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Public hospitals are in a position of growing economic pressure, and frugal resource management is 

necessary. Unfortunately, most traditional cost forecasting models do not capture healthcare costs' 

dynamic and non-linear nature. This paper offers a financial optimization framework based on AI with 

Ensemble Machine learning techniques that are interpretable. This methodology identifies the data 

preprocessing, feature engineering, and model training with the optimized Random Forest and XGBoost 

algorithms and SHAP (Shapley Additive exPlanations) analysis for model interpretability. The results 

report that generating our optimized XGBoost model led to an R² score of 0.89, outperforming Random 

Forest (R² = 0.88) and our baseline models. It also achieved a Mean Absolute Error (MAE) of 2502.36 

and a Mean Squared Error (MSE) of 11230456.12, which is very high in predictive accuracy. 

Interpretability is achieved using SHAP (Shapley Additive exPlanations) analysis, which identifies key 

cost-driving factors such as smoking status, BMI, and age, enabling more transparent and informed 

decision-making by stakeholders. With the framework, we present a scalable predictive budgeting and 

decision-making solution in public healthcare institutions. 

Povzetek: Analiziran je finančni optimizacijski okvir za javne bolnišnice, ki uporablja izboljšane metode 

strojnega učenja (Random Forest in XGBoost) ter analizo SHAP za napovedovanje stroškov, povečanje 

kvalitete in omogočanje bolj informiranega odločanja. 

 

 

1    Introduction 

Public hospitals facilitate delivering healthcare services to 
various populations under enormous financial and 
operational challenges. Following effective budgeting and 
cost management, these institutions will be able to be 
sustainable. However, static models and historical trend-
based traditional budgeting methods often fail to tackle 
healthcare costs' dynamic and multi-faceted nature 
effectively. Patient demographics, treatment modalities, 
and resource utilization have become increasingly 
complex; Machine learning (ML) and other data-driven 
tools offer promising avenues for supporting complex 
financial decision-making and cost management in 
healthcare systems [1]. 

Recent advancements in artificial intelligence (AI) 

and machine learning (ML) have promise for handling 

healthcare cost prediction and budget optimization 

problems [2]. Due to healthcare data's high 

dimensionality and non-linearity, machine learning 

models—particularly ensemble techniques—are well-

suited for uncovering hidden patterns that traditional 

models may miss. By leveraging machine learning 

models, we accurately forecast medical expenses, 

revealing cost driver insights to allow policymakers and 

operators to understand economies of scale better and 

shape decisions leveraging data-based insights [3]. Given 

this, explainable AI (XAI) techniques such as SHAP 

(Shapley Additive exPlanations) help increase the 

interpretability of machine learning models so that the 

insights derived are actionable and in line with public 

health objectives [4].  

While prior studies have explored the application of 

AI and ML in healthcare cost prediction, their integration 

into interpretable and scalable frameworks explicitly 

tailored to public hospital budgeting remains limited. 

Current frameworks often lack scalability, 

interpretability, or the ability to align with multiple data 

sources. This study proposes a machine learning-

enhanced framework that achieves predictive accuracy 

and actionable insights in response to these gaps. With 

optimized ensemble learning models (Random Forest and 

XGBoost) and SHAP analysis, the framework delivers a 

robust method for intelligent cost accounting and 

financial optimization in public hospitals.  

Problem Statement and Research Objectives of this study 

are as follows: 

Weak, non-transparent and unproductive cost 

estimation models adversely affect public hospital 

financial planning. Healthcare cost drivers are complex 

and non-linear, and traditional statistical models are 
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inappropriate for treatment. As such, this study was to 

design a transparent and accurate AI-driven framework 

with Ensemble Machine Learning and explainable AI to 

enhance public hospital budgeting. The following are the 

research questions that guide this research. 

• Can ensemble machine learning models (e.g., 

XGBoost, Random Forest) make better predictions 

than usual models regarding hospital costs? 

• Perhaps a budget planning application is the right 

target for SHAP analysis to improve interpretability 

and decision-making transparency. 

• What healthcare-related features most drive hospital 

costs, and can they be targeted as areas for policy 

interventions? 

Based on these questions, the primary objectives of this 

study are: 

• The first objective is to develop and optimize 

ensemble-based ML models to predict healthcare 

costs accurately. 

• SHAP analysis is used to apply transparent feature 

attribution. 

• That is to assess the validity of the model's 

application for decision-making in public hospital 

budgeting. 

The primary contributions of this research are as follows: 

• Development of a Machine Learning-Enhanced 

Framework: This study proposes a new framework to 

predict healthcare costs using optimized ensemble-

based models (Random Forest and XGBoost), which 

outperform because they handle non-linear 

relationships in healthcare data. 

• Integration of Explainable AI: The Framework also 

includes SHAP analysis to increase the 

interpretability for its stakeholders to pinpoint 

smoking status, BMI, and age as key cost drivers. 

That’s because it ensures the predictions are accurate 

and actionable for decision-makers. 

• Practical Applications in Budgeting and Policy 

Development: We design the framework for a range 

of practical use cases (e.g., forecasting healthcare 

costs for budget optimization, public health policy 

(e.g., smoking cessation programs), etc.) to allocate 

hospital resources. 

• Evaluation of Model Performance: Through rigorous 

experimentation, the study shows that ensemble 

learning models are also predictive, accurate, and 

scalable in public hospital settings. 

Despite the exciting advances in machine learning, 

existing hospital cost prediction frameworks tend to be 

scalable, interpretable and robust enough for financial 

optimization in complex healthcare environments. 

Furthermore, real-world hospital data is heterogeneous 

and does not integrate ensemble learning with 

explainability or align with it. This study describes and 

validates a novel interpretable machine-learning 

framework designed for public hospital budgeting to 

address these restrictions. Using SHAP analysis with 

optimized ensemble methods (Random Forest and 

XGBoost), the framework offers decision-makers 

predictive accuracy and actionable insights. The research 

also contributes structured and domain-adapted 

architecture and applies existing ML techniques to avoid 

current gaps in cost prediction, explainability and 

resource allocation. 

The rest of the paper is structured as follows: Section 

2: The Literature Review gives an overview of the work 

on this topic and the gaps that this work aims to fill. 

