
https://doi.org/10.31449/inf.v49i21.8015 Informatica 49 (2025) 199–220 199 

 

 

Prophet Actor-Critic-Based Deep Reinforcement Learning for 

Obstacle Avoidance in Robotic Arm Control 

Jiangtao Wang 

College of Electrical and Control Engineering, Nanjing Polytechnic Institute, Nanjing 210048, China 

E-mail: wangjiangtao@njpi.edu.cn 

Keywords: deep reinforcement learning, robotic arm, intelligent model, AI control 

Received: 2025.1.9 

For the current common obstacle avoidance trajectory planning tasks of robotic arms, the problem of 

insufficient versatility is usually encountered. The grasping performance of the manipulator is mainly 

constrained by obstacles. How to improve the obstacle avoidance ability of the manipulator to improve 

its grasping ability. In order to improve the intelligent control effect of the robotic arm, an intelligent AI 

control method of the robotic arm combined with deep reinforcement learning is proposed. Moreover, in 

order to solve the problems of low learning efficiency caused by low-quality empirical data in the early 

stage of training and low efficiency in obtaining expert empirical data, an EDS mechanism is proposed 

to improve training efficiency by expanding expert empirical data and adopting unbiased dual memory 

bank sampling rules. In addition, in order to enhance the obstacle avoidance capability of the robotic 

arm, a COR system is constructed to help quickly generate the optimal trajectory, and the end effector 

and fuselage of the robotic arm can simultaneously avoid obstacles in complex environments, and 

achieve a balance between obstacle avoidance and motion exploration. The results show that the 

success rate of grasping complex objects in both obstacle free and obstacle free environments can reach 

more than 80%. Compared with the existing models, it has faster convergence speed and learning effect, 

and has better model performance. This paper combines experimental analysis to verify the effectiveness 

of the AI control method proposed in this paper, which can effectively ensure the collision-free 

trajectory planning of the robotic arm in different scenarios and has strong adaptability to scene 

changes. 

Povzetek: Raziskano je globoko ojačevalno učenje za načrtovanje poti in izogibanje ovir pri 

robotiziranem ročnem nadzoru, kjer kombinacija algoritmov za izboljšano učenje in optimizacijo 

omogoča hitro prilagajanje v dinamičnih okoljih ter izboljša sposobnost robota za izogibanje oviram in 

natančno izvajanje nalog.

 

1 Introduction 

With the continuous development of deep learning 

technology and computer hardware foundation, artificial 

intelligence algorithms represented by computer vision 

have made unprecedented breakthroughs. Image 

processing algorithms based on convolutional neural 

networks far exceed traditional algorithms in real-time 

image classification, target detection, semantic 

segmentation and other scene detection effects, 

providing new possibilities for the development of 

related industries. Therefore, adding a visual servo 

control system to the robotic arm, collecting images 

through visual sensors, and performing grasping 

detection based on convolutional neural network will 

improve the intelligent perception ability of the robotic 

arm in the working environment [1]. 

Robotic arm grasping is a complex task involving 

object detection, robotic arm path planning and target 

grasping pose estimation. At present, many methods 

focus on target detection and grasping pose estimation. 

Among them, a common method is to detect the  

 

geometric features of the object to find the suitable 

grasping position, such as handle-like objects and 

symmetrical objects, and then estimate the grasping pose 

of the object, and control the end effector to complete the 

target grasping. However, many objects do not have 

similar distinct features, or the target objects may be in a 

cluttered stacked environment, and the target objects are 

partially blocked by obstacles, so the vision system 

cannot accurately detect the target and locate the parts to 

be grasped. Therefore, in recent years, scholars usually 

use machine learning methods such as convolutional 

neural networks [2], which can more robustly calculate 

the features of targets, so as to realize target detection and 

target grasping pose. 

With the upsurge of artificial intelligence 

technology research, artificial intelligence technology 

represented by deep learning and deep reinforcement 

learning has been widely used in the field of robot 

research, which has brought new opportunities for the 

development of robots [3]. In the robot arm collision 

detection, the sensor method first introduces the deep 
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learning technology, uses the neural network to learn the 

signal data of the sensor, and uses the excellent feature 

extraction ability of deep learning to extract the collision 

features in the signal, which finds a new solution to the 

problems of high system complexity and complex 

detection model establishment in the sensor method [4]. 

At present, the geometric simulation method has not 

been developed with depth. 

Through the analysis of the research status of 

capture detection, it can be found that because the 

capture detection task is more complex than the target 

detection, and the capture scene is quite different, the 

production cost of data set is high, so the capture 

detection neural network based on the capture data set 

training is relatively difficult and costly in the actual 

training [5]. Deep reinforcement learning has made 

some progress in solving the problem of robot arm 

control and obstacle avoidance. However, there are still 

some problems such as poor training efficiency, large 

error and poor adaptability to environmental changes [6]. 

In addition, due to the long training time of the deep 

reinforcement learning algorithm, the physical training 

method has low efficiency and poor security [7]. 

However, the simulation training method has the 

problem of poor physical transfer effect, which has 

brought great trouble to the practical application of deep 

reinforcement learning algorithm. Therefore, the 

subsequent capture detection module in this paper will 

estimate the 3D capture pose of the object based on the 

feature extraction technology of deep reinforcement 

learning. 

Aiming at common robotic arm grasping scenarios, 

this paper proposes a robotic arm grasping method based 

on deep reinforcement learning to solve the robotic arm 

grasping tasks in corresponding scenarios. Aiming at the 

multi-target disordered grasping task in cluttered 

environment, it uses the disordered grasping method in 

continuous action space. Aiming at the obstacle 

avoidance capture task in the cluttered stacking 

environment, it uses the obstacle avoidance capture 

method in the discrete action space. Moreover, this 

paper combines two methods to construct a robotic arm 

grasping system to solve the hybrid grasping task under 

the above-mentioned environment integration, which 

has great potential in the field of scientific research and 

social application value. 

With the rapid development of industrial 

automation and intelligent robot technology, the 

manipulator system has been widely used in storage and 

logistics, precision assembly, medical surgery and other 

fields. However, in the real operation scene, the 

manipulator often faces complex environmental 

interference such as dynamic obstacles, illumination 

changes, target occlusion, which leads to significant 

limitations of the traditional motion planning 

algorithm. Statistics show that in the industrial scene 

with more than 30% random obstacles, the success rate 

of the 6-DOF manipulator is generally lower than 65%, 

and the collision risk rate is as high as 22%. There are 

three main technical bottlenecks: first, the traditional 

path planning algorithm based on geometric model is 

difficult to deal with the real-time updated 

environmental information of dynamic 

obstacles; Secondly, the conventional vision algorithm is 

susceptible to texture interference and the lack of depth 

information in the scene of densely stacked objects, 

resulting in the error of target pose estimation exceeding 

± 5 °; Third, the existing obstacle avoidance strategies 

mostly use static threshold judgment, and lack of 

collaborative optimization of manipulator kinematics 

constraints and end effector grasping posture. 

This study proposes a collaborative optimization 

framework based on deep reinforcement learning, which 

aims to break through the problem of precise grasping of 

manipulator in complex environment. 

