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 Precise athlete performance prediction is required for the optimization of training regimens, the 

prevention of injuries, and the improvement of performance in competition. In this study, we propose a 

self-attention mechanism-based transformer LSTM (HTL) Athlete Performance Forecasting (APF) 

framework using Transformer along with Long Short Term Memory (LSTM) networks to model 

sequentially. The framework can capture global feature interactions and localized temporal dependencies 

in athlete performance data. A dataset containing 200 football, basketball, and athletics athletes over 12 

months was used to train and evaluate the model. Heart rate, speed, distance, workload and recovery 

indicators are performance metrics. Indeed, HTL-APF is validated against baseline models such as 

Transformer only, LSTM only, CNN, and RNN models at segmenting the sequence via a sliding window 

approach. Precision, Recall, F1-Score and AUC-ROC are the evaluation metrics. We propose HTL-APF 

that results in an F1-Score of 92.1%, AUC-ROC of 96.3%, which outperforms the Transformer model 

(F1: 88.1%, AUC-ROC: 92.4%) and Lstm only model (F1: 85.9%, AUC-ROC: 90.1%). Analysis from 

class to class reveals that there is a high classification accuracy (97%) for top performers and moderate 

(89%) and bad (90%) performers also have good performance. In addition, precision and F1 scores for 

cross-domain testing across sports disciplines remained above 91%, indicating the framework's 

generalizability. HTL-APF is a scalable and accurate solution for athlete performance forecasting for 

personal training plans, injury prevention, and real-time decisions in sports training management, 

illustrated by these results. Given that it is intended for real-world sports analytics, future work will 

investigate the development of lightweight adaptations, enhanced interpretability, and domain-specific 

extensions to enlarge its application range. 

Povzetek: Predlagan je hibridni model Transformer-LSTM za napoved športne uspešnosti, ki omogoča 

personalizirano vadbo in napoved poškodb. 

 

 

1    Introduction 

Since sports training management is about athlete 
performance forecasting, which means the ability to 
determine whether an athlete is fit to compete or to provide 
an indicator of athlete performance for further training, 
forecasting sports such as basketball and soccer is of great 
utility to coaches and sports scientists. Given historical 
data, prediction of an athlete's performance, future athlete 
performance also has unique challenges of being dynamic, 
having temporal dependencies in the training data, and 
combining many features (physiological metrics, workload 
intensity, and recovery patterns, to name a few) to predict 
it [1-4]. We need advanced computational methods to 
address these challenges and handle complex patterns and 
relationships in time series data. 

Performance forecasting uses traditional machine 
learning techniques such as Support Vector Machines 
(SVMs) and Random Forests. These methods are a good 
start but require substantial feature engineering and poorly 
handle sequential data [5-7]. With the advent of deep 
learning, more sophisticated models such as Recurrent 
Neural Networks (RNNs) and Long Short Term Memory 
(LSTM) networks were introduced, and they are great at 

modelling temporal dependencies [8-10]. In particular, 
LSTMs have performed very well in identifying sequential 
trends in sports metrics, thereby predicting overload events 
such as overtraining, fatigue, and injuries. It, however, has 
pointed out the need for alternatives or complementary 
approaches to their limited capacity to model long-range 
dependencies across extended sequences.  

Transformer architectures are now a popular solution to 
sequential data modelling in natural language and time 
series processing [11]. Transformers can exploit self-
attention mechanisms to model global dependencies 
between sequences, making them very effective for 
analyzing complex, high-dimensional datasets [12]. While 
these advantages exist, Transformer models might fail 
when dealing with localized temporal patterns critical for 
sports performance forecasting [13]. This limitation 
underscores both the potential and the value of hybrid 
models that combine the advantages of LSTMs and 
Transformers. 

This study proposes a Hybrid Transformer-LSTM 

Athlete Performance Forecasting (HTL-APF) framework, 

combining these two architectures to overcome their 

limitations. The Transformer component takes account of 

global relations between features for the whole sequence, 
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while the LSTM component models local temporal 

patterns of training and recovery cycles in the sequence. 

This hybrid approach backs up the framework with 

accurate and robust performance predictions for both short 

and long-term dependencies of athlete data. 

HTL-APF framework is developed to classify an athlete 

into high, moderate, or low-performance categories, 

leading to actionable decisions on sports training 

management. In real-world datasets of physiological 

metrics, workload data, and recovery indicators, we show 

that the framework scales and generalizes across multiple 

sports disciplines (football, basketball, and athletics). A 

comparative analysis shows that the HTL-APF framework 

outperforms the baseline models (such as Transformer 

only, LSTM only, CNN, and RNN) on measures including 

precision, recall, F1 score, and AUC ROC. 

Building on this, the key contribution of this paper is to 

rigorously fill the gaps in the literature with a robust, 

scalable, and precise solution to the athlete performance 

forecasting problem. It is one of the increasing research 

articles in sports science and machine learning, focusing 

on a framework that consolidates novel deep learning 

approaches to provide informative perspectives on real-

world applications. This section discusses the 

methodology, experimental setup, results, and 

implications of the proposed HTL-APF framework, which 

could offer the opportunity to revolutionize sports training 

management and athlete development. 

