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In the context of the booming modern logistics and supply chain management, cargo tracking technology 

has emerged as a pivotal means to enhance logistics efficiency and transparency. High-precision cargo 

tracking systems are particularly crucial in complex warehousing and transportation scenarios, as they 

can effectively address issues like positioning errors and signal attenuation. This research puts forward 

a high-precision cargo tracking approach grounded in a joint optimization algorithm. By integrating 

multiple positioning technologies, namely Received Signal Strength Indicator (RSSI), Time Difference of 

Arrival (TDOA), and Angle of Arrival (AOA), accurate positioning across diverse environmental 

conditions is attained. The experimental design encompasses a battery of evaluations, including accuracy 

tests, real-time performance tests, and system stability analyses, to validate the practical application 

efficacy of the algorithm. In the accuracy tests, compared with the traditional positioning algorithm, the 

joint optimization algorithm demonstrated remarkable improvements. In high signal strength areas, the 

positioning error was slashed by 20%, dropping from an average of 0.8 meters in traditional algorithms 

to 0.64 meters. In low signal strength areas, the error was reduced by 30%, from 1.5 meters to 1.05 meters. 

And in high-density obstacle areas, the error was cut by 35%, decreasing from 2.2 meters to 1.43 meters. 

During real-time tests in high-concurrency environments, the joint optimization algorithm outperformed 

traditional algorithms significantly. The response time was shortened by 55%, from an average of 0.8 

seconds in traditional algorithms to 0.36 seconds, and the throughput increased by 30%, rising from 100 

requests per second to 130 requests per second. System stability and fault tolerance tests indicated that 

the joint optimization algorithm exhibited minimal error accumulation during long - term operation. After 

continuous operation for 48 hours, the error accumulation of the traditional algorithm reached 3 meters, 

while that of the joint optimization algorithm was merely 1.2 meters. Additionally, in abnormal situations 

such as sensor failure and network interruption, the joint optimization algorithm could swiftly restore 

positioning accuracy within 5 minutes on average, ensuring seamless operation. Based on these 

experimental results, the joint optimization algorithm proposed in this paper showcases substantial 

advantages in high-precision cargo tracking and holds great promise for practical applications. 

Povzetek: Razvit je algoritem skupne optimizacije za RFID-IoT sledenje tovora, ki z združevanjem več 

metod dosega večjo točnost in hitrejši odzivni čas. 

 

1 Introduction 
In recent years, with the acceleration of globalization 

and the rapid development of e-commerce, the logistics 

industry is facing unprecedented challenges. Traditional 

cargo tracking methods rely on manual records or simple 

barcode technology, which often cannot meet the rapidly 

changing market needs, especially in terms of accuracy, 

real-time and efficiency [1]. With the development of 

information technology, especially the application of radio 

frequency identification (RFID) technology and Internet 

of Things (IoT) technology, the management model of the 

logistics industry has gradually undergone profound 

changes. RFID technology is a non-contact automatic 

identification technology that can identify and track items 

through radio waves without the need for line of sight. IoT 

technology, through the integration of smart devices, 

sensors, network platforms, etc., further improves the real- 

 

 

time acquisition and analysis capabilities of item data and 

builds a highly interconnected digital logistics system [2]. 

The combination of RFID technology and the Internet of 

Things technology makes it possible to develop high-

precision cargo tracking systems. These systems can 

monitor the location, status, and environmental 

information of cargo during transportation in real time, 

greatly improving the transparency and controllability of 

logistics. Through the combined application of RFID tags 

and sensors, every movement of cargo during 

transportation, storage, and distribution can be accurately 

recorded and tracked, thereby achieving visual 

management throughout the entire process. This not only 

improves the efficiency of logistics operations, but also 

effectively reduces the loss, damage, and misdelivery of 

cargo [3]. 

In modern logistics systems, the accuracy of cargo 

tracking systems directly affects the overall efficiency of 
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the supply chain. As global supply chains become 

increasingly complex and cargo flows faster, companies 

are increasingly demanding on the accuracy of logistics 

management. A high-precision cargo tracking system can 

help companies understand the specific location, 

transportation status, and environmental conditions of 

cargo in real time, and achieve seamless information 

connection and timely feedback. For example, in the e-

commerce industry, consumers have increasingly high 

requirements for logistics timeliness, and fast and accurate 

tracking of each transportation node of cargo has become 

a key factor in improving customer satisfaction [4]. In 

industries such as medicine and food, cargo safety and 

compliance are even more critical. Real-time monitoring 

and high-precision tracking help ensure that the 

transportation process of cargo complies with regulatory 

requirements and avoid unnecessary economic losses. In 

addition, the application of high-precision cargo tracking 

systems is not limited to improving logistics efficiency. It 

also plays an important role in supply chain management, 

inventory control, and cost optimization. Through refined 

management of logistics links, companies can achieve 

more accurate inventory forecasting and scheduling, 

reduce inventory backlogs or shortages caused by 

information lags, and reduce logistics costs. The system’s 

real-time data feedback also helps optimize transportation 

routes, save time and fuel, thereby improving 

transportation efficiency, reducing carbon emissions, and 

promoting the development of green logistics [5-7]. 

The core content of this study is to design a high-

precision cargo tracking system based on RFID Internet of 

Things technology. First, the study will start with the 

system architecture design and explore how to use RFID 

technology to achieve real-time positioning and tracking 

of cargo. The system will combine sensor data acquisition, 

data processing and cloud platform technology to ensure 

that the information of cargo in each link of transportation, 

storage and distribution can be accurately and timely 

transmitted and stored. Secondly, the study will focus on 

the optimization of high-precision positioning algorithms, 

especially how to improve the accuracy and robustness of 

RFID positioning in complex environments [8, 9]. To this 

end, combined with multi-sensor data fusion technology, 

the study will explore how to make up for the limitations 

of RFID signals and improve the positioning accuracy and 

stability of the system. In addition, this study will also 

evaluate the performance of the cargo tracking system, 

analyze the feasibility and optimization space of the 

system in practical applications, and ensure that it can 

provide efficient solutions when deployed on a large scale. 

In order to ensure the security and privacy protection of 

the system, the study will also explore how to prevent 

information leakage and system attacks through 

encryption technology and data security protocols.  

In the realm of modern logistics and transportation, 

numerous innovative studies have been conducted. For 

instance, Li et al. [10] designed a cold chain logistics 

information real - time tracking system based on wireless 

RFID technology in 2021. This system has significantly 

enhanced the transparency and efficiency of cold chain 

logistics, ensuring the quality of perishable goods during 

transportation. Meanwhile, Wang and Wang [11] in 2024 

explored logistics transportation vehicle monitoring and 

scheduling based on the Internet of Things and cloud 

computing. Their research provides valuable insights into 

optimizing transportation resources and improving 

delivery efficiency. In addition, Tyagi and Tyagi [12] 

proposed a deep reinforcement learning - based 

framework for tactical drone deployment in rigorous 

terrains. This framework has the potential to revolutionize 

transportation and surveillance in complex geographical 

areas. Moreover, Packianathan et al. [13] in 2025 focused 

on integrating industrial robotics and the Internet of 

Things (IoT) in the smart transportation system, which is 

expected to drive the development of green transportation 

systems through artificial intelligence and automation. 

These studies, in their respective ways, contribute to the 

continuous evolution and improvement of the logistics and 

transportation industry. 

The current RFID/IoT systems have many 

deficiencies in complex warehousing environments. The 

positioning accuracy is greatly affected by signal 

interference. In complex environments, the error can reach 

1.5 m, and in high - temperature and high - humidity 

environments, the error can even exceed 2 m, making it 

impossible to accurately track the location of goods. In 

high - concurrency scenarios, the response time is as long 

as 2 s. For example, during e - commerce promotion 

periods, when a large number of goods are entering and 

leaving the warehouse, the inability to accurately and 

timely locate goods seriously affects the cargo - 

scheduling efficiency and leads to shipping delays. From 

a market - competition perspective, companies with more 

accurate and faster cargo - tracking systems can gain a 

competitive edge. They can provide better services to 

customers, reduce logistics costs, and improve overall 

operational efficiency. This study aims to address these 

deficiencies through multi - source data fusion and 

algorithm optimization, attempting to reduce the 

positioning error to within 1 m and shorten the response 

time to within 1s, filling the gaps in accuracy and real - 

time performance of existing systems and enhancing the 

overall efficiency of the logistics system. 

This study aims to deeply analyze the internal 

mechanism of multi - source data fusion (RSSI, TDOA, 

AOA) in improving positioning accuracy in complex 

environments (including different temperature, humidity, 

obstacle - density conditions, etc.) and how to precisely 

achieve the best trade - off between response time and 

accuracy in high - concurrency environments (processing 

more than 200 positioning requests per second). 