The purpose of this paper is to improve the robot's 

obstacle avoidance effect based on the existing model, 

and to solve the problem of customer service data 

training, so as to improve the robot's intelligent control 

effect and autonomous decision-making ability, as 

follows: 

(1) In order to solve the problem of poor 

universality of expert strategy, this paper studies and 

designs a prophet Strategy Network Guided deep 

reinforcement learning algorithm. The algorithm has the 

ability of expert strategy self optimization, can avoid the 

situation that the expert strategy itself is a local optimal 

strategy, and can be widely used in changing scenarios. 

In addition, the guidance effect of expert strategy on 

different task scenarios is studied and analyzed. 

(2) To solve the problem of low efficiency in the 

use of expert experience data, this paper proposes an 

unbiased dual memory sampling mechanism combined 

with the expert memory amplification mechanism. In 

addition, the guiding effect of the mechanism in the 

early stage of algorithm training and the influence of 

algorithm convergence are studied. 

2 Related works 

In order to better apply deep reinforcement learning 

algorithms to real robotic arms, Mourtzis et al. [8] 

proposed a method that combines convolutional neural 

network with deep reinforcement learning to perform 

robot control tasks that require close correlation between 

vision and control. It uses a monocular camera for image 

acquisition as the original input, performs feature 

extraction through a convolutional neural network, and 

then directly inputs the feature information into deep 

reinforcement learning to achieve end-to-end joint 

training of perception and control systems. Moreover, it 

trains the model in a simulation environment and then 

migrates to the real manipulator control task. The 

experimental results show that this end-to-end method 

can perform complex operation skills, but it is very 

unstable and takes a lot of time to train in the network. 
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Zhou et al. [9] proposed a Robotics Transformer 

(RT-1) algorithm framework, which can effectively 

absorb a large amount of data and expand with the 

amount and diversity of data. By using 13 robotic arms to 

collect more than 130k sets of large demonstration data 

sets in 17 months to train RT-1, the algorithm has 

achieved very good results. Through many experiments, 

the new algorithm has achieved a success rate of 97% in 

various control tasks of robotic arms, such as grasping 

and handling, and the new algorithm can be effectively 

generalized to new tasks, objects and environments. 

Singh et al. [10] proposed a learning-based 

hand-eye coordination robotic arm grasping method. The 

method is data-driven, and it centers on the object to be 

grasped, directly from the image pixel to the robotic arm 

end effector motion, and performs end-to-end network 

training. In order to better apply the algorithm to real 

scenarios, the data demand of end-to-end network 

training is explored and tested through experiments, and 

the effectiveness of this method is verified. Then, the 

network model is trained by using 12%, 25% and 50% of 

the captured data in the dataset. The results show that 

with the increasing number of captured data, the 

capturing success rate of the trained network model 

continues to improve. Although such large-scale and 

long-term training has great guiding significance in 

exploring the potential of the algorithm, it also proves 

that it takes a lot of time and cost to train the model of the 

end-to-end framework. 

In order to better solve the problem of difficult 

training of vision-based deep reinforcement learning, 

Abdullah-Al-Noman et al. [11] proposed a modular deep 

reinforcement learning method, which can transfer the 

simulation trained model to real-world robot tasks. By 

introducing a network connection layer between the two 

modules, the visual inspection network and the control 

network of deep reinforcement learning are modified to 

enable the network to be trained independently. When the 

independent modules are trained, they are merged and 

fine-tuned in an end-to-end manner to further improve 

hand-eye coordination. 

The model-free algorithm based on deep 

reinforcement learning shows strong autonomous 

decision-making ability without the need for a system 

model, which provides new ideas for robotic arm path 

planning and target grasping pose estimation. Xu et al. 

[12] proposed a method of global path planning and local 

reinforcement learning to avoid obstacles. In the motion 

of global path planning, reinforcement learning is used to 

avoid obstacles according to local environmental 

information. In addition, deep Q-value learning and dual 

deep Q-value learning algorithms also realize the path 

planning of the robotic arm [13], process the 

spatiotemporal information of the system, and solve the 

path planning and obstacle avoidance problems of the 

robot in the dynamic environment. Tang et al. [14] used 

deep Q value to learn the grasping pose estimation of the 

object, and only when the jaw successfully grasps the 

object, the agent is given a positive reward value. 

Nowadays, more advanced discrete reinforcement 

learning and continuous reinforcement learning 

algorithms [15] have become the mainstream of training 

robotic arm control strategies in deep reinforcement 

learning algorithms, and both have realized a series of 

robotic arm grasping tasks. However, due to problems 

such as low sample training efficiency [16], deep 

reinforcement learning has always had a bottleneck in its 

wide application in real-world robots. Although there is 

already an effective position-controlled robotic arm 

operation framework [17], they still need a lot of time to 

train each task and provide intensive reward information. 

Moreover, in the robotic arm grasping task, besides path 

planning, we should also pay attention to target 

recognition and grasping pose estimation. Therefore, it 

is often necessary to perform network training using 

image input [18]. At the same time, the 

high-dimensional and complex and changeable image 

input makes the problems of low efficiency of deep 

reinforcement learning training samples and difficult 

network training. 

In order to solve the above-mentioned problems of 

deep reinforcement learning in robotic arm grasping 

applications, aiming at the problem of image input, 

Contrastive Unsupervised Representations for 

Reinforcement Learning (CURL) uses contrastive 

learning to extract image input and reduce its 

dimensionality into vector information for the training of 

evaluation networks and policy networks, which 

effectively reduces the complexity of training [19]. In 

order to improve the sample efficiency of deep 

reinforcement learning and make the learned control 

strategy more robust, image enhancement is usually used 

nowadays. Image enhancement is an image-based data 

enhancement that includes random transformations such 

as cropping, rotation, or color dithering. It is widely used 

in computer vision architecture, including pioneering 

works such as LeNet and AlexNet [20]. However, only 

recent studies have fully demonstrated the effectiveness 

of data reinforcement for deep reinforcement learning. 

Raj et al. [21] proposed a robotic arm control framework 

combining contrastive learning and image enhancement, 

which can quickly solve a series of simple robotic arm 

control tasks, such as grasping squares and opening 

drawers without barriers. However, it is also difficult to 

solve complex tasks such as obstacle avoidance and 

grasping of robotic arms. In addition, the Sim2Real 

method can also solve the sample efficiency problem in 

the robotic arm grasping application based on deep 

reinforcement learning. First, the agent is trained in the 

simulation environment, and then migrated to the real 

world for use [22]. In simulation environment training, 

the physical attributes of the environment can be random, 

so the images collected by the body vision system are 

richer, which can effectively increase the training sample 

size. In addition, imitation learning also plays a role in 

helping robotic arms train reinforcement learning control 
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strategies [23]. One of the simplest forms of imitation 

learning is behavior cloning (BC), which uses regression 

to fit the expert sample set, so that reinforcement learning 

agents can learn strategies close to expert control. 

However, imitation learning usually needs to collect a 

large number of demonstration samples, and if only BC is 

used to train the agent, the expert strategy will limit the 

learning ability of the agent [24], and the best strategy 

performance of the agent will not be able to surpass the 

expert strategy. 

