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Accurate forecasting and strategic decision-making are critical for electricity market planning in the do-
main of energy informatics, where grid reliability, economic stability, and sustainability must be balanced.
This paper introduces the Adaptive Convolutional Residual Network (ACRN), a dual-task deep learning ar-
chitecture designed to jointly perform project risk classification and electricity price regression. The model
is trained and evaluated on a real-world dataset from Frankfurt, Germany, comprising hourly records from
2018 to 2024 and including 12 core variables such as electricity price, market demand, renewable genera-
tion, and regulatory policies. ACRN integrates novel preprocessing techniques including weighted tempo-
ral interpolation, dynamic thresholding, and hybrid normalization, along with adaptive feature refinement
and context-aware feature derivation. The framework achieves a classification accuracy of 98.5%, F1-
score of 98.1%, AUC of 99.0%, and regression MAPE of 2.33% while reducing computational cost by 10%
compared to baseline models. In comparison with state-of-the-art methods such as EfficientNet, WideRes-
Net, and Gradient Boosting, ACRN outperforms all in both predictive accuracy and time efficiency. These
results demonstrate ACRN’s robustness and scalability in addressing the multidimensional forecasting re-
quirements of modern power markets. The proposed model offers a self-contained, high-performance so-
lution for energy market planning with practical relevance for both policy and industry applications.

Povzetek: Predstavljena je nova arhitektura ACRN, ki združuje klasifikacijo projektnih tveganj in regresijo
cen elektrike z adaptivnim učenjem značilk za napredno načrtovanje energetskega trga.

1 Introduction

Renewable energy, grid technology, and regulatory
changes are transforming the worldwide power industry.
Energy security, economic stability, and environmental
sustainability depend on electricity market planning. In-
creasing complexity in electrical markets, including price
volatility, shifting demand, and different energy sources,
challenges standard forecasting and planning methods [1,
2].
Autoregressive models and statistical time-series ap-

proaches have long been used to anticipate energy mar-
ket movements. These approaches are simple and inter-
pretable, but they typically miss current power markets’
nonlinear linkages and complex temporal patterns. The use
of renewable energy sources like sun and wind increases
variability and uncertainty owing to weather and seasonal
circumstances [3, 4].
Machine learning (ML) and deep learning (DL) are ef-

fective solutions. CNNs and LSTM networks can describe
complicated temporal connections and extract significant
patterns from high-dimensional information, making them
promising time-series forecasting models. CNNs effec-

tively capture local temporal patterns in electricity market
data, whereas LSTMs best preserve long-term dependen-
cies [5, 6]. However, the scalability and computational ef-
ficiency of these models still pose substantial challenges in
large-scale, real-time power markets [7].
The use of hybrid models, which include several archi-

tectures, has improved forecasting. ResNets help deep ar-
chitectures learn from huge datasets by reducing vanishing
gradient concerns. Transformer designs use attention meth-
ods to improve forecasting accuracy and interpretability by
focussing on essential features [8, 9]. These developments
highlight the need for novel structures to handle power mar-
ket forecasting’s inherent complexity.
Economic and environmental concerns affect power

market planning. Complex models are needed to analyse
interdependent variables such greenhouse gas emissions,
investment feasibility, power pricing, and energy consump-
tion. Regulations and renewable energy objectives differ
among areas, requiring adaptive frameworks to respond
to external influences [10, 11]. Existing systems fail to
reconcile multidimensional relationships while preserving
computational efficiency, stressing the need for electricity
market-specific models.
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The introduction of renewable energy has also created
new issues, such as managing variable energy supply and
matching them to demand. Frameworks with dynamic fea-
ture modification and hierarchical temporal analysis are ad-
vanced. The innovative Adaptive Convolutional Resid-
ual Network (ACRN) structure in this research addresses
power market forecasting’s fundamental issues. ACRN
captures energy market data’s complex temporal patterns
and interdependencies via adaptive feature refinement and
residual learning. Advanced computer tools improve fore-
casting, dynamic market adjustment, and resource alloca-
tion in the model. ACRN outperforms other approaches
in rigorous assessment using real-world datasets, offering
practical insights for long-term power market planning.
This work provides a solid and scalable solution to cur-
rent power market difficulties, improving energy sector de-
pendability, efficiency, and sustainability. Despite their
promise, significant computing costs andmodel complexity
restrict their application [12].

1. The proposed Adaptive Convolutional Residual Net-
work (ACRN) solves the problem of predicting multi-
dimensional energy market data, including project
risks and power prices. Dual-task capacity allows
project risk categorisation (low, medium, high) and
regression-based power price forecasts, overcoming
standalone model constraints in multi-task settings.

2. Hierarchical feature aggregation and adaptive feature
refinement in ACRN capture complicated temporal
dependencies and non-linear correlations among elec-
tricity market factors. These advances provide robust
feature selection and effective representation, address-
ing forecasting model challenges including noisy data
and feature redundancy.

3. Dynamic convolutional layers in ACRN reduce the
computational burden of deep learning models in
power market applications. Our method decreases
computational overhead by 10% compared to typical
deep learning models, allowing scalability and suit-
ability for real-time and large-scale forecasting.

4. ACRN’s optimised design overcomes standard mod-
els’ inability to foresee over long horizons. The model
improvesMAPE by 12% and achieves 98% classifica-
tion accuracy, proving its resilience and dependability
for short-term and long-term power market forecast-
ing.

5. Standardised power market planning: ACRN solves
the problem of power market planning fragmentation
into classification and regression jobs. The framework
delivers actionable insights for project risk manage-
ment and power price forecasting by combining both
duties into a single scalable model, meeting energy
informatics stakeholders’ important demands and en-
abling dependable long-term strategic planning.