2    Related work 

Forecasts of the athlete's performance are essential to sports 
science and help make data-driven decisions to optimize 
training regimes and prevent injuries. Over the years, 
researchers have explored many machine and deep learning 
approaches to learn athlete performance from time series 
data. In this literature review, the evolution of these 
techniques is discussed, along with their strengths and 
demerits. It also puts forward the Hybrid Transformer-
LSTM Athlete Performance Forecasting (HTL-APF) 
Framework as a significant contribution to this field. 

2.1    Traditional machine learning 
approaches  

Performances were first predicted based on traditional 
machine learning algorithms, such as Support Vector 
Machines (SVM), Decision Trees, and Random Forests. 
Feature engineering was applied to these methods to derive 
meaningful patterns from raw data [14-16]. However, these 
approaches were reasonably practical within static 
environments but were devoid of failure to model temporal 
dependencies when the data is sequential. For example, 
studies on SVMs in performance classification observed 
few successes on large dynamic datasets. SVMs highly 
depend on hand-crafted features and cannot be adapted to 
changing temporal relationships [17-19]. 

2.2    Deep learning for sequential data 
 Deep learning brought a new paradigm for analyzing time 

series for application in sports. A given form of recurrent 

neural networks (RNNs) and their variant, Long Short 

Term Memory (LSTM) networks, proved popular 

architectures for modelling sequential dependencies in 

performance metrics. Gated mechanisms of LSTMs, 

which allow them to handle long-term dependencies, 

proved to be a step forward in capturing trends over 

training sessions. Some examples of studies that reported 

LSTMs' capability to predict training outcomes and early 

signs of overtraining were also examples [20-22]. 

Unfortunately, RNNs and LSTMs are inherently limited 

because they struggle to learn long-range dependencies 

across some long sequences [23-25]. Moreover, when 

applying complex datasets comprising multiple features 

and longer spans, they have often fallen afoul of vanishing 

gradients that can yield poor performance [26-28]. To 

address these limitations, alternative approaches for 

augmenting sequential modelling were explored. 

2.3    Convolutional neural networks (CNNs) 

for feature extraction 

Initially created for image data, convolutional neural 

networks (CNNs) adapted to time series prediction [29]. It 

is well known that local patterns can be effectively 

captured when performing convolutional operations over 

temporal dimensions (input data is sequentially ordered), 

such as in CNNs [30]. Studies of forecasting athlete 

performance with CNNs showed they handle spatially 

localized features, such as short-term trends in heart rate 

or workload metrics [31]. While strong, CNNs cannot 

model temporal dependence over increasingly large 

horizons, and as a result, standalone CNNs are less 

effective at time-series forecasting [32]. 

2.4    Transformer architectures  

The introduction of Transformer models revolutionized 

sequential data modelling [33]. Unlike RNNs and LSTMs, 

Transformers utilize a self-attention mechanism to 

simultaneously model dependencies across the entire 

sequence [34]. This architecture has proven highly 

effective in tasks such as natural language processing and 

has been increasingly adopted in time-series forecasting 

domains [35]. Recent studies have demonstrated the 

potential of Transformers in athlete performance 

prediction, particularly their ability to handle large datasets 

and capture global relationships among features [13, 36-

38]. However, Transformers may struggle with localized 

temporal patterns and require substantial computational 

resources, making their direct application to performance 

forecasting challenging. 

2.5    Hybrid architectures: bridging the gap  

With Transformers and LSTMs possessing 

complementary strengths, hybrid architectures have arisen 

as promising solutions for overcoming the first and second 

limitations. LSTM models for sequential learning are 

extended with the Transformers' global attention 

mechanisms to capture localized and long-range 

dependencies in the predictions. Other domains, including 

financial forecasting and healthcare, have been the subject 
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of preliminary studies of hybrid methods for time series 

analysis, demonstrating high accuracy and robustness [39]. 

 Recently, hybrid models of LSTMs and 

Transformers have gained popularity as powerful 

approaches to time-series forecasting. In physiological 

time series, [40] showed that attention-based mechanisms 

in combination with a sequential model help in modelling 

the long-range dependency. Our approach is consistent 

with their findings, where we integrate global 

(Transformer) and local (LSTM) feature dependencies in 

a hybrid Transformer Local LSTM (HTL-APF) to improve 

the prediction for athlete performance. 

Deep learning architectures in sports analytics 

demonstrate that the hybrid models outperform standalone 

architectures when the training is irregular and complex 

[41]. It also indicates that the hybrid Transformer LSTM 

framework can manage the widely varying sports 

performance datasets. Computational efficiency issues in 

Transformer architectures with lightweight real-time 

adaptations [42]. It could indicate potential future 

directions for HTL APF optimization for edge computing 

and wearable technology deployments. 

Although these approaches have seen some success, 

very few studies have examined using hybrid architectures 

in the context of athlete performance forecasting. 

However, existing works often use single architecture 

solutions, restricting their generalization to various 

datasets and performance settings. 