Specifically, the research objectives are to clarify the 

influence weights of multi - source data on positioning 

accuracy under different environmental parameters and, 

through algorithm optimization, control the response time 

within 0.4 s and ensure the positioning error is within 1.2 

m in high - concurrency scenarios to meet the high - 

precision and real - time requirements of modern logistics 

for cargo tracking. With the continuous improvement of 

industry standards, such as the requirement for the 

maximum positioning error of high - value - added goods 

in the luxury - goods logistics industry to be within 1 m, 
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and the response time to be less than 0.5 s in emergency - 

response logistics scenarios, our research goals are more 

targeted at filling these gaps in the existing technology to 

better meet the industry's development needs. 

2 Literature review 
With the rapid development of the Internet of Things 

(IoT) and Radio Frequency Identification (RFID) 

technologies, more and more research is focused on how 

to apply these technologies to logistics and supply chain 

management, especially in terms of improving the 

accuracy and efficiency of cargo tracking systems. RFID 

technology, with its non-contact identification and real-

time data transmission characteristics, has become an 

important tool for improving logistics management 

efficiency, reducing human errors, and optimizing 

resource allocation. IoT technology further enhances the 

operability and intelligence level of RFID systems through 

collaboration between devices. 

2.1 Development and application of RFID 

technology 

RFID (Radio Frequency Identification) is a 

technology that uses radio waves to automatically identify 

and exchange data. It does not require contact or line of 

sight to transmit data, so it has been widely used in many 

fields. The earliest applications of RFID technology were 

mainly concentrated in the fields of commodity retail and 

supply chain management, but with the continuous 

evolution of technology, the application scope of RFID 

has gradually expanded to multiple industries such as 

medical care, agriculture, and smart manufacturing [9]. 

In the field of logistics, the application of RFID 

technology is mainly reflected in the automatic 

identification and tracking of goods. Traditional barcode 

technology is limited by visibility and reading distance, 

while RFID technology can achieve long-distance, high-

efficiency automatic identification through radio wave 

transmission between tags and readers. RFID technology 

can significantly improve the efficiency of logistics 

management. By obtaining the location information of 

goods in real time, it avoids the errors and delays that may 

be caused by traditional manual records [10]. In addition, 

the low cost and durability of RFID tags make them have 

broad prospects in large-scale logistics applications. The 

application of RFID technology in cargo tracking usually 

relies on two main components: RFID tags and RFID 

readers. RFID tags are attached to goods and can store 

basic information of goods, transportation history and 

other data. The reader communicates with the tag through 

radio waves to read and transmit data. Studies have shown 

that by properly arranging RFID readers, accurate tracking 

of the entire logistics process can be achieved, and the 

location and status of goods can be grasped in real time 

[11]. However, RFID technology still faces some 

challenges in practical applications, such as signal 

interference, tag damage, and limited coverage. These 

problems need to be effectively solved in the design of 

high-precision cargo tracking systems. 

2.2 Application of IoT technology in cargo 

tracking 

In recent years, the combination of IoT technology 

and RFID technology has provided stronger technical 

support for high-precision cargo tracking systems. 

Traditional RFID technology can only provide basic 

information and location of cargo, while IoT technology 

can integrate more environmental data (such as 

temperature, humidity, vibration, location change, etc.) 

with cargo tracking information, further improving the 

accuracy and intelligence level of cargo tracking systems. 

The literature proposes an intelligent logistics system 

model based on RFID and IoT. By integrating 

environmental data collected by multiple sensors with 

RFID tag data, it can monitor the transportation status of 

cargo in real time. Especially in high-demand industries 

(such as pharmaceuticals and food), the application of IoT 

technology is particularly important [12]. IoT technology 

can also help enterprises achieve more accurate logistics 

scheduling and inventory management through data 

analysis and mining. For example, by monitoring the 

location and status of cargo in real time through the IoT 

platform, logistics companies can automatically adjust 

transportation routes based on these data, optimize 

inventory distribution, and improve distribution 

efficiency. In addition, IoT technology can also predict 

potential risks in transportation through big data analysis, 

take countermeasures in advance, and reduce cargo losses 

and transportation delays [13]. Therefore, the introduction 

of IoT technology not only improves the accuracy of cargo 

tracking, but also makes logistics management more 

intelligent and automated. 

2.3 Design of cargo tracking system based 

on RFID Internet of Things technology 

Cargo tracking systems based on RFID IoT 

technology usually include three key components: RFID 

tags, RFID readers, and IoT data platforms. These systems 

achieve accurate monitoring of cargo status through data 

collection, real-time transmission, and data processing. 

Many studies have been devoted to improving the 

performance of cargo tracking systems by optimizing 

system architecture. For example, the literature proposes a 

distributed cargo tracking system based on RFID and IoT. 

The system adopts a multi-level RFID tag architecture and 

combines the data storage and computing capabilities of 

the IoT cloud platform to achieve real-time tracking of 

cargo from production to distribution [12]. The system can 

not only obtain the location of cargo in real time, but also 

monitor the environmental conditions of cargo through 

sensors to ensure the safety and compliance of cargo. In 

addition, researchers have also optimized the positioning 

accuracy of RFID and IoT systems. Since RFID signals 

are easily interfered by environmental factors, single 

RFID tag positioning often cannot meet the needs of high-

precision tracking. To overcome this challenge, many 

studies have proposed methods that combine multi-sensor 

data fusion to improve the accuracy of cargo positioning 

by fusing multi-source information such as RFID data, 
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GPS data, and Wi-Fi data [13]. This multi-sensor fusion 

technology can not only solve the positioning error 

problem of RFID technology in complex environments, 

but also further improve the stability and robustness of the 

system. 

2.4 Limitations and challenges of existing 

systems 

Although cargo tracking systems based on RFID IoT 

technology have made significant progress in accuracy 

and efficiency, they still face some technical and 

implementation challenges. On the one hand, the cost and 

service life of RFID tags still restrict their application in 

large-scale logistics. In particular, for some high-value 

and fragile items, how to ensure the stability of tags and 

the long-term reliability of data is an urgent problem to be 

solved [14]. On the other hand, the weakness of RFID 

signals and environmental interference also affect the 

performance of the system. In particular, in the tracking of 

metal and liquid items, RFID signals may be severely 

attenuated, resulting in reduced positioning accuracy. In 

addition, the widespread application of IoT technology 

has brought about issues of data processing and privacy 

security. With the accumulation of a large amount of 

logistics data, how to effectively manage and analyze this 

data, avoid information overload and ensure data security 

has become an important factor that must be considered in 

system design [15]. Therefore, future research directions 

need not only to continue to optimize the combination of 

RFID and IoT technologies, but also to explore more 

efficient data processing methods and solutions to 

strengthen information security.

Table 1: Key Research on cargo tracking based on RFID and internet of things 

Serial 

Number 

Key 

Research 

Main 

Method 
Results Limitations 

Practical 

Application 

Cases 

1 
Literature 

[1] 

RSSI - 

based 

Positioning 

Algorithm 

High: 

0.8 m, 

Low: 

1.5 m 

Seriously 

affected by 

signal 

interference 

Deviations in 

inventory 

counting in e 

- commerce 

warehouses 

2 
Literature 

[14] 

TDOA - 

based 

Positioning 

Algorithm 

High: 

0.75m, 

Low: 

1.8 m 

High cost 

and easily 

affected by 

the 

environment 

Difficulties 

in vehicle - 

based cargo 

tracking in 

logistics 

3 
Literature 

[11] 

AOA - 

based 

Positioning 

Algorithm 

High: 

0.9 m, 

Low: 

1.6 m 

Prone to be 

affected by 

occlusion 

Inefficient 

loading and 

unloading 

operations in 

multi - floor 

warehouses 

Table 1 summarizes the algorithm research in the 

cargo - tracking field and showcases the limitations of 

each algorithm by combining practical cases. For 

example, the RSSI - based algorithm has significant 

deviations in metal - enclosed areas, the TDOA - based 

algorithm has high costs and is affected by the 

environment, and the AOA - based algorithm has poor 

performance in complex structures, highlighting the 

importance of the joint optimization algorithm. 

Although the current state - of - the - art (SOTA) 

technologies have made certain progress, they still face 

significant challenges in complex environments. In low - 

signal - strength environments, the average positioning 

error of SOTA reaches as high as 1.8 m, far from meeting 

the demand for precise cargo positioning. In high - 

concurrency scenarios, the data - processing efficiency is 

low, and the response time generally exceeds 0.6 s, which 

cannot meet the requirements of real - time logistics 

scheduling and rapid decision - making. Moreover, 

emerging technologies such as 5G - enabled cargo 

tracking, although promising in theory, face issues like 

high - frequency signal interference in complex logistics 
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environments and high infrastructure - building costs. The 

joint optimization method is essential. By fusing multi - 

source data, it can integrate the advantages of different 

positioning technologies and make up for the defects of 

single - technology applications. Dynamic weight 

adjustment, based on real - time environmental parameters 

and data credibility, can flexibly allocate weights to each 

data source. It is expected to reduce the positioning error 

in low - signal - strength environments to within 1.05 m 

and shorten the response time to within 0.4 s in high - 

concurrency scenarios, greatly enhancing logistics 

operational efficiency. 

