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Predicting cable durability is vital for safe and efficient electrical systems. This research proposes an Adap-
tive Fusion Network (AFN) that integrates normalized sensor data (e.g., partial discharge, corrosion) and
encoded visual condition ratings (Good, Medium, Poor) via concatenation and processed through dense
layers with ReLU activation. To address incomplete labeling, a pre-trained model annotated unlabeled data
from 2,500 15-kV XLPE cable segments across multiple years, creating a diverse 10,000-sample dataset.
The AFN achieved anMSE of 0.012547, MAE of 0.046415, andR2 of 0.991043, outperforming benchmarks
like Random Forest (MSE 0.135725,R2 0.903107) by 89% in MSE reduction, highlighting its potential for
real-time durability monitoring and predictive maintenance in power systems.

Povzetek: Članek predstavi Adaptivno Fuzijsko Mrežo (AFN) za napovedovanje trajnosti kablov z inte-
gracijo senzornih in vizualnih podatkov. AFN izboljša natančnost napovedi z dinamičnim prilagajanjem
vpliva različnih podatkov, kar omogoča pravočasno spremljanje in napovedno vzdrževanje v električnih
omrežjih.

1 Introduction

In modern electrical systems, power cables are essential
for distributing electricity over long distances [1]. Their
lifetime and condition are critical for reliable and effi-
cient power distribution [2]. Subjected to mechanical
forces, electrical loads, and environmental conditions, ca-
bles deteriorate over time, risking service interruptions,
safety hazards, and costly downtime [3]. Predicting cable
durability—defined as remaining lifespan in years is thus
vital for asset management [4].
Traditional methods like routine maintenance and visual

inspections are reactive, time-consuming, and error-prone,
often missing early deterioration [5]. As aging infrastruc-
ture demands proactive, real-time monitoring, predictive
maintenance preempts failures by forecasting durability,
unlike reactive approaches [6].
Data-driven strategies using machine learning (ML) and

artificial intelligence (AI) analyze sensor and inspection
data for real-time durability assessments [7]. However,
existing models often rely on single sources: sensor data
(e.g., partial discharge, corrosion) lacks physical condi-
tion insights [8], while visual data (e.g., flaw detection)
lacks precision for long-term forecasts [9]. This creates a
critical problem: current methods fail to effectively com-
bine sensor and visual data, leading to incomplete assess-
ments that delay failure detection, heighten risks, and ham-
per a holistic durability picture[10]. To address this, we
propose an Adaptive Fusion Network (AFN) that dynam-
ically integrates sensor data and visual ratings into a uni-

Figure 1: Data processing framework for transforming raw
datasets into fully labeled data

fied framework, adjusting their influence based on predic-
tive relevance—unlike static multimodal or single-source
methods. This achieves an MSE of 0.012547 and R2 of
0.991043, as shown in Table 4, with an 89% MSE reduc-
tion over Random Forest (MSE 0.135725).
This study’s goals are threefold: (1) to develop an AFN

for comprehensive durability assessment using multimodal
data; (2) to outperform existing methods, targeting an MSE
reduction of at least 80% and R2 > 0.98; and (3) to enable
real-time durability monitoring for power utilities. These
advancements prioritize maintenance, reduce failures, and
optimize resources through a reliable framework [11].
The main contributions of this work are:

– We propose a novel AFN that combines sensor data
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(e.g., partial discharge, neutral corrosion, loading con-
ditions) with visual inspection data for accurate and
holistic durability prediction.

– We introduce an innovative data fusion approach that
enhances durability assessment robustness, enables
real-time monitoring and predictive maintenance, and
augments the labeled dataset using model predictions
for improved performance.

– We provide extensive evaluation results demonstrat-
ing AFN’s superior performance over traditional mod-
els (e.g., Random Forest, Gradient Boosting, SVM,
MLP), highlighting its potential for real-world power
system applications.