2.6    Research gap and motivation  
While previous research has laid a strong foundation for 

athlete performance forecasting, significant gaps remain: 

• Single Architecture Limitations: Short-term 

patterns and long-range dependencies cannot be 

captured simultaneously in the standalone model 

scenario (i.e. when we have an LSTM or a 

Transformer). 

• Scalability Issues: However, few methods can 

generalize across varying sports and datasets, 

precluding their use in real-world scenarios. 

• Lack of Hybrid Solutions: Though they hold 

great potential, little attention has been paid to 

hybrid architectures addressing LSTMs and 

Transformers to apply athlete performance 

prediction. 
To fill these gaps, the Hybrid Transformer-LSTM 

Athlete Performance Forecasting (HTL-APF) Framework 
bridges the weaknesses of LSTMs with the properties of 
Transformers. Allowed the framework to effectively model 
sequential and global dependencies, achieving state-of-the-
art performance on such a broad set of datasets. The HTL-
APF framework leverages advances in deep learning to 
offer a novel contribution to athlete performance 
forecasting. It extends previous work in sports training 
management beyond these limitations, establishing a 
benchmark for future research. 

The summary of previous research on athlete 

performance prediction is a comparative presentation of 

their methodologies, data characteristics, performance 

metrics and weaknesses in Table 1. However, the main 

difficulty in all these approaches is their inability to 

simultaneously learn long-range dependencies 

(Transformers) and local placeability of temporal patterns 

(LSTMs). Our proposed HTL-APF framework addresses 

these shortcomings, combining the strengths of both 

architectures and outperforming the two architectures 

alone. 

Table 1: Comparative analysis of athlete performance 

prediction studies 

Study 

& 

Year 

Method

ology 

Datase

t Size 

& 

Source 

Performa

nce 

Metrics 

(F1, 

AUC-

ROC, 

etc.) 

Limitations 

Ragab 

(2022)  

SVM 150 

soccer 

players 

F1: 

78.5%, 

AUC-

ROC: 

82.3% 

Limited to 

static 

features, 

lacks 

temporal 

modelling. 

Wang 

(2023)  

Random 

Forests 

180 

athletes

, mixed 

sports 

F1: 

80.1%, 

AUC-

ROC: 

85.2% 

High 

feature 

engineering 

effort, weak 

sequential 

modeling 

Yu 

(2019)  

RNN 120 

basketb

all 

players 

F1: 

82.7%, 

AUC-

ROC: 

88.1% 

Struggles 

with long-

range 

dependencie

s, vanishing 

gradient 

problem 

Ahme

d 

(2023)  

LSTM 200 

athletes 

F1: 

85.9%, 

AUC-

ROC: 

90.1% 

Fails to 

capture 

global 

dependencie

s across 

sequences 

Shen 

(2024)  

Transfor

mer 

250 

multi-

sport 

athletes 

F1: 

88.1%, 

AUC-

ROC: 

92.4% 

Lacks 

localized 

temporal 

pattern 

modeling 

Xi 

(2024)  

CNN 180 

soccer 

players 

F1: 

82.5%, 

AUC-

ROC: 

87.3% 

Effective 

for feature 

extraction 

but weak in 

time-series 

forecasting 

This 

Study 

(HTL-

APF) 

Hybrid 

Transfor

mer-

LSTM 

200 

athletes 

(footbal

l, 

basketb

all, 

F1: 

92.1%, 

AUC-

ROC: 

96.3% 

Computatio

nally 

intensive, 

needs 

optimizatio

n for real-

time use 
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athletic

s) 

 

3   Proposed hybrid transformer-

LSTM method 

The proposed method is the Hybrid Transformer LSTM 

Athlete Performance Forecasting (HTL-APF) Framework, 

which combines the power of Transformers and Long 

Short-Scond Memory (LSTM) networks for precise athlete 

performance forecasting, as shown in Figure 1. This 

framework uses time series data to capture short-term 

temporal patterns and long-range dependencies. 

 

Figure 1: Proposed Hybrid Transformer-LSTM Athlete Performance Forecasting (HTL APF) framework block 

Diagram. Data preparation techniques, including sliding window and positional encoding, future Transformer 

components such as self-attention and multi-head attention for modelling long-range dependency, and LSTM gates 

and state updates for sequential pattern analysis, are combined with a dense layer to perform classification and 

prediction. 

 The dataset is a time series of athlete performance 
metrics represented as 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇}, where 𝑥𝑡 ∈
𝑅𝑑, is a feature vector at time 𝑡. Features include heart rate, 
speed, distance, and workload metrics. A sliding window 
approach is used to create overlapping subsequences:  

𝑋𝑖 = {𝑥𝑡 , … , 𝑥𝑡+𝑙−1}   (1) 

Where 𝑙 is the window size, a decision was made 

that the sliding window approach (30-time step window) 

was used, as defined in sports science research, to 

determine the effects of a session within a 30-minute 

window (Table 2). It also captures short-term workload 

fluctuation and recovery cycles critical for performance 

forecasting. 

Table 2: Research design justifications. 

Aspect Approach 

Used 

Justification 

Sliding Window 

Size 

30-time steps Selected based on 

sports training 

session durations 

(30–90 min). 

Smaller windows 

failed to capture 

trends; larger 

windows 

increased 

computation 

without accuracy 

gains. 