Existing studies have several deficiencies. In terms of 

robustness, for example, the algorithm in reference [16], 

when 10% of sensor data is lost, the positioning error 

surges by 80%, and the system can hardly function 

properly, indicating a low tolerance for hardware failures 

and data anomalies. In terms of scalability, some 

algorithms experience exponential growth in calculation 

time when dealing with a logistics network of more than 

500 cargo nodes, making it difficult to meet the real - time 

tracking needs of large - scale logistics networks and 

unable to keep up with the expanding development trend 

of the logistics industry. In terms of adaptability, many 

methods are sensitive to environmental changes. For 

example, in an environment with a temperature exceeding 

35°C and humidity higher than 80%, the positioning 

accuracy of the algorithm in reference [17] drops by 40%, 

severely affecting its application in complex and 

changeable logistics environments. Additionally, in terms 

of security, most of the existing algorithms lack effective 

encryption and anti - eavesdropping mechanisms. In a 

wireless communication - based cargo - tracking system, 

data is vulnerable to interception and tampering, which 

may lead to the leakage of sensitive information such as 

cargo location and transportation routes, posing potential 

risks to logistics security. 

3 Design framework of cargo 

tracking system 
In the context of increasingly complex global supply 

chains and logistics management, the efficient design of 

cargo tracking systems is crucial. Cargo tracking systems 

based on RFID technology and the Internet of Things 

(IoT) can provide accurate real-time data feedback in 

various links such as production, transportation, and 

warehousing, and achieve full-process tracking. The 

system architecture design must not only ensure the high 

accuracy and real-time performance of data collection, but 

also ensure the stability of information transmission, the 

efficiency of data processing, and the visual experience of 

end users. To this end, the system architecture adopts a 

layered design, including the physical layer, network 

layer, and application layer, to ensure that the system can 

flexibly and scalably cope with various complex logistics 

needs [18]. 

The core goal of the system architecture is to provide 

real-time monitoring of cargo status and effectively 

optimize transportation, warehousing and distribution 

processes through efficient data collection and 

transmission, accurate data processing and visual display. 

Under this framework, information such as the real-time 

location of cargo, environmental changes, and 

transportation status will be continuously tracked and 

updated to provide real-time decision support for logistics 

managers and ensure the efficient operation of the entire 

logistics chain. 

For the weights of RSSI, TDOA, and AOA, we adopt 

a dynamic - calculation method based on real - time 

environmental parameters and data credibility. First, based 

on factors such as signal - strength stability and 

transmission delay, initial weights are assigned to each 

data source. Initially, set the RSSI weight 0.4RSSIW = , 

the TDOA weight 0.3TDOAW =  , and the AOA weight 

0.3AOAW =  . Then, during the operation process, the 

weights are adjusted in real - time through the formula 

1

i i
i n

j j

j

W
C

C




=


=


 . Among them, i  is the adjustment 

coefficient based on environmental parameters. For 

example, when the temperature exceeds 30°C, RSSI  is 

reduced by 0.1, and TDOA  and AOA  are increased by 

0.05 accordingly; iC  is the data credibility of the i  - th 

data source, which is evaluated through signal - quality 

monitoring and historical - data comparison. Signal - 

quality monitoring is carried out by analyzing indicators 

such as the signal - to - noise ratio and fluctuation 

amplitude of the signal, and historical - data comparison 

is to compare the current data with the data under the same 

environmental conditions in the past to determine the 

credibility of the data. In addition, when dealing with 

abnormal values in the data, if the signal - strength value 

of RSSI is more than 3 standard deviations away from the 

average value in the same environment, it is considered an 

abnormal value. At this time, the data is excluded from the 

weight - calculation process, and the weights are 

recalculated based on the remaining valid data to ensure 

the accuracy of the weight - adjustment mechanism.
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Figure 1: Model framework

Figure 1 shows an integrated system of intelligent 

logistics and supply chain management. The system uses 

a variety of advanced technologies to achieve full-process 

automation and intelligent management from production 

to final delivery. The core links of the system include 

production and manufacturing, warehousing and 

inventory management, transportation and distribution, 

power and energy management, cloud computing and data 

analysis, and operation monitoring. In the production and 

manufacturing link, automated production lines and 

intelligent scheduling systems ensure efficient production 

and high-quality product output. Warehousing and 

inventory management optimizes inventory accuracy and 

efficiency through intelligent warehousing systems and 

automated equipment, reducing inventory backlogs and 

out-of-stock risks. The transportation and distribution link 

uses intelligent logistics systems to optimize 

transportation routes and scheduling to ensure that goods 

are delivered to the destination on time and accurately, 

while monitoring the transportation status in real time to 

ensure the safety of goods [19]. Power and energy 

management relies on smart grid technology to achieve 

efficient use and stable supply of energy, providing 

guarantees for the smooth operation of the entire logistics 

system. Through cloud computing and data analysis, the 

system can collect and process data in real time to provide 

support for optimizing decisions and predicting demand 

changes. Finally, the operation and monitoring link 

monitors the operation status of the supply chain in real 

time through intelligent systems, and operators can handle 

abnormal situations in a timely manner to ensure the 

stability and reliability of the supply chain [20]. Through 

the organic combination of these technical means, the 

system has significantly improved logistics efficiency, 

reduced costs, and ensured the efficient operation and 

stability of the supply chain. 

3.1 Physical layer 

The physical layer is the foundation of the cargo 

tracking system and is mainly responsible for real-time 

data collection and sensor deployment. This layer uses 

RFID tags, RFID readers, and environmental sensors in 

combination with wireless communication technology to 

achieve accurate tracking of cargo. RFID tags serve as 

cargo identification tags and can be used in conjunction 

with readers to record the location of cargo in real time, 

while environmental sensors provide key data about the 

environment in which cargo is transported, such as 

temperature, humidity, and vibration. These data are 

crucial for evaluating the status of cargo [21, 22]. 

The core of the RFID system is to read the location 

information of the tag through radio frequency 

identification technology. Each cargo is equipped with a 

unique RFID tag, which is scanned in real time by RFID 

readers installed in different locations. The location of the 

cargo can be estimated by the signal strength and 

propagation path. Suppose the RFID tag of the cargo is

Tagi , the reader position is readerr , the signal 

propagation angle is  , timestamp is t, the location 

estimation model can be expressed as Equation (1) [23, 

24]. 

 Tag reader( ) ( , , , )
iiP t f ID t= r  (1) 

 

RFID technology enables the location of goods to be 

tracked efficiently over a wide area, greatly improving the 

level of automation in logistics management. 

The real-time data collection of sensors provides an 

additional environmental dimension, providing more 

information for the cargo tracking system. For example, 

the temperature and humidity sensors can monitor in real 

time whether the cargo is in a suitable storage 

environment, and the vibration sensors can be used to 

detect abnormal vibration during transportation. Set the 

data collected by the temperature and humidity sensors to

 ( ) ( ), ( ), ( )S t T t H t V t= , where T(t) represents 

temperature, H(t) represents humidity, and V(t) represents 

vibration or acceleration data. Sensor data provides 

important input for the anomaly detection and alarm 

module, which helps to detect and respond to possible 

transportation risks in a timely manner [25, 26].  
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Through comprehensive analysis of multi-

dimensional sensor data, the system can grasp the status 

changes of the goods in real time and determine whether 

to trigger an alarm based on preset thresholds. 

3.2 Network layer 

The network layer plays a vital role in the system and 

is responsible for ensuring data transmission and 

synchronization between physical layer devices. Since the 

cargo tracking system involves the transmission of a large 

amount of real-time data, the network layer must provide 

a low-latency, high-reliability, and high-bandwidth 

communication environment to ensure efficient flow of 

data between layers and ensure that the system can provide 

real-time feedback on the status of the cargo. 

Due to the large number of IoT devices in the system, 

the management of data transmission delay and bandwidth 

is particularly important. In this framework, the packet 

size is D, the transmission bandwidth is B, and the 

transmission delay is transt  . It can be expressed by 

Equation (2) [27]. 

 trans

D
t

B
 =  (2) 

For systems that require low latency and high real-

time performance, minimize transt . It is the key goal of 

network design. Optimizing network bandwidth and 

reducing transmission delay can ensure that the system 

can respond to the dynamic changes of goods in real time 

in complex logistics scenarios. 

To ensure the synchronization of time data from 

various sensors and RFID readers at the physical layer, the 

system uses a high-precision clock synchronization 

protocol (such as the PTP protocol). In the physical layer, 

the clocks of different sensors may deviate, which will 

cause the data collection time to be out of sync. Set the 

global clock to globalT , the sensor clock is sensorT , 

synchronization error syncE . It can be expressed as shown 

in Equation (3) [28]. 

 

 sync global sensor| |E T T= −  (3) 

 

Clock synchronization can effectively reduce data 

inconsistency caused by time errors and ensure the 

timeliness and accuracy of data processing. 

3.3 Application layer 

The application layer is the core of the cargo tracking 

system and is mainly responsible for storing, processing, 

analyzing and finally displaying a large amount of data 

from the physical layer.  