The remaining structure of the article is: Section 2 dis-
cusses power market forecasting and planning advances
and shortcomings. Section 3 describes the Adaptive Con-
volutional Residual Network (ACRN) framework, includ-
ing its architecture, dual-task capacity, and novel feature re-
finement methods for classification and regression. Section
4 shows simulation findings, including performance met-
rics, comparison analysis, and model resilience and scala-
bility on real-world datasets. Section 5 ends the analysis
and suggests ways to improve the framework’s responsive-
ness to changing market dynamics and application to varied
energy systems.

1.1 Research objective and questions
This study aims to develop a practical and scalable deep
learning framework that can enhance both the accuracy and
efficiency of electricity market forecasting. Unlike tradi-
tional approaches that focus on a single task, the proposed
model tackles two critical forecasting needs at once: iden-
tifying project risk levels and predicting electricity prices.
Tomeet this goal, we introduce the Adaptive Convolutional
Residual Network (ACRN). This model combines several
innovative components—such as adaptive feature refine-
ment, dynamic convolutional layers, and hierarchical tem-
poral analysis—to better capture the complex patterns that
shape energy market behavior. Our research is guided by
the following key questions:

– RQ1: How effectively does ACRN improve electric-
ity price forecasting compared to existing state-of-the-
art models?

– RQ2: Can a unified, dual-task deep learningmodel re-
duce computational costs while enhancing predictive
performance?

– RQ3: How well does ACRN support real-time opera-
tional decisions and long-term energy policy planning
in volatile market environments?

The outcomes of this research are intended to sup-
port several real-world applications, including: (1) Policy-
making, by providing reliable risk and pricing forecasts
that inform regulation and investment; (2) Operational de-
cision support, to help grid operators and energy providers
respond effectively to changing conditions; and (3) Strate-
gic planning, especially in designing resilient infrastructure
and integrating renewable energy sources.

2 Related work
Renewable energy integration, market volatility, and long-
term strategic needs have complicated electricity market
forecasting and planning. Researchers have presented con-
ventional statistical methods and sophisticated deep learn-
ing frameworks.
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Gradient Boosting (GB) was not scalable to bigger
datasets because of its high computing cost and hyperpa-
rameter adjustment sensitivity. [13] showed that GB ef-
fectively predicts complicated connections between elec-
tricity demand, weather, and policy issues, reducing fore-
cast errors compared to linear regression models. GB was
not scalable to bigger datasets because to its high comput-
ing cost and hyperparameter adjustment sensitivity. Deep
learning-feature selection hybrid frameworks provide ac-
curacy improvements. [14] suggested a model combining
LSTM networks and Random Forest for power price pre-
diction. The hybrid technique improved accuracy by 15%
by combining LSTM for temporal dependencies and Ran-
dom Forest for feature selection. The model’s computa-
tional complexity and limited real-time flexibility were ma-
jor issues.
Due to their efficiency in training deep architectures,

residual networks (ResNet) have been investigated for
power price forecasting. The author [15] used a mod-
ified ResNet to anticipate long-term prices, reaching an
R-squared value of 0.92 and demonstrating robustness in
noisy datasets. ResNet was effective, but its memory needs
rendered it unsuitable for real-time applications. Electricity
markets use Naive Bayes for easier categorisation.
Temporal Convolutional Networks (TCNs) were used to

predict the effect of renewable penetration on demand and
price variations [16]. The model performed well under con-
ditions of steady or increasing renewable generation but
exhibited reduced accuracy during extreme market fluctua-
tions such as sudden demand surges or abrupt policy shifts.
WideResNet has been tested separately for its ability to han-
dle high-dimensional electricity market data, demonstrat-
ing improved performance in capturing complex feature in-
teractions and reducing regression error margins in multi-
variable settings.
Author in [17] classified electricity demand into low,

medium, and high classifications with 85% accuracy. The
method’s simplicity and interpretability were advantages,
but its failure to capture complicated connections restricted
its continuous forecasting use. Random Forest is used for
power market planning owing of its resilience and inter-
pretability. In [18], VGG16 was used to forecast day-ahead
prices using auxiliary inputs including wind speed and tem-
perature. The model effectively captured external impacts
with an MAE of less than 5%. However, its complexity
and reliance on huge datasets limited its applicability in
smaller markets. For long-term price forecasting, [19] in-
cluded macroeconomic factors like GDP growth and infla-
tion rates into a Random Forest model. The technique gave
policymakers meaningful information but needed repeated
retraining to maintain accuracy, particularly in changing
markets. Extreme weather energy price predictions uses
VGG16, a convolutional neural network.
Author [20] introduced a WideResNet-based model that

reduced RMSE by 12% for market variable interactions
compared to normal ResNetmodels. The network’s breadth
increased memory usage, restricting its use in edge com-

puting. MobileNet’s lightweight design has been tested for
decentralised power. MobileNet and reinforcement learn-
ing were used for real-time power price forecasting, reach-
ing competitive accuracy with minimal computing require-
ments [21, 22]. MobileNet was efficient, but its simplicity
prevented it frommodelling complex temporal connections
in turbulent markets. The scaling-efficient EfficientNet has
been used to anticipate power markets. [23] showed its ex-
cellent accuracy and low computational resources, making
it ideal for large-scale forecasting. However, good perfor-
mance needed extensive data preparation and parameter op-
timization.