Section 3: The methodology provides the proposed 

framework in full detail, from data preprocessing, feature 

engineering, model development, and SHAP analysis for 

explainability. Sections 4 and 5: Describe the 

experimental setup and evaluate the performance of the 

proposed models, giving qualitative and quantitative 

descriptions and analysis of the results based on SHAP 

analysis, respectively. Section 6: Discuss the practical 

applications of the framework in budget optimization, 

policy development, and resource allocation, along with 

the issues and limitations worked through. Section 7: 

Summary of Conclusions and Future Work presents the 

main conclusions, new contributions, and practical 

implications of the research and future tasks. 

2    Literature review 

In a healthcare system, operating costs have historically 
presented a problem for management as complexity has 
increased, moving towards adopting advanced data-driven 
techniques for optimizing resources and having any 
measure of basic cost accounting information. Public 
hospitals have relied on traditional static models and the 
manual processing of factors such as forecasting, 
budgeting, and resource allocation in financial 
management and budgeting. However, these methods 
neglect the dynamic nature of healthcare costs. We are 
beginning to develop intelligent frameworks for healthcare 
financial management using artificial intelligence (AI) and 
machine learning (ML), which demonstrated potential in 
solving these challenges in recent studies.  
 Several studies have shown that healthcare costs often 
exhibit non-linear dependencies on patient factors such as 
age, comorbidities, and behavioural risks [5-7]. Machine 
learning models, particularly ensemble methods like 
Random Forest and XGBoost, have demonstrated superior 
performance over linear models in capturing these 
complex interactions in real-world healthcare datasets. For 
the problem under consideration, the Ensemble learning 
techniques Random Forest [8] and XGBoost [9] have 
garnered much attention because of their simplicity and 
higher accuracy. [10-13] have indicated that ensemble 
techniques provide a better prognosis for healthcare costs 
than conventional models based on linear regression, 
especially in the presence of numerous explicative 
variables or if the data set is unbalanced. Machine learning 
algorithms such as XGBoost from the gradient boosting 
models have been widely embraced in solving healthcare 
data analytics problems [14] since they make accurate 
predictions through multiple iterations and learning 
procedures [15]. 
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     Interpretability of results is one of the critical issues in 

healthcare ML models due to the necessity of actionable 

results to answer policymaking questions and guide 

resource allocation [16-18]. With the growing adoption of 

these Explainable AI (XAI) techniques (e.g., SHAP 

(Shapley Additive exPlanations)), the challenge of 

explaining AI has been solved [19]. If the lack of cost 

control is a concern, SHAP solves this by allowing the 

identification of cost-driving factors (e.g., smoking status, 

BMI, and age.) SHAP is helpful for healthcare decision-

making by generating interpretable models that balance 

predictive accuracy and explainability [20-23]. 

     New AI-driven approaches are promising in 

optimizing public health budgets by forecasting 

healthcare costs based on patient demographics and 

medical records [24]. ML-based predictions supported by 

[25, 26] have enabled data-driven policy development, for 

instance, targeted interventions for high-risk populations. 

For example, predictive models can help reduce the cost 

of smoking-related health care and are consistent with 

larger public health goals, such as the reduction of the size 

and costs of smoking cessation programs. In addition, ML 

has also been used to direct the flow of hospital resources 

so that funds and medical supplies are used to meet areas 

of greatest need most effectively [27]. 

     Although there is promise in exploiting AI-based 

frameworks in public hospitals, many challenges persist 

with their practical implementation [28]. More often than 

not, ML models rely on the availability of high-quality 

and comprehensive datasets that break into multiple 

systems [29]. Scaling is another significant concern since 

massive datasets require computationally intensive 

algorithms and hardware [30]. For such frameworks to be 

helpful, explainability has to be built into the models and 

their usage of data, the fairness of their predictions, and 

the interpretability of data points for the end users. These 

criteria are being increasingly and tightly enforced in AI 

in healthcare regulatory and ethical standards [31]. A 

summary of key literature on ML for healthcare cost 

forecasting is shown in Table 1. 

Table 1: Summary of key literature on ML for healthcare 

cost forecasting. 

Study Method

ology 

Datas

et 

Key 

Results 

/ 

Metrics 

Limitati

ons 

Identifie

d 

Vimont 

et al. 

(2022) 

Linear 

regressio

n vs. ML 

(Rando

m 

Forest) 

French 

Nation

wide 

Claims 

data 

RF 

outperf

ormed 

regressi

on 

(MAE 

↓ by 

18%) 

Limited 

interpreta

bility; no 

SHAP 

used 

Mazum

dar et 

al. 

(2020) 

Simulati

on: ML 

vs. 

Simula

ted 

oncolo

gy 

ML had 

better 

accurac

No real-

world 

hospital 

statistica

l models 

dataset

s 

y (R² ≈ 

0.78) 

applicatio

n 

Langen

berger 

et al. 

(2023) 

RF, 

Gradient 

Boosting 

Germa

n 

claims 

data 

GBM's 

highest 

AUC: 

0.81 

Lacks 

interpreta

bility; 

scalabilit

y issues 

Kwon et 

al. 

(2019) 

Stacking 

ensembl

e for 

classific

ation 

Breast 

cancer 

dataset 

Ensemb

le 

accurac

y = 

0.93 

Non-

regressio

n focus; 

limited 

generaliz

ation 

Ding et 

al. 

(2022) 

XAI 

(SHAP 

+ 

TreeExp

lainer) 

Health

care 

record

s 

Provide

d 

insights 

into key 

features 

It did not 

apply to 

budget 

forecastin

g 

Amann 

et al. 

(2022) 

ML for 

cost risk 

predictio

n 

Stroke 

medici

ne 

data 

ML 

used for 

interven

tion 

targetin

g 

Weak 

interpreta

bility; no 

financial 

performa

nce 

metrics 

This 

Study 

Optimiz

ed 

XGBoos

t + 

SHAP 

Public 

hospit

al cost 

datase

t 

R² = 

0.89, 

MAE = 

2502.36 

Addresse

s SOTA 

gaps in 

accuracy 

and 

interpret

ability 

 

    Previous work that shows ensemble models such as 

Random Forest or Gradient Boosting can be practical 

when predicting healthcare costs suffers from the 

drawback that they may lack transparency and 

applicability to financial decision-making purposes. 