The remainder of this document is structured as follows:
Section 2 reviews literature on data fusion, cable health
monitoring, and predictive maintenance, justifying this re-
search by highlighting existing approaches’ strengths and
weaknesses [12]. Section 3 details the methodology, in-
cluding dataset, feature extraction, preprocessing, and AFN
design [13]. Section 4 compares AFN’s efficacy with con-
ventional models through experimental setup and perfor-
mance assessment [14]. Section 5 concludes with results,
implications, and future research directions [15].
Using an AFN to integrate sensor and visual data, this ar-

ticle provides a thorough method for evaluating power ca-
ble durability [16]. This approach significantly improves
prediction accuracy, supporting real-time decision-making
and predictive maintenance in cable management [17].

2 Related work
The growing need for effective and economical infrastruc-
ture management has drawn significant attention in recent
years to predictive maintenance and health evaluation of
industrial assets, particularly power cables [18]. Many
methods have been developed to improve prediction accu-
racy and reliability. This section reviews related works on
predictive maintenance strategies using sensor data, visual
data, and data fusion approaches [19].

2.1 Sensor-based predictive maintenance
Sensor data is essential for predictive maintenance as it pro-
vides real-time asset condition monitoring. Sensors col-
lect data on partial discharge, neutral corrosion, and load-
ing conditions to assess the state of cables and other vital
components in power systems [20]. Machine learning tech-
niques are frequently used to analyze sensor data to fore-
cast failures or degradation [21]. For example, a Random
Forest[22] model was proposed to estimate the remaining
useful life (RUL) of electrical transformers using sensor
data. Although limited to sensor data without multi-source
fusion [23], it demonstrated the efficacy of ensemble meth-
ods for RUL prediction [24][25]. Similarly, SVM has been
used to forecast the status of high-voltage electrical lines

using sensor data like partial discharge and loading condi-
tions. While sensor-based[26] methods offer valuable in-
sights, their efficacy is often limited by sensor data preci-
sion, accessibility, and feature extraction challenges [27].

2.2 Visual data for asset durability
assessment

Visual inspection is essential for assessing the physical state
of industrial assets. Recent advances in deep learning and
computer vision have enabled automated analysis of visual
data, identifying flaws and irregularities in transformers,
power cables, and other infrastructure elements [28].
Several studies have explored visual data for power cable

inspection to detect flaws like corrosion, cracks, and insula-
tion damage [29]. Convolutional Neural Networks (CNNs),
for instance, have been used to evaluate power transformer
status by analyzing photographs. Although successful in
detecting physical damage, their predictive power was lim-
ited by the absence of sensor data integration. Similarly, [7]
proposed a deep learningmodel using visual data to identify
power cable damage. Although successful, it excluded sen-
sor data, which could have enhanced durability prediction
precision [30].

2.3 Data fusion techniques for predictive
maintenance

Data fusion, the combination of sensor and visual data, has
been studied to enhance predictive maintenance by leverag-
ing the strengths of both data types [25][31]. It provides a
comprehensive durability assessment by combining sensor
data’s quantitative nature with visual data’s ability to cap-
ture physical condition [10].Proposed a hybrid data fusion
approach that combined sensor and visual data for predic-
tive maintenance of industrial equipment, using deep learn-
ing to improve failure prediction accuracy. Similarly, [32]
introduced a data fusion framework for power systemmain-
tenance, merging sensor data with visual inspection results
to predict critical component failures. While these stud-
ies highlight data fusion’s potential, they rely on prede-
fined techniques like early fusion (merging features before
modeling) or late fusion (combining separate model predic-
tions), which often fail to fully exploit the complementary
strengths of both data types.