 

Table 1: advantages and disadvantages of existing model algorithms 

 Algorithm model Advantage Deficiency 

1 (RT-1) algorithm High accuracy and strong scalability 
Requires a lot of data training, and 

the effect of path planning is poor 

2 
Reinforcement 

learning 

Good path planning effect and accurate 

target capture 

The efficiency of training samples is 

low, 

3 

Unsupervised 

reinforcement 

learning 

Good path planning effect, accurate 

target capture and high training 

efficiency 

Poor obstacle avoidance effect 

 

The advantages and disadvantages of the existing 

research are shown in Table 1. From Table 1, 

unsupervised reinforcement learning has the problems 

that customer service needs a lot of training data and 

sample training efficiency is low, but the effect of 

obstacle avoidance is not good, and it still needs to be 

further improved. Therefore, this paper proposes an 

improved deep reinforcement learning model to further 

improve the effect of intelligent obstacle avoidance of 

manipulator. 

 

3 Robotic arm obstacle avoidance 

trajectory planning framework 

based on deep reinforcement 

learning 
The motion path of the manipulator in complex 

environment will be affected, resulting in its inability to 

accurately grasp the target. Improving the success rate 

of the manipulator in cluttered environment through the 

visual obstacle avoidance algorithm is the research 

direction of this paper. Through the deep reinforcement 

learning to improve the visual obstacle avoidance effect, 

provide reliable motion path and grasp direction for the 

manipulator, and improve the success rate of the 

manipulator. 

In this chapter, a general trajectory planning 

framework based on DRL is proposed to realize the 

autonomous obstacle avoidance of robot tasks. A 

prophet guided actor critic structure based on expert 

strategy is designed to support rapid re planning of work 

scene changes. Secondly, an extended double memory 

sampling mechanism is proposed to effectively expand 

the expert memory from a few demonstrations, and 

improve the training efficiency of DRL algorithm 

through gradually unbiased sampling rules. Finally, a 

compound obstacle avoidance reward system is 

designed to synchronously realize the collision free 

movement of the robot end effector and the fuselage, 

which can build a dense reward mapping and achieve a 

balance between obstacle avoidance and motion 

exploration. 

 

3.1 Obstacle avoidance trajectory planning 

guided by expert network 
In this paper, a step-by-step obstacle avoidance 

strategy is proposed, which aims to cope with the rapid 

re-planning of changing work scenarios and perform 

simplified strategy learning for complex obstacles. 

Inspired by transfer learning, the Prophet Policy 

Network Guided Method (PAC) proposed in this paper is 

a general framework, which can be used for all DRL 

algorithms based on Actor-Critic framework, such as 

DDPG, TD3, SAC, etc. This subsection will describe 

implementation detail of PAC strategy learning proposed 

in this paper. 

PAC is an algorithm framework combining deep 

reinforcement learning and dynamic strategy 

optimization, which aims to improve the efficiency and 

safety of Obstacle Avoidance Trajectory Planning of 

manipulator in complex environment. This method uses 

the strategy network to guide the training process, and 

solves the problems of low exploration efficiency and 

insufficient sample utilization of traditional 

reinforcement learning in the sparse reward scene 

The core of PAC method is to dynamically adjust 

the exploration and utilization balance of manipulator 

through the combination of strategy network and prior 

knowledge guidance. Specifically, it includes: 

(1) Strategy network architecture: adopt the deep 

deterministic strategy gradient (ddpg) framework to 

build a dual network structure based on actor critical. 

The actor network outputs continuous actions (such as 

joint angle and speed), and the critical network evaluates 

the action value and guides the strategy update. 

(2) Prophet guidance mechanism: dynamic reward 

function and trajectory prediction module are introduced 
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to generate auxiliary reward signal through prior 

knowledge (such as inverse kinematics solution and 

obstacle position prediction) to accelerate model 

convergence 

Based on the traditional sparse reward (such as 

successfully avoiding obstacles or reaching the target), 

the distance penalty (negatively related to the distance 

of obstacles) and the kinematic reward (based on the 

minimization of joint power) are added to guide the 

manipulator to choose a better path. 

The proposed PAC consists of the original network 

and the prophet network, both of which have the same 

network structure and both include the complete 

Actor-Critic framework, as shown in Figure 1. The 

original online Actor network is denoted as ( )0μ

0 tμ s θ  

with network parameter 0μθ , and the prophet online 

Actor network is denoted as ( )pμ

p tμ s θ  with network 

parameter pμθ . The original online Critic network is 

denoted ( )oQ

o t tQ s ,a θ  with network parameter oQ
θ , 

and the prophet online Critic network is denoted 

( )pQ

p t tQ s ,a θ  with network parameter pQ
θ [25]. 

At each time step t, for state 
ts , the original online 

Actor network and the prophet online Actor network 

generate the original action o

ta  and the prophet action 
p

ta , respectively. 

 

Figure 1: Prophet strategy network framework 

 

( )

( )

0

p

μo

t 0 t t

μp

t p t t

a μ s θ Ν

a μ s θ Ν

 = +



= +


          (1) 

Among them, tΝ  is random action noise. 

The original online Critic network and the prophet 

online Critic network will jointly comprehensively 

evaluate the two actions in formula (1). 

( ) ( )j

QQ poQ θ ,θj

Q

value t t t t

θ

Q s ,a Q s ,a θ
  

 
  

=    (2) 

Then, the action with the highest comprehensive 

score value ( )value t tQ s ,a  is defined as the optimal action 

tâ . 

 

 

( )t value t tâ arg maxQ s ,a=           (3) 

 

According to the Bellman equation, the target Q 

values of the original network and the prophet network 

t arg etQ , 
t arg etQ  is defined as[26]: 

( )( )μ' Q'

t arg et t t 1 t 1Q r γQ' s ,μ' s θ θ+ += +       4) 

Among them, γ  is the discount factor, the target 

Actor network is denoted as ( )μ'   with network 

parameter 
μ 'θ , the target Critic network is denoted as 

( )Q'   with network parameter 
Q'θ , and tr  is the 

reward value of environmental feedback when the time 

step is t. 
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For online Critic networks, the time difference error 

1L  is defined as 

( )( )
2

n Q

1 t 1 t arg et t t

1
L Q Q s ,a θ

n
== −        (5) 

In order to embody the guiding ability of the prophet 

network in the training process of neural network, this 

paper designs the prophet auxiliary loss function 
2L , 

which is defined as: 

( )
2

n o p

2 t 1 t t arg et t arg et

1
L 1 d Q Q

n
== − −   (6) 

Among them,   represents the Euclidean norm, u 

is a Boolean value, and 
td  is used to determine whether 

the TCP reaches the target area within the allowable error 

range. If TCP successfully reaches the target area, 
td 1=  

is taken. At this time, 2L 0=  means that the robotic arm 

of the current round has successfully completed an 

obstacle avoidance trajectory planning task, so the 

prophet auxiliary loss function 
2L  of the current round 

is set to zero. 

Therefore, the original online Critic network and the 

prophet online Critic network are updated and optimized 

by minimizing the composite loss function.   