Normalization Min-Max 

Scaling 

Prevents 

dominance of 

high-value 

features, ensuring 

stable 

optimization in 

deep learning 

models. 

Missing Data 

Handling 

K-Nearest 

Neighbors 

(KNN) 

Imputation 

Effectively 

estimates missing 

sensor values by 

using feature 

similarities. 
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Class 

Imbalance 

Handling 

SMOTE 

(Synthetic 

Minority 

Over-

Sampling 

Technique) 

Ensures balanced 

class 

representation, 

preventing bias in 

underrepresented 

athlete categories. 

Cross-

Validation 

Strategy 

5-Fold 

Athlete-Wise 

Split 

Prevents data 

leakage by 

ensuring no 

athlete appears in 

both training & 

testing sets. 

Improves 

generalization. 

Data Splitting 80% 

Training, 

10% 

Validation, 

10% Testing 

Athlete-specific 

partitioning 

ensures fair 

evaluation across 

sports disciplines. 

Positional information is added using positional encodings 

to preserve temporal relationships:  

𝑃(𝑡, 2𝑘) = sin (
100002𝑘/𝑑

𝑡
)                     (2) 

𝑃(𝑡, 2𝑘 + 1) = cos (
100002𝑘/𝑑

𝑡
)                      (3) 

 resulting in augmented input 𝑍0 = 𝑋𝑖 + 𝑃 

The Transformer processes the augmented input, 𝑍0 

to model long-range dependencies between features and 

across time. Self-Attention Mechanism: Calculates 

attention scores for each pair of input tokens: 
Attention(𝑄, 𝐾, 𝑉) = softmax (

𝑄𝐾𝑇

√𝑑𝑘
) 𝑉               (4) 

Where 𝑄 = 𝑍𝑊𝑄,  𝐾 = 𝑍𝑊𝐾 ,  𝑉 = 𝑍𝑊𝑉 , are query, key, 

and value matrices, and 𝑊𝑄,  𝑊𝐾 ,  𝑊𝑉 , are learnable 

parameters. Multi-Head Attention: Extends self-attention 

by computing multiple attention heads in parallel: 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, … , headℎ)𝑊𝑂     

(5) 

where ℎ is the number of heads, and WO , is a learnable 

output weight matrix. 

Feed-Forward Network (FFN): Processes each token 

independently: 

FFN(𝑧) = ReLU(𝑧𝑊1 + 𝑏1)𝑊2 + 𝑏2   (6) 

with parameters 𝑊1, 𝑊2, 𝑏1, 𝑏2. 

Transformer layers are stacked, and each layer employs 

residual connections and layer normalization: 

𝑍otu = LayerNorm (𝑍input + FFN(𝑍input))   (7) 

The Transformer's output 𝑍output is passed to the 

LSTM, which models sequential patterns in the data. 

LSTM Gates and Updates: At each time step 𝑡, the LSTM 

computes: 

𝑓𝑡 = σ(𝑊𝑓𝑧𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓),  𝑖𝑡 = σ(𝑊𝑖𝑧𝑡 +

𝑈𝑖ℎ𝑡−1 + 𝑏𝑖),  𝑜𝑡 = σ(𝑊𝑜𝑧𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)     
(8) 

 

where 𝑓𝑡 ,  𝑖𝑡 ,  𝑜𝑡, are forget, input, and output gates, 

respectively. Cell State and Hidden State: 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ tanh(𝑊𝑐𝑧𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 
         ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)           

(9) 

The final hidden state ℎ𝑇 , summarizes the sequential 

information. 

The hidden state ℎ𝑇, is passed to a fully 

connected dense layer for classification. The predicted 

probabilities for 𝐶 classes are computed using the softmax 

function: 

𝑦 = softmax(𝑊𝑑ℎ𝑇 + 𝑏𝑑)   

 (10) 

where 𝑊𝑑 and 𝑏𝑑, are learnable parameters. 

The framework is trained using the categorical cross-

entropy loss: 

𝐿 = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑐

𝐶
𝑐=1 log(𝑦𝑖,�̂�)𝑁

𝑖=1    

 (11) 

where 𝑦𝑖,𝑐  is the actual label, and 𝑦𝑖,�̂� , is the predicted 

probability for class 𝑐. 

The model uses the Adam optimizer with weight 

decay and learning rate scheduling. Regularization 

techniques such as dropout and early stopping are 

employed to mitigate overfitting. Model performance is 

assessed using the following metrics: 

Precision =
TP

TP+FP
     

(12) 

Where TP is true positive, and FP is false positive. 

Recall =
TP

TP+FN
    

 (13) 

Where FN is false negatives. 

F1-Score = 2 ⋅
Precision⋅Recall

Precision+Recall
              

14) 

AUC-ROC: Measures the area under the Receiver 

Operating Characteristic curve, which plots the actual 

positive rate (Recall) versus false positive rate. 

We also performed hyperparameter tuning, 

validated the sliding window size and reported on 

computational cost. The chosen hyperparameters are 

presented in Table X, along with the reasons for the 30-

time step window. A comparison of training and inference 

efficiency across various models is given in Table 3. 
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Table 3: Hyperparameter Tuning, Sliding Window 

Justification, and Computational Cost. 

