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Intelligent logistics systems optimize path planning and scheduling problems by introducing deep 

reinforcement learning (DRL) to cope with the complexity of dynamic demand and resource constraints. 

This study proposes an improved strategy that combines multi-task learning (MTL) with Q-learning to 

achieve simultaneous optimization of multiple related subtasks, such as path selection, task scheduling, 

and resource allocation, and shares some network parameters to improve model efficiency and 

generalization ability. The experimental design covers a variety of logistics scenarios, including urban 

distribution, long-distance transportation, and emergency response. Five baseline models are used for 

comparative evaluation to verify the advantages of the DRL method in computational efficiency, cost 

control, resource utilization, service level, and dynamic adaptability. Through experimental verification, 

the DRL model achieved a 15% cost reduction in cost control compared to traditional algorithms; the 

resource utilization rate reached 85%, and it performed excellently in terms of efficiency improvement. It 

has excellent adaptability when dealing with dynamic demands and can respond quickly to environmental 

changes, effectively improving the overall performance of the intelligent logistics system. It is particularly 

suitable for application scenarios that require real-time decision-making and support dynamic demand 

fluctuations. 

Povzetek: Opisana je optimizacijo poti in urnika v pametnih logističnih sistemih z uporabo globokega 

ojačevalnega učenja (DRL) in večnalognega učenja za učinkovito prilagajanje na dinamične zahteve, 

izboljšanje izkoriščenosti virov in zmanjšanje stroškov. 

 

1 Introduction 
With the rapid development of the global economy and the 

popularization of e-commerce, the logistics industry has 

become a core link in the modern supply chain. The 

concept of intelligent logistics has emerged. It combines 

technologies such as the Internet of Things, big data, and 

artificial intelligence to significantly improve the 

efficiency and flexibility of the logistics system by 

dynamically optimizing resource allocation and process 

management. In this context, logistics path planning and 

scheduling optimization have gradually become key areas 

for improving logistics efficiency. Whether it is intra-city 

distribution, long-distance transportation, or international 

logistics, these fields are faced with the common challenge 

of how to complete cargo transportation at the lowest cost 

and fastest speed [1]. 

In traditional logistics path planning, commonly used 

algorithms include Dijkstra algorithm and A algorithm, 

which can find the shortest path in a static environment. 

However, actual logistics scenarios are full of dynamic 

changes, such as fluctuations in order quantity, changes in 

traffic conditions, and sudden resource constraints. This 

makes it difficult for traditional algorithms to effectively 

cope with complex dynamic environments [2]. In addition, 

logistics scheduling, as a supplementary link to path  

 

planning, also needs to optimize the matching and 

allocation of vehicles and goods in real time under 

multiple resources and multiple constraints. How to solve 

path planning and scheduling problems at the same time 

from a global perspective has become an important 

direction for the development of intelligent logistics [3]. 

In recent years, deep reinforcement learning (DRL), 

as an important technology in the field of artificial 

intelligence, has shown great potential in solving complex 

decision-making problems. By combining deep learning 

and reinforcement learning, DRL can learn optimal 

strategies in high-dimensional state spaces, providing a 

new approach for dynamic logistics optimization. In 

particular, in uncertain environments, DRL can 

dynamically adjust strategies based on real-time feedback, 

giving it significant advantages in path planning and 

scheduling optimization [4]. 

The core goal of logistics path planning and 

scheduling optimization is to meet user needs at the lowest 

cost and achieve global optimization under multiple 

constraints. However, traditional optimization methods 

usually work in a static or semi-dynamic manner and lack 

the ability to deeply adapt to real-time and dynamic 

conditions. This results in limited optimization effects of 

the system when facing a complex logistics environment. 

Specifically, the dynamics in the logistics system include 

real-time changes in order demand, updates to vehicle 

status, fluctuations in traffic conditions, etc. These factors 
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put forward higher requirements for path planning and 

scheduling [5]. 

This study aims to explore a logistics path planning 

and scheduling optimization method based on deep 

reinforcement learning, focusing on solving the following 

problems: How to quickly respond to external changes in 

a dynamic environment and adjust vehicle paths and 

scheduling strategies in real time? How to balance global 

optimization and local real-time performance in complex 

scenarios to improve the overall efficiency and service 

quality of the system? By designing a deep reinforcement 

learning model for intelligent logistics, the study will 

further optimize the performance of the algorithm and 

provide feasible suggestions for industry applications 

[6,7]. 

This paper focuses on logistics path planning and real-

time scheduling optimization based on deep reinforcement 

learning. The content structure is as follows: The second 

part will review related research, including traditional path 

planning and scheduling optimization methods, the basic 

principles of deep reinforcement learning, and its current 

application status in logistics optimization. The third part 

introduces problem modeling, defines the path planning 

and scheduling optimization problems in logistics systems 

in detail, and clarifies the objective function and 

constraints of the research. The fourth part proposes 

algorithm design based on deep reinforcement learning, 

including environment construction, algorithm selection 

and improvement, and key technologies in the training 

process. The fifth part is experimental design and analysis, 

which verifies the performance of the proposed method 

through comparative experiments and discusses its 

applicability and scalability in different scenarios. The 

sixth part explores actual application scenarios and 

analyzes the integration scheme and implementation 

effect of the algorithm in the intelligent logistics system. 

Finally, the seventh part summarizes the research results, 

points out the existing deficiencies, and looks forward to 

possible research directions in the future. 

The goal of this study is to explore an efficient and 

intelligent logistics path planning and scheduling 

optimization method based on deep reinforcement 

learning to cope with complex and changing logistics 

environments. The specific research questions are as 

follows: How to make the intelligent logistics system 

respond quickly to external changes in a dynamic 

environment and adjust vehicle paths and scheduling 

strategies in real time? In complex scenarios, how to 

balance global optimization and local real-time 

performance to improve the overall efficiency and service 

quality of the system? In particular, in terms of dynamic 

adaptability, how to improve the system's adaptability to 

real-time changes in order demand and dynamic 

adjustments in traffic conditions; in terms of global 

optimization goals, how to achieve the comprehensive 

goals of minimum logistics cost, optimal resource 

utilization and highest service level under various 

constraints. 

 This study will use five baseline models, namely 

Dijkstra algorithm, A algorithm, genetic algorithm, 

simulated annealing algorithm and priority scheduling 

algorithm, to conduct a comprehensive comparative 

evaluation with the proposed deep reinforcement learning 

(DRL) based method to verify the advantages of DRL 

method in intelligent logistics path planning and 

scheduling optimization. The DRL model proposed in this 

study is specially designed for the characteristics of 

dynamic demand fluctuations in logistics systems, and can 

effectively cope with real-time dynamic conditions and 

achieve efficient path planning and scheduling 

optimization. 

Logistics model assumptions and relevance to real-

world scenarios: 

In the logistics model, it is assumed that the vehicle's 

cargo capacity is limited, for example, the maximum 

cargo capacity of each transport vehicle is 10 tons, which 

is consistent with the actual cargo capacity limit of 

vehicles in reality, ensuring the feasibility of the model in 

actual logistics transportation. The order frequency is 

assumed to be that the number of orders will increase 

significantly during peak hours (such as 9 to 11 a.m. and 

3 to 5 p.m. on weekdays), with the number of orders 

reaching about 200 orders per hour during peak hours, and 

relatively reduced during off-peak hours, with the number 

of orders per hour being about 50 orders during off-peak 

hours. This assumption is consistent with the law of order 

demand changing over time in actual logistics. The storage 

capacity of the warehouse is also set to a limited value, 

such as the maximum storage capacity of the warehouse is 

5,000 cubic meters, reflecting the limitations of warehouse 

space in reality. These assumptions enable the model to 

simulate real-life logistics scenarios more realistically and 

improve the practicality of the research results. 

2 Literature review 
In recent years, with the rapid development of e-

commerce and the complexity of global supply chains, 

intelligent logistics has become a key means to improve 

logistics efficiency and service quality. In intelligent 

logistics systems, path planning and scheduling 

optimization are core links that directly affect the 

efficiency and cost of logistics operations. Traditional 

path planning algorithms, such as the Dijkstra algorithm 

and the A algorithm [8,9], are mainly used in static 

environments and are difficult to cope with dynamic 

changes in actual logistics scenarios. To this end, 

researchers have proposed a variety of dynamic 

scheduling and path optimization methods to adapt to 

complex and changing logistics needs. In recent years, 

deep reinforcement learning (DRL), as a cutting-edge 

technology in the field of artificial intelligence, has 

demonstrated its application potential in logistics 

optimization. This paper will review the current research 

status of intelligent logistics path planning and scheduling 

optimization in combination with specific literature, 

focusing on the application of deep reinforcement learning 

in this field, and exploring the deficiencies and 

improvement directions of existing research [10,11]. 
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2.1 Current status of research on 

intelligent logistics and path planning 

Intelligent logistics systems achieve automation and 

intelligence in the logistics process by integrating 

information technology, automation equipment, and 

optimization algorithms. In terms of path planning, 

traditional static algorithms such as the Dijkstra algorithm 

and the A algorithm are widely used to determine the 

shortest path. However, these algorithms assume that the 

environment is static and cannot adapt to dynamic changes 

in actual logistics scenarios, such as traffic congestion and 

road closures. To this end, researchers have proposed a 

variety of dynamic scheduling and path optimization 

methods to cope with complex and changing logistics 

needs. For example, for the intelligent scheduling and path 

planning of warehouse logistics robot clusters, researchers 

have established a flexible and reconfigurable warehouse 

space model, formulated the operating rules of mobile 

robot clusters, and conducted method research and 

simulation verification on intelligent scheduling and path 

planning, indicating that automated warehousing 

technology based on mobile robot clusters is expected to 

play a key role in e-commerce logistics [12]. 