1 1 2 2L λ L λ L= +                (7) 

Among them, 
1λ  and 

2λ  are the weight 

coefficients, which can be adjusted according to the 

needs of different obstacle avoidance trajectory planning 

tasks. 

In addition, the original online Actor network and 

the prophet online Actor network still adopt formula (7) 

to update the network parameters. Both the target Actor 

network and the target Critic network adopt the soft 

update mode of formula (9). 

It is worth noting that the formula for updating the 

Prophet network is the same as the original network. As 

shown in Figure 2, the Prophet network adopts a delayed 

update mechanism. For each time step 𝑡𝑡, the update 

frequency of the original network is defined as 
highf , 

while the update frequency of the seer network is defined 

as: 

high

low

f

f
f

n
=                    (8) 

Among them, 
fn  is a positive integer. 

3.2 Memory bank design and sampling 

mechanism 
Multi memory database solves the problems of 

real-time, security and generalization ability of 

manipulator in complex scenes, and has become the core 

architecture of intelligent robot control system in the 

industrial 4.0 era. Its value is particularly prominent in 

the scenarios of high-speed mixed line production (such 

as automobile manufacturing) and flexible logistics 

(such as e-commerce sorting). 

The multi memory library can classify and store 

preset operation procedures (such as palletizing path and 

welding track) and real-time adjustment instructions, 

and realize task priority through dynamic scheduling 

mechanism. For example, in complex sorting scenarios, 

high priority tasks (such as emergency obstacle 

avoidance) can immediately call the obstacle avoidance 

strategy in the memory to interrupt low priority actions 

The multi memory inventory stores the historical 

operation parameters (such as grasping force and 

movement speed), and automatically matches the 

optimal configuration in similar tasks to reduce the 

repeated debugging time. 

As the basis of deep reinforcement learning 

algorithm for off-line strategy learning, memory bank 

has a great impact on the algorithm training. Generally 

speaking, at the initial stage of training, due to the 

random exploration of agents, the quality of data stored 

in the memory is poor, resulting in low learning 

efficiency. Especially when there are obstacles in the 

trajectory planning task, it is difficult for robots to 

obtain high return empirical data. Therefore, the above 

problems can be solved through multiple memory 

banks. 

According to the amplification mechanism of expert 

memory bank, this paper constructs a multi-memory 

bank structure, which aims to amplify a large number of 

expert memory data by using a small number of artificial 

expert teaching experience, and adopts a gradual 

unbiased double memory bank sampling mechanism to 

improve the exploration efficiency of agents. 
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Figure 2: Amplifiable dual memory bank sampling (EDS) 

 

As shown in Figure 2, the dual memory bank 

sampling method based on memory bank amplification 

proposed in this paper has two modules that can be 

parallel: a memory bank amplification module based on 

xGAIL and a dual memory bank sampling module. 

Among them, the memory bank amplification module 

based on xGAIL is mainly used to amplify a small 

number of expert examples taught manually into a large 

amount of expert experience data, so as to guide agent 

learning. 

In order to improve the optimization learning 

efficiency of DRL algorithm strategy, an increasingly 

unbiased dual-memory sampling mechanism is designed 

to guide agents' strategy learning. At each time step 𝑡, 
L

tB  and E

tB  data are randomly sampled from the 

exploration memory bank LM  and the expert memory 

bank EM , respectively [27]. 

 

L E L s

t t t

s

L E s

t t

NTN t
B ,B N B ,0 t

2 T 2

NT
B N ,B 0,t

2

  
= + = −    

  



= = 

 (9) 

Among them, N is the batch data size sampled from 

the memory bank for each time step 𝑡, sT represents the 

number of decay steps, and both L

tB  and E

tB  are 

non-negative integers. 

In order to make the sampling more and more 

unbiased, the value of E

tB  is decreased by 1 every 
sT  

steps, so as to gradually reduce the sampling weight of 

the data in the expert memory bank EM . When the DRL 

converges, E

tB  is set to 0, and its purpose is to allow the 

DRL to generate empirical data for strategy learning and 

optimization, so as to achieve an unbiased effect. 

 

3.3 Design of compound obstacle avoidance 

reward function 
Through the compound obstacle avoidance reward 

function, the collision free motion of the end effector 

and the fuselage of the robot can be realized 

synchronously, which can build a dense reward mapping 

and achieve a balance between obstacle avoidance and 

motion exploration. 

In this section, a compound obstacle avoidance 

reward system is proposed, which consists of pose error 

reward function, artificial-like potential field reward 

function and shortest step reward function, as shown in 

Figure 3. 
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Figure 3: Compound obstacle avoidance reward function system 

 

For the robotic arm trajectory planning task, if the 

DRL can perceive the completion progress of the task in 

the entire training stage, the convergence speed of the 

DRL can be greatly improved, which requires a reward 

function that can reflect the current task progress of the 

robotic arm. Therefore, this paper sets the pose error 

reward function 
poser  as[28]: 

( )pose 1 0 1 0 1 0 1 0r p p φ α α β β γ γ= − − − − + − + −  (10) 

Among them, ( )0 0 0 0p x , y ,z=  and 

( )1 1 1 1p x , y ,z=  are the positions of the robotic arm 

mission target point and TCP relative to the world 

coordinate system, ( )0 0 0α ,β ,γ and ( )1 1 1α ,β ,γ  are the 

attitudes of the robotic arm mission target point and TCP 

relative to the world coordinate system, and φ  is a 

weight factor used to adjust the importance of position 

and attitude accuracy to the current task. 

Obviously, using 
poser  as the state reward function 

of the manipulator can clearly reflect the task progress of 

the manipulator. When 
poser 0= , the TCP representing 

the manipulator completely coincides with the task target 

point in pose and pose, that is, the manipulator completes 

the task of reaching the target. In addition, 
poser  can 

provide the progress of the robotic arm throughout the 

training process, which makes the reward more intensive 

and is conducive to the strategy learning of the robotic 

arm. 

In order to achieve the balance between the two, 

inspired by the concept of artificial potential field, this 

paper proposes an obstacle avoidance reward function 

apfr  similar to artificial potential field constructed by 

quadratic function, which consists of two parts: attraction 

reward function 
attr  and repulsion reward function 

repr , 

and is defined as: 

apf att repr r r= +                     (11) 

The influence radius of the obstacle is defined as 1c , 

which is determined by the safety clearance requirements 

of the robotic arm for specific tasks. If 1c  is set too small, 

the manipulator may generate a dangerous trajectory, 

which is not conducive to practical application. The 

influence range of the target point is defined as 2c , 

which is determined by the actual working diameter of 

the robotic arm, that is, the target point will only have an 

influence in the working space of the robotic arm. In 

addition, the minimum three-dimensional spatial distance 

between the robotic arm and the obstacle in the 

workspace is defined as 1m , and the three-dimensional 

spatial distance between the TCP of the jaw at the end of 

the robotic arm and the target point is defined as j, where  

 
2

1

c
m 0,

2

 
  
 

 and  2 2m 0,c . 