Aspect Evaluated 

Parameters 

Optimal 

Value / 

Best 

Choice 

Justification 

Hyperparameter 

Tuning 

Learning Rate 3e-4 Ensures stable 

convergence 

without 

vanishing 

gradients. 

 Dropout Rate 0.3 Prevents 

overfitting while 

maintaining 

model capacity. 

 Batch Size 64 Balances 

memory 

efficiency and 

gradient stability. 

 Transformer 

Layers 

3 More layers 

improve feature 

extraction but 

increase 

computational 

cost. 

 LSTM Units 128 Optimized for 

sequential pattern 

recognition. 

 Attention Heads 4 Sufficient for 

adequate multi-

head attention. 

 Weight Decay 1e-5 Control 

overfitting by 

penalizing large 

weights. 

Sliding Window 

Justification 

Window Sizes 

Tested 

10, 20, 30, 

40, 60 

30 was chosen as 

it balances 

accuracy (F1: 

92.1%) and 

computational 

efficiency. 

 Accuracy at 30 

Steps 

F1-Score: 

92.1%, 

AUC-ROC: 

96.3% 

Best trade-off 

between short-

term and long-

range 

dependencies. 

 Training Time 

Impact 

30 steps: 

145s/epoch 

Larger windows 

(e.g., 60 steps) 

increased 

training time 

without major 

accuracy gains. 

Computational 

Cost Comparison 

Training Time 

per Epoch 

HTL-APF: 

145s, 

Transforme

r: 130s, 

LSTM: 

110s 

HTL-APF 

requires ~12% 

more training 

time but achieves 

higher accuracy. 

 Inference Time 

(ms/sample) 

HTL-APF: 

3.2ms, 

Transforme

r: 2.9ms, 

LSTM: 

2.4ms 

Remains feasible 

for real-time 

applications. 

 Model Size 

(Total 

Parameters) 

HTL-APF: 

11.8M, 

Transforme

r: 10.2M, 

LSTM: 

8.9M 

Larger than 

LSTM but 

optimized for 

predictive 

performance. 

 

 

 

4    Experimental setup 

Care was taken through the experimental setup for the 
Hybrid Transformer LSTM Athlete Performance 
Forecasting (HTL-APF) Framework to try and determine 
whether the framework could classify athlete performance 
accurately. The study was based on a dataset containing 
more than 200 football, basketball, and athletics athletes 
and gathered with wearable sensors and training logs: heart 
rate, speed, distance covered, workload, recovery times, 
and performance metrics. 

 Normalizing the data values was first done by scaling 

it through Min-Max scaling. Imputation of missing values 

using K-Nearest Neighbors (KNN), and finally, to balance 

the dataset, used the Synthetic Minority Over-sampling 

Technique (SMOTE). A sliding window approach with a 

window size of 30 time steps was applied to preserve 

temporal structure. A 5-fold cross-validation strategy is 

used for robust evaluation, and the dataset was split into 

training, validation, and testing subsets (80, 10, 10) 

respectively. 

 Lastly, this work compares the HTL-APF framework 

to baseline models of the Transformer, LSTM only, CNN, 

and RNN architectures based on tokenizing, Transformer 

latent, pyramid pooling, and encoder-decoder unit. All 

models were trained using cross-entropy loss, optimized 

with the Adam optimizer, and evaluated based on 

Precision, Recall, F1_Score, and AUC_ROC classification 

metrics. It was trained on high-performance hardware 

using an NVIDIA Tesla V100 GPU, as shown in Table 5. 

Table 5: Overview of the Dataset used in the study. 

Aspect Details 

Dataset Name Athlete Performance 

Dataset 

Duration 12 months of continuous 

data collection 

Participants 200 athletes from sports 

such as football, 

basketball, and athletics 

Number of Samples 100,000 time-series 

samples 

Class Labels High Performance, 

Moderate Performance, 

Low Performance 

Features 15 features (e.g., heart 

rate, speed, distance 

covered, workload, etc.) 

Sampling Rate 1 Hz (1 sample per 

second) 

Class Distribution High: 40%, Moderate: 

35%, Low: 25% (before 

balancing) 

Balancing Technique SMOTE (Synthetic 

Minority Over-sampling 

Technique) 
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Table 6: Summary of the experimental setup for 

evaluating the HTL-APF framework. 