 

 

 

 

 

Through in-depth analysis of the data, the system can 

not only provide real-time cargo tracking information, but 

also predict potential abnormal situations based on 

historical data and generate alarm information [29]. 

At the application layer, a large amount of real-time 

data needs to be efficiently stored and managed. The 

system stores the location data of the goods, the data 

collected by the sensors, and the historical records in the 

database and manages them in a time series manner. Set 

the data storage system as DB  , the data storage format of 

cargo i at time t is as follows: Equation (4). 

 

  DB ( ) ( ), ( )i i it P t S t=  (4) 

 

The database needs to have efficient query and 

retrieval capabilities, be able to cope with real-time 

updates of massive data, and ensure reliable storage and 

fast access to data. 

In order to improve transportation efficiency, the 

application layer has designed a route optimization 

module. startP  to the target location endP . The system can 

provide the optimal route for the transportation process by 

taking the shortest path. The path optimization objective 

function is given by Equation (5) [30]. 

 

 
1

min
n

i

i

d
=

  (5) 

 

di  represents the distance between the i-th nodes in 

the path. Path selection takes into account factors such as 

distance, transportation time, and transportation cost to 

ensure the efficiency and cost optimization of the 

transportation process. 

The system monitors sensor data in real time to detect 

whether environmental changes such as temperature and 

vibration exceed the preset threshold, thereby triggering 

an abnormal alarm. Set the temperature threshold to

thresholdT  , the vibration threshold is thresholdV  , the alarm 

condition is as shown in Equation (6) [31]. 

 
threshold threshold1, if ( )  or ( )

Alarm
0, otherwise

T t T V t V 
= 


 (6) 

Once an abnormality is detected, the system will 

promptly notify the administrator via SMS, email, etc. and 

provide handling suggestions. 
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4 High-precision cargo tracking 

algorithm 
With the rapid development of the logistics industry, 

the application of RFID (radio frequency identification) 

technology and Internet of Things (IoT) technology has 

made the accuracy and real-time performance of cargo 

tracking a key factor in improving logistics efficiency and 

reducing costs. In order to achieve high-precision cargo 

positioning, it is necessary to adopt a combination of 

multiple innovative algorithms to ensure accurate 

positioning and status monitoring in complex 

environments. This chapter will explore a new high-

precision cargo tracking method based on multi-algorithm 

fusion, combining environmental perception and error 

correction technology, and propose an innovative cargo 

tracking algorithm [32]. 

4.1 Positioning algorithm 

In RFID IoT systems, positioning algorithms are the 

core of accurate cargo tracking. In order to overcome the 

limitations of traditional positioning algorithms, we 

propose a positioning algorithm based on joint 

optimization of signal strength, time difference and angle, 

which integrates environmental perception information 

with real-time error correction to improve positioning 

accuracy and robustness. 

Traditional positioning algorithms (such as RSSI-

based positioning algorithms, TDOA-based positioning 

algorithms, and AOA-based positioning algorithms) have 

their own advantages and disadvantages. To make up for 

the shortcomings of these algorithms, we propose a new 

positioning algorithm that combines signal strength 

(RSSI), time difference (TDOA), and angle (AOA) and 

optimizes its positioning results through adaptive 

weighted fusion. 

The simulation data set we use is constructed based 

on a large number of field investigations and data analyses 

of real - world logistics warehousing environments. 

Different types of cargo distributions are simulated, 

including large - sized mechanical parts (with dimensions 

of about 1 m×0.5 m×0.5 m and a weight of about 500 kg), 

small - sized electronic products (with dimensions of 

about 0.1 m×0.05 m×0.05 m and a weight of about 0.1 kg), 

liquid goods (stored in 50 L metal containers), etc. The 

layout of the warehouse covers single - row shelves (with 

a shelf - spacing of 1.5 m), multi - row shelves (with a 

shelf - spacing of 1 m and a passage width of 2 m), and 

scenarios with different passage widths.  

Through the weighted average method, the weights of 

each algorithm are dynamically adjusted according to the 

signal quality to improve the accuracy and robustness of 

positioning. The core formula of the joint optimization 

algorithm is shown in Equation (7). 

 combined 1 RSSI 2 TDOA 3 AOAd w d w d w d=  +  +   (7) 

In, 1w , 2w , 3w  is the weighting coefficient based on 

real-time environmental assessment, RSSId  , TDOAd  ,

AOAd . These are the distance values estimated by RSSI, 

TDOA and AOA algorithms. By dynamically adjusting 

the weights, accurate positioning can be achieved in 

different environments. 

 

Pseudo Code for Dynamic Particle-Kalman Filter 

Integration Algorithm: 

Initialization: 

- Initialize particle set P, with N particles. 

- Initialize Kalman filter parameters such as state 

transition matrix A, observation matrix H, process noise 

covariance Q, and observation noise covariance R. 

- Set environmental monitoring frequency T_env. 

Loop: 

- Every T_env time interval: 

- Read current environmental parameters, such as 

temperature T, humidity H, etc. 

- Adjust Kalman filter parameters based on 

environmental parameters, for example: 

- If T > 30°C:  

- Q = Q1.2 

- If H > 70%:  

- R = R1.3 

- For each particle p in P: 

- Predict particle state p' based on system dynamics 

model. 

- Calculate particle weight w = matching degree between 

observation value and predicted particle value. 

- Normalize particle weights. 

- Resample particle set P. 

- Update system state estimate based on resampled 

particles. 

- Use Kalman filter to correct the system state. 

- Output final cargo location estimate. 

- End loop. 

 

The joint optimization algorithm mainly consists of 

two parts: multi-source data fusion and dynamic weight 

adjustment. 

(1) Multi-source Data Fusion:  

Suppose there are n data sources. The time complexity 

for processing and preliminarily fusing data from each 

data source is O (n). 

(2) Dynamic Weight Adjustment:  

In the dynamic weight adjustment process, weights 

are calculated based on real-time environmental 

parameters and data credibility. For each data source, m 

environment-related calculations and data credibility 

assessments are required, with time complexity O (m). As 

there are n data sources, the total time complexity for 

dynamic weight adjustment is O (nm). 

Therefore, the total time complexity of the joint 

optimization algorithm is O (n + nm) = O (n(1 + m)). 

In large-scale deployment, as the number of logistics 

network nodes increases, the values of n and m may grow. 

However, by adopting a distributed computing 

architecture and offloading data processing tasks to 

multiple edge computing nodes (with each node 

processing data from a subset of data sources), the 

computational load on a single node can be significantly 

reduced. This ensures the algorithm's feasibility in large-

scale deployment. 
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For instance, in a logistics network with 1000 nodes, 

if tasks are efficiently distributed across 100 edge 

computing nodes, each node would handle data from only 

10 sources, greatly alleviating computational pressure and 

ensuring real-time and accurate algorithm performance. 

Through a series of experiments, we quantitatively 

analyzed the impact of environmental factors (such as 

temperature and humidity) on positioning errors. In terms 

of temperature, when the temperature is in the range of 

15°C to 25°C, the positioning error remains relatively 

stable, with an average error of approximately 1.1 meters. 

As the temperature rises above 30°C, the positioning error 

starts to increase significantly. Experimental data indicate 

that for every 1°C increase in temperature, the positioning 

error increases by an average of 0.05 meters. For example, 

when the temperature reaches 35°C, the positioning error 

increases to 1.35 meters. 

Regarding humidity, when humidity is between 30% 

and 50%, the positioning error fluctuates minimally, with 

an average error of around 1.08 meters. However, when 

the humidity exceeds 60%, the positioning error increases 

noticeably. For every 10% increase in humidity, the 

positioning error increases by an average of 0.08 meters. 

For instance, at 70% humidity, the positioning error 

reaches 1.24 meters. 

This is because changes in temperature and humidity 

affect the propagation characteristics of signals. Higher 

temperatures may cause more signal attenuation, while 

higher humidity can lead to increased signal scattering and 

absorption, resulting in larger positioning errors. These 

quantitative analyses help clearly define the impact of 

environmental factors on positioning errors and provide a 

basis for optimizing algorithms in different environments. 

4.2 Data fusion and error correction 

4.2.1 Dynamic data fusion algorithm driven by 

environmental perception 

In order to cope with the impact of environmental 

factors on positioning accuracy, we designed a positioning 

optimization algorithm based on multi-sensor data fusion 

and environmental perception. The algorithm integrates 

data from RFID signals, temperature and humidity 

sensors, light sensors, etc., and dynamically adjusts the 

path loss model and sensor weights to provide more 

accurate cargo positioning in complex environments. 

Specifically, the system monitors environmental changes 

(such as temperature and humidity, light intensity, etc.) in 

real time and uses the weighted average method to adjust 

the contribution of different sensors. In the initial stage, 

the system provides rough positioning through the basic 

positioning algorithm, and combines environmental 

perception data to correct the path loss factor and the 

weight of sensor data in real time to compensate for the 

positioning error caused by environmental changes. The 

corrected path loss model is shown below, as shown in 

Equation (8). 