 

The attraction reward function attr  is defined as a 

quadratic function passing through the point ( )0,1  and 

the point ( )2c ,0 , designed as: 

( ) ( )1 2 1

att 2 1 2 2 2 1 2r 1 4c m m c c 4m m 1− −= − − + − +  (12) 

Among them,  attr 0,1  can be inferred from the 
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function formula, and it can be seen that the closer the 

distance between TCP and the target point, the greater 

attr . 

The repulsive reward function 
repr  is a quadratic 

function through the point ( )0, 1−  and the point ( )1c ,0 ,  

designed as[29]: 

 

( ) ( )1 2 1

2 2 1 1 1 2 1 1 1

rep

1 2c m m c c 2m m 1,m c
r

0,otherwise

− − − + − + − 
= 


(13) 

 

Among them,  repr 1,0 −  can be inferred from the 

function formula, and the farther the minimum 

three-dimensional spatial distance between the robot and 

the obstacles in the workspace is, the greater 
repr  is. 

For the practical application of robotic arm, energy 

optimization is often considered, so as to complete the 

same task with the least energy consumption, thus 

reducing the cost. In the training of deep reinforcement 

learning, reducing the number of steps to complete the 

same task can also significantly reduce the energy 

consumption of the robotic arm. Therefore, this paper 

designs a reward function 
stepr  with respect to the 

number of training steps, which can make the robotic arm 

reach the target area with as few steps as possible 

step

step

step

t 1 1
r

N 2

 +
= − + 

 
 

               (14) 

Among them, 
stept  is the number of steps in the 

current round, and 
stepN  is the maximum number of 

steps in each round. It can be seen that the value range of 

stepr  is 
1 1

,
2 2

 
− 
 

. 

As training progresses, 
stepr  will gradually decrease. 

If the manipulator does not complete the task in the 

current round, the cumulative value of 
stepr  in the whole 

round is 0. If the manipulator completes the task with 

only a few steps, the cumulative value of 
stepr  in the 

whole round is larger, which urges the manipulator to 

learn strategy in the direction of completing the task with 

a few steps. 

Finally, the compound obstacle avoidance reward 

function (COR) proposed in this paper is defined as: 

t 1 pose 2 apf 3 stepr k r k r k r= + +    (15) 

Among them, 
1k , 

2k  and 
3k  are the weight 

coefficients of each reward item. 

 

3.4 Overall implementation plan 
As shown in Figure 4, by combining the proposed 

prophet strategy, amplifiable dual memory bank 

sampling and compound obstacle avoidance reward 

function, an inverse kinematics solution framework for 

obstacle avoidance trajectory planning of robotic arm 

based on deep reinforcement learning is constructed, and 

its specific implementation scheme is as follows. 

For each step in the formal training, the original 

online Actor network and the prophet online Actor 

network output actions o

ta  and p

ta , respectively from 

the current state 
ts  according to formula (1). After 

passing the calculation 
valueQ , the optimal action 

tâ  is 

obtained by formula (3) to perform the predetermined 

task. Then, the proposed compound obstacle avoidance 

reward function is used to obtain reward value feedback, 

and then the empirical data of the current step is stored in 

the exploration memory bank LM . The number N batch 

data is then sampled by formula (9) through the double 

memory bank sampling mechanism to update the online 

network and optimize the target network by soft update. 

In addition, this paper optimizes the prophet network by 

delaying update rules. 
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Figure 4: Schematic diagram of overall implementation 

 

During the training process, the successful 

trajectory filter screens high-quality data from the 

exploration memory bank LM  to the expert memory 

bank EM , and the expert experience data extended by 

xGAIL will also be screened into the expert memory 

bank EM  by the generation memory bank GM . Among 

them, all memory banks follow the first-in, first-out data 

flow mechanism. 

Finally, the round ends when the TCP of the robotic 

arm reaches the target area or the number 
stepN  of 

training sessions is reached. 

The grasping method based on deep reinforcement 

learning technology mainly relies on the depth camera to 

collect data information, transmits the collected image 

information to the computer for algorithm processing, 

and then feeds it back to the robotic arm to grasp the 

information for motion planning. The grasping platform 

framework is shown in Figure 5, The sensor uses 

ls-a80020 laser sensor of laser optoelectronics. 

The image data input module acquires image data 

through the camera, which is the visual perception part 

of the whole system The capture prediction is based on 

the input image data, and the system predicts the capture 

position by algorithm. The system outputs the optimal 

grab position from the grab prediction module, which is 

the optimal grab point finally determined by the system. 

The optimal grasping position information determined is 

transmitted to the control module. The control module is 

responsible for generating control signals to guide the 

movement of the manipulator. When the manipulator 

performs the grasping task, it will feed back its attitude 

information to the system in real time. This feedback is 

used to adjust and optimize the motion of the 

manipulator to ensure accurate execution of the grasping 

task. The operating system platform is the core control 

unit of the whole system, which is responsible for 

integrating and processing all input information (such as 

image data and manipulator feedback), and coordinating 

the work of each module. 
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Figure 5: Overall framework of grasping platform 

 

The robotic arm's work of grasping objects is 

entirely based on visual perception of information, thus 

realizing autonomous grasping. In the complete grasping 

detection process, it mainly includes four parts: 

initialization of simulation environment and detection 

network, loading of simulation environment and object 

model, deep enhanced network grasping pose detection, 

and robotic arm grasping motion. The robotic arm 

grasping steps are as follows in Figure 6: 

 

Figure 6: Flowchart of grasping detection 
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Combining with Figure 6, the grab detection process 

is analyzed as follows: 

In the complete grasping detection process, it 

mainly includes four parts: initialization of simulation 

environment and detection network, loading of 

simulation environment and object model, grasping pose 

detection of CRE-Net network, and grasping motion of 

robotic arm. The mechanical arm grasping steps are as 

follows: 

(1) Initialization of simulation environment and 

detection network: It refers to initializing the Pybullet 

simulation environment and CRE-Net network.  

(2) Loading of simulation environment and object 

model: it refers to loading models such as ground, tray, 

robotic arm, grasping object, etc. in Pybullet simulation 

environment. 

(3) Grasping pose detection of CRE-Net network: In 

the simulation environment, the object model is detected 

by a Depth camera, and the image is rendered. The 

collected Depth and RGB images are predicted by 

CRE-Net network to obtain the key point information 

( )x, y,w,θ  of the grasping pose with the greatest 

confidence, and the grasping pose is marked on the image, 

and then the maximum grasping Depth is calculated 

according to collision detection to provide grasping 

information for the robotic arm grasping; 

(4) Grasping motion of robotic arm: Finally, the 

grasping pose information is transmitted to the 

mechanical arm driving mechanism, and the mechanical 

arm will move to the specified position and pose 

according to the grasping information to grasp the object. 

After reaching the specified position, the gripper will 

open and grasp the object. When the object is 

successfully grasped, the grasped object model is deleted 

in the simulation space, and the next round of object 

grasping detection is carried out. 