2.2 Application of deep reinforcement 

learning in logistics optimization 

Deep reinforcement learning (DRL) combines the 

advantages of deep learning and reinforcement learning 

and is able to learn optimal strategies in high-dimensional 

state spaces. In the field of logistics optimization, DRL is 

used to solve complex path planning and scheduling 

problems. For example, researchers have proposed a 

dynamic multi-model green vehicle path optimization 

method based on deep reinforcement learning, aiming to 

reduce carbon emissions during transportation and 

achieve energy conservation, emission reduction and 

green transportation [13,14]. In addition, DRL has also 

been used in the field of resource optimization, such as 

resource balancing, resource allocation and packing 

problems, showing its broad application prospects in 

logistics and supply chain management. 

2.3 Deficiencies of the current research 

and directions for improvement 

Although deep reinforcement learning has shown great 

potential in logistics optimization, there are still some 

challenges and shortcomings. First, the training process of 

the DRL algorithm in complex logistics scenarios may 

require a lot of computing resources and time, affecting its 

practical application. Second, the dynamic and uncertain 

nature of the logistics environment increases the difficulty 

of model training, which may lead to insufficient 

generalization of the model. In addition, existing research 

focuses on the optimization of a single link and lacks 

comprehensive optimization considerations for the overall 

logistics system. To this end, future research can consider 

the following improvement directions: 1) Develop a more 

efficient DRL algorithm to reduce training time and 

computing resource consumption; 2) Enhance the model's 

adaptability to dynamic environments and improve its 

generalization ability; 3) Combine multi-agent systems to 

achieve comprehensive optimization of the overall 

logistics system. 

In summary, intelligent logistics path planning and 

scheduling optimization are key links to improve logistics 

efficiency. As an emerging technology, deep 

reinforcement learning has shown its application potential 

in this field. However, existing research still has 

shortcomings. In the future, it is necessary to further 

explore more efficient and more dynamic DRL algorithms 

and achieve global optimization of the logistics system to 

meet the needs of modern logistics. 

Table 1: Comparison of baseline methods in logistics 

path planning and scheduling optimization 
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Table 1 compares the performance of two common 

benchmark methods in the field of logistics path planning 
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and scheduling optimization, Dijkstra algorithm and A 

algorithm, in several key aspects. Accuracy refers to the 

accuracy of calculating the optimal path. In static 

environments, Dijkstra algorithm performs well but 

performs poorly in dynamic scenarios; A algorithm has 

certain adaptability in dynamic environments, but its 

accuracy is affected by the complexity of the environment. 

Cost-effectiveness reflects the economic benefits of the 

path selection strategy. Dijkstra algorithm has a fixed path 

selection pattern, resulting in average cost-effectiveness, 

while A algorithm shows slightly better cost-effectiveness 

due to the consideration of heuristic information. Multi-

task learning ability refers to the ability to handle multiple 

related tasks simultaneously. Both algorithms are unable 

to handle multiple tasks such as integrated path planning, 

task scheduling, and resource allocation. Dynamic 

adaptability measures the ability of the algorithm to adjust 

to changing environmental conditions. Both algorithms 

have limitations in adapting to dynamic and complex 

changes in the logistics environment, which is a key factor 

in actual logistics operations. 

3 Problem modeling 
In the optimization of intelligent logistics systems, deep 

reinforcement learning (DRL) has become an important 

research direction. By combining the advantages of deep 

learning with reinforcement learning, efficient path 

planning and scheduling optimization can be achieved in 

complex logistics environments. To this end, it is 

necessary to establish a suitable mathematical model to 

describe the logistics system, demand and resource 

allocation characteristics, mathematical formulas for path 

planning and scheduling problems, and clarify the 

objective function and constraints [15]. 

3.1 Logistics system description and 

assumptions 

In this study, a logistics system with dynamic demand and 

timeliness requirements is considered. Assume that the 

logistics network consists of several nodes and paths, 

where each node represents a warehouse, distribution 

center or transportation station, and the path represents the 

transportation route of goods from one node to another. 

The logistics network can be represented by a weighted 

directed graph ( ),  G V E  To indicate that V  is a node 

set, E  is a set of edges. Each edge ( , )u v E  

Represents the slave node u  To Node v  The path and 

edge weights
uvc  Represents the transportation cost or 

time consumption of the path [16,17] . 

Assume that the operation of the logistics system is 

subject to the following constraints: the resources in the 

system include transport vehicles, goods, warehouses, etc. 

The usage and availability of each resource may change 

over time; the demand changes over time and may be 

uncertain. For example, customer demand may fluctuate 

in different time periods. Based on these assumptions, the 

goal of the system is to optimize the allocation of 

resources in the logistics network through reasonable path 

planning and scheduling, thereby improving 

transportation efficiency and reducing costs [18]. 

3.2 Logistics network structure 

The logistics network structure usually consists of 

multiple distribution centers, warehouses, and customer 

nodes, forming a complex multi-level network. In order to 

simplify the problem, the following standardized structure 

can be adopted: distribution center, responsible for 

receiving and distributing goods, there may be multiple; 

warehouse node, where goods are stored, transfer station 

between distribution center and customers; customer 

node: the final destination of logistics services, demand 

fluctuates over time. For the path planning problem, the 

shortest path problem from the starting node to the target 

node is considered. The choice of path should not only 

consider the transportation time and cost, but also consider 

multiple factors such as vehicle capacity and cargo type 

[19,20]. 

3.3 Dynamic demand and resource 

allocation characteristics 

In the intelligent logistics system, demand changes over 

time and is dynamic. Set a time point t  When the node i  

The demand is ( )id t , that is, the demand from customers 

or distribution centers. These demands may be sudden, 

periodic or random. The change of dynamic demand 

requires the logistics system to have a flexible response 

mechanism to cope with demand fluctuations [21,22]. 

Resource allocation characteristics are also an 

important factor in problem modeling. ( )kr t  Indicates k  

The remaining amount of various resources (such as 

transport vehicles, warehouse space, etc.) needs to be 

dynamically adjusted according to current demand. The 

goal of the system is to ensure the optimal use of various 

resources in the logistics network through reasonable 

resource scheduling. 

In the resource allocation process, a resource 

scheduling function can be introduced ( ) R t , this 

function is based on the current time t  and demand ( )d t  

Determine the allocation of each resource. In order to 

maintain the efficient operation of the system, the resource 

constraints in formula (1) must be met [23,24]. 

( 1) ( ) ( ) ( )k k k kr t r t d t r t+ = − +        (1) 

( )kr t represents the replenishment of resource k at 

time t 

3.4 Mathematical modeling of path 

planning and scheduling problems 

The path planning and scheduling problem is essentially a 

dynamic optimization problem. The goal of path planning 

is to minimize the total cost in the logistics system. ( )ijx t  

Represents at time t  At this moment, the logistics 
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network starts from the node i  To Node j  Does a 

transport path exist on the ( )  1ijx t = , otherwise 

( )  0ijx t = . 

In order to describe the path planning and scheduling 

problem, the following mathematical model can be 

established. The objective function is to minimize the total 

cost of the logistics network C , including transportation 

cost and scheduling cost. The objective function is shown 

in Formula (2) [25]. 

 

( ) ( ) ( ) ( )ij ij k k

i N j N k K

C t x t t r t
  

+         (2) 

 

Where N  is the node set, and K  is the resource 

type set. ( )ijC t  represents the transportation cost from 

node i  to node j  at time t , ( )k t  is the scheduling cost 

coefficient of resource k  at time t , and ( )kr t  is the 

usage of resource k  at time t . The objective function not 

only considers the transportation cost, but also reflects the 

cost of resource allocation through the term 

( ) ( )k k

k K

t r t


 . At the same time, the constraint 

condition ( ) 10 ijx t   is added to ( )ijx t , indicating 

that the range of path selection variables is reasonable to 

avoid unreasonable infinite paths. In addition, the vehicle 

quantity set V  is defined in the model, and the vehicle 

quantity related calculations are associated in subsequent 

formulas, such as considering the impact of factors such 

as vehicle carrying capacity on decision-making in 

resource allocation and path planning. 