However, as summarised in Table 1, most state-of-the-art 

studies use synthetic or non-hospital datasets and do not 

embed explainability techniques such as SHAP; they 

focus only on classification tasks but not cost regression 

tasks. 

• The four critical limitations of prior studies discussed 

in this study are as follows. 

• ShAP for transparent cost attribution and lack of 

model interpretability. 

• Real-world budget applicability is absent by focusing 

only on hospital budget optimization. 

• Our optimized XGBoost has a higher R² than most 

results in most previous studies. 

• Our framework bridges a gap between predictive 

modelling and health policy design by integrating no 

policy integration — that is, by identifying actionable 

cost drivers (e.g., smoking). 

  Gaps remain in integrating interpretability with 

high accuracy in public hospital settings, and the existing 
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literature has highlighted the potential of ML in 

healthcare cost prediction and optimization. Although 

numerous studies have applied machine learning to 

healthcare cost prediction, relatively few have proposed 

frameworks emphasizing scalability, interpretability, and 

practical integration into public hospital financial 

decision-making. Previous studies have presented feature 

importance metrics from tree-based models or regression 

coefficients. Still, such metrics are not internally 

consistent across different model types or do not quantify 

feature interactions. Interpretability in healthcare has 

been attempted with techniques like the LIME (Local 

Interpretable Model-Agnostic Explanations) and 

permutation feature importance; however, both methods 

are relatively sensitive to data perturbations and might not 

offer global insight. SHAP (Shapley Additive 

Explanations) solves these by providing a unified, 

theoretically grounded method for quantifying each 

feature’s contribution to all model predictions. For such 

frameworks to be helpful, explainability has to be built 

into the models and their usage of data, the fairness of 

their predictions, and the interpretability of data points for 

the end users. These criteria are being increasingly and 

tightly enforced in AI in healthcare regulatory and ethical 

standards. The proposed research will address these gaps 

by combining optimized ensemble models (Random 

Forest and XGBoost) with SHAP analysis to provide 

robust, interpretable, and scalable intelligent cost 

management. 

In this paper, we concluded that the use of AI and ML 

in public hospital budgeting is an area of this research that 

is growing in interest and has excellent potential to 

improve fiscal efficiency and patient care. The current 

study complements the existing knowledge, establishing 

a machine learning-empowered raising and learning 

framework to predict the health care costs with a high 

level of accuracy and to devise and apply actionable 

insights to policy development and resource allocation. 
3    Proposed framework 

The framework combines the optimized ensemble 

learning techniques, Random Forest and XGBoost, for 

accurate and interpretable healthcare cost prediction, as 

shown in Figure 2. In this context, optimization primarily 

involves hyperparameter tuning, which consists of 

optimizing model parameters like learning rate, tree 

depth, number of estimators, and regularization weights 

through CV to obtain predictions with minimum error. 

Generally, these adjustments are necessary to enhance the 

generalization performance and decrease the overfitting, 

especially for the Non-linear, High Dimensional 

Healthcare Datasets. 

 

 

 

Figure 1: The Workflow of the Proposed Framework consists of data preprocessing, model evaluation, and 

optimization steps for intelligent cost accounting and financial optimization in public hospital budgeting. 

The rationale for Model Selection: Based upon the 

documentation of their ability to handle high dimensional, 

non-linear data common in healthcare cost modelling, 

Random Forest and XGBoost are good choices. The 

aggregation and boosting mechanisms are used to reduce 

bias and variance (XGBoost) or variance (Random Forest). 

They are less computationally power intensive and less 

time-hungry to train, yet with better interpretability than 

neural networks. Unlike SVMs, which suffer from 

categorical variables and, more importantly, require kernel 
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tuning, Random Forest and XGBoost have natively 

supported mixed data types and feature importance 

measures without kernel tuning. In addition, both models 

are well suited for post hoc explanations of predictions 

using SHAP analysis, which is essential for trust in 

healthcare finance.  

Let the dataset 𝐷  consist of 𝑛  observations and 𝑚 

features: 

𝐷 =  {(𝑋_𝑖, 𝑦_𝑖)  |  𝑖 =  1, 2, … , 𝑛}    (1) 

where 𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑚], is the feature vector of the 

𝑖 − 𝑡ℎ observation, and 𝑦𝑖 ∈ 𝑅 is the corresponding target 

value (e.g., total expenditure). The feature matrix is 

denoted as: 

𝑋 = [𝑋1
⊤, 𝑋2

⊤, … , 𝑋𝑛
⊤]⊤ ∈ 𝑅𝑛×𝑚    (2) 

To normalize the numerical features, each feature, 𝑥𝑖𝑗 , 

is transformed as: 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−μ𝑗

σ𝑗
       (3) 

where, 𝜇𝑗, is the mean of the 𝑗 − 𝑡ℎ  feature. 𝜎𝑗 , is the 

standard deviation of the 𝑗 −th. The dataset is split into a 

training set, 𝐷train and a testing set, 𝐷test, such that: 

 

𝐷train ∪ 𝐷test = 𝐷 and 𝐷train ∩ 𝐷test = ∅       

(4) 

Data Preprocessing Details: The dataset had been 

processed before being exposed to the data. Z score 

thresholds (> 3 or < − 3) were used to identify outliers in 

continuous variables (e.g., BMI, age and cost) and skewed 

them without data deletion using winsorization. The 

dataset did not include missing values. One-hot encoding 

was used to encode categorical variables (e.g., sex, 

smoker, and region) to preserve the category information 

and make them compatible with tree-based models. No 

ordinal assumptions were imposed. In particular, 

numerical features have been standardized to facilitate 

convergence during optimization using z-score 

normalization (i.e., normalized to have a unit scale). The 

data was split into training and testing with an 80:20 ratio 

to have a representative sampling over categorical strata 

(stratified sampling by smoker status and region). All 

models were split this way so that cross-performance 

comparison remains fair. Cross-validation (5-fold) was 

also used in the training set to find the values of 

hyperparameters and avoid overfitting. 