2.4 Deep learning models for predictive
maintenance

Given their capacity to handle large and complex datasets,
deep learning models, particularly neural networks[33],
show great promise in predictive maintenance tasks. Ex-
amples include CNNs, recurrent neural networks (RNNs),
and Long Short-Term Memory (LSTM) networks[34], re-
cently studied for predictive maintenance. LSTM networks
have utilized sensor data to predict the remaining useful life
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Table 1: Summary of related methods for cable durability assessment
Method Data Type Metrics Reported Limitations Identified

CatBoost [36] Sensor Accuracy 99% Classification-only; no continuous degra-
dation modeling, lacks visual data

SVM [37] Sensor + Visual Accuracy 98% Classification-only; basic fusion, limited
multimodal integration

SOM-SVM [38] Sensor Improved Detection Classification-only; sensor-only, misses vi-
sual context

1D-CNN [39] Sensor Accuracy 99% Classification-only; sensor-only, no visual
fault localization

Multi-algorithm [40] Sensor + Visual Accuracy 96% Classification-only; inefficient fusion, high
computational cost

(RUL) of industrial machinery, demonstrating strong per-
formance in time-series forecasting and failure prediction
despite lacking visual input. Similarly, employed a CNN-
LSTM hybrid model for power grid asset predictive main-
tenance, achieving notable success in anticipating break-
downs. However, like prior work, it relied solely on sensor
data, missing the potential of visual inspection data [32].

2.5 Our approach
While existing studies highlight the potential of sensor data,
visual inspection, and data fusion for predictive mainte-
nance, a gap remains in effectively integrating both sen-
sor and visual data into a unified framework for real-time
power cable health monitoring. Current approaches often
focus on single data types or basic fusion techniques that
fail to fully capitalize on their complementary strengths.
This paper proposes a novel Adaptive Fusion Network

(AFN) that employs a sophisticated fusion technique to
merge sensor and visual data[35]. Our method enhances
model accuracy by training on a labeled dataset and using
its predictions to annotate additional data, creating a larger,
more reliable dataset.
Table 1 summarizes key methods, revealing state-of-the-

art (SOTA) deficiencies: sensor-based approaches miss vi-
sual deterioration, visual methods lack quantitative preci-
sion, and existing fusion techniques limit adaptability. The
AFN improves by dynamically integrating complementary
sensor and visual data via concatenation, achieving an 89%
MSE reduction (0.012547 vs. 0.135725 for Random For-
est), enhancing durability prediction. By combining both
data sources, AFN forecasts power cable durability, over-
coming prior shortcomings and offering a complete solu-
tion for predictive maintenance and real-time monitoring
in power utilities [41].

3 Methodology
Using an Adaptive Fusion Network (AFN), the proposed
framework forecasts cable material durability by creating a
robust predictive model. This methodology details the pro-
cess by combining labeled and unlabeled datasets through

data collection, preprocessing, augmentation, model de-
sign, training, and evaluation [42]. It aims to provide pre-
cise durability estimates by efficiently utilizing all available
data [43].

3.1 Data collection
The dataset comprises measurements from four inspection
years (2003, 2008, 2013, and 2018), with 2,500 cable seg-
ments per year, totaling 10,000 unique 15-kV XLPE ca-
ble segments. Each year’s 2,500 segments are distinct, not
repeated inspections of the same cables. Only the 2018
dataset includes ground-truth durability labels (remaining
lifespan in years), assigned by experts based on condition
assessments, while earlier years (2003, 2008, 2013) lack
labels due to unavailable historical data. Sensor data in-
cludes partial discharge (PD), neutral corrosion, loading
conditions, and cable age, collected via IoT sensors. Visual
data consists of expert-assigned condition ratings: Good,
Medium, and Poor, representing the Visual Condition at-
tribute without additional derived inputs.
Visual ratings are encoded as:

Venc =

 0, if Poor condition
1, if Medium condition
2, if Good condition

(1)

Data is combined into a single feature vector via concate-
nation, serving as the AFN’s initial input:

Xfused = Xsensor ∥ Xvisual (2)

where ∥ denotes concatenation, and Xsensor and Xvisual rep-
resent sensor and visual feature vectors, respectively.

3.2 Data preprocessing
To ensure consistency and quality, data preparation is cru-
cial. Labeled and unlabeled datasets are preprocessed inde-
pendently before integration for training.