The constraints include the following points: Demand 

constraints, the demand of each node must be met as 

shown in formula (3). 

 
| |

1

( ) ( ),
V

ij i

j

x t d t i V
=

=               (3) 

 

Resource constraints, The resource usage is as shown 

in Formula (4) and does not exceed the available amount . 

 

( ) , {1,2, , }max

k kr t R k K          (4) 

 

Path selection constraints: Path selection must satisfy 

the physical feasibility and time constraints of formula (5). 

 

( ) {0,1}, ( , )ijx t i j E                 (5) 

3.5 State, action, and reward function 

In deep reinforcement learning, the agent learns the 

optimal strategy by interacting with the environment. 

After converting the path planning and scheduling 

problem into a reinforcement learning problem, we first 

need to define the state of the environment, the actions that 

the agent can take, and how to evaluate the effect of the 

action based on the reward. 

In time t  At this moment, the state of the system ( )s t

is expressed by Formula 6, including the demand of each 

node in the current logistics network, the usage of various 

resources, the choice of transportation path, etc. 

 

1 2 | | 1 2( ) { ( ), ( ), , ( ), ( ), ( ), , ( ), ( )}V K ijs t d t d t d t r t r t r t x t=    (6) 

 

In Status ( )s t  The actions that the agent can choose 

are ( ) a t  It means in time t  The path and resource 

scheduling scheme selected at each moment is expressed 

by Formula (7). For example, i  To Node j  path, or 

allocate some resource. 

 

( ) { ( )}ija t x t=                             (7) 

 

The reward function defines the immediate feedback 

after the agent takes a certain action, which is usually 

related to factors such as the total cost of the system, 

transportation efficiency, resource usage, etc. The reward 

function can be defined as Formula (8). 

 

( ) ( )r t C t= −                              (8) 

 

In Formula (8), ( ) C t  For time t  The negative sign 

indicates that we want to minimize the cost. 

( )C t  is the total cost of the logistics system at time 

t  , and its calculation method is consistent with the cost 

calculation in the objective function of Formula 2, that is,  

 

( ) ( ) ( ) ( )( ) ij ij k k

i N j N k K

CC t t x t t r t
  

= +   

 

By defining appropriate states, actions, and reward 

functions, deep reinforcement learning algorithms can be 

used to learn optimal path planning and resource 

scheduling strategies, thereby optimizing the operation of 

logistics systems in an environment with dynamic demand 

and resource constraints. 

4 Improved strategies and algorithm 

optimization 
As the application of deep reinforcement learning (DRL) 

in intelligent logistics path planning and scheduling 

optimization gradually deepens, traditional Q-learning 

algorithms have problems such as low efficiency and 

difficulty in adapting to the needs of multiple tasks when 

facing complex tasks and dynamic environments. In order 

to solve these problems, this study optimizes Q-learning 

in combination with multi-task learning (MTL), so that the 

algorithm can handle multiple tasks at the same time and 

share some network parameters, thereby improving the 
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training efficiency and generalization ability of the model. 

This chapter will discuss in detail the optimization 

strategy of Q-learning combined with multi-task learning, 

including collaborative learning between tasks, the design 

of shared parameters, and the optimization of multi-

objective reward functions. 

4.1 Combination of multi-task learning 

and q-learning 

Multi-task learning (MTL) is a method of learning 

multiple related tasks simultaneously in the same model. 

By sharing some model parameters, MTL can effectively 

transmit and share information between different tasks, 

thereby improving the learning efficiency and 

generalization ability of the model. In path planning and 

scheduling optimization, there are multiple interrelated 

subtasks, such as path selection, task scheduling, resource 

allocation, etc., which are highly correlated. Therefore, the 

use of multi-task learning can optimize multiple tasks 

simultaneously without increasing too much 

computational overhead and improve the overall 

performance of the system. 
In the framework of Q-learning, each task 

corresponds to a Q-value function and can share some 

network structures. Suppose we have M  The goal of Q 

learning is to find the optimal strategy by optimizing the 

Q value function of each task. Through multi-task 

learning, the objective functions of all tasks can be jointly 

optimized in a unified framework. 

4.2 Multi-task learning objective function 

design 

In multi-task learning, our goal is to optimize the loss 

functions of multiple tasks simultaneously. Suppose there 

are M  tasks, and the loss function of each task is 
mL , in 

{1,2, , }m M  , we weighted sum these loss functions 

to get the total loss function. Specifically, for the Q-value 

functions of path planning tasks, scheduling optimization 

tasks, and resource allocation tasks, we can construct the 

objective function as shown in Formula (9). 

 

MTL

1

M

m m

m

L L
=

=                         (9) 

 

In Formula (9), 
m  For the task m  The weight 

coefficient indicates the importance of each task in the 

total loss. 

The role of the multi-task loss function in formula (9) 

is to weighted sum the loss functions of the path planning 

task, scheduling optimization task and resource allocation 

task to achieve joint optimization of multiple related tasks. 

The calculation method is as follows: Assuming there are 

n  tasks, the loss function of each task is 
iL , and the 

weight coefficient of task i  is 
i , then the total loss 

function 
1

n

i i

i

L L
=

= . In actual calculations, the loss 

function 
1L  of the path planning task is calculated based 

on factors such as the accuracy and cost of path selection; 

the loss function 
2L  of the scheduling optimization task 

is calculated based on the rationality and cost of the 

scheduling scheme; and the loss function 
3L  of the 

resource allocation task is determined based on the 

efficiency and rationality of resource utilization. By 

adjusting the weight coefficient 
i , the relative 

importance of different tasks in the total loss can be 

controlled. 

4.3 Multi-task Q-learning loss function 

For each task, we can use the loss function of Q learning 

for optimization. In the path planning task, the loss 

function can be defined as formula (10). 

 

( )
2

*

path path path

1

1
( , ) ( , )

N

i i i i

i

L Q s a Q s a
N =

= − (10) 

 

In Formula (10), path ( , )i iQ s a  is the Q value in the 

path planning task, 
*

path ( , )i iQ s a  is the target Q value, 

which represents the optimal strategy for path selection. 

In the scheduling optimization task, the loss function 

can be expressed as Formula (11). 

 

( )
2

*

scheduling schedule schedule

1

1
( ) ( )

N

i i

i

L C s C s
N =

= − (11) 

 

In Formula (11), 
schedule( )iC s  is the cost function in 

the scheduling optimization task,
*

schedule ( )iC s  is the 

target cost. 

In the resource allocation task, the loss function can 

be defined as Formula (12). 

 

  ( )
2

*

resource

1

1
( )

N

i i

i

L r r s
N =

= −         (12) 

 

In Formula (12),
ir  is the consumption in the resource 

allocation task, 
*( )ir s  is the target resource 

consumption. 

By sharing network parameters, MTL is able to 

leverage information from other tasks when learning one 

task, reducing training time and improving the 

generalization ability of the model. 
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4.4 Shared network structure design 

In multi-task learning, sharing part of the network 

structure between tasks can effectively improve training 

efficiency. Specifically, we can design a shared network 

layer to extract the common features of the tasks, and then 

perform personalized optimization in the dedicated 

network layer of each task. Suppose we have a neural 

network structure in which the first few layers are used to 

extract shared features, and the following layers are used 

to handle the specific needs of each task. 

For example, in a path planning task, the network's 

output layer can predict the Q value of the path selection; 

while in a scheduling optimization task, the network's 

output layer can predict the scheduling cost. By sharing 

the network layer, MTL can fully share information 

between different tasks, thereby improving the learning 

effect of each task. 

4.5 Optimization strategy of multi-task 

learning combined with Q-learning 

In order to further improve the performance of Q-learning, 

this study proposes the following optimization strategies 

for combining multi-task learning with Q-learning: 
In multi-task learning, the importance of different 

tasks may change as the training process progresses. 

Therefore, we introduced a dynamic task weight 

adjustment strategy. During the training process, the 

weights of each task are relatively balanced in the initial 

stage, but as the training progresses, some tasks may have 

a greater impact on the overall performance of the system, 

so it is necessary to dynamically adjust the weight 

coefficient of the task 
m  . 

The task weight can be adjusted based on the learning 

progress of the task. For example, if the learning progress 

of the path planning task is slow, the weight of the task 

can be increased to promote its learning. If the scheduling 

task has converged, the weight of the task can be reduced 

to allocate more learning resources to other tasks. 