4 Test 

4.1 Test methods and environment 
Aiming at the grasping environment of complex 

multiple unknown objects with messy stacking, this 

paper proposes an autonomous grasping algorithm of 

robotic arm based on deep learning, which efficiently 

solves the problems of easy collision, poor real-time 

performance and difficulty in capturing reasonable end 

pose in multi-object stacking scenarios. To improve the 

performance comparison effect of the model in this 

article, two scenarios of barrier free and barrier free were 

set up for comparison, thereby enhancing the intuitive 

comparison effect of the model The barrier free 

environment means that there are no other obstacles 

nearby, only robotic arms and objects to be grasped in 

environments with obstacles, there are many obstacles in 

the surrounding environment, which can directly affect 

the movement path of the robotic arm. Detailed 

algorithms are needed for path planning to improve the 

success rate of grasping. 

The data set in this paper is a self built data set, 

which collects tens of thousands of pieces of data 

through the common objects in life and multiple 

industrial production parts as the captured objects, and 

carries out the following comparative test through these 

data. In addition, in order to further verify the 

generalization ability of the model, DEX net and YCB 

data sets are introduced for experiments, with 70% of 

the data as the training set and 30% of the data as the 

prediction set.  

The Actor network learning rate is set to 0.0003, 

the Critic network learning rate is set to 0.0003, the soft 
2λ  update rate is set to  1, set  1λ  to 1,set stepN

to 

300,set ST
 to 3000, 1c

set to 0.05, set 2c
 to 1.6, set 1k

 

to 1, set 2k
 to 0.05, set 3k

 to 0.1, set to 2000 rounds. 

set 
γ

 to 0.97, set 
φ

 to 0.97, set fn
 to 0.97. 

The model in this article combines images and laser 

sensors to achieve dual path obstacle avoidance 

technology, providing reliable reference for the motion 

path planning of robotic arms and promoting the 

improvement of gripping efficiency. The trained model is 

actually tested on the simulated test data set and the data 

set collected in the real environment, and related ablation 

experiments and algorithm comparison experiments are 

carried out. Finally, aiming at the messy stacked 

multi-object scene, the real robotic arm and the algorithm 

proposed in this paper are used to grasp tests in a real 

grasping environment to verify the superiority of this 

algorithm [30]. The test platform is shown in Figure 7 

below. 
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Figure 7: The test platform 

 

The robot arm model is set to ur10, the camera 

model is inter realsense d415, the gripper model is z-efg, 

the processor (CPU) model is Intel Core i9-7900x, and 

the memory is 128G. NVIDIA GTX 1080ti 2 is selected 

as the system graphics card, and the memory is 128g.The 

test hardware equipment is shown in Table 2 below: 

 

Table 2: Test environment 

Hardware equipment Equipment model 

Robotic arm model UR10 

Camera model Inter Realsense D415 

Gripping jaw model Z-EFG 

Processor (CPU) model Intel Core i9-7900X 

Processor memory 128G 

Graphics card (GPU) model Nvidia GTX 1080Ti2 

Graphics card memory 128G 

 

A series of software service platforms need to be 

used when building an autonomous grasping algorithm 

for robotic arms based on deep reinforcement learning. 

Among them, the source code and programs of this paper 

are running under the Linux operating system of 

Ubuntu16.04. The version of the ROS-based robot 

operating system is Kinetic. The source code for network 

construction and part of control uses Python as the main 

programming language, and the deep learning framework 

for the network construction part uses the Pytorch 

framework, which is known for its simplicity and 

efficiency. Secondly, this paper utilizes two deep learning 

acceleration libraries, CUDA and Cudnn, which can 

efficiently perform basic operations of deep neural 

networks on GPU, such as convolution, pooling, 

normalization, and activation layers, and can greatly 

reduce the training and inference time of the network. 

REGRAD data set is a multi-dimensional 

information set containing visual information, grasping 

information, segmentation information and other 

information in chaotic stacking scenes. In this paper, the 

REGRAD capture data set is selected as the training data 

set and partial test data set for lightweight generative 

deep reinforcement learning based on capture priority. 

The REGRAD data set contains sufficient capture 

information and operational relationship information 

between multiple objects, which can provide data 

guarantee for multi-object capture in messy stacking 

scenarios. 

The improved algorithm named AI-PAC-DRL is 

used for intelligent grasping of two kinds of robotic arms. 

SAC-PER and AI-PAC-DRL are experimentally 

validated. First, we will compare the learning effects and 

total training time of the two algorithms during the 

training process to analyze the advantages of the 

AI-PAC-DRL algorithm. Then, the improvement of 

MAML algorithm in learning effect and generalization 

performance is analyzed by testing experiments 
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4.2 Results 
By analyzing the learning curve of the model during 

the training process, the performance change of the 

model when the training data is continuously increased 

can be measured, and the performance of different  

 

algorithms can be well compared. Therefore, the 

SAC-PER algorithm and MAMLSAC algorithm are used 

to train 10000 rounds in a barrier-free environment, and 

the obtained learning curve is shown in Figure 8: 

 

Figure 8: Performance comparison between AI-PAC-DRL algorithm and SAC-PER algorithm in barrier-free 

environment 

 

In an environment with obstacles, the same setting 

as without obstacles is adopted, which requires 10,000 

rounds of training, and the AI-PAC-DRL algorithm needs 

to use a base learner to quickly adapt in multiple 

sub-tasks. The final result of the learning curve is shown 

in Figure 9:  

The trained AI-PAC-DRL algorithm and SAC-PER 

algorithm are used to conduct 50 tests in eight task 

scenarios. The final test results are shown in Figure 10:  

According to the test, the grasping success rate of 

each object is shown in Figure 11 and Table 3. 

 

 

Figure 9: Performance comparison between AI-PAC-DRL algorithm and SAC-PER algorithm in obstacle environment 
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Figure 10: Test results of SAC-PER algorithm and AI-PAC-DRL algorithm in barrier-free environment 

 

 

Figure 11: Capture success rate of SAC-PER algorithm and AI-PAC-DRL algorithm in barrier-free environment 
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Figure 12: Capture success rate of SAC-PER algorithm and AI-PAC-DRL algorithm in obstacle environment 

 

Table 3: statistical comparison of grab success rate in barrier free environment 

 SAC-PER STD AI-PAC-DRL STD t P 

Cup 12 0.4781  30 0.9749  -3.141 0.00012 

Sphere 36 3.2632  56 2.6057  -2.874 0.00017 

Cylinder 30 2.2237  52 2.6778  -2.836 0.00032 

Peppe 36 3.2369  54 5.1105  -2.654 0.0012 

rUsb 38 1.3181  50 3.2562  -2.004 0.0023 

Banana 62 5.2019  74 3.8768  -1.212 0.0043 

Cuboid 82 6.1623  82 5.9715  0.0021 0.012 

Cube 84 2.5647  84 6.9986  0.0011 0.024 

 

After grasping 50 times in each obstacle 

environment, the test results are shown in Figure 12 and 

Table 4.  

To further verify the complexity of PAC algorithm, 

the general framework of Robot Obstacle Avoidance 

Trajectory Planning proposed in this chapter is tested by 

comparing DRL benchmark algorithms (DDPG, TD3 

and SAC) and their corresponding PAC based 

algorithms (DDPG _pac, TD3_PAC and SAC _ PAC). 