Gradient Boosting involves the sequential training of 

weak learners ℎ𝑡(𝑋)  to minimize the loss function 

ℒ(𝑦, 𝑓(𝑋)), where 𝑓(𝑋), is the ensemble model: 

𝑓(𝑋) = ∑ α𝑡ℎ𝑡(𝑋)𝑇
𝑡=1                     (5) 

Here, 𝑇 is the total number of iterations, 𝛼𝑡 is the learning 

rate, ℎ𝑡(𝑋), is the 𝑡 − 𝑡ℎ weak learner (a decision tree in 

this case). 

 The objective is to minimize the loss function, 

ℒ(𝑦, 𝑓(𝑋)), defined as: 

ℒ(𝑦, 𝑓(𝑋)) = ∑ 𝑙(𝑦𝑖 , 𝑓(𝑋𝑖))𝑛
𝑖=1 + Ω(𝑓)  (6) 

Where, 𝑙(𝑦𝑖 , 𝑓(𝑋𝑖)) , is the loss for a single prediction, 

typically Mean Squared Error (MSE) or Mean Absolute 

Error (MAE): 

𝑙(𝑦𝑖 , 𝑓(𝑋𝑖)) =
1

𝑛
∑ (𝑦𝑖 − 𝑓(𝑋𝑖))

2𝑛
𝑖=1   (7) 

Ω(𝑓), is a regularization term to prevent overfitting: 

Ω(𝑓) = γ𝑇 +
1

2
λ ∑ |𝑇

𝑡=1 𝑤𝑡|2   (8) 

Where Ω  and 𝛾  are hyperparameters controlling 

regularization and 𝑤𝑡 , represents the weights of the weak 

learners. 

In each iteration 𝑡 , a weak learner ℎ𝑡(𝑋) , is fit to the 

negative gradient of the loss: 

𝑟𝑖𝑡 = −
∂𝑙(𝑦𝑖,𝑓(𝑋𝑖))

∂𝑓(𝑋𝑖)
|

𝑓(𝑋)=𝑓𝑡−1(𝑋)
  (9) 

where 𝑟𝑖𝑡 , is the pseudo-residual for the 𝑖 − 𝑡ℎ observation 

at iteration 𝑡. These residuals represent the gradient of the 

loss function and guide each learner in correcting previous 

errors. 

The model is updated as: 

𝑓𝑡(𝑋) = 𝑓𝑡−1(𝑋) + α𝑡ℎ𝑡(𝑋)   (10) 

3.1 Hyperparameter optimization 

The key hyperparameters optimized include: 

• 𝛼: Controls the contribution of each weak 

learner. 

• Number: Total number of iterations. 

• Maximum Depth 𝑑: Depth of each decision 

tree. 

• Subsample Ratio 𝜌: Fraction of samples used 

for training each tree. 

• Regularization Parameters 𝜆, 𝛾:Control model 

complexity. 

The optimal parameters are determined using cross-

validation to minimize validation loss: 

min
Θ

ℒvl𝑦, 𝑓(𝑋; Θ)    (11) 

Where Θ represents the set of hyperparameters. 

Feature importance 𝐼𝑗, for each feature 𝑥𝑗, is derived using 

techniques such as SHAP (Shapley Additive exPlanations) 

or the feature gain in trees: 

𝐼𝑗 =
∑ Gain𝑗,𝑡

𝑇
𝑡=1

∑ Gain𝑡
𝑇
𝑡=1

     (12) 
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where Gain𝑗,𝑡 is the improvement in the loss attributed to 

splits on 𝑥𝑗, in tree 𝑡. 

The models are evaluated using metrics such as: 

1) Mean Absolute Error (MAE) 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛
𝑖=1     (13) 

2) Mean Squared Error (MSE) 

MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1                                  (14) 

3) R-squared  (𝑅2) 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦�̂�)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

                                   (15) 

 
Figure 2: Medical cost dataset correlation heatmap of linear relationships between numerical features with strength 

and direction. 

 

4    Experimental framework 

The experimental setup was carefully designed to build a 

machine learning framework for predicting cost and 

financial efficiency in public hospital budgeting, using the 

data set provided and state-of-the-art method for model 

development, model evaluation, and optimization: 

4.1    Dataset description 

This study uses a complete collection of medical and 

demographic records designed to predict individual 

healthcare costs. The data contains 1388 entries with eight 

features with numeric and categorical variables (e.g., age, 

BMI, smoking status, and so on, as shown in Table 2). It is 

well structured and without missing values in the dataset, 

so it can be used for machine learning applications. The 

correlation analysis in Figure 2 highlights the strength and 

direction of linear associations between numerical features 

and medical costs, such as moderate positive correlations 

with BMI and age. Yet, correlation doesn’t imply 

prediction and, more importantly, the machine learning 

models have greater power when non-linear interactions  

are better captured than probabilities, which we validate 

further with SHAP. Through the development and testing 

of cost prediction models, this dataset is a perfect starting 

point. 

Figure 2 visualizes the pairwise co-variations of the 

Medical Cost Dataset’s variables such as "Id," "age," 

"bmi," "children," and "cost" with a correlation heatmap. 

The heatmap is a gradient colour scheme, where more red 
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(darker) indicates stronger positive correlations, and more 

blue (dark) indicates more negative ones. And where "age" 

and "cost" show a moderate positive correlation (0.30), 

"bmi" and "cost" do so to a lesser degree (0.20). However, 

other variables, such as 'children' and 'cost,' show weak 

correlations, meaning they have a small direct effect. This 

heatmap helps visualize how strong and how many of these 

relationships are in this dataset. 

Table 2: Summary of the dataset variables used in the 

analysis, including their description, data types, and 

respective ranges or possible values. 

Feature 

Name 

Descriptio

n 

Data Type Range/Value

s 

Id Unique 

identifier 

for each 

record 

Integer 1 to 1338 

age Age of the 

individual 

(in years) 

Integer 18 to 64 

sex Gender of 

the 

individual 

('male', 

'female') 

Categorica

l 

'male', 

'female' 

bmi Body Mass 

Index, a 

measure of 

body fat 

based on 

height and 

weight 

Float 15.96 to 53.13 

childre

n 

Number of 

children 

covered by 

health 

insurance 

Integer 0 to 5 

smoker Smoking 

status of the 

individual 

('yes', 'no') 

 

Categorica

l 

'yes', 'no' 

region Residential 

region 

('northeast', 

'northwest', 

'southeast', 

'southwest') 

Categorica

l 

'northeast', 

'northwest', 

'southeast', 

'southwest' 

cost Medical 

insurance 

cost 

Float 1121.87 to 

63770.42 

 

 

 

 

 

5    Result and analysis 

Besides ensemble methods, the framework also evaluates 

baseline models (Multiple Linear Regression, Polynomial 

Regression (Degree 2), and Support Vector Regression 

(SVM)) as comparative benchmarks. These models are 

used as examples to include the added value of non-linear 

methods while modelling more complex cost behaviours. 