Aspect Description 

Preprocessing Min-Max scaling, KNN 

imputation for missing 

values, SMOTE for class 

balancing 

Temporal Structuring Sliding window approach 

with a window size of 30 

time steps 

Models HTL-APF (Transformer 

+ LSTM hybrid), 

Transformer-only, 

LSTM-only, CNN, RNN 

Evaluation Metrics Precision, Recall, F1-

Score, AUC-ROC 

Data Split Training: 80%, 

Validation: 10%, 

Testing: 10% 

Validation Method 5-fold cross-validation 

Loss Function Cross-entropy loss for 

classification 

Optimization Adam optimizer with a 

learning rate scheduler 

Hardware Setup NVIDIA Tesla V100 

GPU (16 GB VRAM), 

Intel Xeon CPU (32 

cores), 64 GB RAM 

Software Tools Python 3.9, TensorFlow 

2.6.0, Scikit-learn 1.0.1, 

Matplotlib 3.4.3, Seaborn 

0.11.2 

Baseline Comparison Models trained under 

identical conditions for 

fair comparison 

 

5    Results and analysis 

This section presents and analyzes the results of the 
proposed Hybrid Transformer-LSTM Athlete Performance 
Forecasting (HTL-APF) Framework. We evaluate the 
HTL-APF framework for classification tasks against 
baselines consisting of Transformer, LSTM, and CNN and 
RNN models, evaluating metrics such as Precision, Recall, 
F1-Score, and AUC-ROC. Table 7 and Figure 2 summarize 
the comparative performance of HTL-APF and baseline 
models. It was found that this HTL_APF framework 
consistently outperformed other models.  

Table 7: Precision, recall, f1-score, and AUC-ROC 

values for models: HTL-APF, transformer, LSTM, CNN, 

and RNN. HTL-APF demonstrates the highest 

performance across all metrics, followed by the 

Transformer, while CNN and RNN exhibit relatively 

lower performance. 
Model Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-

ROC (%) 

Transformer 88.7 87.5 88.1 92.4 

LSTM 86.5 85.3 85.9 90.1 

CNN 83.2 81.9 82.5 87.3 

RNN 79.8 78.1 78.9 85.0 

HTL-APF 92.4 91.8 92.1 96.3 

 

Figure 3: Demonstrates the model's comparative 

performance on Precision, Recall, F1-Score, and AUC-

ROC metrics. 

 
Figure 4: The ROC curves for all the models are plotted, 

and the superior area under the curve of HTL-APF is also 

shown. 

All baseline models were outscored by the HTL-APF 

framework with an F1-Score of 92.1 and AUC-ROC of 

96.3, as shown in Figure4. By including Transformer and 

LSTM components, the model dealt with long-range 

dependencies and sequential patterns. With the highest 

precision (92.4%) indicating a minimum number of false 

positives, the HTL achieved the highest accuracy. It is 

critical for applications where over-estimating an athlete's 

performance can lead to misaligned training plans. In the 

framework, 91.8% recall was achieved by identifying true 

positives, i.e., high-performing athletes are not among the 

missed cases during classification. The AUC-ROC result 

demonstrates that the HTL-APF can successfully 

demonstrate which class of performance is being shown, 

as evidenced by a high AUC-ROC score of 96.3%. The 

HTL-APF framework's training and validation loss curves 

are shown in Figure 5. The optimization strategy, 

alongside two used regularization techniques, led the 

model to converge smoothly without overfitting. From the 

confusion matrix in Figure6, They correctly classified 97% 

of high-performing athletes with very low 

misclassification into moderate-performing athletes. The 

classification accuracy for moderate performance was 
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89%, with mild confusion for moderate and low-

performance classes. In 90 % of the cases, low 

performance was predicted correctly, and on a small 

fraction, it was also wrongly classified as moderate. 

 

 

Figure 5: Training and validation loss curves. 

 

 

Figure 6: Illustrates the confusion matrix for HTL-APF, 

demonstrating its strong performance in correctly 

classifying all three classes. if possible, each special 

matrix function corresponds to high, moderate, and low 

performance. 

 

 
Figure 7:  Error rate comparison across models. 

In Figure 7, Error rates of HTL-APF (7.9%), 

Transformer-only (11.3%), LSTM-only (14.7%), CNN 

(17.5%), and RNN (21.1%) were compared. It 

demonstrates that a hybrid approach reduces the 

misclassification errors. We tested the framework using 

data from three sports disciplines (football, basketball, and 

athletics). The generalization results are summarized in 

Table 8 and show consistent performance across domains. 

Table 8: Cross-domain generalization performance. 

Sport Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

AUC-

ROC 

(%) 

Football 91.8 90.7 91.2 95.5 

Basketball 93.2 92.5 92.8 96.7 

Athletics 92.6 91.9 92.2 96.1 

To further analyze the contribution of each 

component in the HTL-APF framework, ablation studies 

were conducted with the models compared with 

Transformer-only, LSTM-only, CNNLSTM, and other 

baselines. In these experiments, we continue to assess the 

effect of combining Transformers with LSTMs on the 

performance and if any other architectures could achieve 

similar results. The performance of each model is 

summarized in Table 9, including significant observations 

and statistical significance (t-tests) to eliminate the chance 

of the improvements being random. 

Table 9: Ablation studies and statistical significance 

testing 

Model/Expe

riment 

Methodol

ogy 

F1-

Score 

(%) 

AUC-

ROC 

(%) 

Key 

Observations 

Statistical 

significance 

(p-value) 

HTL-APF 

(This Study) 

Transform

er + LSTM 

Hybrid 

92.1 96.3 The best overall 

performance is 

due to 

integrating 

global 

(Transformer) 

and local 

(LSTM) 

dependencies. 