In multi-task learning, in addition to the loss function 

of each task, the relationship between multiple tasks needs 

to be considered. In order to balance the goals between 

different tasks, this study introduces a multi-objective 

reward function. The total reward function can be 

expressed as Formula (13). 

 

path path scheduling scheduling resource resource( , ) ( , ) ( , )t t t t t t tr r s a r s a r s a  = + +

(13) 

 

By adjusting the reward weight coefficient of each 

task path , scheduling  and 
resource , we can control the 

contribution of different tasks to the total reward and thus 

achieve a balance between tasks. 

In multi - task learning, the importance of different 

tasks may change as the training process progresses. 

Therefore, we introduced a dynamic task weight 

adjustment strategy. During the training process, the 

weights of each task are relatively balanced in the initial 

stage, but as the training progresses, some tasks may have 

a greater impact on the overall performance of the system, 

so it is necessary to dynamically adjust the weight 

coefficient of the task. We define "converged" in the 

context of the scheduling task as follows: when the change 

in the loss function of the scheduling task between 

consecutive training steps is less than a pre - defined small 

value, we consider the scheduling task to have converged. 

For instance, if this pre - defined small value is set as 

0.001, and the change in the loss function between two 

consecutive steps meets this criterion, then the scheduling 

task has converged. The task weight can be adjusted based 

on the learning progress of the task. For example, if the 

learning progress of the path planning task is slow, the 

weight of the task can be increased to promote its learning. 

If the scheduling task has converged, the weight of the task 

can be reduced to allocate more learning resources to other 

tasks.  

4.6 Multi-task learning strategy 

optimization based on Q-learning 

In order to improve the combination of multi-task learning 

and Q-learning, this study introduced the Prioritized 

Experience Replay (PER) strategy. Experience Replay is 

a technique used in reinforcement learning to alleviate the 

correlation between data. It can break the temporal 

correlation between samples and accelerate the learning 

process. However, traditional experience replays methods 

usually randomly sample experience with equal 

probability without considering the relative importance of 

experience in the optimization process. In a multi-task 

learning environment, some tasks may have a greater 

impact on the improvement of the overall strategy, so the 

priority replay of these key experiences will help 

accelerate the learning process and improve learning 

efficiency. 

The core idea of priority experience replay is to 

dynamically adjust the priority of each experience sample 

to be replayed according to its time difference (TD error). 

In multi-task learning, each task has an independent Q 

value function, so the TD error needs to be calculated for 

each task separately, and then the TD errors of different 

tasks are comprehensively considered to determine the 

importance of each experience. Through this design, we 

can ensure that during the training process, the model can 

prioritize the experience that is more critical to the 

improvement of the current strategy. 

In Q learning, TD error (Temporal Difference Error) 

is used to measure the difference between the Q value 

estimated under the current strategy and the target Q value.
m  , assuming that we have updated the Q-value function 

through Q-learning, the TD error can be defined by 

Formula (14). 

 
( ) ( ) ( ) ( )max ( , ) ( , )m m m m

i i a i i ir Q s a Q s a  
 = + −  (14) 

 

In Formula (14), 
( )m

ir  For the task m  In Status 
is  

Next action 
ia  The instant rewards you receive, 

( ) ( , )m

i iQ s a  is the current Q value estimate, 
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( ) ( , )m

iQ s a   For the next state 'is  The maximum Q 

value under   is the discount factor. 

In multi-task learning, for each task m , we can 

calculate the corresponding TD error 
( )m

i , indicating m  

the degree of improvement of the task strategy by the 

experience. The priority of each experience 
( )m

ip  It is 

defined based on the absolute value of the TD error in 

Formula (15). 

 

( ) ( )

1 1

sgn( )
n n

m m

i m m

m m

p     
= =

=    +    (15) 

 

In this way, we ensure that experiences with larger TD 

errors are replayed more frequently, thus speeding up the 

learning process. 

In multi-task learning, there may be multiple tasks 

whose TD errors need to be considered comprehensively 

to determine the importance of experience. In order to 

reasonably prioritize the experience of each task, we can 

define a weighted comprehensive scheme for the priority 

of each task. Suppose we have M  tasks, then the total 

experience priority can be defined as Formula (16). 

 

( )

1

| |
M

m

i m i

m

p  
=

=                      (16) 

 

In Formula (16), 
m  It's a task m  The weight 

coefficient is used to control the contribution of each task's 

priority to the overall priority. This method allows the 

priority between tasks to be adjusted according to the 

importance of the tasks, making the training process more 

efficient. 

Since the use of priority experience replay may lead 

to excessive concentration on certain key experiences, 

which in turn may cause the problem of sample 

distribution bias, it is crucial to use importance sampling 

to correct the sampling process. During the resampling 

process, we need to normalize the sampling probability of 

each experience to ensure the fairness of model training. 

i  The probability of being sampled ( )P i  It can be 

expressed by formula (17), and the probability is adjusted 

according to its priority. 

 

1

( ) i

N

i

i

p
P i

p





=

=


                       (17) 

 

In Formula (17),   It is a hyperparameter that 

controls the degree of influence of priority. It is usually set 

small in the early stage of training to ensure strong 

exploration. As training progresses, it is gradually 

increased   to strengthen utilization, and eventually 

tends to 1 = . 

In order to solve the deviation in the sampling 

process, we also need to correct the weight of each 

empirical sample and use Formula 18 to adjust the 

importance sampling. 

1

( )
iw

NP i


 

=  
 

                     (18) 

In Formula (18), 
iw  is the modified experience 

weight,   is an adjustment factor that gradually increases 

as the training process progresses and eventually reaches 

1. In this way, the corrected weight 
iw  This will be used 

to influence gradient updates to ensure fairness in 

experience sampling and avoid over-reliance on certain 

experiences. 

In multi-task learning, the learning progress of 

different tasks may be different, so the weight coefficient 

of each task is dynamically adjusted during training. 
m  

This is an effective strategy. By dynamically adjusting 

task weights, we can flexibly allocate learning resources 

according to the convergence of tasks and avoid certain 

tasks dominating the entire training process due to 

excessive weights. 

Specifically, the task weight can be adjusted 

according to the convergence of the task. For example, if 

the error of the path planning task is still large, the weight 

of the task is increased to promote its learning; if the 

scheduling optimization task is close to convergence, the 

weight of the task is appropriately reduced to allocate 

more learning resources to other tasks. The task weight 

adjustment strategy can be based on Formula (19). 

 

( )
1

m
m

m

t
t





=

+ 
                       (19) 

 

In Formula (19), 
m  It's a task m  The initial weight 

of 
m  It's a task m  The learning rate, t  is the current 

number of training steps. As training progresses, the 

weights of the tasks will gradually converge, so that the 

training progress of the tasks remains balanced. 

The pseudo code of the DRL algorithm is as follows: 

 

# Initialize DRL model parameters 

Initialize DRL model parameters 

 

# Initialize the environment 

Initialize the environment 

 

for episode in range(total_number_of_training_episodes): 

# Initialize the state s 

Initialize state s 

for step in 

range(maximum_number_of_steps_per_episode): 

# Select an action a based on the current state s 

Select action a according to the current state s 

# Execute action a, obtain the new state s' and reward r 

Execute action a, get the new state s' and reward r 
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# Store (s, a, r, s') in the experience replay pool 

Store (s, a, r, s') in the experience replay pool 

# Randomly sample a batch of data from the experience 

replay pool 

Randomly sample a batch of data from the experience 

replay pool 

# Update DRL model parameters based on the sampled 

data 

Update DRL model parameters according to the sampled 

data 

s = s' 

if termination_condition_is_met: 

break 

We choose the shared network layer to extract 

common features because there is some common 

information in tasks such as logistics path planning, task 

scheduling and resource allocation, such as the basic 

structure of the logistics network, the connection 

relationship between nodes, etc. By sharing the network 

layer, the number of model parameters can be effectively 

reduced, the training efficiency can be improved by about 

35%, and the repeated learning of information between 

different tasks can be avoided. Assuming that the total 

model parameters are N  and the shared network layer 

parameters are 
1N , if the shared network layer is not used, 

the model parameters may increase by about 
12N . The 

special task layer is set after the shared layer because each 

task has its own unique needs and goals, and needs to be 

personalized and optimized for these characteristics. For 

example, the path planning task needs to focus on the 

choice and cost of the path, and its task layer can be 

designed to focus on information such as the distance 

between nodes and traffic conditions; while the resource 

allocation task focuses more on the reasonable allocation 

and utilization of resources, and its task layer can be 

designed for the type, quantity and demand distribution of 

resources. The special task layer can better meet these 

specific needs.  

In order to prove the convergence of the multi-task Q-

learning algorithm proposed in this paper, we use 

Lyapunov stability theory for analysis. First, define the 

Lyapunov function 
2

1

1
) ( ( ))

2
(

n

i i

i

V L  
=

=  , where 

represents the parameter set of the model. During the 

algorithm iteration, after each parameter update, the 

change ( )V   of )(V   can be calculated by the 

gradient of the loss function 
iL  with respect to  . 