The relative performance gap of their solution to the 

performance of data-driven approaches on the same 

problem was assessed using the same consistent evaluation 

metrics (R² and MAE) and depicted through prediction 

error plots and mean absolute error distributions. The 

analysis shows that ensemble learning models, especially 

their optimized counterparts Random Forest and 

XGBoost, perform best in accurately predicting hospital 

costs, as shown in Table 4 and Figure 4. The optimized 

parameters of the proposed framework are given in Table 

3. 

Table 3: Optimized parameters for the proposed 

framework. 

Model Parameters 

Random Forest 

(Optimized) 

max_depth: 10; 

min_samples_leaf: 4; 

min_samples_split: 10; 

n_estimators: 100. 

XGBoost (Optimized) subsample: 1.0; 

n_estimators: 200; 

max_depth: 3; 

learning_rate: 0.05; 

colsample_bytree: 1.0. 

Finally, we computed 95% CIs for R² and MAE 

values on the test set using bootstrap resampling with 

1,000 iterations. For the XGBoost model, the R² was 0.89 

with 95% CI [0.87, 0.91] and MAE 2502.36 with 95% CI 

[2310.75, 2703.48] Against this, the optimized Random 

Forest had an R² of 0.88 and 95% CI in [0.85, 0.90] and 

MAE = 2651.92 with 95% CI in [2457.13, 2870.66]. We 

performed a paired t-test on MAE values across cross-

validation folds to determine the statistical significance of 

their performance difference. The results indicated that 

XGBoost is significantly better than Random Forest (p < 

0.05). Our findings confirm that these differences in 

performance are statistically and statistically significant. 
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Table 4: Performance metrics (R² values) for the 

optimized models: random forest (optimized) and 

proposed optimized XGBoost. 

Model R² Value 

Random Forest 

(Optimized) 

0.88 

Proposed Optimized 

XGBoost 

0.89 

 

 

Figure 4: Bar chart illustrating the performance metrics 

(R² values) of the optimized models: XGBoost (Proposed 

Optimized) and Random Forest (Optimized). 

 

The Proposed Optimized XGBoost achieves the highest 

predictive accuracy in the proposed machine learning 

framework for public hospital budgeting. 

In the study, the proposed method aims to predict the 

healthcare cost for public hospital budgeting with 

increased accuracy by optimizing two ensemble learning 

models, Random Forest and XGBoost. The optimal 

hyperparameters for the Random Forest model consisted 

of a maximum depth of 10, the minimum number of 

samples to leave per leaf node, a minimum number of 

samples needed to split a node, and 100 estimators. In the 

case of the XGBoost model, the optimization was a 1.0 

subsampled ratio, 200 estimators, maximum tree depth of 

3, learning rate of 0.05, and column sample by tree ratio of 

1.0. Cross-validation was used to tune hyperparameters for 

both models to reduce validation loss and better generalize 

and achieve predictive performance. 

It turns out that the Optimized XGBoost and the 

Optimized Random Forest achieved nearly identical 

performance on the R² score; each R² score was 0.88, and 

the latter was 0.89. It implies that the performance 

difference is marginal and that both ensemble methods are 

apt for this task. In comparison to Random Forest, its 𝑅2 

value is more significant. Both XGBoost models have 

close R² differences between the ones and the other, which 

fits XGBoost's known ability to learn non-linear patterns 

and capture that in small or structured data. Although this 

does not conclusively demonstrate that Random Forest is 

superior to the same in this context, there is a good reason 

to want to test further.  

As the Random Forest model showed outstanding 

performance bleeding into trees’ averaging, the advanced 

gradient boosting XGBoost model managed to process the 

intricate patterns of the dataset better. 

The hyperparameter tuning was instrumental in 

bringing the baseline performance of both models to the 

best possible level, indicating the importance of tuning to 

achieve a high predictive accuracy. These results 

demonstrate that the proposed model, optimized XGBoost, 

is a better option for public hospital budget forecasting 

owing to better predictive accuracy and its capability to 

manage the complexity of the data in healthcare costs. The 

contribution of this study has thus been to show how 

ensemble learning techniques and robust optimization 

strategies can transform financial decision-making in 

public healthcare systems. 

 

5.1   Actual versus prediction values of 

proposed framework models 

This section examines comparisons between predicted and 

actual values for different regression models for predicting 

hospital costs, emphasizing the accuracy and reliability 

with which the regression models predict hospital costs. 

The evaluation process concentrates on the effectiveness 

of the proposed optimized Gradient-boosting methodology 

in decreasing deviations and improving predictive 

performance. 

Figure 5 shows the predicted vs actual values for 

various regression models, and each plot shows the 

accuracy of the respective method. The pattern of multiple 

linear regression around the diagonal indicates that it is a 

poor predictor of the dependents. A tighter clustering along 

the diagonal for Polynomial Regression (Degree 2) 

indicates improved performance via non-linear modelling. 

While SVM Regression can capture patterns, significant 

deviations exist for higher actual values than predicted. 

Compared with the diagonal, we find that ensemble 

methods, such as Random Forest(Default), provide better 

alignment, i.e., more accurate predictive accuracy. 

XGBoost (Default) further refines this alignment by 

closely predicting actual values. The Proposed Optimized 

XGBoost model also has a tight clustering along the 

diagonal line, which indicates the least deviation and 

almost the best predictive performance. It demonstrates 

that the optimization process effectively helps it achieve 

hospital cost forecasting. 
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Figure 5: Predictions vs. actual cost (USD) for (a) 

Multiple Linear Regression, (b) Polynomial Regression 

(Degree 2), (c) SVM Regression, (d) Random Forest 

(Default), (e) Random Forest (Default), (f) XGBoost 

(Optimized), and the (g) Proposed Optimized XGBoost. 