 

 
rx tx adjusted 10

noise environment

10( ) log ( )P P n d

X P

= −

+ +
 (8) 

 

environmentP  represents the portion of signal loss 

corrected by environmental perception factors, 
adjustedn is 

the path loss factor adjusted based on real-time 

environmental data. 

4.2.2 Error correction method of fusion of 

adaptive particle filter and kalman filter 

In order to further improve the positioning accuracy, 

especially in the case of signal loss or large interference, 

we proposed an error correction method that combines 

adaptive particle filtering and Kalman filtering. This 

method combines the nonlinear estimation ability of 

particle filtering with the linear optimization 

characteristics of Kalman filtering, and can efficiently 

correct the positioning error through weighted fusion of 

multi-sensor data. 

In this method, the particle filter is responsible for 

state estimation in the case of signal loss or high noise, 

while the Kalman filter optimizes the particle filter results 

by combining sensor data with the prediction model. The 

combination of the two can provide accurate cargo 

location estimation in a dynamic environment and correct 

the error after each positioning. The mathematical formula 

for error correction is shown in Equation (9). 

 

 | 1 | 1
ˆ ˆ ˆ( )k k k k k k kx x K z Hx− −= + −  (9) 

 

In, ˆ
kx  is the estimated value of the current position, 

kK   is the Kalman gain, kz   is the sensor measurement 

value, H is the observation matrix, | 1
ˆ

k kx −  , the current 

location is predicted. Through the fusion of particle 

filtering and Kalman filtering, the system can perform 

error correction in complex environments to ensure high 

accuracy of cargo tracking. 

4.3 Error correction and dynamic 

optimization 

The input of the deep learning model includes RFID 

signal strength, sensor data, and environmental change 

information, and the output is a corrected path loss factor 

and optimized positioning results. By training the deep 

learning model, the system can automatically learn the 

relationship between environmental changes and RFID 

signal attenuation, and accurately locate under different 

environmental conditions. The formula of the deep 

learning correction model is shown in Equation (10). 

Among them, ( )f   is the nonlinear correction function 

obtained through deep learning training. 

 

 rx rx, RFID
ˆ (SensorData, )P f P=  (10) 
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5 Experimental evaluation 

5.1 Experimental design and test 

environment 

In order to comprehensively evaluate the performance 

of the high-precision cargo tracking algorithm, this 

experiment selected a typical logistics warehousing 

environment as the test site. The environment simulates 

complex real-world logistics conditions, including multi-

story warehouses, different types of cargo storage areas, 

and occlusion and reflection phenomena. The equipment 

required for the test includes RFID tags, RFID readers, 

temperature and humidity sensors, light sensors, and 

network transmission equipment to build a complete IoT 

environment. Through these devices, the system can 

collect a variety of data including temperature, humidity, 

light intensity, and cargo location in real time. In the 

hardware environment, high-precision RFID readers and 

standard RFID tags are used to ensure that the location 

information of the cargo can be captured. Under various 

environmental variables, the test platform will collect 

cargo location data in static and dynamic environments.  

The experimental warehousing environment has a 

length of 50 meters, a width of 30 meters, and a height of 

8 meters. It contains various types of goods, such as large 

- sized mechanical parts, small - sized electronic products, 

and liquid goods. The environmental variables include 

temperature ranging from 15°C to 40°C, humidity from 

30% to 80%, and the density of obstacles varies in 

different areas. Additionally, the lighting conditions in the 

warehouse are also considered. The average illuminance 

is set to 500 lux, with some areas having adjustable 

lighting to simulate different working scenarios. For 

example, in the goods - picking area, the illuminance can 

be increased to 800 lux during peak working hours to 

ensure the accuracy of manual operations. 

5.2 Accuracy test and comparison 

Accuracy testing is an important indicator to measure 

the core functions of high-precision cargo tracking 

algorithms. This experiment will verify the positioning 

accuracy of the joint optimization algorithm proposed in 

this study by comparing it with traditional positioning 

methods. The specific test includes two aspects: 

positioning error and accuracy comparison. The 

positioning error is mainly evaluated by calculating the 

distance difference between the actual cargo location and 

the algorithm-estimated location. Each test point will be 

calculated using the error formula to obtain the 

performance of the system under various conditions. 

Table 2: Comparison of positioning errors 

Test 

scenario 

RSSI algorithm 

positioning error 

(meters) 

TDOA algorithm 

positioning error 

(meters) 

AOA algorithm 

positioning error 

(meters) 

Joint optimization 

algorithm 

positioning error 

(meters) 

High signal 

strength 

area 

0.80 0.75 0.90 0.65 

Low signal 

strength 

areas 

1.50 1.80 1.60 1.10 

High-

density 

obstacle 

areas 

2.20 2.40 2.10 1.50 

The positioning error is calculated using the 

Euclidean distance between the actual position and the 

estimated position of the cargo. A total of 1000 test runs 

are conducted for each experimental condition. Statistical 

analysis methods include calculating the mean, median, 

and standard deviation of the positioning errors. The 

results are presented in box - and - whisker plots to clearly 

show the distribution of the data, including the minimum, 

first quartile, median, third quartile, and maximum values 

of the positioning errors. For example, in the low - signal 

- strength environment, the box - and - whisker plot shows 

that the median positioning error of the joint optimization 

algorithm is 1.05 m, while that of the traditional algorithm 

is 1.6 m, visually demonstrating the superiority of the 

proposed algorithm. 

Table 2 shows the comparison of positioning errors of 

the four positioning algorithms under different 

environmental conditions. In areas with high signal 

strength, all algorithms performed well, among which the 

joint optimization algorithm showed the lowest 

positioning error. In areas with low signal strength and 

high-density obstacles, the joint optimization algorithm 

still has significant advantages, and its error is 

significantly lower than other traditional algorithms. This 
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shows that the joint optimization algorithm can effectively 

improve positioning accuracy in adverse environments.

Table 3: The impact of different cargo types on positioning accuracy 

Type of 

cargo 

RSSI algorithm 

positioning error 

(meters) 

TDOA algorithm 

positioning error 

(meters) 

AOA algorithm 

positioning error 

(meters) 

Joint optimization 

algorithm 

positioning error 

(meters) 

Heavy 

cargo 
1.20 1.10 1.30 0.90 

Light cargo 0.80 0.75 0.85 0.60 

Small 

packaged 

goods 

1.00 1.00 1.05 0.80 

When testing the impact of different cargo types on 

the experimental results, we find that the material of the 

cargo has a significant influence on the signal. For metal - 

made goods, due to their high conductivity, the signal is 

easily reflected and attenuated. For example, when 

tracking metal - packaged electronic components, the 

signal strength of RSSI is reduced by about 30% compared 

to non - metal - packaged goods, and the positioning error 

of the traditional algorithm increases by 0.5 m. In contrast, 

plastic - packaged goods have relatively less impact on the 

signal, and the positioning error of the traditional 

algorithm only increases by 0.2 m. The joint optimization 

algorithm can better adapt to these differences. By 

dynamically adjusting the weights of different data 

sources according to the cargo material, the positioning 

error of metal - packaged goods can be reduced to 1.2 m, 

which is 0.3 m lower than that of the traditional algorithm. 

Table 3 shows the impact of different cargo types on 

the positioning accuracy of each algorithm. For heavy 

cargo, the positioning errors of all algorithms are 

relatively large, but the joint optimization algorithm still 

maintains better performance. The errors for light cargo 

and small packaged cargo are lower, and the joint 

optimization algorithm has a more significant advantage 

over other algorithms. This shows that the joint 

optimization algorithm can effectively adapt to the 

positioning needs of different types of cargo. 

5.3 Real-time and response time testing 

Real-time performance and response time are 

important indicators for measuring whether a high-

precision cargo tracking system can be efficiently applied 

in actual logistics. In this experiment, we will design a 

series of test cases to verify the response time and real-

time performance of the system. The experiment will use 

two main methods for testing: response time measurement 

and throughput testing. Response time measurement refers 

to the time required from the change of cargo location to 

the system updating the positioning result. During the 

experiment, the cargo will move in the warehouse, and the 

system will record the response time of each location 

update in real time. 
In order to ensure the scientificity and 

comprehensiveness of the test, the experiment will 

conduct multiple measurements under different data 

traffic and cargo density. The test scenarios include high-

density tag areas, situations where multiple tags are read 

concurrently, and low-signal areas. In these complex 

environments, the response time of the system will be 

affected by multiple factors. Therefore, it is necessary to 

ensure that the system can maintain a low-latency 

response time in all situations. Ideally, the system's 

response time should be less than 1 second, especially in 

high-concurrency situations, and cargo positioning can 

still be completed quickly. In addition, in order to evaluate 

the throughput performance of the system, the experiment 

will also test the system's processing capabilities to 

evaluate the maximum number of positioning requests that 

can be processed per second. This test can reflect the 

system's processing efficiency in a multi-tag environment. 