Assume that the learning rate   satisfies 

)
0

2

(max H



  , where ( )max H  is the maximum 

eigenvalue of the Hessian matrix H of the loss function 

with respect to the parameters. , the discount factor   

satisfies 0 1  . Through analysis, it can be seen that 

in each iteration, ( ) 0V   , which means that )(V   

is monotonically decreasing. Since )(V   is a non-

negative function with a lower bound of 0, according to 

Lyapunov stability theory, the loss function of the 

algorithm will gradually decrease and eventually converge 

to a local optimal solution. For example, in our 

experiment, when the learning rate is set to 0.001 and the 

discount factor is 0.9, after 500 iterations, the loss function 

decreases from the initial 10.5 and stabilizes at around 1.2, 

verifying the convergence of the algorithm. " 

In the multi-task learning framework, we assume that 

there is a certain correlation between different tasks, 

which enables shared network parameters to effectively 

transmit information, thereby improving the overall 

performance of the model. For example, the information 

about the location relationship of logistics nodes learned 

in the logistics path planning task can help the task 

scheduling task arrange the task sequence more 

reasonably. At the same time, it is assumed that the loss 

functions of each task are not completely independent, but 

influence each other to a certain extent. This influence is 

quantified and integrated through the multi-task loss 

function we define (Formula 9). Taking the path planning 

task loss function 
1L  and the resource allocation task loss 

function 
3L  as examples, when the path planning chooses 

a shorter path, the cost of the resource allocation task may 

be reduced, thereby reducing 
3L , and vice versa. Through 

the multi-task loss function, the model can 

comprehensively consider these mutual influences and 

achieve better joint optimization. 

5 Experimental evaluation 

5.1 Experimental design 

In order to verify the advantages of the intelligent logistics 

path planning and scheduling optimization method based 

on deep reinforcement learning (DRL), this study 

designed a comparative experiment with five baseline 

models. These baseline models include: 1) the classic 

Dijkstra algorithm, which is used for path planning tasks 

as a benchmark method for shortest path calculation; 2) 

the A algorithm, which is a heuristic path search algorithm 

suitable for dynamically changing logistics networks; 3) 

the genetic algorithm, as a traditional heuristic scheduling 

optimization method, is used to compare the effect in 

complex resource scheduling tasks; 4) the simulated 

annealing algorithm, another common heuristic 

scheduling optimization method, is used to deal with 

large-scale logistics scheduling problems; 5) the priority-

based scheduling algorithm, this simple heuristic method 

allocates resources by setting the priority of tasks, and 

aims to evaluate the performance of basic scheduling 

strategies in dynamic environments. By comparing the 

intelligent logistics path planning and scheduling 

optimization method based on DRL with these traditional 

methods, the experiment aims to evaluate the advantages 

of the DRL method in terms of computational efficiency 

of path planning, cost control of scheduling optimization, 

resource utilization, service level, and robustness to 

dynamic changes. 
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The learning rate in the DRL model was tested 

through multiple experiments and selected from a series of 

candidate values (such as 0.01, 0.001, 0.0001, etc.), and 

finally determined to be 0.001. At this time, the 

convergence speed and stability of the model during 

training reached a good balance. The discount factor was 

determined to be 0.9 after similar experimental 

exploration. This value enables the model to achieve a 

suitable trade-off between considering current rewards 

and future rewards. A learning rate that is too large will 

cause unstable model training and easily miss the optimal 

solution; a learning rate that is too small will make the 

training speed too slow. If the discount factor is too large, 

the model will focus too much on future rewards and may 

ignore the current immediate benefits; if it is too small, the 

model will be too short-sighted, only focusing on 

immediate interests, and unable to achieve the long-term 

optimal strategy. 

Dynamic traffic conditions are simulated by 

introducing a traffic flow model. Based on historical 

traffic data, the probability of traffic congestion in 

different time periods and sections is set. For example, 

during peak hours on urban main roads, the probability of 

traffic congestion is set to 70%, and the vehicle speed is 

reduced to 50% of the normal speed. Order change 

simulation is based on the statistical characteristics of 

actual order data, setting the time interval of order 

generation to follow the Poisson distribution and the order 

demand to follow the normal distribution. In this way, the 

dynamic changes of orders are simulated, including 

sudden increases, periodic fluctuations, and random 

changes. 

The performance comparison benchmark uses a 

variety of traditional algorithms, such as Dijkstra's 

algorithm, A algorithm, genetic algorithm, simulated 

annealing algorithm, and priority scheduling algorithm. 

These algorithms are representative in different aspects. 

Dijkstra's algorithm and A algorithm are often used for 

path planning, genetic algorithm and simulated annealing 

algorithm are often used for scheduling optimization, and 

priority scheduling algorithm is a simple heuristic 

scheduling method. By comparing with these algorithms 

in multiple indicators such as computational efficiency, 

cost control, resource utilization, service level, and 

dynamic adaptability, the performance advantages of the 

DRL model are comprehensively evaluated. Dynamic 

traffic conditions are simulated by introducing a traffic 

flow model. Based on historical traffic data, the 

probability of traffic congestion in different time periods 

and sections is set. For example, during peak hours on 

urban main roads, the probability of traffic congestion is 

set to 70%, and the vehicle speed is reduced to 50% of the 

normal speed. Order change simulation is based on the 

statistical characteristics of actual order data, setting the 

time interval of order generation to follow the Poisson 

distribution and the order demand to follow the normal 

distribution. In this way, the dynamic changes of orders 

are simulated, including sudden increases, periodic 

fluctuations, and random changes. 

The performance comparison benchmark uses a 

variety of traditional algorithms, such as Dijkstra's 

algorithm, A algorithm, genetic algorithm, simulated 

annealing algorithm, and priority scheduling algorithm. 

These algorithms are representative in different aspects. 

Dijkstra's algorithm and A algorithm are often used for 

path planning, genetic algorithm and simulated annealing 

algorithm are often used for scheduling optimization, and 

priority scheduling algorithm is a simple heuristic 

scheduling method. By comparing with these algorithms 

in multiple indicators such as computational efficiency, 

cost control, resource utilization, service level, and 

dynamic adaptability, the performance advantages of the 

DRL model are comprehensively evaluated. 

Service quality is evaluated through indicators such as 

on-time delivery rate, customer satisfaction, and service 

response time. The on-time delivery rate is calculated by 

counting the ratio of the number of orders delivered on 

time to the total number of orders. Customer satisfaction 

is obtained by collecting customer feedback scores and 

taking the average. Service response time is measured 

from the time when the customer places an order to the 

time when the logistics system starts processing the order. 

In terms of resource utilization, vehicle utilization is 

calculated by the ratio of the actual number of cargo-

carrying vehicles to the total number of available vehicles, 

and warehouse space utilization is determined by the ratio 

of the actual warehouse space used to the total warehouse 

space. 

To ensure the reliability and comprehensiveness of 

the experimental results, each simulation used different 

initial conditions. We constructed a variety of initial 

scenarios by randomly generating order requirements, 

initial resource distribution, and the start time of 

transportation tasks. This can more realistically simulate 

the impact of various uncertain factors in the real logistics 

system and avoid the one-sidedness of the experimental 

results due to a single initial condition. 

This experiment designs a multi-node logistics 

network environment, covering multiple distribution 

centers, warehouses, and customer nodes, forming a 

complex weighted directed graph. The demand of each 

node changes over time, with dynamics and uncertainty, 

aiming to truly simulate the complexity of the logistics 

system. In the experiment, the setting of nodes and edges 

takes into account the impact of traffic flow and 

emergencies on transportation time. The weight of the 

edge changes dynamically, reflecting the transportation 

cost and time consumption under different times and 

conditions. In addition, the demand of the node will 

fluctuate periodically, suddenly change, or randomly, 

simulating the diversity and uncertainty of customer 

demand. In terms of resources, the system includes 

multiple resources such as transportation vehicles and 

warehouse space, and the availability of these resources 

will change over time. Therefore, it is necessary to 

dynamically adjust the resource allocation strategy to 

improve the overall efficiency. In order to simulate the 

uncertainty in reality, the experimental environment also 

introduces factors such as traffic conditions and weather 

changes. These environmental noises cause the 

transportation cost and time of the path to fluctuate. The 

data sets used in the experiment include the logistics 
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network data set, the demand data set, and the resource 

data set. The former describes the path information 

between the distribution center, warehouse, and customer 

nodes, and the latter simulates the demand changes and 

resource fluctuations in different time periods. Through 

these data sets, we aim to verify the adaptability and 

optimization capabilities of path planning and resource 

scheduling methods based on deep reinforcement learning 

in dynamic environments. 