Table 1: Summary of related work in energy market fore-
casting

Citation Methodology Dataset Type and
Size

Performance Metrics Computational
Cost

Key Limitations

[13] Gradient Boost-
ing

Electricity demand +
weather and policy
data (100K samples,
3 years)

MAE: 3.41, RMSE: 4.01,
R²: 0.84

High Requires intensive hyperpa-
rameter tuning; lacks scala-
bility for real-time forecast-
ing

[14] LSTM + Random
Forest

Hourly electricity
prices with renew-
ables (75K samples)

Accuracy ↑15%, MAPE:
11.2%

High Complex integration; not
optimal for dynamic feature
adjustment

[15] ResNet Historical load and
market data (120K
samples)

R²: 0.92, MAE: 3.18,
RMSE: 3.67

Very High High memory usage; less
suitable for edge computing
or real-time needs

[16] Temporal Convo-
lutional Network
(TCN)

Seasonal electricity
load with renewables
(60K samples)

Accuracy: 89.1%, RMSE:
3.82

Moderate Poor in extreme volatility;
limited dynamic adaptability

[17] Naive Bayes Aggregate household
energy data (50K
samples)

Accuracy: 85%, MAE:
3.72

Low Cannot model complex re-
lationships; assumes feature
independence

[18] VGG16 +
Weather In-
puts

Weather + hourly
pricing (80K sam-
ples)

MAE: 2.98, R²: 0.89,
RMSE: 3.50

High Requires large datasets;
lacks temporal-specific
tuning

[19] Random Forest +
Macroeconomic
Variables

Electricity prices +
GDP/inflation (65K
samples)

R²: 0.84, MAE: 3.30 Moderate Needs frequent retraining in
dynamic markets

[20] WideResNet Load demand + pric-
ing + weather (90K
samples)

RMSE ↓12%, R²: 0.90 High High memory demand due
to wider architecture

[21] MobileNet +
Reinforcement
Learning

Real-time IoT price
forecasting (35K
samples)

MAE: 2.84, R²: 0.91 Low Lightweight but struggles
with complex temporal
dependencies

[23] EfficientNet High-frequency price
data (150K samples)

MAPE: 8.7%, RMSE:
3.20, R²: 0.92

Moderate-
High

Requires extensive prepro-
cessing and tuning; not in-
herently dual-task

Proposed ACRN Adaptive Conv.
Residual Net
(Dual-task)

Electricity mar-
ket + renewable
+ macroeconomic
(2018–2024, 175K
samples)

Accuracy: 98.5%, MAPE:
2.33%, AUC: 99.0%,
RMSE: 1.85, R²: 0.97

Low None identified; scalable
and efficient in real-time
dual-task forecasting

The improved summary table 1 shows that some mod-
els have good accuracy but significant scalability, computa-
tional cost, and dual-task learning restrictions. Naive Bayes
and Random Forest cannot handle intricate temporal rela-
tionships, whereas ResNet andWideResNet need too much
memory. Even being computationally efficient, Efficient-
Net needs substantial preprocessing and is not suitable for
combined classification and regression. The ACRN uses
dynamic convolutional layers, adaptive feature refinement,
and a dual-task learning architecture to overcome these
issues. Its outstanding prediction accuracy and temporal
complexity make it a realistic and scalable real-time energy
market forecasting tool.

3 Proposed methodology
Adaptive Convolutional Residual Network (ACRN) ad-
dresses project risk classification and energy price regres-
sion in electricity market forecasting. The sophisticated
preprocessing pipeline includes weighted temporal inter-
polation for missing data, IQR-based outlier identification,
and hybrid min-max and z-score normalisation for scal-
ing features. Using dynamic attribute refinement, feature
selection prioritises renewable energy penetration, mar-
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ket demand patterns, and greenhouse gas emissions.We
used adaptive hierarchical embedding to create domain-
informed latent representations from raw data to improve
representation learning. First, input characteristics were
categorized into macroeconomic indicators, environmen-
tal factors, and energy production metrics. To learn intra-
group feature interactions, each group went through a
thick embedding layer. These intermediate embeddings
were then adaptively integrated utilizing learnable attention
weights that dynamically altered depending on prediction
task relevance. The hierarchical model captures within-
group and cross-group interdependence while retaining in-
terpretability and structural modularity. At its foundation,
the ACRN model uses residual learning and dynamic con-
volutional layers to extract complicated temporal depen-
dencies and non-linear correlations from data. The ap-
proach scales well with hierarchical feature aggregation for
multi-dimensional datasets. The training goal function bal-
ances cross-entropy loss for classification with MSE for re-
gression. To verify forecasting robustness and adaptability,
model assessment employs accuracy, AUC,MAPE, and the
new Temporal Feature Fidelity (TFF) indicator. The sug-
gested framework, as shown in Figure 1, is discussed in
full, from preprocessing to assessment, emphasising unique
methodologies.

Figure 1: Proposed system model

3.1 Dataset description
This study employed data from Frankfurt, Germany’s re-
gional power market and infrastructure planning. The mod-
ern infrastructure and forward-thinking energy policies of
Frankfurt, a crucial European economic and technological
hub, are brought to light by a diverse dataset [23]. Trends
in the production, consumption, and market price of en-
ergy are shown hourly in the data, which spans from 2018

to 2024. Sources such as the German Federal Network
Agency (BNetzA), Frankfurt’s municipal energy data por-
tals, and the European Network of Transmission System
Operators for Electricity (ENTSO-E) were used to build the
information. Transparency, frequent updates, and confor-
mity with regulatory norms were the deciding factors in the
selection of these sources. Data consistency was assured
by the use of cross-source validation and time-series align-
ment procedures, however no dataset is completely free
from ambiguity. Long-term power market planning may
benefit from this data because of Frankfurt’s innovative uti-
lization of renewable energy sources, well-established reg-
ulatory frameworks, and state-of-the-art grid components.
This study uses a dataset that is unique to a certain location
to discuss the present and future of the energy business. Be-
cause of its extensive use, it is useful for complex models of
sustainability decision-making and power market planning.
All information about features is shown in the table 2.