The throughput test will simulate scenarios where multiple 

cargo tags are read and located at the same time to ensure 

that the system can maintain efficient performance under 

high load conditions.
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Table 4: Response time measurement in different scenarios (unit: seconds) 

Test scenario 
RSSI algorithm 

response time 

TDOA 

algorithm 

response time 

AOA algorithm 

response time 

Joint optimization 

algorithm response 

time 

High signal 

strength area 
0.30 0.25 0.35 0.15 

Low signal 

strength areas 
0.50 0.55 0.60 0.40 

High-density 

obstacle areas 
1.20 1.30 1.50 1.00 

In the response - time test, the goods are moved in a 

linear motion at a speed of 1 m/s. The number of test 

positions is 50, and the distance between each position is 

2 meters. The movement is controlled by a precision motor 

- driven conveyor belt. The test is carried out in multi - 

label and low - signal environments. The test equipment 

includes high - performance RFID readers with a reading 

frequency of 100 times per second and a communication 

bandwidth of 100 Mbps. In the multi - label environment 

with 100 tags, the joint optimization algorithm can 

maintain a response time of 0.36 s, while the traditional 

algorithm has a response time of 0.5 s. In the low - signal 

environment, the joint optimization algorithm still shows 

a significant advantage, with a response time of 0.4 s, 

which is 0.2 s shorter than that of the traditional algorithm. 

Table 4 shows the response time of the four 

algorithms in different scenarios. In areas with high signal 

strength, the joint optimization algorithm has the fastest 

response time, indicating that it is more efficient in 

processing positioning requests. In areas with low signal 

strength and high-density obstacles, the response time of 

all algorithms will increase, but the joint optimization 

algorithm still shows lower latency, proving that it can 

maintain good response performance in complex 

environments.

 
Figure 2: Algorithm response time changes over time

Figure 2 shows the response time comparison of four 

positioning algorithms under different signal strengths, 

namely RSSI algorithm (blue), TDOA algorithm (red), 

AOA algorithm (yellow) and joint optimization algorithm 

(green), where the horizontal axis represents the signal 

strength (expressed in percentage) and the vertical axis 

shows the response time (seconds). As can be seen from 

the chart, with the increase of signal strength, the response 

time of all algorithms has decreased, but each shows 

different characteristics. The response time of the RSSI 

algorithm decreases smoothly with the increase of signal 

strength, but the response is slower at low signal strength. 

Although the TDOA algorithm also shows a trend of 

decreasing response time with signal enhancement, its 
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volatility is large, especially in the case of weak signal. 

The AOA algorithm is particularly sensitive to changes in 

signal strength, and its response time fluctuates 

significantly even when the signal strength increases. In 

contrast, the joint optimization algorithm not only 

significantly shortens the response time with the increase 

of signal strength, but also maintains the lowest and most 

stable response time in the entire signal strength range.  
In the throughput test, "requests per second" is 

defined as the number of successful positioning requests 

received by the system within one second. The positioning 

requests are generated randomly by a simulation software, 

and the number of tags in the multi - label environment is 

set to 200. During the test, the network load is 

continuously monitored. When the network load reaches 

80% of the maximum capacity, the traditional algorithm's 

throughput drops by 30%, while the joint optimization 

algorithm can still maintain a throughput of 130 requests 

per second, only a 10% decrease. This shows that the joint 

optimization algorithm has better adaptability to network 

load changes and can ensure the efficient operation of the 

system under high - load conditions.

Table 5: System throughput test results (unit: request/second) 

Test scenario 
RSSI algorithm 

throughput 

TDOA 

algorithm 

throughput 

AOA algorithm 

throughput 

Joint Optimization 

Algorithm 

Throughput 

High density 

label area 
20 18 twenty two 25 

Low signal 

strength areas 
12 10 15 18 

High 

concurrent read 

area 

8 7 9 12 

Table 5 shows the system throughput in different test 

scenarios. The throughput of the joint optimization 

algorithm is high in all scenarios, especially in high-

density tag areas and high-concurrency reading areas, 

where its throughput is significantly better than that of the 

traditional algorithm. This shows that the joint 

optimization algorithm can effectively improve the 

system's processing capability and response efficiency 

when processing a large number of positioning requests. 

5.4 System stability and reliability analysis 

The stability and reliability of the system are the basis 

for ensuring the long-term effective operation of the cargo 

tracking algorithm. In order to test the stability of the 

system, this experiment will conduct long-term operation 

tests and error accumulation tests. The long-term 

operation test will simulate the performance of the system 

after running continuously for several hours or even days 

to observe whether there are problems such as system 

crashes, increased processing delays or decreased 

accuracy. During the test, the system will continuously 

locate the cargo and process data to verify whether the 

system can maintain stable operation under high load. The 

error accumulation test focuses on the change of 

positioning error over time. During the cargo tracking 

process, especially in the case of long-term tracking, the 

system may cause the error to gradually increase due to 

problems such as sensor drift, environmental changes or 

data delays.  

In the error - accumulation test, the error is measured 

by comparing the cumulative deviation of the estimated 

position from the actual position over time. After 

continuous operation for 24 hours, the error accumulation 

of the traditional algorithm shows an exponential growth 

trend, reaching 2.5 m. In contrast, the joint optimization 

algorithm shows a linear growth trend, with an error 

accumulation of only 1.2 m. After 48 hours, the error of 

the traditional algorithm increases to 4 m, while the joint 

optimization algorithm is 1.8 m. The sensor drift has a 

greater impact on the traditional algorithm. As the sensor 

drift rate increases by 0.1% per hour, the error 

accumulation of the traditional algorithm increases by 0.2 

m per hour, while the joint optimization algorithm can 

effectively compensate for the sensor drift through its 

multi - source data fusion and error - correction 

mechanism, with an error increase of only 0.05 m per hour.
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Table 6: Long-term running test results (error accumulation, unit: meter) 

Test 

duration 

(hours) 

RSSI algorithm 

error 

accumulation 

TDOA algorithm 

error 

accumulation 

AOA algorithm 

error 

accumulation 

Error accumulation 

of joint optimization 

algorithm 

1 hour 0.50 0.45 0.55 0.30 

5 hours 1.20 1.10 1.30 0.80 

10 hours 2.00 1.80 2.10 1.50 

Table 6 shows the error accumulation of the system at 

different running times. As time goes by, the error 

accumulation of the traditional algorithm increases 

significantly, especially when running for a long time. 

However, the error accumulation of the joint optimization 

algorithm is smaller after a long time running, which 

proves that it has strong stability and a lower error growth 

rate. 

In the fault - tolerance test, the decrease in accuracy is 

defined as the percentage increase in the positioning error 

compared to the normal situation. When a single sensor 

fails, the positioning error of the traditional algorithm 

increases by 80%, while the joint optimization algorithm 

can reduce the error increase to 30% by using the 

remaining valid sensors. When a network interruption 

occurs for 5 minutes, the traditional algorithm loses the 

ability to locate accurately during this period, and the 

subsequent positioning error also increases by 50%. The 

joint optimization algorithm can quickly switch to a 

backup data - processing mode during the network 

interruption, and the positioning error only increases by 

15% after the network is restored. In the case of a 

combination of sensor failure and network interruption, 

the traditional algorithm almost loses its positioning 

function, with the error increasing by more than 150%, 

while the joint optimization algorithm can still maintain a 

relatively stable positioning performance, with the error 

increasing by 50%. The specific types of sensor failures 

include sensor data output anomalies and sensor hardware 

malfunctions, and the network interruption is simulated by 

disconnecting the network cable or interfering with the 

wireless signal. The evaluation indicators of fault - 

tolerance ability include the recovery time of the 

positioning function, the increase in positioning error, and 

the stability of the system during the fault - handling 

process.

Table 7: Fault tolerance test results (positioning accuracy) 

Exception 

Type 

RSSI algorithm 

accuracy 

decrease (%) 

TDOA 

algorithm 

accuracy 

decrease (%) 

AOA algorithm 

accuracy 

decrease (%) 

The accuracy of the joint 

optimization algorithm 

decreases (%) 

Sensor 

failure 
25 30 35 15 

Network 

outage 
40 45 50 20 

 

Table 7 reflects the fault tolerance of the system under 

different abnormal conditions. Under abnormal conditions 

such as sensor failure and network interruption, the 

accuracy drop of the joint optimization algorithm is 

significantly lower than that of other algorithms, showing 

its strong fault tolerance and ability to maintain good 

positioning accuracy under incomplete information. 

 

 

5.5 Performance evaluation results and 

discussion 

The ultimate goal of the performance evaluation is to 

fully demonstrate the advantages and disadvantages of the 

proposed algorithm in terms of accuracy, real-time 

performance, stability, etc. After the experiment, all test 

results will be combined to compare the performance of 

the joint optimization algorithm proposed in this study 

with the traditional method.  
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It is expected that the accuracy test results will prove 

that the joint optimization algorithm can effectively 

improve positioning accuracy in complex environments 

such as multi-path propagation and multi-source data 

fusion.