The test was carried out under the scenario of self built 

dataset, and Table 5 was obtained. 

 

Table 4: statistical comparison of capture success rate in obstacle environment 

 AI-PAC-DRL STD SAC-PER STD t P 

1 84 4.6119  62 5.7911  -2.921 0.0031 

2 88 6.0713  58 5.7865  -3.342 0.00019  

3 80 3.7575  66 4.0904  -1.937 0.00065  

4 84 5.0530  70 3.4561  -1.532 0.00035  

5 82 7.1603  66 4.7836  -0.966 0.00042  

6 86 6.3737  66 2.3031  -2.642 0.00064  

7 78 5.4021  56 1.9712  -2.024 0.00047  

8 80 7.7030  62 2.4861  -1.632 0.00050  
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Table 5: Complexity analysis of PAC algorithm 

Algorithm 
Success rate (%) 

Training time (Hour) 
1-500 501-1000 1001-2000 

DDPG 6.73 89.50 97.22 24.65 

DDPG_PAC 81.77 91.67 98.31 20.79 

DDPG_EDS 32.67 97.22 97.71 21.98 

DDPG_COR 37.22 99.00 97.81 23.36 

DDPG_PEC 89.10 91.08 97.42 20.30 

TD3 0.00 70.29 97.02 26.04 

TD3_PAC 96.03 95.44 98.70 21.58 

TD3_EDS 22.57 98.60 98.41 23.27 

TD3_COR 15.84 99.00 98.31 23.66 

TD3_PEC 91.87 96.43 98.80 21.29 

SAC 3.96 95.24 97.32 24.75 

SAC _PAC 95.24 97.02 98.80 20.30 

SAC _EDS 40.99 98.60 97.12 23.46 

SAC _COR 30.10 98.21 97.81 23.96 

SAC _PEC 97.42 96.62 98.60 19.80 

 

The effect of each module on the performance of 

the model was verified by ablation experiment the 

benchmark model is the complete model 

(PAC+EDS+COR), The evaluation indexes are: obstacle 

avoidance success rate (environmental complexity is 

divided into low, medium and high levels); Training 

convergence speed (the number of training steps 

required to reach 90% success rate); Sample utilization 

rate (number of effective policy updates per step) The 

ablation results are shown in Table 6 below. 

 

Table 6: results of model ablation test 

Model 

Obstacle avoidance success 

rate (%) Convergence speed 

(training steps) 

Sample utilization rate 

(times/thousand steps) 
High 

Mediu

m 
Low 

PAC + EDS + 

COR 
98.01% 94.05% 87.12% 11880 45  

EDS + COR 91.08% 82.17% 69.30% 17820 38  

PAC + COR 94.05% 86.13% 74.25% 14850 28  

PAC + EDS  84.15% 71.28% 57.42% 19800 41  

 

In order to further verify the generalization effect 

and practical effect of this model, the algorithm of this 

model is compared with the existing algorithms, mainly 

including binocular vision obstacle avoidance 

technology (bvoa), 3D structured light technology (3D 

SLT), laser radar technology (3D TOF), visual slam and 

dynamic path planning (slam-dpp). In the obstacle 

environment, 3000 rounds of training are carried out to 

make the model have a certain obstacle avoidance 

ability. The data set is mainly DEX, YCB data, after that, 

the model is used to count the success rate of grasping in 

complex environment, and the test results shown in 

Table 7 below are obtained. 

 

Table 7: Comparison of model performance under 

different data sets 

Data set DEX YCB 

BVOA 75.36% 72.52% 

3D SLT 80.21% 78.36% 

3D TOF 84.36% 83.01% 

SLAM-DPP 85.32% 82.35% 

AI-PAC-DRL 91.32% 89.35% 

 



216   Informatica 49 (2025) 199–220  J. Wang 

4.3 Analysis and discussion 
As shown in Figure 8, the blue line represents the 

learning curve of the AI-PAC-DRL algorithm, the green 

line represents the learning curve of the SAC-PER 

algorithm, and the hatched portion represents the actual 

reward value obtained before the smoothing process. By 

analyzing the reward curve, it can be seen that the 

AI-PAC-DRL algorithm has obvious oscillation in the 

early stage and its learning speed is slower than that of 

SAC-PER algorithm. The reason is that the AI-PAC-DRL 

algorithm needs to be trained in multiple sub-task 

environments in turn in the early stage, and only 125 

rounds of training are performed in each sub-task 

environment. However, after 2000 rounds of 

meta-reinforcement learning, the AI-PAC-DRL 

algorithm obtains better initial network parameters 

through summarizing experience, which can quickly 

converge to the optimal value along the gradient direction. 

Therefore, the learning speed is greatly improved, and 

finally it converges to a higher reward value. Compared 

with the convergence speed, the AI-PAC-DRL algorithm 

converges after about 6000 rounds, while the SAC-PER 

algorithm approaches convergence after about 8000 

rounds, which shows that the AI-PAC-DRL algorithm 

has faster learning speed. Therefore, it shows that the 

AI-PAC-DRL algorithm has better learning effect than 

the SAC-PER algorithm 

As can be seen from Figure 9, the blue portion 

represents the reward obtained by the AI-PAC-DRL 

algorithm, and the green portion represents the reward 

obtained by the SACPER algorithm. By analyzing the 

reward curve, it can be seen that in the early stage of 

training, the convergence speed of AI-PAC-DRL 

algorithm is relatively slow, and the reward value 

obtained is lower than that of SAC-PER algorithm. The 

reason is that the AI-PAC-DRL algorithm learns fewer 

rounds in each subtask than the SAC-PER. However, 

with the increase of training rounds, at about 4000 rounds, 

the AI-PAC-DRL algorithm improves the rapid 

adaptability of network parameters by summarizing the 

characteristics of obstacles in sub-task scenarios, making 

the performance of the algorithm improved, so the 

reward obtained after the final convergence is higher than 

that of the SAC-PER algorithm. Then, from the analysis 

of the overall convergence speed, it can be found that the 

AI-PAC-DRL algorithm also reaches convergence 2000 

rounds earlier than the SACPER algorithm, which shows 

that the AI-PAC-DRL algorithm has faster learning speed 

and better performance than the SAC-PER algorithm. 

As can be seen from Figure 10, the solid blue line 

represents the average reward obtained by the 

AI-PAC-DRL algorithm in the test phase, while the 

dotted line represents the actual reward obtained by the 

AI-PAC-DRL algorithm in each environment. The solid 

green line represents the average reward obtained by the 

SAC-PER algorithm, and the dotted line represents its 

actual reward. By comparing the average reward curves 

of the two algorithms, it can be seen that the 

AI-PAC-DRL algorithm performs better than the 

SAC-PER algorithm in both the average reward obtained 

and the individual reward in each environment. It shows 

that the AI-PAC-DRL algorithm can summarize the best 

grasping strategy from objects with different shapes, thus 

improving the robustness of the algorithm and having 

higher success rate and reliability. 

As can be seen from Figure 11, the red part 

represents the success rate of the AI-PAC-DRL algorithm 

test, and the blue part represents the success rate of the 

SAC-PER algorithm. By analyzing the histogram, it can 

be seen that the AI-PAC-DRL algorithm has a certain 

improvement in the success rate of capturing each object. 