The Proposed Optimized XGBoost demonstrates the best 

alignment with the diagonal, reflecting the highest 

predictive accuracy and minimal deviations among all 

models. 

 

5.2  Residual distribution of the proposed 

framework models 

This section then analyzes the residual distribution of 

different regression models applied in the presented 

framework to understand errors in prediction and patterns. 

This paper uses the Proposed Optimized Gradient 

Boosting Methodology to analyze the models' error 

reduction capacity. Figure 6. shows residuals around zero 

(i.e., how accurate and biased the models are). 

Different regression models are compared against 

each other through the distribution graphs of residuals. 

Residuals of Multiple Linear Regression show a wider 

spread, indicating more significant prediction errors. 

Polynomial Regression (Degree 2) reduces the spread, 

reflecting its ability to model non-linear relationships. 

Looking at the distribution of SVM Regression, we 

observe a skewed distribution along with significant 

outliers, implying that SVM Regression might not be able 

to handle complicated relations. 

Improved accuracy is found in Random Forest 

(Default), with a more concentrated residual distribution. 

Further improvement is made by XGBoost (Default), with 

most residuals close to zero. Finally, the Proposed 

Optimized Gradient Boosting Methodology (Optimized 

XGBoost) had the narrowest spread and the lowest spread 

around the mean, indicating little error and good predictive 

accuracy out of all models. Thus, optimization has been 

shown to reduce prediction errors and improve model 

performance. 
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(b) 
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Figure 6: Residuals distribution of various regression 

models Proposed framework, including Multiple (a) 

Linear Regression, (b) Polynomial Regression (Degree 

2), (c) SVM Regression, (d) Random Forest (Default), 

(e), Random Forest (Optimized),  (f) XGBoost (Default), 

and the (g) Proposed Optimized XGBoost, showcasing 

progressive improvements in error reduction, with the 

Proposed Optimized XGBoost achieving the most 

symmetric and narrowest residual distribution, reflecting 

superior predictive accuracy. 

5.3    Comparison proposed framework 

models 

The values of R2 presented in Table 5 and Figure 7 show 

the additional performance enhancements when non-linear 

modelling and hyperparameter optimization are done. 

Multiple Linear Regression returned the lowest R² score 

(0.73) expected, as its ability to solve such complex, non-

linear relationships in healthcare cost data is limited. This 

performance was modestly improved (R² = 0.79) using 

non-linearity in the Polynomial Regression, though global 

polynomial assumptions still constrained it. 

The R² of the SVM Regression model is 0.81, 

which outperforms the models we tested based on the 

outcome of the dataset but underperformed when tested on 

other data sets. All models (R² = 0.85) were superseded by 

Random Forest (Default) and XGBoost (Default) 

performing (R² = 0.85 and 0.86, respectively), and this 

outcome is attributable to the capacity of Random Forest 

(Default) and XGBoost (Default) to discover feature 

interactions and different responses. 

Optimized Random Forest brought the most 

gains, as it produced an R² of 0.88, while Optimized 

XGBoost was slightly better than it with R² of 0.89. 

Although the performance gap between the two optimized 

ensemble models is on the order of 0.01, the resulting 

difference and the decreased residual error (as shown in 

Fig. 5) indicate an advantage of gradient boosting’s 

sequential error correction. The slight difference suggests 

that both methods are viable, and perhaps the final 

compromise would be performance, training efficiency, 

interpretability, etc. 

Table 5: Comparing performance metrics (R² values) of 

the proposed framework with other models, including 

Multiple Linear Regression, Polynomial Regression, SVM 

Regression, Random Forest (Default), and XGBoost 

(Default) 

Model R² Value 

Multiple Linear Regression 0.73 

Polynomial Regression 0.79 

SVM Regression 0.81 

Random Forest (Default) 0.85 

XGBoost (Default) 0.86 

Random Forest (Optimized) 0.88 

Optimized XGBoost 0.89 

 

 

 
Figure 7: Distribution of R² values throughout the 

proposed framework made proportionally. For each 

model, the relative predictive accuracy is illustrated, and 

the Proposed Optimized XGBoost achieves the best 

performance, after which the following model, Random 

Forest (Optimized), comes next. 

The Optimized Gradient Boosting Methodology 

enhances performance in predicting public hospital costs. 

The comparison of  𝑅2 .In scores across several models, 

the implications of using advanced ensemble techniques 

and optimization strategies are demonstrated. Following 

that, we ran Multiple Linear Regression, achieving an 𝑅2. 

With a score of 0.73, it is limited in finding complex 

factors driving healthcare expenditure data since it 

assumes relations are linear. The addition of model 
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flexibility through Polynomial Regression increased 

performance to 0.79, partly due to improved accuracy by 

exploiting the non-linear relationship between the 

variables. 

Additional machine learning models made further 

advances in predictive accuracy. SVM Regression 

achieved an 𝑅2. It benefits from its ability to model non-

linear patterns and has a score of 0.81. These traditional 

approaches were outpaced by Ensemble methods, with 

Random Forest (Default) showing a very impressive 𝑅2. 

The strength of ensemble learning on feature interaction is 

reflected in the score of 0.85. The Random Forest model 

was further optimized 𝑅2. It proves the value of improving 

predictive performance with hyperparameter tuning, 

reducing this score to 0.88.  

The XGBoost (Default) slightly outran the default 

Random Forest with an 𝑅2 . The gradient boosting 

framework achieves superior accuracy at a score of 0.86. 

However, the Optimized XGBoost achieved the highest 

performance and was able to deliver an 𝑅2  With a score 

of 0.89, this also becomes the best-performing model. We 

attribute this improvement to advanced hyperparameter 

optimization, which improves things like learning rate, 

tree depth, and regularization parameters, which makes the 

model better to generalize. 

These results can have substantial implications for 

hospitals' budgeting. In particular, the optimized ensemble 

models show very high predictive accuracy, which renders 

them excellent intelligent cost accounting and resource 

allocation tools. Our results show the criticality of model 

optimization and the capability of gradient-boosting 

algorithms to deal with complex, non-linear relationships 

in healthcare data. Finally, the Proposed Optimized 

Gradient Boosting Methodology introduces a 

revolutionary approach to deploying data to optimize 

financials and make intelligent choices so that public 

hospitals can use this methodology at their doorsteps. 