Table 2: Dataset features overview

S.No Features Short Description
1 Electricity Price Historical and projected electricity prices, includ-

ing average, peak, and off-peak values.
2 Market Demand Hourly energy consumption trends across residen-

tial, commercial, and industrial sectors.
3 Renewable Generation Contribution of renewable energy sources like so-

lar, wind, and hydro to total production.
4 Non-Renewable Generation Energy produced from non-renewable sources such

as coal, oil, and natural gas.
5 GHG Emissions Greenhouse gas emissions from energy production,

measured in tons of CO2 equivalent.
6 Energy Storage Capacity Available energy storage in batteries and other tech-

nologies, expressed in MWh.
7 Subsidies Financial incentives or subsidies for renewable or

non-renewable energy projects.
8 Regulatory Policies Policies related to feed-in tariffs, carbon pricing,

and renewable energy mandates.
9 Cross-Border Energy Trade Import and export trends of electricity between re-

gions or countries.
10 Infrastructure Investments Planned and actual investments in energy infras-

tructure, such as grids and power plants.
... ... Additional features include smart grid adoption,

transmission losses, and more.

3.2 Data preprocessing
The input dataset was preprocessed to improve its quality
and meet the criteria of the proposed Adaptive Convolu-
tional Residual Network. Temporal data from 2018 to 2024
includes power market planning features. Novel prepro-
cessing strategies avoided standard ways to gain domain-
specific refinements to prepare data for analysis.
Temporal alignment was used to synchronise all features

to an hourly frequency to fix temporal resolution issues. We
used a weighted temporal aggregation function [26] to ac-
complish this:

Ŷsync(τ) =

∑M
j=1 ωj(τ)Yj(τ)∑M

j=1 ωj(τ)
, (1)

Ŷsync(τ) represents the aligned feature at time τ , where
Yj(τ) denotes the value of the j-th overlapping observa-
tion and ωj(τ) is the assigned temporal weight based on
proximity to the target timestamp τ . Specifically, we de-
fine ωj(τ) as an inverse time-distance function:
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ωj(τ) =
1

1 + |τ − τj |
(2)

This weighting technique promotes observations closer
to τ , ensuring recent values have a greater impact on syn-
chronization. In the aggregate window, M represents the
number of contributing feature instances. Outliers were
identified and mitigated using interquartile range (IQR)
feature-wise adaptive thresholding. The threshold was de-
termined separately for each feature based on its statistical
distribution, enabling the approach to adjust to dataset sizes
and dispersion levels. This is computed using the equation
[27]:

Θ(P ) = Q3(P ) + α · (Q3(P )−Q1(P )) , (3)

The Θ(P ) is used as the feature threshold, Q1(P ) and
Q3(P ) as the first and third quartiles, and α as a dataset-
optimized scaling parameter. Values over this threshold
were interpolated from closest valid observations. In our
experiments, we set α = 1.5, which aligns with standard
outlier detection heuristics, ensuring sensitivity to anoma-
lies without over-pruning.
Mixed temporal and feature-based correlations were

used to interpolate missing data. Estimated missing data:

X̂(τm) =

∑
τ ̸=τm

ϕ(τ, τm)X(τ)∑
τ ̸=τm

ϕ(τ, τm)
, (4)

where X̂(τm) is the predicted value at the missing time.
The weight inversely proportional to the time difference
is ϕ(τ, τm). |τ − τm|. The weighting function ϕ(τ, τm)
is inversely proportional to the temporal gap, prioritizing
nearby values and ensuring temporal locality in interpola-
tion.
To maintain feature heterogeneity and standardise data,

hybrid scaling was used for normalisation. The calculated
normalised feature value Q̃ was [28]:

Q̃ =
Q−Qmin

Qmax −Qmin
·
(
Q− η

σ

)
, (5)

The raw value of a single feature extracted from the dataset
is denoted by Q in this context. The lowest and maximum
values of that feature over the whole training set are denoted
by the words Qmin and Qmax. Just as η represents the fea-
ture’s mean, σ stands for its standard deviation. ”Hybrid
scaling” is a mixture of two popular normalizing methods,
z-score standardization and min-max normalization. Data
is transformed into a defined range by min-max normaliza-
tion.
The dataset was preprocessed into a high-quality, organ-

ised format for ACRN model training and testing. Each
technique preserves temporal and domain-specific dataset
properties, improving analytical reliability.

3.3 Data preparation and feature analysis
Preparing the dataset for analysis requires balanced repre-
sentation, appropriate feature selection, engineering, and

transformation. These steps are aimed to improve ACRN
accuracy and performance.

3.3.1 Data balancing

The unique data balancing approach Dynamic Weight Re-
distribution (DWR) was used to correct the class distribu-
tion imbalance for the multi-label classification issue. This
strategy gives under-represented classes adaptive weights
depending on their occurrence rates to ensure model train-
ing equity. The weight for class χi is calculated as [29]:

ω(χi) =
1

ψ(χi) + ϵ
, (6)

Assuring numerical stability during the calculation of class
weights relies on including the tiny constant ϵ. If the fre-
quency of class χi, denoted as ψ(χi), is very tiny or close
to zero, the inverse operation may produce weights that are
abnormally big or divide by zero. By including a tiny con-
stant, such as ϵ = 10−5, this problem may be reduced, and
the calculation can be done safely. This modification al-
lows the model to acquire knowledge from classes that are
under-represented without jeopardizing the stability of op-
timization.