In particular, cup-shaped objects, cylindrical objects, 

spherical objects, etc., which are quite different in shape 

from the target objects in the training stage, have better 

success rates. This shows that the AI-PAC-DRL 

algorithm has better generalization performance than the 

SAC-PER algorithm in the obstacle-free environment. In 

Table 3, from the standard deviation, t value and P value, 

the data are basically statistically significant, which 

verifies the effectiveness of the comparative test data. 

It can be seen from Figure 12 that the AI-PAC-DRL 

algorithm has a higher capture success rate in obstacle 

scenes at different angles. This shows that the 

meta-learner on AI-PAC-DRL can summarize the 

characteristics of obstacles well, thus improving the 

adaptability of the algorithm to new tasks, making the 

algorithm learn better on the original basis, and obtaining 

higher success rate. Therefore, it can be concluded that 

the AI-PAC-DRL algorithm has better generalization 

performance as well as adaptability to unknown tasks 

than the SAC-PER algorithm. In Table 4, from the 

standard deviation, t value and P value, the data are 

basically statistically significant, which verifies the 

effectiveness of the comparative test data. 

For some failure cases, the main reasons are as 

follows: 

(1) Dynamic obstacles and complex background 

interference 

The trajectory of dynamic obstacles in a chaotic 

environment is unpredictable, and the background noise 

(such as irregular object stacking) will interfere with the 

positioning and segmentation of the target object by the 

vision system, resulting in the failure of obstacle 

avoidance path planning or the offset of grasp 

coordinates. For example, transparent or reflective 

objects may make the visual sensor unable to accurately 

capture the depth information, causing error in obstacle 

avoidance judgment. In addition, some cluttered 

environments may lead to the manipulator unable to 

reach the front of the object through an effective path, 

leading to the inevitable failure of the robot to grasp the 

object. 

(2) Object occlusion and light change when the 

target object is partially occluded by other objects, the 

robot cannot obtain complete visual feature information, 

resulting in the error of grasping attitude estimation; At 
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the same time, uneven or sudden change of ambient 

light will reduce the image quality and affect the visual 

positioning accuracy. 

(3) Sensor limitations 

It is difficult for a single vision sensor (such as a 

monocular camera) to achieve high-precision 3D 

reconstruction in complex scenes, especially when the 

color of the target object is close to the background, 

which is easy to lead to the error of obstacle avoidance 

decision. 

In Table 5, the DRL algorithm based on PAC shows 

faster convergence speed, less average round steps and 

higher success rate than the benchmark algorithm. 

Especially in terms of round rewards, Ddpg_pac, 

td3_pac and sac_pac are all in the early stage of training, 

and quickly reach a high round reward value, which 

means that the PAC proposed can provide good expert 

strategy guidance for the manipulator, so that the 

manipulator can learn the obstacle avoidance strategy in 

a very short time. 

Each DRL algorithm with the proposed complete 

PEC framework (that is, PAC, EDS and cor are 

combined at the same time) maintains a high success 

rate in the whole training process, and only needs to 

consume the least training time in almost all scenarios, 

which shows that the proposed PEC framework has a 

strong ability in optimizing strategy decision, improving 

algorithm learning efficiency and enhancing action 

exploration ability, 

In Table 6, after PAC is removed, the success rate 

of the model in high complexity environment decreases 

by 18%, and the convergence speed slows down 

significantly (+6k steps), indicating that PAC improves 

the stability and generalization of strategy through 

expert strategy self optimization ability; After removing 

EDS, the sample utilization rate was reduced by 38%, 

which verified that the dual memory mechanism 

optimized the data utilization efficiency through 

balanced exploration and utilization; The removal of cor 

resulted in a 14% and 23% reduction in the success rate 

of low/medium complexity environments, respectively, 

indicating that cor effectively alleviated the sparse 

reward problem and enhanced the adaptability to 

concave polyhedral obstacles through the composite 

reward function. 

In general, PAC is the core component of the model 

to deal with complex environments through the ability 

of policy self optimization and scene generalization. The 

efficient sampling mechanism of EDS significantly 

improves the training efficiency and reduces the data 

demand. The compound reward function of cor solves 

the local optimal and sparse reward problems of the 

traditional obstacle avoidance model. 

In Table 7, AI-PAC-DRL has certain advantages 

over the existing more advanced models in terms of 

capture success rate. Compared with SLAM-DPP, which 

has the best performance in the existing algorithms, 

AI-PAC-DRL has improved its performance in dex data 

set by 6% and YCB data set by 7% In general, 

AI-PAC-DRL outperforms the existing model 

algorithms in robot path planning and object grasping. 

The experimental results show that the improved 

deep reinforcement learning algorithm has faster 

convergence speed and learning effect in the training 

stage, and has higher grasping success rate and 

generalization energy in the testing stage.  

In this paper, the model is trained in a simulated 

environment, and the capture scene is arranged through 

the actual environment. From the actual situation, even 

if a more complex environment is set, the capture 

accuracy can reach more than 80% after the simulation 

training The training effect, accuracy and application 

effect of the model can be further improved through 

multiple practical operations from this courseware, the 

model can effectively complete the transition from 

simulation to reality. 

5 Conclusion 

This study proposes a collaborative optimization 

framework based on deep reinforcement learning, which 

aims to break through the problem of precise grasping of 

manipulator in complex environment. 

The purpose of this paper is to improve the robot's 

obstacle avoidance effect based on the existing model, 

and to solve the problem of customer service data 

training, so as to improve the robot's intelligent control 

effect and autonomous decision-making ability. 

Experimental results show that the proposed PAC has the 

ability of efficient exploration, significantly accelerates 

the convergence process of the algorithm, reduces the 

number of training steps, and improves the success rate. 

While amplifying expert experience data through xGAIL, 

unbiased dual memory bank sampling rules are used to 

improve training efficiency. Then, through the 

increasingly unbiased sampling mechanism, the guiding 

effect of expert experience data in the early stage of 

algorithm training is improved, and the influence of 

expert experience data on the convergence of the 

algorithm is reduced and gradually eliminated. The 

experimental results show that the proposed EDS can 

improve the utilization efficiency of expert experience 

data, and the success rate of the algorithm is also 

significantly improved. 

Based on the analysis of the failure cases in the 

experiment, the reasons are obtained, and the research 

direction of the follow-up paper is obtained. Firstly, the 

countermeasure training can be introduced to generate a 

variety of chaotic environment samples to improve the 

generalization ability of the model; Secondly, 

hierarchical reinforcement learning (HRL) was used to 

separate obstacle avoidance and grasping subtasks, or 

combined with long-term and short-term memory 

(LSTM) to deal with temporal dependence; Finally, 

stage rewards (such as bonus points for approaching the 

target and deduction points for collision) are designed to 
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balance obstacle avoidance and capturing the target 

Through the combination of theory and experiment, the 

model is further verified and improved, and its practical 

application effect is improved. 

Data availability statement 

All data generated or analysed during this study are 

included in this article. 
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