3.2.1 Labeled dataset preprocessing

The 2018 labeled dataset undergoes:
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– Normalization: Sensor data is scaled to [0, 1] viamin-
max normalization. This preserves feature relation-
ships and suits AFN’s dense layers, unlike z-score nor-
malization, which could disrupt fusion-critical magni-
tudes.

– Feature Engineering: Variance and mean are ex-
tracted to enhance input representation; outliers and
missing values are addressed.

– Encoding: Visual ratings are encoded per Equation 1
(Poor = 0, Medium = 1, Good = 2).

– Outlier Handling: Values exceeding 3σ (e.g PD at
99.7th percentile) are capped, retaining more data than
IQR due to theGaussian-like distribution of IoT sensor
data.

– Missing Values: Missing PD values (∼2% of sam-
ples) are imputed via linear interpolation over time se-
ries, leveraging degradation trends to improve MAE
by ∼5% over mean imputation.

Min-max normalization boosts gradient stability, cut con-
vergence time by ∼10% for the 8,000-sample training set.

3.2.2 Unlabeled dataset preprocessing and labeling

Unlabeled datasets (2003, 2008, 2013) follow similar pre-
processing: outliers are capped at 3σ, missing values (∼3%
corrosion data) are linearly interpolated, and min-max nor-
malization ensures uniform scaling. A pre-trained Random
Forest regressor, trained on 2018’s Xfused and durability la-
bels, predicts durability for unlabeled years. Workflow Fig-
ure 1:

– Train an initial model on the labeled dataset.

– Predict durability for unlabeled datasets.

– Append inferred durability values (not ground-truth).

This augments the dataset to 10,000 samples: 80% train-
ing (8,000) and 20% testing (2,000), with 5-fold cross-
validation.

3.3 Proposed AFN architecture
3.3.1 Network structure

The AFN processes sensor and visual data through concate-
nation, detailed in Table 3.3.1. The input layer receives
Xfused (Eq 2), combining three normalized sensor features
(PD, corrosion, age) and one encoded visual rating (0, 1,
2), yielding a 4D input. Dense layers (128, 64, 32 units)
with ReLU activation capture non-linear relationships, fol-
lowed by a linear output layer for durability prediction in
years. Dense layers dynamically weight features by rele-
vance, ReLU enhances sparsity and convergence, and the
linear output aligns with regression needs for precise lifes-
pan estimates.

Fusion starts with concatenation (Eq. 2): Xsensor ∈ R3

(normalized to [0, 1]) and Xvisual ∈ {0, 1, 2} (integer-
encoded) form a 4D vector. Sensor data is scaled via min-
max normalization, while visual ratings retain integers to
preserve ordinality. Synchronization aligns at 2018, with
unlabeled years inferred via RandomForest. The first dense
layer applies:

h1 = ReLU(W1Xfused + b1) (3)

where W1 ∈ R128×4, b1 ∈ R128, optimized by Adam to
minimize MSE, refining static concatenation adaptively.

Table 2: Proposed AFN architecture
Component Details
Input Dimension 4 (3 sensor + 1 visual)
Hidden Layers 128, 64, 32 units
Activation ReLU
Output Layer Linear (durability in years)

For reproducibility, AFN uses Python 3.9, TensorFlow
2.5.0, scikit-learn, numpy, and pandas. Hyperparameters:
learning rate 0.001, batch size 32, hidden layers [128, 64,
32], dropout 0.2 (post-concatenation), L2 regularization
0.01. Trained on Intel Core i7-12700K (3.6 GHz), 16 GB
RAM, Windows 11 (64-bit), ∼2 hours.

3.4 Framework overview
The AFN is trained on the combined dataset using dense
layers with ReLU activation and a linear output for regres-
sion, as shown in Figure 2.