In order to comprehensively evaluate the applicability 

of the proposed method, this experiment designed 

multiple experimental scenarios covering different types 

of logistics environments. First, the typical urban 

distribution scenario simulates an urban logistics system 

with high traffic density and large demand fluctuations, 

aiming to test the performance of the model in short-

distance delivery tasks. Secondly, the long-distance 

transportation scenario simulates a large-scale logistics 

network from one city to another to evaluate the 

effectiveness of the model in dealing with long-distance 

transportation and large-scale data. In addition, an 

emergency response scenario was designed to examine the 

model's adaptability in the face of environmental 

uncertainty and dynamic changes by simulating 

emergencies such as traffic accidents and road closures. 

Through these diverse experimental scenarios, it aims to 

fully verify the adaptability and robustness of the path 

planning and scheduling optimization method based on 

deep reinforcement learning in different practical 

environments. 

5.2 Experimental results 

Table 2: Comparison of computational efficiency 
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As shown in Table 2, in terms of computational 

efficiency, the DRL (deep reinforcement learning) model 

shows significant advantages over other algorithms. The 

average computation time is only 2.3 seconds, and the 

standard deviation is 0.6, indicating that its performance 

is stable. The maximum and minimum computation times 

are also relatively close, indicating that the model can 

maintain efficient computing capabilities under different 

circumstances. In comparison, the average computation 

time of the genetic algorithm is 5.1 seconds, almost more 

than twice that of the DRL model. The DRL model is able 

to find a satisfactory solution in a relatively small number 

of iterations, which makes it particularly prominent in 

application scenarios that require fast response, such as 

real-time logistics scheduling. 

The average computation time of the DRL model is 

2.3 seconds (95% confidence interval is [2.1, 2.5]). Some 

baseline algorithms such as genetic algorithms show 

greater deviations in computation time and cost, mainly 

because the search process of genetic algorithms is 

random. In each iteration, new solutions are generated 

through operations such as selection, crossover, and 

mutation. This random operation may cause the algorithm 

to obtain very different results in different runs. In terms 

of computation time, due to its large search space, it may 

take multiple iterations to find a better solution, resulting 

in large fluctuations in computation time. In terms of cost, 

since the randomly generated solutions may deviate far 
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from the optimal solution, the cost control is unstable and 

the cost difference between different run results is 

obvious. Environmental factors such as traffic and 

weather have a significant impact on the adaptability 

index. In the case of traffic congestion, the driving speed 

of logistics vehicles is reduced, resulting in longer 

transportation time, which affects the punctuality of 

distribution and reduces the on-time delivery rate. For 

example, when traffic congestion is severe, the average 

driving speed of vehicles is reduced by 30%, and the on-

time delivery rate may drop from 95% to 80%. Weather 

changes can also have similar effects. For example, bad 

weather may cause road conditions to deteriorate, increase 

transportation risks, and require vehicles to adopt more 

cautious driving strategies, which will also extend 

transportation time and affect service response time and 

dynamic adaptability. In extreme weather conditions, such 

as heavy rain and snow, service response time may be 

extended from 2.1 hours to 4 hours, and the adaptation 

speed of dynamic adaptability may be extended from 5 

minutes to 15 minutes. 

Table 3: Cost control comparison 
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As shown in Table 3, from the perspective of cost 

control, the DRL model not only achieved the lowest total 

cost of 200 yuan, but also achieved the highest cost 

savings percentage of 15%, reflecting its excellent cost 

control ability. The low-cost fluctuation standard 

deviation of 5 further proves the stability of costs. The 

DRL model reduces unnecessary transportation and 

warehousing expenses through intelligent decision-

making while maintaining high operational efficiency. In 

contrast, the priority-based scheduling solution has the 

highest cost of 270 yuan and the lowest cost savings rate 

of only 7%. The DRL model is obviously more suitable 

for enterprises pursuing economic benefits. 
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Figure 1: Resource utilization comparison 

As shown in Figure 1, in terms of resource utilization, 

the DRL model once again demonstrated its superiority. 

The vehicle utilization rate of 85% and the warehouse 

space utilization rate of 90% are both at a high level, and 

the comprehensive utilization rate of 87.5% is also the best 

result among all models. This means that the DRL model 

can allocate and use resources more effectively and reduce 

waste. The resource allocation frequency is moderate, and 

the resource consumption per unit time is low, showing 

good resource management capabilities. In contrast, the 

comprehensive utilization rate based on priority 

scheduling is only 75%, showing the obvious advantages 

of the DRL model in optimizing resource allocation. 

 

 

Figure 2: Service level comparison 

As shown in Figure 2, the DRL model has excellent 

service performance, with an on-time delivery rate of 

95%, a customer satisfaction score of 4.8, a service 

response time of only 2.1 hours, the least number of 

service failures, and a user feedback score of 4.7. These 

indicators show that the DRL model can provide a high 

level of service quality, ensure on-time delivery of goods, 

and have an excellent performance in customer service 

experience. The on-time delivery rate based on priority 

scheduling is the lowest, only 88%, and the user feedback 

score is relatively low, showing the important value of the 

DRL model in improving service quality. 

 

 

Figure 3: Dynamic adaptability comparison 

As shown in Figure 3, the DRL model also performs 

well in dynamic adaptability, with an adaptation speed of 

only 5 minutes, a recovery time of 10 minutes, and an 

adaptation effect score of 4.9, which is almost the highest. 

In addition, the DRL model has the highest environmental 

change coefficient of 0.8, which means that it can better 

cope with environmental changes. The number of 

emergency drills of 10 times also reflects its ability to be 

well prepared to deal with emergencies. In contrast, the 

priority-based scheduling has the slowest adaptation speed 

of 15 minutes and the lowest adaptation effect score of 

only 4.1, showing that the DRL model has stronger 

adaptability and responsiveness in a dynamic 

environment. 

In the process of determining the number of 

emergency drills, random data generation plays a key role. 

We have pre-built a rich emergency scenario library, 

which covers traffic accidents, temporary road control, 

severe weather impacts (such as heavy rain causing road 

waterlogging, heavy snow causing road icing, etc.), and 

vehicle sudden failures (such as engine failure, tire 

blowout, etc.). 

 
In order to trigger these scenarios, we use a pseudo-

random number generator to simulate uncertainty in 

reality. Taking the time dimension as an example, 

assuming that the total simulation time is set to T  

minutes, we randomly generate a series of time points 
it (

1,2,i =  ) uniformly distributed in the [0, ]T  interval. 

When the simulation time advances to the 
it moment, a 

sudden situation is randomly selected from the scenario 

library for triggering. The specific selection method is to 

assign a unique number to each sudden situation in the 

scenario library, and then use the random number 

generator to generate an integer within the corresponding 

number range to determine the triggered sudden situation. 
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Figure 4: Performance comparison in urban delivery 

scenarios 

As shown in Figure 4, for urban delivery scenarios, 

the DRL model has the highest delivery success rate of 

98%, an average delivery time of 30 minutes, a user rating 

of 4.9 points, and a large number of delivery points and 

vehicles. These data reflect that the DRL model can still 

maintain efficient delivery services in complex urban 

environments. The high success rate and short delivery 

time of the DRL model directly improve the user 

experience and reduce operating costs. Compared with 

priority-based scheduling, the latter has a delivery success 

rate as low as 92%, an average delivery time of 37 

minutes, and low user ratings, indicating that the DRL 

model provides better services in such scenarios. 

1. Fuel price simulation: In order to accurately 

simulate the market fluctuations of fuel prices, we refer to 

the historical fuel price data of the past few years. Through 

statistical analysis, the approximate range of price 

fluctuations is determined, assuming that it is 

, ][ min maxP P
, in yuan/liter. In each delivery cost 

simulation process, a random number generator based on 

normal distribution is used to generate the fuel price P

for this simulation. The mean 


of the normal distribution 

is set to the historical average fuel price, and the standard 

deviation  is adjusted according to the actual amplitude 

of historical price fluctuations. For example, if fuel prices 

have fluctuated violently in the past,   will have a 

relatively large value; if prices are relatively stable,   

will have a smaller value. In this way, the generated fuel 

price can reflect market uncertainty, making the 

distribution cost calculation closer to reality. 

2. Vehicle maintenance cost simulation: The 

randomness of vehicle maintenance costs is determined 

based on the vehicle age 
y

, mileage d , and randomly 

generated failure probability 
p

 . First, a basic failure 

probability function 
( , )f y d

 is constructed, which 

comprehensively considers the impact of vehicle age and 

mileage on failure probability, such as 

( , ) cf d dy a y b = + +
 (where a , b , and c  are 

coefficients obtained by fitting historical maintenance 

data). On this basis, a random perturbation term òbased 

on uniform distribution in the interval 
[ 0.05,0.05]−

 is 

added to further increase the randomness of the failure 

probability, that is, 
( , )p f y d= +ò

. Then, the vehicle 

maintenance cost of this simulation is calculated based on 

the failure probability 
p

 and the maintenance cost 

standards corresponding to different failure types. This 

random data generation method fully considers the various 

uncertain factors that affect the maintenance cost during 

the actual use of the vehicle. 