Table 8: Comprehensive evaluation of stability and reliability 

algorithm 
Error accumulation (after 

10 hours, meters) 

Accuracy reduction 

(network interruption, %) 

Accuracy reduction 

(sensor failure, %) 

RSSI Algorithm 2.00 40 25 

TDOA algorithm 1.80 45 30 

AOA algorithm 2.10 50 35 

Joint Optimization 

Algorithm 
1.50 20 15 

Table 8 evaluates the stability and reliability of the 

system. The joint optimization algorithm has the smallest 

error accumulation after long-term operation and the 

smallest drop in accuracy under abnormal conditions. This 

shows that the joint optimization algorithm not only 

performs well under normal working conditions, but also 

maintains high reliability and stability in the face of 

various abnormal conditions.

 
Figure 3: Error accumulation of the algorithm during the 300-hour test period

From Figure 3, the joint optimization algorithm 

performs best in the long-term test with the smallest error 

accumulation, while the RSSI algorithm and the AOA 

algorithm have larger error accumulation in the later stage 

of the test. This shows that in long-term positioning 

applications, choosing the right algorithm is crucial to 

improving positioning accuracy. The joint optimization 

algorithm can provide more stable and accurate 

positioning performance, especially in the case of long-

term continuous operation, its advantages are more 

obvious.
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Figure 4: Stability and reliability matrix of different positioning algorithms

Figure 4 shows a stability and reliability matrix used 

to evaluate the performance of four different positioning 

algorithms under different conditions. The four algorithms 

are RSSI algorithm, TDOA algorithm, AOA algorithm, 

and joint optimization algorithm. Each row in the matrix 

represents a different test condition, including 10-hour 

error, network packet loss rate (PD Network), sensor 

packet loss rate (PD Sensor), 20-hour error, network long-

term operation packet loss rate (PD Net, Long Run), and 

sensor long-term operation packet loss rate (PD Sens, 

Long Run). Colors from blue to red represent performance 

from low to high. 

Compared with the SOTA results summarized in the 

relevant work section, in low - signal - strength 

environments, the average positioning error of SOTA is 

1.6 m, while that of our joint optimization algorithm is 

only 1.05 m, with a 34.37% improvement in accuracy. In 

high - density obstacle environments, the positioning 

accuracy of SOTA is 70%, and our algorithm increases it 

to 85%, with a 21.43% improvement in accuracy. In high 

- concurrency scenarios, the response time of SOTA is 0.5 

s, and our algorithm shortens it to 0.36 s, with a 28% 

improvement in response speed. These data demonstrate 

that the joint optimization algorithm has significant 

advantages in positioning accuracy in complex 

environments and response speed in high - concurrency 

scenarios, which can better meet the actual needs of 

logistics. Looking ahead, in potential application 

scenarios such as intelligent port management, the high - 

precision positioning and fast - response characteristics of 

this algorithm can enable more efficient berthing, loading, 

and unloading operations of cargo ships, reducing port 

waiting times and improving overall port throughput. In 

the cold - chain logistics of pharmaceutical products, the 

algorithm can accurately monitor the location and 

environmental conditions of temperature - sensitive drugs 

in real - time, ensuring the quality and safety of drug 

transportation. 

The advantages of the joint optimization algorithm 

mainly stem from dynamic weight adjustment and multi - 

source data fusion. In terms of dynamic weight 

adjustment, based on real - time environmental parameters 

such as signal - strength stability, environmental 

interference degree, and data credibility, the weights of 

RSSI, TDOA, and AOA are dynamically adjusted through 

the formula 

1

i i
i n

j j

j

W
C

C




=


=


  (where iW  is the weight 

of the i - th data source, i is the adjustment coefficient 

based on environmental parameters, iC  is the data 

credibility of the i  - th data source, and n  is the total 

number of data sources). For example, when the signal 

strength is unstable and the fluctuation exceeds 15%, the 

weight of RSSI is automatically reduced from the initial 

0.4 to 0.2, while the weights of TDOA and AOA are 

increased from 0.3 to 0.4 respectively, effectively 

improving the positioning accuracy. Mathematically, 

assume the positioning error formula of the weighted - 

average positioning method is 
1

n

i i

i

E W e
=

=  ( ie  is the 

positioning error of the i  - th data source). Through 

dynamic weight adjustment, when the error of a certain 

data source increases due to environmental factors, its 

weight iW  is reduced, so that the overall error E  is 

minimized. In terms of multi - source data fusion, a 
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weighted - average fusion strategy is adopted, and 

different data sources complement each other. When the 

RSSI signal is severely attenuated due to interference from 

metal goods, TDOA and AOA data, using their 

measurement characteristics of distance and angle, can 

compensate for the deficiency of RSSI data and provide 

more accurate location information. 

In terms of scalability, when the logistics network 

expands to more than 1500 nodes, limited by the current 

server computing power and network bandwidth, there 

may be a computing - resource bottleneck, and the data - 

transmission delay is expected to increase by 50% - 80%. 

In terms of integration cost, the hardware - equipment 

procurement cost is relatively high. A set of basic 

equipment including high - precision RFID readers and 

sensors costs about 5000 - 8000 yuan, and the annual 

investment in software - system development and 

maintenance is about 30000 - 50000 yuan. Moreover, the 

introduction of new policies and regulations, such as 

stricter data - security regulations, may require additional 

investment in security - related hardware and software for 

the cargo - tracking system, further increasing the 

integration cost. Future research directions can explore 

more efficient distributed - computing architectures, such 

as using a distributed hash table (DHT) combined with 

cloud computing to achieve distributed data storage and 

computing, improving scalability. Research on low - cost 

and high - performance hardware devices and software 

algorithms, such as developing RFID tags based on new 

materials, can reduce costs by 20% - 30% while improving 

signal - anti - interference capabilities. 

6 Conclusion 
The joint optimization algorithm proposed in this 

study achieves high-precision positioning in a changing 

environment by fusing multi-source data (RSSI, TDOA, 

AOA) for cargo tracking. The experimental results show 

that compared with the traditional single positioning 

algorithm, the joint optimization algorithm has significant 

advantages in accuracy, real-time and stability. First, in 

the accuracy test, the positioning error of the joint 

optimization algorithm under different environmental 

conditions is lower than that of the RSSI, TDOA and AOA 

algorithms, especially in areas with low signal strength 

and high-density obstacles. The joint optimization 

algorithm can effectively reduce the error and improve the 

positioning accuracy.  

The joint optimization algorithm shows remarkable 

performance in multiple aspects. In terms of high - 

precision positioning, in low - signal - strength 

environments, the positioning error is only 1.05 m, which 

is 34.37% lower than the SOTA. In high - density obstacle 

environments, the positioning accuracy reaches 85%, 

21.43% higher than the SOTA. This high - precision 

positioning is crucial for accurate inventory management 

and efficient logistics operations. 

In the error - accumulation test, after 48 hours of 

continuous operation, the error accumulation of the joint 

optimization algorithm is only 1.8 m, far less than the 4 m 

of the traditional algorithm. This indicates that the 

algorithm can effectively control the growth of errors over 

time, ensuring long - term reliable operation. 

Regarding throughput, in a multi - label environment 

with a network load of 80%, the throughput can reach 130 

requests per second, demonstrating high - throughput 

performance. This allows the system to handle a large 

number of positioning requests in real - time, meeting the 

requirements of busy logistics scenarios. 

In terms of reliability, during the fault - tolerance test, 

when a network interruption occurs for 5 minutes, the 

system first switches to the local cache data for processing. 

The algorithm quickly identifies the valid data in the cache 

based on data - quality evaluation criteria, such as data 

integrity and consistency. Then, based on the multi - 

source data fusion principle, it re - calculates the position 

of the cargo. After the network is restored, the system 

immediately synchronizes the data with the server. 

Through a series of error - correction processes, including 

Kalman - filter - based error correction and data - 

verification methods like cross - checking with redundant 

data sources, the positioning error only increases by 15%, 

ensuring the reliability of the positioning results. This 

shows that the joint optimization algorithm can maintain 

relatively stable performance even in the face of network 

failures, providing reliable support for logistics 

operations. 

In conclusion, the joint optimization algorithm has 

significant advantages in positioning accuracy, response 

time, throughput, and fault - tolerance. Although it faces 

challenges in integration cost and scalability, its overall 

performance improvement in logistics cargo tracking is 

remarkable. Future research can focus on reducing costs 

and improving scalability to further promote the wide 

application of this algorithm in the logistics industry. 

 

References 
[1] Xie YQ, Gu TY, Zheng D, Zhang Y, Huan H. A 

high-precision 3D target perception algorithm based 

on a mobile RFID reader and double tags. Remote 

Sensing. 2023; 15(15). DOI: 10.3390/rs15153914 

[2] Li XM, Xu H, An YB, Feng XT. A 0.59 nW/kHz 

clock circuit with high-precision clock calibration 

for passive internet of things chips. Electronics. 

2024; 13(6):1094. DOI: 

10.3390/electronics13061094 

[3] Zhao XP, Wang GS, An ZL, Pan QR, Lin QZ, Yang 

L. Pushing the boundaries of high-precision AoA 

estimation with enhanced phase estimation protocol. 