3.3.2 Adaptive feature refinement

Adaptive Feature Refinement (AFR) was used to determine
the most important model characteristics. AFR dynami-
cally assesses feature significance via iterative relevance
scoring and correlation analysis. Each characteristic ξk re-
ceives a score ρ(ξk), as specified in [30]:

ρ(ξk) = α · R(ξk, λ)− β · C(ξk), (7)

In this case,R(ξk, λ) indicates how relevant ξk is in relation
to the label λ, C(ξk) signifies the correlation between fea-
tures, and α and β are adjustable coefficients. An optimum
subset of features was obtained by iteratively removing
those with relevance scores ρ(ξk) falling below a defined
threshold of 0.25. This threshold was not arbitrarily chosen
but determined through empirical cross-validation experi-
ments, aiming to strike a balance between reducing model
complexity and preserving features that offer strong predic-
tive contributions. For complicated datasets like ours, our
hybrid approach strikes the perfect mix between reducing
duplication and maintaining predictive strength.
To remove weak predictors and decrease duplication,

features with relevance scores below ρ(ξk) < 0.25were not
included in the final model. Examples of features that were
eliminated include Subsidies, Transmission Losses, and
Cross-Border Trade because of their strong inter-feature
correlation or because they contributed little to the vari-
ance of the target variable. This pruning phase improves
the model’s efficiency and interpretability by retaining just
the most influential elements for training. Table 3 shows
the eliminated features.
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Table 3: Eliminated features and justification

Feature Reason for Elimination
Subsidies Low relevance score ρ <

0.20; minimal impact on
prediction

Transmission Losses High correlation with Infras-
tructure Investments (redun-
dant)

Cross-Border Trade Sparse and inconsistent tem-
poral patterns

3.3.3 Context-aware feature derivation

Additional features were extracted from the dataset by
means of a Context-Aware Feature Derivation (CAFD)
method in order to improve its prediction capabilities. This
method takes use of knowledge relevant to a certain domain
in order to build composite features that can detect relation-
ships between qualities at a higher level. For instance, the
Υ ”Energy Performance Index” was calculated in the fol-
lowing way:

Υ =
Γ

∆
·
(
1− Θ

Φ

)
, (8)

In the above Equation, Γ denotes renewable energy con-
tribution (e.g., solar and wind generation), ∆ is total en-
ergy consumption across all sectors, Θ captures transmis-
sion inefficiencies, and Φ represents total energy generated
from all sources. These values are derived from their cor-
responding raw features in the dataset. With the addition of
elements like the ”Policy Efficiency Metric” and the ”In-
frastructure Robustness Factor,” the dataset now includes
policy and infrastructure dynamics. Incorporating these de-
rived characteristics into the model improves its prediction
power by giving it more detailed information.

3.3.4 Domain-specific attribute transformation

The feature representations were optimised and standard-
ised using a Domain-Specific Attribute Transformation
(DSAT) program. Instead of using generic scaling or nor-
malisation techniques, DSAT converts features into repre-
sentations that are in line with domain-specific standards
and benchmarks. This is the formula for calculating the
transformed representation ζ̂ of a feature ζ:

ζ̂ =
log(ζ + 1)

log(κ+ 1)
, (9)

Here, κ denotes the domain-specific upper bound for the
feature ζ, such as a regulatory threshold, environmental tar-
get, or policy-imposed cap, depending on the feature type.
To reduce the size of features while keeping their relative
differences, the logarithmic transformation is used. This
guarantees superior numerical stability and training conver-
gence, which is especially helpful when dealing with fea-
tures that span several orders of magnitude or skewed distri-

butions. This modification ensures that characteristics with
broad ranges do not disproportionately impact model train-
ing by compressing big values while retaining relative dif-
ferences. An additional element of DSAT is a thresholding
mechanism that limits the converted values to ϕ · σ, where
σ is the feature’s standard deviation, in order to deal with
outliers.
The dataset was reevaluated after the aforementioned ap-

proaches were used to make sure it was suitable for training
and testing the ACRN model. The robust dataset that re-
sults from combining balanced data, improved features, de-
rived characteristics, and transformed representations may
capture complicated relationships and provide solid predic-
tions.

3.4 Adaptive convolutional residual
network (ACRN) framework

Adaptive Convolutional Residual Network (ACRN) is a
revolutionary classification system that addresses multi-
label classification issues in energy market planning.
ACRN uses enhanced convolutional layers and residual
connections to capture both local and global relationships.
This section explains the ACRN framework’s design, math-
ematical formulations, and operational concepts [31]. See
the architecture in Figure 2.

Figure 2: Proposed ACRN architecture

3.4.1 Architecture overview

The ACRN architecture is uniquely structured around three
key components—adaptive feature extraction using task-
aware convolutional layers, residual learning modules tai-
lored for temporal electricity market data, and a dual-
headed classification-regression output mechanism. Unlike
conventional networks, ACRN integrates dynamic con-
volution with residual skip connections and simultaneous
multi-task outputs, specifically designed to handle the non-
linear, high-dimensional, and time-dependent nature of en-
ergy market forecasting. Adaptive convolutional layers
help the feature extraction module provide meaningful rep-
resentations, while residual connections prevent vanish-
ing gradients and optimise learning. Classification layer
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uses sigmoid activation function for independent probabil-
ity predictions for multi-label outputs. The ACRN operates
as:

Z = σ (Uκ · T+ bκ) , (10)

where Z symbolises output predictions, Uκ and bκ repre-
sent classification layer weights and biases, T represents
residual block output, and σ is the sigmoid activation func-
tion.