 

Table 4: Performance comparison in long-distance 

transport scenarios 
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As shown in Table 4, in the long-distance transport 

scenario, the DRL model has a transport efficiency of 65 

km/h, a cost-effectiveness ratio of 0.3 yuan/km, a safety 

score of 4.9 points, a transport distance of 1,000 km, and 
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a cargo weight of 10 tons, and all indicators are optimal. 

This shows that the DRL model can not only improve the 

transport speed, but also effectively control costs and 

ensure the safety of transportation. Compared with 

priority-based scheduling, the latter has lower transport 

efficiency, higher cost-effectiveness ratio, lower safety 

score, and smaller transport distance and cargo weight, 

proving that the DRL model is more competitive in long-

distance transport. 

1. Toll Simulation: For the tolls during transportation, 

we analyze each possible road section separately. 

According to the data of policy adjustments and temporary 

toll standard changes in different sections in history, a toll 

fluctuation range 
, ][

min maxi iT T
 is determined for each 

section, where i represents the section number. When 

simulating long-distance transport costs, for each road 

section, a random number generator based on uniform 

distribution is used to generate a value within the 

corresponding fluctuation range as the toll fee iT
 of this 

section in this simulation. For example, for a long-distance 

transport route connecting city A  and city B , through 

section 1, section 2  and section 3 , toll fees 1T
, 2T

 and 

3T
 are generated within their respective fluctuation 

ranges, and then the total toll fee 1 2 3TT T T+= +
 of this 

simulation is accumulated. This random generation 

method can simulate the uncertainty of toll fees on 

different sections and more realistically reflect the actual 

situation of long-distance transport costs. 

2. Cargo handling fee simulation: The randomness of 

cargo handling fees mainly comes from the uncertainty of 

loading and unloading difficulty and the number of 

workers. First, the loading and unloading difficulty is 

divided into three levels: high, medium and low. A 

random number generator is used to generate an integer 

between 1 and 3  based on discrete uniform distribution, 

corresponding to the three levels of high, medium and low. 

Different basic loading and unloading fee ranges are set 

for different levels. For example, the basic loading and 

unloading fee range for high difficulty is 
, ][

min maxh hC C
, 

the medium difficulty is 
, ][

min maxm mC C
, and the low 

difficulty is 
, ][

min maxl lC C
. The number of workers is 

generated by random numbers based on normal 

distribution. The mean w  is set according to actual 

experience and the average number of workers in different 

transportation scenarios, and the standard deviation w  is 

adjusted according to the fluctuation of the number of 

workers in different scenarios. Assuming that the number 

of workers generated is n , according to the basic cost 

range corresponding to the selected loading and unloading 

difficulty level, combined with the number of workers, the 

final cargo handling cost C  is calculated through certain 

calculation rules (such as 

( ( ) )
min max minlevel level levelC C C Cn r+ −=  

, where r  is 

a random number in the interval 
[0,1]

). This multi-factor 

random generation method can fully reflect the 

uncertainty of cargo handling costs in actual operations. 

 

 

Figure 5: Comparison of emergency response capabilities 

As shown in Figure 5, the DRL model has a strong 

advantage in emergency response capability, with the 

shortest emergency response time of only 10 minutes, 

85% loss minimization, 1.5 hours to restore normal 

operation, 5 emergency plans, and 0.7 accident impact 

range. These data show that the DRL model can respond 

quickly to emergencies, minimize losses, and quickly 

restore normal operations. Compared with priority-based 

scheduling, the latter has the longest emergency response 

time of 25 minutes, the lowest loss minimization, and a 

longer time to restore normal operations, showing the 

superiority of the DRL model in crisis management. 

 

Table 5: Resource optimization comparison 
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As shown in Table 5, the DRL model is ahead of other 

models in terms of resource optimization, and is in a 

leading position in terms of resource utilization, cost 

savings, transportation efficiency improvement, and 

storage space savings. Specifically, the DRL model 

achieved 85% resource utilization, 15% cost savings, 10% 

transportation efficiency improvement, and 12% storage 

space savings. These achievements show that the DRL 

model can optimize resource allocation in an intelligent 

way to achieve higher economic benefits and operational 

efficiency. Compared with other models, priority-based 

scheduling performs worse than the DRL model in these 

aspects, emphasizing the latter's strong capabilities in the 

field of resource optimization. 

 

Figure 6: Comparison of user satisfaction 

Figure 6 shows the comparison of different models on 

user satisfaction indicators, including user satisfaction 

score (1-5 points), number of customer complaints, user 

recommendation index, and average user feedback score. 

The DRL (deep reinforcement learning) model performed 

well on all four indicators, highlighting its significant 

advantages in improving user experience. 

Specifically, the user satisfaction score of the DRL 

model is 4.80, which is much higher than other models, 

indicating that users are highly satisfied with it. The 

number of customer complaints is only 5, indicating that 

the model can effectively solve user problems and reduce 

dissatisfaction. The user recommendation index is 7, 

reflecting that users are willing to recommend this model 

to others, further proving its good user experience. The 

average user feedback score is 4.50, which once again 

confirms that users highly recognize the DRL model. 

In contrast, the performance of other models varies. 

Although the Dijkstra algorithm performs well in terms of 

the number of customer complaints (6 times), its user 

satisfaction score (4.60) and recommendation index (3.50) 

are low. The A algorithm performs relatively balanced in 

various indicators, but its overall level is still lower than 

the DRL model. The genetic algorithm and simulated 

annealing algorithm are close in user satisfaction score 

and recommendation index, but the number of complaints 

is higher, 8 times and 7 times respectively. Although the 

priority scheduling model performs well in some aspects, 

the number of customer complaints is as high as 9 times, 

and the user satisfaction score (4.40) and recommendation 

index (4.00) are relatively low. 

When comparing cost control indicators, a t-test is 

used to determine whether the cost difference between the 

DRL model and other baseline models is statistically 

significant. The average transportation cost of the DRL 

model is 120 yuan, which is statistically significant 

compared with 170 yuan of the priority scheduling 

algorithm (t-test, p < 0.05). In terms of resource 

utilization, the average resource utilization of the DRL 

model is 85%, and that of the genetic algorithm is 78%. 

After analysis of variance (ANOVA), the p value is 0.03, 

indicating a significant difference. In order to more 

accurately evaluate the performance difference between 

the DRL model and the baseline model, we conducted a 

statistical significance test on each performance indicator. 

Through methods such as t-test and ANOVA, we can 

determine whether the differences between different 

models are due to random factors, thereby more reliably 

verifying the advantages of the DRL model. " 

In related work, a recent article [19] proposed an 

intelligent logistics optimization model based on the 

combination of deep learning and simulated annealing. 

The model shows good stability when dealing with large-

scale logistics networks. In the experimental results 

section, the performance of the DRL model in this paper 

is compared with this model. Under the same experimental 

conditions of 50 logistics nodes and 200 orders, the on-

time delivery rate of the DRL model in this paper is 92%, 

while the model proposed in article [19] is 88%. In terms 

of resource utilization, the DRL model in this paper 

reaches 85%, slightly higher than the 82% of the model in 

article [19], indicating that the model in this paper has 

certain advantages in resource optimization and order 

delivery on time. 

Specifically, Lyapunov stability theory is used in this 

section to analyze the convergence of the algorithm. First, 

the Lyapunov function 
)(V 

 is defined, where   

represents the parameter set of the model. During the 

algorithm iteration, after each parameter update, the 

change V  of 
)(V 

 is calculated by the gradient of the 

loss function L  with respect to the parameters. Assume 

that the learning rate   satisfies 

2

max






, where max
 

is the maximum eigenvalue of the Hessian matrix of the 

loss function with respect to the parameters, and the 

discount factor 


satisfies 
0 1 

. Through analysis, 

it can be seen that in each iteration, 0V  , which 

means that 
)(V 

 is monotonically decreasing. Since 



Multi-Task Deep Reinforcement Learning for Intelligent Logistics… Informatica 49 (2025) 136–182 179 

)(V 
 is a non-negative function with a lower bound of 0, 

according to Lyapunov stability theory, the loss function 

of the algorithm will gradually decrease and eventually 

converge to a local optimal solution. The article also gives 

a specific experimental example. When the learning rate 

is set to 0.001 and the discount factor is 0.9, after 500 

iterations, the loss function decreases from the initial 10.5 

and stabilizes at around 1.2, further verifying the 

convergence of the algorithm. 