The XGBoost model is applied over boosting rounds, 

Random Forest is applied over the number of trees, and 

training and testing R² scores for both are shown in Figure 

8. With XGBoost (Figure 8a), we get a rapid boost in R² 

until about 100 iterations; after that, everything levels off, 

so we can say that it converged. The R² curves can be 

slightly different after 200 rounds between training and 

testing, which implies minor overfitting, but this was 

overcome by applying early stopping. The training and 

testing curves from Random Forest (Figure 8b) stop 

stabilizing after about 80 trees. It may be overfitted due to 

a randomized construction of the trees and the use of the 

regularization parameters (e.g., min_samples_split). We 

know these trends support ensemble methods' robustness 

and stability as much as the tuned XGBoost. 

 

Figure 8: Training vs Testing R² scores for the 

optimized models. Figure 8a shows the XGBoost model 

converging after ~150 boosting rounds with slight 

overfitting mitigated by early stopping. Figure 8b 

displays the Random Forest model stabilizing after ~80 

trees, indicating minimal overfitting and robust 

generalization. 

5.4    Interpretability with SHAP analysis 

In Figure 9, three SHAP visualizations provide the 

interpretability of the optimized XGBoost model. The 

SHAP summary plot, which figures out the essential 

features of the model by sorting them out based on how 

much they contribute to the model output in its training 

data (shown in Figure 9a), shows features by their impact 

on the model’s production in the dataset. It is not an 

absolute contribution value but shows the direction and 

relative magnitude of influence a feature has on a 

prediction. An advantage of using SHAP values for 

identifying features that tend to affect cost predictions 

heavily is that SHAP values for features such as smoking 

status, BMI, and age contain the highest lowering and 

raising ranges, indicating these features often lead to 

positive or negative effects on cost predictions. Figure 9b 

displays the graph of BMI as a model input with a non-

linear relationship, meaning that lower values don’t 

influence that much, while higher values increase cost. As 

mentioned above, the plot also depicts an interaction with 

smoking status based on color encoding. A smoking status 

dependency plot (Figure 9) shows that those with SHAP 

values that tend to increase predicted costs in the sense 
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they are more likely to be smokers in the real world tend 

to be higher. These plots point out that while smoking 

status certainly has a strong directionality, BMI and age 

have less sharp and more gradual, non-linear increases, 

pointing out the model's power to handle more complex 

cost-driving patterns. 

 
(a) 

 

 
 

(b) 

Figure 9: SHAP analysis results of the Proposed 

Optimized Gradient Boosting Methodology. Similarly, at 

the top (a) is the SHAP summary plot indicating the 

impact on cost prediction by the features. Our SHAP 

dependency plot (b) displays the non-linear relation 

between BMI and costs and the interaction of the smoker 

feature. 

6    Discussion 

This research finds the potential of artificial intelligence 

and machine learning in transforming public hospital 

budgeting. The Optimized Gradient Boosting Method 

outperforms the predictive results, although the optimized 

XGBoost model obtains an 𝑅2. 

It involves running several regression analyses and 

looking at our results: Our optimized ensemble models 

(Random Forest and XGBoost) exhibit better predictive 

accuracy than traditional regression approaches, and the 

XGBoost model is at R² of 0.89. Compared to other 

machine learning methods that are tested (e.g., SVM and 

standard ensemble models), this is a modest improvement. 

Still, it does provide proof of the principle that 

hyperparameter searching and ensemble models have the 

potential to capture implicit, complex relationships 

between cost drivers. It is consistent with what is known 

about healthcare cost modeling in the literature, where 

often ensemble learning is preferred due to its ability to 

handle non-linearity and feature interactions. 

Nevertheless, these performance differences in this study 

were incremental, and the model selection must also 

include interpretability, computational efficiency, and 

implementation context. 

In addition, this study is essential for integrating SHAP 

analysis, which stains transparency by attributing model 

predictions to each feature on a per-patient basis. Since the 

interpretability of this model means that decision-makers 

can now understand how such variables as smoking status 

or BMI affect cost prediction, they will be able to buy 

plans more easily. SHAP analysis showed smoking status, 

BMI, and age to be the most impactful factors in healthcare 

costs. The findings provide information for designing 

targeted health interventions (e.g., smoking cessation 

programs), deciding where to allocate scarce resources to 

the high-risk demographic, and how to stratify the costs for 

high-risk populations, making the insights useful for 

budget planning and designing policy. This interpretation 

ensures accuracy and transparency, builds trust among the 

stakeholders, and guides data-driven policy development. 

For example, knowing that smoker status is a very 

significant cost driver can help design targeted smoking 

cessation programs that are consistent with public health 

objectives and financial objectives. 

This framework goes beyond forecasting individual 

healthcare costs, and this can also be applied to policy 

interventions on islands that consume cost drivers as 

identified by the model. For instance, SHAP analysis 

insights may help hospitals detect that smoking status is a 

significant cost driver and, based on this, develop or target 

a particular smoking cessation program to high-cost 

patient segments. In addition, the model applies to flag 

patients with an elevated BMI to help initiate prevention 

treatments aimed at reducing obesity-related 

complications. On the hospital finance team's 

administrative level, risk-adjusted budget allocation 

strategies can be designed according to region, age group, 

or behaviour risk factor that aligns with the anticipated cost 

impact. It can be done during implementation through 

integration with existing hospital-ERP systems or as a part 

of the BI dashboard, which will periodically train on 

updated patient data. 

Our optimized framework is competitive (and in many 

cases better) relative to prior studies using machine 

learning to predict healthcare costs. It is shown in Table 1 

(from Literature Review) that existing models such as 

Random Forest, gradient boosting or other commonly 

employed methods often report R² values between 0.78 
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and 0.86 on real-world healthcare datasets (e.g., Vimont et 

al., Mazumdar et al.). Our optimized XGBoost model, 

however, showed the R² of 0.89, MAE of 2502.36 and 

minimal residual variance among tested models. This 

improvement can be attributed to deep hyperparameter 

optimization, the addition of domain-relevant features, and 

the importance of calibration of the SHAP feature. 

From a residual analysis viewpoint, our framework has 

a tight-centered error distribution with minimal skewness, 

indicating robust generalization. Traditional models such 

as linear regression, when used to have its residual 

distribution, had wider variance, especially at the higher 

cost levels—at this point, these models proved unable to 

capture the non-linear interactions every day in healthcare 

spending patterns. 