3.4.2 Feature extraction module

To handle input data X, the feature extraction module uses
adaptive convolutional layers. To minimize the combined
loss function, the feature extraction module’s convolutional
layers learn a collection of trainable filters P by backprop-
agation, with the filter weights updated. By sliding over
the input feature maps, these filters discover patterns and
highlight geographical and temporal interdependence, such
as regional power price trends, demand spikes, or unusual
emissions. By adjusting the filter size and number empir-
ically according on validation performance, the network is
able to pick up on both detailed and more generalized con-
textual patterns in the input sequences. [32] describes the
process for a single feature map:

Gp,q =
∑
r,s

Pr,s · Xp+r,q+s + ξ, (11)

Gp,q represents the feature map value at location (p, q), Pr,s

represents the filter weight, and ξ represents the bias term
To minimise dimensionality and preserve crucial informa-
tion, activation functions and pooling layers are used to re-
trieved feature maps.

3.4.3 Residual learning module

To improve the network’s learning efficiency, the residual
learning module uses shortcut connections. Here is the out-
put computed by the residual block:

T = G+ F(G), (12)

The output of the residual block, T, is created by adding the
original input G to the transformed features F(G) that are
obtained after a sequence of convolutional processes. By
allowing gradient flow and preserving original information,
this skip link aids in the proper training of deeper networks.
The addition function maintains crucial network properties
while allowing deeper designs without performance reduc-
tion.

3.4.4 Classification layer

The classification layer converts the residual module’s out-
put into predictions with several labels. The likelihood that
a label λ is present is calculated in this way:

P (λ) = σ (Uλ · T+ bλ) , (13)

where Uλ and bλ are label-specific biases and weights, and
T is the residual output, and P (λ) is the probability of la-
bel λ. The input features and their deep representations re-
trieved by previous convolutional layers are combined in
the residual learning module’s output, which is denoted as
T in this context. This improves the accuracy of multi-label
predictions by making sure the classification layer uses en-
riched, hierarchically learnt representations.

3.4.5 Optimization and loss function

For multi-label classification, the ACRN is optimised using
a binary cross-entropy loss function, which is specified as:

J = − 1

M

M∑
i=1

K∑
λ=1

[
yλi log ŷ

λ
i + (1− yλi ) log(1− ŷλi )

]
,

(14)
the actual and projected probabilities for the sample label λ
are yλi and ŷλi , respectively. i, whereM is the sample size
andK is the label count.
Beyond handling classification tasks using binary cross-

entropy loss, the proposed model is also designed to pre-
dict electricity price trends through regression. For this, the
Mean Squared Error (MSE) is used to capture the variance
between predicted and actual price values. To ensure the
model effectively learns both tasks, we employ a joint loss
formulation that combines the objectives of classification
and regression:

Ltotal = γ · Lclassification + (1− γ) · Lregression, (15)

Here, the parameter γ controls the trade-off between the
two components. Based on empirical tuning and valida-
tion performance, we set γ = 0.6, which slightly favors
classification accuracy while still preserving strong regres-
sion capability. This dual-task learning approach allows
the ACRNmodel to simultaneously address categorical risk
labeling and continuous price forecasting within a unified
training framework, leading to more balanced and context-
aware outcomes.
For reliable multi-label classification, the ACRN frame-

work is the way to go since it successfully captures the
dataset’s complicated interactions. Its layered architecture
makes learning and feature extraction quick, and the re-
maining connections lessen the blow of deep networks’
drawbacks. The suggested model is well-suited to han-
dle the complex needs of power market planning, since it
achieves excellent classification performance.

3.5 Performance evaluation metrics
In order to evaluate the categorisation model’s efficacy, we
used both pre-existing metrics and one that we developed
specifically for this study. The metrics provide a thorough
assessment of the model’s predicting ability by combining
common evaluation methods with factors relevant to the
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area. To assess the model’s initial performance, conven-
tional measures including accuracy, precision, recall, and
F1-score were used. The percentage of occurrences for
which the projected label sets are right divided by the total
number of examples is the accuracy metric used in multi-
label classification. A more stringent assessment process
is used compared to single-label situations, where a pre-
diction is only deemed accurate if all pertinent labels coin-
cide with the ground truth. According to [34], there are two
parts to a model’s performance: precision and recall. Pre-
cision measures how many positive forecasts were really
accurate, while recall measures how many actual positive
predictions were accurate. The F1-score is a balanced met-
ric that is particularly helpful when working with datasets
that are not evenly distributed, since it is a harmonic mean
of recall and accuracy. The model’s performance may be
better understood with the use of these measures, but they
ignore the dataset’s distinct temporal and domain-specific
features. A new measure was developed to deal with this.
Alongside standard performance indicators, this study

introduces a new evaluation metric—Temporal Feature Fi-
delity (TFF)—tailored to the specific needs of forecasting
in dynamic and time-sensitive electricity markets. Tra-
ditional metrics such as accuracy, precision, recall, and
MAPE provide useful insights into overall performance,
but they fall short in capturing the sequential dependencies
that are crucial in rapidly changing market conditions. To
bridge this gap, TFF emphasizes the importance of recent
data points by applying time-aware weighting, enabling the
model to remain sensitive to shifting trends. This makes
the metric particularly valuable for real-time forecasting
and decision-making, where adaptability and responsive-
ness are essential.