— (Baseline) 

Transformer-

only 

Self-

Attention 

88.1 92.4 Strong for long-

term 

dependencies 

but weak in 

localized 

sequential 

variations. 

p < 0.01 

LSTM-only Sequential 

Memory 

85.9 90.1 Captures short-

term patterns 

but fails at long-

range 

dependencies. 

p < 0.01 

CNN-LSTM Convolutio

nal Feature 

Extraction 

+ LSTM 

87.3 91.0 CNN aids in 

feature 

extraction but 

lacks the long-

range modelling 

capability of 

Transformers. 

p < 0.05 

CNN-only Convolutio

nal Neural 

Network 

82.5 87.3 Effective in 

spatial feature 

detection but 

weak in time-

series 

forecasting. 

p < 0.01 

RNN-only Recurrent 

Neural 

Network 

78.9 85.0 Prone to 

vanishing 

gradients, 

struggles with 

long-term 

dependencies. 

p < 0.01 
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 A hybrid approach improves over Transformer-

only and LSTM-only models, indicating that all the parts 

contribute positively compared to only the Transformer or 

the LSTM. Compared with standalone CNN and HTL-

APF, CNNLSTM is better than standalone CNN and worse 

than HTL-APF, which indicates that CNNs are insufficient 

substitutes for Transformers in the time series forecasting 

task. The improvements were confirmed not due to random 

variation by statistical significance tests (t-tests, p < 0.01 

in the best cases). 

We present comprehensive results and analysis 

arguing that the HTL-APF framework is an effective and 

scalable forecasting solution for athlete performance. 

Finally, the combination of Transformers and LSTM 

networks allows the propagation of local and global 

patterns, achieving state-of-the-art performance across 

various metrics and sports domains. 

6    Discussion 
The skills of the Hybrid Transformer-LSTM Athlete 

Performance Forecasting (HTL-APF) Framework are 

proven by its high metrics performance in the evaluations. 

This discussion is presented based on the framework's 

strengths, performance insights, and implications for 

sports training management. Finally, future enhancements 

are outlined to create a complete view. 

6.1    Strengths of the HTL-APF framework 

By fusing Transformers strengths with LSTMs strength, 

the HTL-APF framework performed better than all the 

baseline models (Transformer only, LSTM only, CNN, 

and RNN). This hybrid approach allowed the model to 

capture: 

• Long-Range Dependencies: The Transformer 

component used self-attention to model global 

interaction between different features across the 

entire sequence. It's crucial to discern overall 

performance patterns in an athlete over time. 

• Sequential Dynamics: The localized temporal 

dependencies and sequential patterns were 

effectively captured by the LSTM component, 

which in turn could be used to model localized 

training and recovery cycles individually. 

Combining these two architectures resulted in an F1-

Score of 92.1% and AUC-ROC of 96.3%, making the 

framework a state-of-the-art technique for classifying 

athlete performance. In addition, it demonstrates the ability 

to balance practical sports training applications between 

high precision (92.4 %) and recall (91.8 %), minimizing 

false positives and false negatives. 

6.2   Insights from class-wise analysis 

The confusion matrix provided critical insights into class-

wise model performance: 

• High Performance: We achieved a 97% classification 

accuracy on high-performing athletes without an 

essential underestimation of their abilities using the 

framework. Identifying elite athletes and how to set 

up their training regimens is crucial. 

• Moderate Performance: The model reached an 

accuracy of 89% for moderate performers but 

misclassified some into low performance. Perhaps it 

has something to do with feature values overlapping 

with other profiles or insufficient differentiation in the 

dataset. It would seem to imply less distance between 

the medium and low-performance profiles. 

• Low Performance: The model had an accuracy of 90% 

for low-performance classification. A small fraction 

of low-performance instances were misclassified to 

moderate, possibly because of the similarity of 

features at the recovery phases. 

This framework forecasts performance levels well 

while opportunities for boundary case refinement are 

identified. 

6.3    Comparative performance 

We validate the effectiveness of HTL-APF by comparing 

it to prior deep-learning models, as summarized in Table 

10. We find that HTL-APF significantly outperforms all 

baseline models regarding F1-Score and AUC-ROC 

scores, indicating its strong capability in discovering long-

range or local dependencies. 

 

Table 10: Performance comparison of htl-apf with prior 

models 

Model Methodol

ogy 

F1-

Sco

re 

(%) 

AU

C-

RO

C 

(%) 

Key 

Limitations 

HTL-APF 

(This 

Study) 

Hybrid 

Transform

er-LSTM 

92.1 96.3 Computatio

nally 

intensive, it 

requires 

optimization 

for real-time 

deployment. 

Transfor

mer-only 

Self-

Attention 

88.1 92.4 Lacks 

localized 

sequential 

pattern 

modeling 

struggles 

with short-

term 

dependencie

s. 

LSTM-

only 

Sequential 

Memory 

85.9 90.1 Fails to 

capture 

long-range 

dependencie

s, leading to 

weaker 

generalizati

on. 
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CNN Convoluti

onal 

Feature 

Extraction 

82.5 87.3 Effective for 

spatial 

features but 

weak in 

modelling 

sequential 

relationships

. 

RNN Recurrent 

Neural 

Network 

78.9 85.0 Prone to 

vanishing 

gradients, 

struggles 

with long-

term 

dependencie

s. 