During the sample - out - of - sample robustness test 

in normal market conditions, both the GAT - GS model 

and PPO performed well. Over a period of 100 trading 

days in normal market conditions, the GAT - GS model 

achieved an average daily profit rate of 0.5%, with a 

standard deviation of 0.1%, indicating a highly stable 

profit - rate curve. PPO, on the other hand, had an average 

daily profit rate of 0.45%, with a standard deviation of 

0.15%. This shows that while both models were profitable, 

the GAT - GS model demonstrated more stability in 

normal market scenarios. 

In contrast, when tested under extreme market 

conditions such as the 2008 Global Financial Crisis, PPO 

adjusted its trading strategy more quickly in the initial 

stage of the crisis. In the first month of the crisis, PPO 

reduced its losses by approximately 20% compared to a 

benchmark non - adaptive trading strategy. It achieved this 

by rapidly adjusting its investment portfolio based on the 

real - time market state. However, as the crisis continued 

for a full year, the GAT - GS model, with its more 

comprehensive analysis of market structure through graph 

theory, gradually regained its advantage in predicting 

market trends. The GAT - GS model's cumulative loss 

over the one - year crisis period was 15%, while PPO's 

cumulative loss reached 20%. This shows that PPO has an 

edge in quickly adapting to sudden market changes, while 

the GAT - GS model is more robust in long - term and 

complex market environments. 

5.3 Discussion 

Comparison of DRL with cutting-edge technologies. 

The results of DRL are numerically comparable to those 

of cutting-edge technology methods. In terms of 

efficiency, as shown in the experimental results, the 

average calculation time of the DRL model is 2.3 seconds. 

When facing complex logistics scenarios, it can give 

decision results faster than some cutting-edge technology 

methods, and has obvious advantages in real-time logistics 

scheduling scenarios that require rapid response. In terms 

of robustness, the DRL model can quickly adjust its 

strategy in dynamic environments, such as when the path 

cost fluctuates due to factors such as traffic conditions and 

weather changes. Its adaptation speed is only 5 minutes 

and its recovery time is 10 minutes. Compared with other 

cutting-edge technologies, it shows stronger robustness. 

For the adaptability to dynamic demand, the 

environmental variation coefficient of the DRL model is 

as high as 0.8, which can better cope with the dynamic 

changes in demand, while some cutting-edge technologies 

may have limitations in this regard. 

The impact of multi-task learning on DRL efficiency: 

A comparative experiment was set up. One group of DRL 

models used multi-task learning, and the other group of 

DRL models did not use multi-task learning. They were 

trained and tested in the same logistics scenario. The 

impact of multi-task learning on DRL efficiency was 

evaluated by comparing the training time, convergence 

speed, and execution efficiency in actual tasks of the two 

groups of models. The experimental results show that the 

training time of the DRL model using multi-task learning 

was shortened by 30%, the convergence speed was faster, 

and the execution efficiency in actual logistics tasks was 

improved by 20%, proving that multi-task learning can 

effectively improve DRL efficiency. 

Dynamic weight adjustment in task priority: An 

experiment was designed to compare the multi-task 

learning DRL models with fixed weights and dynamic 

weight adjustment. During the experiment, the learning 

progress and overall performance of different tasks at 

different stages were observed. The results show that the 

model with dynamic weight adjustment can flexibly 

allocate learning resources according to the learning 

situation of the task, and can adjust the strategy faster 

when the complexity of the task changes. Compared with 

the fixed weight model, the overall performance is 

improved by 15%. 

Introducing metrics that are independent of the 

baseline: Introducing the regret minimization metric, 

which is measured by calculating the cumulative loss 

between the actual decision and the optimal decision in a 

series of decision-making processes. For adaptability to 

unknown environments, the performance of the model is 

tested in simulated unknown environment scenarios, such 

as sudden changes in order demand patterns and traffic 

rules, to observe the model's adaptation speed and final 

performance recovery. The experimental results show that 

the DRL model performs well in the regret minimization 

metric and can adapt quickly in unknown environments, 

with an average adaptation time of 8 minutes, showing 

strong adaptability to unknown environments. 

Model scalability to larger logistics networks: The 

performance changes of the DRL model are tested by 

gradually increasing the number of nodes, the number of 

orders, and the complexity of transportation routes in the 

logistics network. The experimental results show that as 

the scale of the logistics network expands, the computing 

time and resource consumption of the DRL model 

increase approximately linearly, while performance 

indicators such as cost control, resource utilization, and 

service level can still be maintained at a high level, 

proving that the model has good scalability to larger 

logistics networks. 

Comparison with specific scenarios of baseline 

algorithms. Compared with the baseline algorithm, DRL 

performs well in urban distribution scenarios. Urban 

distribution has the characteristics of high traffic density 

and large demand fluctuations. The delivery success rate 

of the DRL model is as high as 98%, and the average 

delivery time is only 30 minutes. Compared with the 

baseline algorithm based on priority scheduling, its 

delivery success rate is as low as 92%, and the average 
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delivery time is 37 minutes. The DRL model can better 

adapt to the complex environment of urban distribution. In 

the long-distance transportation scenario, the 

transportation efficiency of the DRL model is 65km/h, and 

the cost-effectiveness ratio is 0.3 yuan/km, which are 

better than the baseline algorithm. For example, the 

transportation efficiency of priority scheduling is only 

56km/h, and the cost-effectiveness ratio is 0.4 yuan/km. 

However, in some simple and static logistics scenarios, 

baseline algorithms such as the Dijkstra algorithm may be 

faster than the DRL model in terms of calculation speed 

due to its relatively simple calculation logic, but it cannot 

adapt to complex dynamic changes. 

DRL combines the advantages of multi-task learning. 

DRL combined with multi-task learning can bring new 

insights to the field of logistics. In the field of logistics, 

tasks such as path planning, task scheduling, and resource 

allocation are interrelated. Traditional methods often 

handle these tasks in isolation, while DRL combines 

multi-task learning and, by sharing network parameters, 

can utilize information from other tasks when optimizing 

one task, thereby improving the training efficiency and 

generalization ability of the model. For example, 

information about traffic conditions learned in the path 

planning task can help the resource allocation task arrange 

transport vehicles more reasonably, thereby achieving 

overall optimization of the logistics system, providing a 

new and more efficient way of solving problems in the 

logistics field. 

6 Conclusion 
This study shows that the deep reinforcement learning 

(DRL)-based method provides an efficient and flexible 

solution for path planning and scheduling of intelligent 

logistics systems. Through an in-depth analysis of the 

logistics network structure, we construct a mathematical 

model to describe the problem of path planning and 

scheduling, and transform it into a reinforcement learning 

problem that can be solved using DRL. This method is 

particularly optimized for the dynamic demand 

characteristics in logistics, and a multi-task learning 

framework is proposed, which enables the model to handle 

multiple interrelated tasks such as path selection, task 

scheduling, and resource allocation without adding too 

much computational overhead. Experimental results show 

that compared with traditional Dijkstra algorithm, A 

algorithm, genetic algorithm, simulated annealing 

algorithm, and priority-based scheduling algorithm, the 

DRL model performs well in many performance 

indicators: it achieves faster computing speed, lower total 

cost, higher resource utilization, better service level, and 

stronger dynamic adaptability. In particular, when facing 

uncertain factors, such as path cost fluctuations caused by 

traffic conditions or weather changes, the DRL model 

shows significant advantages. 

In addition, in different types of logistics 

environments, from urban distribution to long-distance 

transportation, the DRL model can provide stable 

performance output, proving its wide applicability and 

robustness. Therefore, DRL technology is expected to 

become an important tool in the field of intelligent 

logistics in the future, providing logistics companies with 

more intelligent and automated operational support, 

helping them maintain their leading position in the fiercely 

competitive market. 

Although the DRL-based intelligent logistics path 

planning and scheduling optimization method proposed in 

this paper has achieved good results, there are still some 

limitations. First, the training of the DRL model requires 

a lot of computing resources and time. In our experiment, 

a logistics network model with 100 nodes was trained 

using a computer equipped with an NVIDIA RTX 3090 

GPU. Each training took about 48 hours, which may be 

limited by hardware conditions in practical applications. 

Second, in the face of some extremely complex logistics 

scenarios, such as severe damage to the logistics network 

caused by large-scale natural disasters, road interruptions, 

and warehouse destruction, the adaptability and decision-

making ability of the model may need to be further 

improved. In the simulated earthquake disaster scenario, 

20% of the roads and 15% of the warehouses in the 

logistics network were damaged, and the on-time delivery 

rate of the model's orders dropped to 65%, a decrease of 

27% compared to normal conditions. Future research can 

explore more efficient algorithms and model architectures 

to address these limitations to improve the performance of 

intelligent logistics systems in various complex 

environments." 
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