3.5.1 Proposed metric: temporal feature fidelity
(TFF)

A novel measure known as Temporal Feature Fidelity
(TFF) was created to reflect the dataset’s intrinsic temporal
relationships. The degree to which the model maintains the
interdependencies and temporal structure in its forecasts is
assessed by this indicator. If the quality of your predictions
is affected by the sequential connections between your data
points, then TFF is the way to go. You may think of the
TFF metric as:

TFF =
1

T

T∑
t=1

∑Nt

i=1 wi(t) · I(y(t)i = ŷ
(t)
i )∑Nt

i=1 wi(t)
, (16)

with T being the total time steps and Nt being the sam-
ples at time. Values t and wi(t) represent sample temporal
weights. Time t, y(t)i refers to the real label, ŷ(t)i to the pre-
dicted label, and I(·) to an indicator function that returns 1
if true and 0 otherwise. the temporal weight wi(t) can be
computed as as:

wi(t) =
1

1 + e−α(t−µ)
, (17)

Here, α controls the sharpness of decay, which influences
how quickly the importance of earlier observations de-
creases over time. A higher value of α results in a steeper
decline, thereby placing more emphasis on recent data
points. The term µ refers to the midpoint of the predic-
tion window and acts as a central reference time around
which the temporal weighting is balanced. This structure
allows the metric to prioritize observations that are tempo-
rally closer to the current decision point, making it particu-
larly suitable for evaluating forecasting models in dynamic
and time-sensitive domains like energy market planning.
Time-sensitive datasets like energy market data need this
because misclassifications in important time periods might
have serious effects. This methodology balances predic-
tion accuracy with domain-specific temporal fidelity by in-
tegrating existing measures with the unique TFF metric to
assess the model’s performance.

4 Simulation results

The Adaptive Convolutional Residual Network (ACRN)
was tested using 2018–2024 power market data in simu-
lated studies. Python using TensorFlow and Keras libraries
was used to train the model on a high-performance com-
puting environment with an NVIDIA GeForce RTX 3090
and 32GB RAM. The optimal hyperparameter configura-
tion was identified through Bayesian Optimization using
Gaussian Process priors across a predefined search space.
Specifically, the learning rate was explored within the range
[1 × 10−5, 1 × 10−2], batch sizes were selected from the
set {32, 64, 128}, and dropout rates were varied between
[0.1, 0.5]. This optimization process was guided by min-
imizing the validation loss over a 5-fold cross-validation
setup. The Adam optimizer was chosen due to its adap-
tive learning rate mechanism, which enables efficient con-
vergence, and its strong empirical performance in training
deep neural networks—particularly effective in multi-task
learning scenarios involving both classification and regres-
sion objectives. The architecture has four residual blocks
with dynamic convolutional layers with 64, 128, 256, and
512 filters, batch normalisation, and ReLU activation. With
balanced weighting values of 0.6 and 0.4, the dual-task
loss function used cross-entropy loss for classification and
MSE for regression. To avoid overfitting, early halting
and 50 epochs were used. The simulation results, includ-
ing model correctness, computing efficiency, and compar-
ison with state-of-the-art methodologies, demonstrate the
framework’s usefulness.
In Figure 3, a horizontal bar chart displays elements af-

fecting power market planning. The visualisation grades
the importance of aspects like ”Technological Advance-
ments” (90%), ”Renewable Adoption Rates” (85%), and
”Economic Indicators” (80%). Features such as ’GHG
Emissions’ (60%) and ’Infrastructure Investments’ (65%)
demonstrated notable predictive relevance. While they
were not among the top three contributors, their scores re-
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Figure 3: Factors influencing electricity market planning

mained consistently above the selection threshold (≤50%),
indicating that they play a supportive role in refining the
model’s output. We refer to these as ’secondary’ only in the
context of ranking order, not predictive insignificance.. The
graphic shows that although certain planning factors dom-
inate, others, modestly, are vital for comprehensive energy
market research. This number is essential to understand-
ing electrical market factors. By identifying important fac-
tors, governments and stakeholders may prioritise renew-
able adoption and technology advancements. Additionally,
addressing secondary issues balances the plan and reduces
risks from ignored variables. Energy planning, resource al-
location, and sustainability objectives benefit from the bar
chart’s clarity and ranking.

Figure 4: Factors influencing electricity market planning
(additional features)

Figure 4 covers new aspects affecting energy market
planning, such as ”Energy Storage Capacity” and ”Cross-
Border Energy Trade.” The horizontal line plot shows these
elements’ relative effect over time alongside previously
analysed ones. New elements like ”Energy Storage Ca-
pacity” (50%) have considerable effect, but ”Technological
Advancements” (90%) and ”Renewable Adoption Rates”
(85%) remain dominating. This visualisation highlights
new energy system objectives that match regulatory rules
and economic statistics. Energy markets are changing,
therefore this number is important. Visualising new di-
mensions recognises the growing role of energy storage

and cross-border commerce in energy security and stability.
Line plots show the time development of components, help-
ing decision-makers discover areas that needmore attention
to satisfy sustainability and dependability objectives.

Figure 5: Optimal energy mix (2018–2024)

Using a stack plot, Figure 5 displays the best energy mix
from 2018 to 2024, highlighting energy source contribu-
tions Renewable energy has steadily increased from 40% in
2018 to 60% in 2024. Global movements towards lowering
fossil fuel reliance have led to a considerable drop in non-
renewable sources from 50% to 30%. Nuclear energy stays
stable at 10%, proving its reliability. This image shows the
energy transition, which is crucial for long-term planning
and decision-making. The rising use of renewable energy
supports sustainability objectives, while the falling usage
of non-renewables supports carbon reduction. This study
helps regulators, investors, and planners understand energy
trends and alter policies for grid dependability, economic
efficiency, and environmental compliance.