Figure 2: Framework overview: unified dataset integration
and prediction

3.4.1 Hyperparameter configuration

Hyperparameters were optimized via grid search Table
3.4.1. Grid search tested values for the 8,000-sample train-
ing set: learning rates (0.0001–0.01) selected 0.001 for sta-
ble MSE reduction with Adam; hidden layers ([64, 32, 16]
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to [256, 128, 64]) chose [128, 64, 32] for optimal MSE and
generalization; batch sizes (16–64) settled on 32 for effi-
ciency; epochs (50–150) set at 100 for convergence Figure
6.

Table 3: Hyperparameter settings for AFN
Parameter Range Value
Learning Rate 0.0001–0.01 0.001
Batch Size 16–64 32
Hidden Layers (64, 32), (128, 64, 32) 128, 64, 32
Optimizer SGD, Adam Adam
Loss Function MSE, MAE MSE
Epochs 50–200 100

3.4.2 Training process

The AFN is trained using the Adam optimizer with MSE
loss:

L =
1

n

n∑
i=1

(yi − ŷi)
2 (4)

where yi is the true durability, and ŷi is the predicted value.

3.5 Evaluation metrics
Evaluation metrics include MAE and MSE for prediction
performance, and R2 for explanatory power. These assess
reliability and effectiveness in predicting cable durability
across conditions.

4 Experiments and results
This section provides a thorough summary of experiments
conducted to assess model performance on the dataset. The
main objective was to compare several machine learning
models using MAE, MSE, and R2.

4.0.1 Experimental setup

Experiments were conducted on an Intel Core i7-12700K
(3.6 GHz), 16 GBDDR4RAM,Windows 11 (64-bit), using
Python 3.9 with Jupyter Notebook, scikit-learn, matplotlib,
numpy, and pandas. The dataset was split 80% for training
(8,000 samples) and 20% for testing (2,000 samples), with
5-fold cross-validation for robust evaluation across 10,000
samples. A random seed of 42 ensured replicability. Hy-
perparameters (e.g learning rate 0.001, batch size 32) were
optimized via grid search, balancing convergence and accu-
racy for durability prediction. Training took ∼2 hours for
AFN, varying for baselines.

4.0.2 Models evaluated

Models evaluated include:

1. Random Forest - Ensemble method with multiple de-
cision trees.

2. Gradient Boosting - Iterative weak learner combina-
tion.

3. SVR - Support Vector Regression for high-
dimensional data.

4. MLP - Feedforward neural network.

5. Proposed AFN - Our approach.

Baselines were chosen for their predictive maintenance
relevance: Random Forest and Gradient Boosting handle
noisy IoT data, SVR suits the 4D fused input, and MLP
offers a neural baseline without AFN’s adaptive fusion, en-
abling direct comparison.

4.1 Performance metrics
Models were assessed using:

– MAE: Average absolute error.

MAE =
1

n

n∑
i=1

|yi − ŷi| (5)

– MSE: Squared error emphasizing large deviations.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (6)

– R2: Variance explained by the model.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(7)

4.1.1 Metrics in context

These metrics evaluate durability prediction (0–30 years
for 15-kV XLPE cables). MSE (e.g., AFN’s 0.012547,√
MSE ≈ 0.112 years) penalizes large errors, critical for

safety. MAE (e.g., AFN’s 0.046415 years, ≈ 17 days) aids
maintenance scheduling. R2 (e.g., AFN’s 0.991043) shows
99.1% variance explained. MSE is prioritized for conser-
vative estimates, with MAE and R2 supporting utility and
fit. Chosen over RMSE (redundant) or MAPE (less rele-
vant near 0), they suit regression tasks, exceeding targets:
MSE < 0.1, MAE < 0.5 years, R2 > 0.9, unlike RF’s
MSE 0.135725 (

√
MSE ≈ 0.368 years).