SVM 

(Prior 

Work) 

Support 

Vector 

Machines 

78.5 82.3 It requires 

extensive 

feature 

engineering 

and is 

ineffective 

for time-

series data. 

Random 

Forest 

(Prior 

Work) 

Decision 

Trees with 

Ensemble 

Learning 

80.1 85.2 Limited 

adaptability 

to temporal 

dependencie

s and static 

feature 

reliance. 

We also attained the best F1-Score (92.1%) and 

AUC-ROC (96.3%) overall baseline models. Thus, LSTM 

integration is justified because transformer-only models 

wield strength in long-range dependencies but fight with 

short-range dynamics. However, global awareness helps 

LSTM-only models capture the sequential patterns of 

arbitrary length in stock price patterns and higher 

predictive accuracy. However, traditional machine 

learning models (SVM, Random Forest) perform terribly 

on accuracy when they mishandle time series 

complexities. 

 

 

6.4    Scalability and generalization 

Scalability and generalization across different sports 

disciplines were demonstrated by our HTL-APF 

framework, which consistently performs well on the 

football, basketball, and athletics datasets. Adaptability to 

a range of athlete profiles and training regimes is 

confirmed by precision and component F1 scores greater 

than 91% for all domains. The framework's scalability 

makes it highly suitable for a multi-sport training data 

mining environment and solves various performance 

forecasting problems. 

6.5    Implications for sports training 

management 
The superior performance of the HTL-APF framework has 

significant implications for sports training management: 

• Personalized Training: Accurate performance 

forecasting can enable coaches and sports scientists to 

design individualized training plans that optimize 

each athlete's workload and recovery cycles. 

• Injury Prevention: Classifying low and moderate 

performance levels precisely could help differentiate 

early signs of fatigue or overtraining so a quick 

medical intervention before injuries occur. 

• Real-Time Decision Making: Due to its scalability 

and robust performance, the framework can be 

deployed in real-time systems where training 

strategies may be dynamically adjusted using live data 

from wearable sensors. 

6.6    Limitations and challenges 
While the HTL-APF framework exhibited exceptional 

performance, certain limitations warrant further 

investigation: 

• Moderate and Low-Performance Overlap: Results 

indicate that further features or data augmentation 

techniques may be needed to improve class 

separability in moderate versus low-performance 

levels. 

• Dataset Variability: The sports focus of the dataset is 

three sports disciplines, which may restrict 

generalization to other sports involving fundamentally 

different performance metrics. 

• Model Complexity: Hybrid architecture, on the other 

hand, increases computational requirements and 

might not be feasible on low-resource devices or 

environments. 

6.7    Future directions 

Several enhancements can be explored to address the 

limitations and further improve the framework: 

 

• Feature Expansion: Adding more contextual features, 

including environmental conditions or psychological 

metrics, could enrich the dataset, making the model 

more accurate. 

• Domain Adaptation: Adapting the model to new 

sports domains could be developed with transfer 

learning techniques since the performances of our 

model generalize to new sports domains. 

• Lightweight Architectures: Lightweight Transformer-

LSTM variants may facilitate the adoption of the 

framework to edge computing scenarios like wearable 

devices. 

• Explainability: Integrating explainable AI techniques 

can give these coaches and athletes more 

understanding of how the model decides, increasing 

trust. 

It presents the advantages of the HTL-APF framework 

and notes its shortcomings. The framework integrates 
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Transformers and LSTMs to tackle athlete performance 

forecasting complexities, which is a scalable and correct 

solution for managing sports training. Future 

enhancements will feature expanded utility in other 

contexts, confirming its continued utility and inspiration in 

sports science. 

7     Conclusion 

By blending the sequential modelling power of LSTMs 

with the attention architectures of Transformers, the 

Hybrid Transformer-LSTM Athlete Performance 

Forecasting (HTL-APF) Framework successfully extends 

the horizon of forecasting athlete performance. The 

framework has been shown to perform consistently better 

than the baseline methods through extensive experiments, 

yielding an F1-Score of 92.1% and an AUC-ROC of 

96.3%. This dual capacity system is very robust for 

complex time series data in sports training by capturing 

both long-term and short-term dependencies. High-

moderate and low-performing athletes are classified with 

high accuracy using the model, suggesting its potential for 

real-world application. More specifically, the framework 

facilitates the personalization of training regimes, injury 

prevention using early detection of overtraining indicators, 

and dynamic and data-driven decision-making regarding 

training or not behind training sessions. Scalability tests on 

datasets of football, basketball, and athletics demonstrate 

its generalizability to multiple sports disciplines. However, 

a few misclassifications occur between moderate and low-

performance levels, indicating a need to further increase 

class separability by adding or improving the features or 

modelling techniques. The hybrid architecture provides 

good accuracy at the expense of computational intensity, 

which limits its applicability in resource-constrained 

environments. Consequently, future work includes 

lightweight model adaptations, context featuring, and 

integration of precise AI techniques to help usability and 

transparency. As is, the HTL-APF framework provides a 

scalable, accurate, and innovative way to forecast athlete 

performance and a solid starting point for future 

improvement in sports training management and athlete 

development. 
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