipelines can assure the authenticity of design assets to 

verify usage and prevent misrepresentation. Like ViTs, the 

versatility of ViTs in processing diverse datasets shows 

how ViTs are adaptable to diverse design styles and 

lighting conditions and, thus, are better suited for more 

generalized AI detection frameworks. 

However, the observed tradeoffs between accuracy and 

efficiency indicate that task-specific model selection is 

critical. High-precision applications may benefit from 

smaller patch sizes and larger models; conversely, 

computationally efficient configurations may prove 

preferable for scenarios where scalability and speed are 

paramount in large-scale design database audits. 

By demonstrating the effectiveness of ViTs in 

differentiating two sets of images produced by AI in 

interior design, this study lays the groundwork for 

developing more sophisticated AI authenticity verification 

algorithms. Through tailored model configurations to 

particular use cases, the tradeoffs between accuracy and 

efficiency can be worked through effectively, enabling 

general use in the creative domain and further. 

The current AI-generated image detection techniques 

mainly depend on a CNN-based model with local receptive 

fields to extract hierarchical spatial features. While CNNs 

have identified GAN artefacts when such CNNs are 

applied to high-resolution photo-realistic synthetic interior 

design images, traditional, deepfake, or low-quality 

synthetic artefacts are absent from the synthetic images. 

The CNNs cannot find them. On the other hand, ViTs like 

ViT-B16 use self-attention mechanisms that work across 

the entire image to find inconsistencies that CNNs would 

miss. Comparative performance between ViT-B16 and the 

paper reported in previous literature is presented in Table 

6. 

Table 6: Comparative performance analysis of ViT-B16 vs CNN-based methods. 

Model Architecture Accuracy F1 

Score 

Key 

Strengths 

Limitations 

CNN-Based 

Methods 

Convolutional 

feature 

extraction 

85–92% 0.85–

0.91 

Intense 

spatial 

feature 

learning, 

efficient on 

small-scale 

datasets 

Struggles with 

long-range 

dependencies, 

poor 

generalization to 

high-quality AI-

generated 

images 

Hybrid 

CNN-

Transformer 

CNN for local 

features, 

Transformer 

for long-

range context 

89–94% 0.89–

0.94 

Balances 

CNN 

efficiency 

with 

Transformer's 

self-attention 

Computationally 

expensive, 

complex 

training process 

ViT-B16 

(Our Model) 

Vision 

Transformer 

with small 

patch size 

(16×16) 

96.25% 0.9625 Captures 

both local 

and global 

dependencies 

with high 

accuracy on 

high-quality 

AI images 

Requires 

significant 

pretraining and 

higher 

computational 

resources 

We also observe that the performance of ViT depends 

on patch size. Our results show that models with smaller 

patch sizes, like ViT-B16 and ViT-L16, had significantly 

better accuracy than models with bigger patch sizes (like 
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ViT-B32 and ViT-L32). Even for ViT-B32, the accuracy 

dropped to 80.00%, and for ViT-L32, it dropped to 

81.25%, indicating that the solutions fell considerably 

behind their small patch counterpart. This discrepancy is 

because smaller patches can preserve fine-grained details. 

When an image is tokenized into larger patches, the loss of 

information can occur due to aggregation of critical spatial 

information like subtle shading, textural variations, and 

delicate contours. The interior design images are of 

intricate patterns and highly detailed material textures, for 

which feature extraction is better maintained with small 

patch sizes. Furthermore, the self-attention module 

receives fewer tokens to process in larger areas, which can 

impact the model learning the distinction between 

authentic vs AI-generated images. It sets smaller patch 

sizes, leading to denser tokenization, so the ViT model can 

retain more information and distinguish between the real 

world and AI-generated designs. 

The results show that ViTs outperform CNN-based 

models in detecting AI-generated images; however, 

several limitations should be considered. Even though the 

data is diverse, there could still be latent biases in the 

lighting styles. Through specific aesthetic design 

preferences, the model may figure out the detection of 

style incoherencies rather than actual AI artefacts. 

However, future work will have to cross-domain on 

datasets generated by different AI models (e.g., GANs vs. 

Diffusion models) to validate their generalization 

properties. However, ViT-B16 reaches high accuracy but 

still consumes ample computational resources (12.5GB 

memory for each epoch). The ViT-based detection systems 

deployed on edge devices or real-time applications may be 

performable with model compression techniques like 

knowledge distillation or quantization. Potential Evasion 

by Advanced AI Models  As soon as AI-generated images 

become fancier, detection models must change. The AI 

images could be created using adversarial attacks to avoid 

detection, and the training process for models would need 

to be continuously updated. These limitations provide 

future improvements in AI-generated image detection, 

which is scalable and adaptive. 

7    Conclusion 

For interior design, this study shows the viability of Vision 

Transformers (ViTs) as a method to differentiate AI-

generated images from human-made designs. We then find 

a clear tradeoff between accuracy and computational 

efficiency by fine-tuning multiple ViT configurations 

(ViT-B16, ViT-B32, ViT-L16, ViT-L32). Classifiers 

using smaller patches (patches size: 16×16) performed 

better, and ViT-B16 achieved 96.25% accuracy and 

0.9625 (F1 score). The key outcome of these results is that 

delicate feature extraction improves AI image detection, 

and ViT-B16 is the most appropriate model for real-world 

applications. On the other hand, with computational 

benefit, higher patch size models (such as 32×32) do have 

worse performance but are better suited for lower precision 

applications. Due to our findings regarding the necessity 

of selecting models according to task requirements and 

balancing accuracy, efficiency, and resource constraints, 

this research attempts to contribute to AI authenticity 

verification in interior design using transformer-based 

image classification. Future work will consider improving 

computational efficiency, enhancing the set of images used 

in the dataset with more diverse AI-generated photos, and 

combining convolutional and transformer-based models. 

Finally, we will investigate adversarial robustness for 

improving the model's resilience against evolving 

generative techniques. Such advances will further bolster 

AI image detection, as it is utilized in digital content 

verification. 
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