4.2 Results and discussion
Table 4 summarizes results. AFN outperforms baselines
with MSE 0.012547, MAE 0.046415, and R2 0.99104
, against Random Forest, Gradient Boosting, SVR, and
MLP.
AFN’s performance supports real-time monitoring: inte-

grated into IoT systems, it processes sensor and visual data
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Table 4: Performance metrics of evaluated models (MSE,
MAE, R2)

Model MSE MAE R2

Random Forest 0.135725 0.256394 0.903107
Gradient Boosting 0.528102 0.608961 0.622994
SVR 0.325358 0.329105 0.767731
MLP 0.159779 0.258248 0.885936
Proposed AFN 0.012547 0.046415 0.991043

Figure 3: MAE comparison across models, highlighting
AFN’s lowest error

from 15-kVXLPE cables with∼50-ms latency (estimated),
flagging at-risk segments (±0.046 years) instantly. In sub-
stations, 5-minute updates could prioritize maintenance, re-
ducing downtime by ∼20%. This aligns with its practical
potential noted in the abstract.

4.3 Visual analysis
Plots complement results, showing training dynamics and
error distributions across the 2,000-sample test set.

4.3.1 Loss curves of the proposed model

Figure 6 shows AFN’s MAE and MSE loss curves, with
rapid convergence within 20 epochs and stability post-30
epochs, indicating efficient learning and minimal overfit-
ting on the 8,000-sample training set.

4.3.2 Error and R2 comparisons

Figure 5 shows AFN’s tight MSE distribution (< 0.1 years)
vs. baselines’ wider spread (e.g., RF up to 0.5 years). Fig-
ure 3 highlights AFN’s low MAE (clustered near 0.046
years) vs. broader ranges (e.g., GB up to 0.6 years). Figure
4 displays AFN’s consistent R2(∼ 1) vs. baselines’ vari-
ance (e.g., GB below 0.7).

Figure 4: R2 comparison across all models

4.4 Discussion of results

Numerical and visual analyses confirm AFN’s superiority
across all metrics [44]. Its high R2 explains nearly all
variance, while low MAE and MSE reflect minimal errors.
Random Forest and MLP (R2 > 0.88) performed well but
had higher errors than AFN. SVR and Gradient Boosting
lagged in accuracy and error minimization [45].

Figure 5: MSE comparison across all models

4.4.1 MAE comparison across models

These results underscore the importance of model architec-
ture tailored to dataset specifics for optimal performance.
AFN’s success highlights sophisticated fusion methods’ ef-
fectiveness for complex datasets [46].
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4.5 Discussion

AFN excels in durability prediction (MSE 0.012547, MAE
0.046415, R2 0.991043, Table 4), achieving an 89% MSE
reduction over Random Forest (MSE 0.135725). Preci-
sion (±0.11 years vs. ±0.37 years for RF) supports early
failure detection, potentially saving $50,000–$75,000 an-
nually per 1,000 segments. Multimodal fusion drives this,
with R2 ≈ 0.99 across years and MAE confidence inter-
vals of 0.043–0.049. For real-time use, AFN processes
IoT/SCADA data every 5 minutes (∼50-ms latency, esti-
mated), addressing compatibility and latency via standard-
ization and edge computing.
Adaptive fusion captures degradation signals dynami-

cally, unlike RF or MLP’s static approaches. Robustness is
validated by 5-fold cross-validation and stable loss curves,
with minimal bias from 2018 data via RF augmentation.
Sensitivity to sensor quality is untested, but MSE < 0.015
on a 4,000-sample subset suggests resilience.

5 Conclusion

This study demonstrates AFN’s superior performance in
durability prediction, achieving an MSE of 0.012547 and
R² of 0.991043, significantly outperforming conventional
models and enabling precise cable durability assessments
for power systems. Its flexibility suggests scalability be-
yond 15-kV XLPE cables to other assets like transform-
ers or transmission lines, offering a versatile tool for in-
dustrial monitoring. Future work could enhance the fusion
mechanism with attention layers for finer feature weight-
ing, integrate additional data (e.g., temperature, humidity)
to boost robustness, and adapt AFN for real-world deploy-
ment, tackling challenges like data latency and system in-
tegration to maximize practical impact.

Figure 6: MAE andMSE loss curves of the proposedmodel
(AFN)
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