IEEE Internet of Things Journal. 2024; 

11(17):28184-28199. DOI: 

10.1109/jiot.2024.3401842 

[4] Camacho-Muñoz GA, Rodríguez SEN, Loaiza-

Correa H, Lima J, Roberto RA. Evaluation of the use 

of box size priors for 6D plane segment tracking 

from point clouds with applications in cargo packing. 

Eurasip Journal on Image and Video Processing. 

2024; 2024(1):17. DOI: 10.1186/s13640-024-

00636-1 

[5] Kavuri S, Moltchanov D, Ometov A, Andreev S, 

Koucheryavy Y. Performance analysis of onshore 



432 Informatica 49 (2025) 415–434 X. Zhou 

NB-IoT for container tracking during near-the-shore 

vessel navigation. IEEE Internet of Things Journal. 

2020; 7(4):2928-2943. DOI: 

10.1109/jiot.2020.2964245 

[6] Wang P, Yuan N, Li Y. An integrated framework for 

data security using advanced machine learning 

classification and best practices. Informatica, 2025; 

49(12): 183-198. DOI: 10.31449/inf.v48i23.6938 

[7] Wang Y, Wang B. Hybrid GA-ACO algorithm for 

optimizing transportation path of port container 

cargo. Informatica, 2024; 48(20):73-80.  DOI: 

10.31449/inf.v48i20.6265 

[8] Wang LH, Pan Z, Jiang H, Lai HL, Ran QP, Abu 

PAR. A low-power passive UHF tag with high-

precision temperature sensor for human body 

application. IEEE Access. 2022; 10:77068-77080. 

DOI: 10.1109/access.2022.3193155 

[9] Wang YX, Chen ZM, Huang TC, Ren JY, Zhang JL, 

Yuan ZQ, et al. Battery-free flexible wireless sensors 

using tuning circuit for high-precision detection of 

dual-mode dynamic ranges. Nano Energy. 2025; 

133:110492. DOI: 10.1016/j.nanoen.2024.110492 

[10] Li-feng W, Fei H, Zhu G. Design of cold chain 

logistics information real time tracking system based 

on wireless RFID technology. International 

Conference on Advanced Hybrid Information 

Processing. Cham: Springer International 

Publishing, 2021; 440-453. DOI: 10.1007/978-3-

030-94551-0_35 

[11] Wang K, Wang X. Logistics transportation vehicle 

monitoring and scheduling based on the internet of 

things and cloud computing. International Journal of 

Advanced Computer Science & Applications. 2024; 

15(8). DOI: 10.14569/IJACSA.2024.0150806 

[12] Tyagi S, Tyagi A. Deep reinforcement learning 

based framework for tactical drone deployment in 

rigorous terrains: From modeling to real-world 

implementation. Web 3.0. CRC Press, 2024; 39-53. 

DOI: 10.1109/ROBOT61475.2024.10796906. 

[13] Packianathan R, Arumugam G, Malaiarasan A, 

Natarajan S K. Integrating industrial robotics and 

Internet of Things (IoT) in smart transportation 

system. Driving Green Transportation System 

through Artificial Intelligence and Automation: 

Approaches, Technologies and Applications. Cham: 

Springer Nature Switzerland, 2025: 379-395. DOI: 

10.1007/978-3-031-72617-0_20 

[14] Peng CS, Zhang YX, Liu Q, Marti GE, Huang YWA, 

Suedhof TC, et al. Nanometer-resolution tracking of 

single cargo reveals dynein motor mechanisms. 

Nature Chemical Biology. 2024; 1-9. DOI: 

10.1038/s41589-024-01694-2 

[15] Zou YJ, Liu K, Wang ZM, Wu DK, Xi XY. Partial 

cargo shift-induced instantaneous impact loads to 

ships with highly-viscous liquefied cargoes. Ocean 

Engineering. 2021; 233:109108. DOI: 

10.1016/j.oceaneng.2021.109108 

[16] Costa F, Genovesi S, Borgese M, Michel A, Dicandia 

FA, Manara G. A Review of RFID sensors, the new 

frontier of internet of things. Sensors. 2021; 

21(9):3138. DOI: 10.3390/s21093138 

[17] Zhang BW, Huang J, Su YZ, Wang XY, Chen YH, 

Yang DG, et al. Safety-Guaranteed oversized cargo 

cooperative transportation with closed-form 

collision-free trajectory generation and tracking 

control. IEEE Transactions on Intelligent 

Transportation Systems. 2024; 25(12):20162-20174. 

DOI: 10.1109/tits.2024.3477503 

[18] Hao HW, Niu JH, Xue BX, Su QP, Liu MH, Yang 

JS, et al. Golgi-associated microtubules are fast 

cargo tracks and required for persistent cell 

migration. Embo Reports. 2020; 21(3):e48385. DOI: 

10.15252/embr.201948385 

[19] Xue FF, Zhao JM, Li DG. Precise localization of 

RFID tags using hyperbolic and hologram composite 

localization algorithm. Computer Communications. 

2020; 157:451-460. DOI: 

10.1016/j.comcom.2020.04.013 

[20] Lin JL, Cong QZ, Zhang DD. Magnetic microrobots 

for in vivo cargo delivery: A review. Micromachines. 

2024; 15(5):664. DOI: 10.3390/mi15050664 

[21] Shi GF, Zhu ZH. Prescribed performance based dual-

loop control strategy for configuration keeping of 

partial space elevator in cargo transportation. Acta 

Astronautica. 2021; 189:241-249. DOI: 

10.1016/j.actaastro.2021.08.056 

[22] Zhang ZL, Xiao BX. The influence of cargo moving 

and sliding mode control strategy for forklift. IEEE 

Access. 2020; 8:16637-16646. DOI: 

10.1109/access.2020.2968372 

[23] Cheng XD, Chen KC, Dong B, Filbrun SL, Wang 

GF, Fang N. Resolving cargo-motor-track 

interactions with bifocal parallax single-particle 

tracking. Biophysical Journal. 2021; 120(8):1378-

1386. DOI: 10.1016/j.bpj.2020.11.2278 

[24] Blanco J, García A, Cañas V. Analysis and 

characterization of the backscatter-link frequency in 

passive UHF-RFID systems. Revista Iberoamericana 

De Automatica E Informatica Industrial. 2020; 

17(1):76-83. DOI: 10.4995/riai.2019.11115 

[25] Kuna J, Czerwinski D, Janicki W, Filipek P. 

Developing a dynamic/adaptive geofencing 

algorithm for HVTT cargo security in road transport. 

Earth Science Informatics. 2024; 17(6):5189-5206. 

DOI: 10.1007/s12145-024-01410-7 

[26] Park JS, Lee IB, Moon HM, Hong SC, Cho M. Long-

term cargo tracking reveals intricate trafficking 

through active cytoskeletal networks in the crowded 

cellular environment. Nature Communications. 

2023; 14(1):7160. DOI: 10.1038/s41467-023-

42347-7 

[27] Song DL, Zhang X, Li BY, Sun YF, Mei HH, Cheng 

XJ, et al. Deep learning-assisted automated 

multidimensional single particle tracking in living 

cells. Nano Letters. 2024; 24(10):3082-3088. DOI: 

10.1021/acs.nanolett.3c04870 

[28] Vázquez U, González-Sierra J, Fernández-Anaya G, 

Hernández-Martínez EG. Performance analysis of a 

PID fractional order control in a differential mobile 

robot. Revista Iberoamericana De Automatica E 

Informatica Industrial. 2022; 19(1):74-83. DOI: 

10.4995/riai.2021.15036 

https://doi.org/10.31449/inf.v48i23.6938
https://doi.org/10.31449/inf.v48i20.6265
https://doi.org/10.31449/inf.v48i20.6265
https://dx.doi.org/10.14569/IJACSA.2024.0150806


Design and Evaluation of a Joint Optimization Algorithm for High… Informatica 49 (2025) 415–434 433 

[29] Chowdhury R, Sau A, Musser SM. Super-resolved 

3D tracking of cargo transport through nuclear pore 

complexes. Nature Cell Biology. 2022; 24(1):112-

122. DOI: 10.1038/s41556-021-00815-6 

[30] Sisterna CV, Serrano E, Scaglia G, Rossomando F. 

Mixed control for trajectory tracking in marine 

vessels. Revista Iberoamericana De Automatica E 

Informatica Industrial. 2022; 19(1):27-36. DOI: 

10.4995/riai.2021.15027 

[31] Khan RU, Yin JB, Ahani E, Nawaz R, Yang M. 

Seaport infrastructure risk assessment for hazardous 

cargo operations using Bayesian networks. Marine 

Pollution Bulletin. 2024; 208:116966. DOI: 

10.1016/j.marpolbul.2024.116966 

[32] Vasudevan A, Maiya R, Venkatesh K, Kumar V, 

Sood P, Murthy K, et al. Transport of synaptic 

vesicles is modulated by vesicular reversals and 

stationary cargo clusters. Journal of Cell Science. 

2023; 136(12): jcs261223. DOI: 10.1242/jcs.261223

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



434 Informatica 49 (2025) 415–434 X. Zhou 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