It is partly because our model can balance model 

complexity with interpretability. Using SHAP analysis, we 

increased the prediction's transparency—how the model 

predicts—and verified the feature importance rankings and 

validated them with empirical and domain-specific 

evidence. 

SHAP analysis showed that the most influential 

predictors of healthcare costs were smoking status, BMI, 

and age. These findings agree with what is already known 

about public health. 

• SHAP values of the effects proved to be the most 

critical factor on cost, with smoking status showing 

the most substantial positive influence. It is to be 

expected since smoking is known to be a well-known 

risk factor for chronic diseases such as cardiovascular 

and respiratory conditions, which substantially 

increased healthcare utilization. Additionally, this 

variable had a binary nature that led to model clarity 

and decision boundaries. 

• BMI is important because it is a surrogate for obesity-

related complications, such as diabetes and orthopedic 

conditions. In SHAP, dependency plots exhibited a 

non-linear, threshold-based cost escalation for BMI > 

30, as would be expected given obesity classification 

thresholds. 

• There was a moderately and steadily increasing cost 

as with age. On the other hand, while the effect of age 

was linear, unlike smoking or BMI, the model could 

estimate it using only linear interaction terms rather 

than complex interaction terms. 

There were other features — such as number of 

children, region, and sex — that had comparatively less 

impact. Still, scattered SHAP values showed weaker or 

inconsistent influence on the predicted cost outcomes. 

This study is aware of some of its limitations despite its 

successes. As with the availability of high-quality, 

comprehensive datasets, the accuracy and scalability of the 

framework require a solution to some of the issues. 

Ensemble models can also impose computational demand, 

especially for optimization, with potentially prohibitive 

costs in resource-constrained settings. In addition to 

natural world hospital systems, such frameworks must be 

integrated while addressing data privacy requirements and 

making ethical decisions transparent. 

Scalability: The manuscript acknowledges scalability as 

a challenge, but numerous strategies exist to scale beyond 

the experiment. If you have large datasets or a multi-

hospital system, distributed computing frameworks like 

Apache Spark or Dask can run distributed data prep by 

dividing up pieces of your data or models to train them in 

parallel. In addition, the proposed framework is also fully 

compatible with cloud-based ML platforms (e.g., AWS 

SageMaker, Google Vertex AI), which offer auto-scaling 

infrastructure and a managed environment for model 

deployment. In future work, federated learning techniques 

may be explored to support multiple institutions such that 

model training is feasible from decentralized data silos 

without sacrificing privacy. Such strategies make it 

possible to keep the framework up-to-date and productive 

with the institution's growing data volume and size. 

Finally, this work provides a firm foundation to utilize 

machine learning to optimize public hospital budgeting. 

The Proposed Optimized Gradient Boosting Methodology 

is a hybrid methodology of predictive accuracy, 

interpretability, and practicality to create a robust 

architecture of intelligent cost accounting and financial 

optimization. Avenues for future work include expansion 

of coverage in the scope of the dataset, scalability, and 

evaluation of the framework's impact in the real world in 

the hospital setting. If this proposed methodology can 

tackle these challenges, it might revolutionize financial 

management in public healthcare by improving resource 

allocation efficiency and patient care outcomes.   

Practical Implications: The proposed framework 

provides a reasonable basis for implementation into actual 

hospital systems, requiring only modest infrastructures 

such as mid-range dedicated servers, cloud-based 

platforms, or standard Python environments, such as the 

Docker-provided ones. All tools (XGBoost and SHAP) are 

open source and do not require additional software. Data 

preparation, model training for the first time, and short 

workshops for staff are the most critical implementation 

costs, and the initial costs are estimated between $15,000 

and $50,000, depending on the hospital scale. It is flexible 

enough to be compatible with secure on-premise systems 

to address data privacy concerns. It can be brought into 

these existing ERP or BI systems for risk-adjusted 

budgeting and policy decisions. It is a sustainable data-

driven hospital financial management tool because it is 

adaptive to local data sets and scalable through periodic 

retraining. 

Ethics and Privacy: This study is bound to observe data 

privacy and ethical standards rigidly. All the data that we 

have used in our dataset was fully anonymized, with no 

personally identifiable information in it at all. However, in 

real-world hospital deployments, they must implement the 

necessary data governance framework according to 

HIPAA, GDPR, or other local regulations. The list of 

things included in this is data encryption, access controls, 

secure storage, and role-based permissions. Secondly, the 
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proposed framework is compatible with institutions’ 

existing infrastructure. It retains its control over patient 

data since institutions do not have to give up control over 

their patient data by sharing it with third-party clouds. In 

addition to providing transparency in model output 

interpretability and guaranteeing ethical AI deployment in 

health care, SHAP analysis integration is also addressed. 

7    Conclusion 

This thesis proposes an interpretable machine learning 

framework for public hospital budgeting that balances an 

interpretable model and budgeting practicality through a 

combination of predictive model explanations. The 

framework optimizes ensemble methods, of which 

Random Forest & XGBoost are good examples, along with 

SHAP analysis to obtain correct forecasting of healthcare 

costs and the ability to clarify key cost drivers (e.g. 

smoking status, BMI, etc) about the patients. The term' 

hybrid' reflects the integration of model performance with 

stakeholder-relevant interpretability. In contrast, the 

framework's architecture comprises modular steps such as 

data preprocessing, model training, hyperparameter 

tuning, and SHAP interpretation. Practicality is achieved 

by practising the use of open source tools, minimal 

infrastructure requirements, and compatibility of 

infrastructure with existing hospital IT. While the 

performance gains over baseline models are small, the 

interpretability and operational relevance of the 

framework enables its use to guide focused interventions 

and resource planning. For instance, hospitals could apply 

the insights to back preventive care efforts for high-risk 

populations or allocate funds according to the risk-

adjusted budget. Future work will investigate distributed 

learning approaches that would scale the framework to a 

larger, multi-hospital dataset and apply an existing policy 

impact method to real-world policy impacts in healthcare 

settings. However, further studies are needed to evaluate 

long-term outcomes and improve Financial Management 

decisions in the hospital regarding cost forecasting using 

Explainable AI together with ensemble learning. 
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