Figure 6: Electricity price forecast (2018–2024)

Figure 6 displays 2018-2024 power price forecasts, with
a clear 2021 break to differentiate historical data from pre-
dictions. The blue line shows power prices rising steadily
over time, indicating market dynamics impacted by de-
mand, supply, and regulatory changes. The predicted in-
crease in electricity prices can be attributed to evolving
market structures, including higher renewable integration
and grid modernization investments. Rather than suggest-
ing these developments inherently drive costs up, the results
highlight the importance of designing supportive policies—
such as dynamic pricing models or renewable subsidies—
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that help manage consumer affordability while sustaining
long-term investment in clean infrastructure. The expected
rise emphasises the need for intentional initiatives to guar-
antee affordability and sustainability. This figure gives
decision-makers meaningful information to handle future
price concerns and optimise resource allocation by using
historical data and a rigorous prediction approach.
In addition to high predictive accuracy, ACRN demon-

strates strong scalability and real-time feasibility. As
shown in Figure 17, ACRN outperforms other deep learn-
ing baselines with a consistent 10% reduction in execution
time across increasing dataset sizes. The average infer-
ence time per sample was 0.047 seconds, making the model
well-suited for edge deployment and real-time market op-
erations.

Figure 7: Project risk vs. investment feasibility (2018–
2024)

Project risk (red line) and investment feasibility (green
dashed line) trends from 2018 to 2024 are compared in
Figure 7. Observed fluctuations in project risk reflect un-
derlying shifts in electricity demand, regulatory reform
timelines, and global economic signals such as commod-
ity price volatility or interest rate changes. These periodic
changes—referred to as ’risk cycles’—highlight how ex-
ternal shocks or policy transitions can temporarily elevate
perceived investment risks, which then stabilize as market
conditions adjust. Due to technical advances and renewable
energy initiatives, investment feasibility is rising. Project
risk inversely affects investment feasibility, showing how
lower risks enhance financial viability. This figure helps
stakeholders understand project dynamics and make better
risk mitigation and investment choices. It highlights dan-
gers and possibilities via temporal patterns, enabling proac-
tive feasibility measures. This research enables data-driven
energy market balance and resilience.
The feature importances calculated using Dynamic At-

tribute Refinement are shown in Figure 8. The most impor-
tant features for accurate forecasting and analysis are ”Re-
newable Generation” (0.9), ”Electricity Price” (0.8), and
”Infrastructure Investments” (0.8). Secondary factors like
”Regulatory Policies” (0.6) and ”Market Demand” (0.7) are
equally important, although ”Transmission Losses” (0.3) is
less so. Each energymarket modelling aspect is highlighted
in this graphic, revealing the most predictive variables. Un-

Figure 8: Feature importances (computed by dynamic at-
tribute refinement)

derstanding these rankings helps prioritise resources and
focus on high-impact topics like renewable energy and pol-
icy. Our annotated horizontal bar chart gives stakeholders a
clear and actionable picture to improve energy market plan-
ning accuracy and efficiency.

Figure 9: Confusion matrix: project risk analysis (multi-
label)

Figure 9 displays a confusion matrix for assessing multi-
label project risks. Rows show real risk categories—Low,
Medium, High—while columns provide anticipated classi-
fications. With 2800 Low Risk, 3200 Medium Risk, and
2300 good Risk predictions, the matrix shows good ac-
curacy and few misclassifications. A little misclassifica-
tion count (3 mistakes) shows that the algorithm can accu-
rately capture risk levels. This figure shows the model’s
performance and dependability for real-world deployment.
Visionary comparisons of actual and expected values help
stakeholders find areas for improvement and assure accu-
rate risk assessments. Clarity makes it essential for risk-
sensitive energy market decision-making.
Figure 10 compares the normal energy mix anticipated

and real for November 2024. The blue line displays the ac-
tual renewable energy, while the orange dashed line reflects



Adaptive Convolutional Residual Network for Dual-Task Forecasting… Informatica 49 (2025) 39–54 49

Figure 10: Optimal energy mix forecast (November 2024)

expectations. Both trends are similar, with slight deviations
due to random disturbances and model estimate error. The
graphic shows the energy market’s increasing dependence
on renewable sources, with values between 58-60%. This
tight tracking proves the model’s energy mix prediction ac-
curacy. The visualisation reminds regulators and energy
suppliers to balance energy portfolios to meet market needs
and environmental objectives.

Figure 11: Investment feasibility forecast (November 2024)

In Figure 11, November 2024 investment feasibility
trends are shown, with actual values (green) compared to
expectations (purple dotted line). As market circumstances
improve, the Profitability Index rises from 95 to 100 each
month, indicating more investment possibilities. Minimum
difference between projected and actual values implies
good model accuracy, proving its investment decision-
making applicability. This projection helps investors and
governments manage resources and boost project profits.
Data-driven strategies are crucial to long-term market prof-
itability.

Figure 12: Electricity price forecast (November 2024)

Figure 12 shows the November 2024 power price projec-

tion. Red shows real pricing, blue dashes reflects estimates.
Due to supply-demand dynamics and policy changes, both
trends rise somewhat, fluctuating between $110 and $120
daily. This chart shows the model’s capacity to capture
complicated pricing behaviour, making it a trustworthy
planning tool. Accurate price forecasting helps stakehold-
ers manage risks and optimise resource allocation in turbu-
lent energy markets.

Figure 13: ROC curve: project risk analysis (multi-label)

Figure 13 displays ROC curves for multi-label classifi-
cation in project risk assessments, spanning Low, Medium,
and High risk categories. Each curve shows the TPR-
FPR trade-off across categorisation levels. The model’s
strong discriminating power is shown by its AUC values
of 0.96 (Low Risk), 0.97 (Medium Risk), and 0.98 (strong
Risk). This image shows the model’s ability to discrim-
inate risk categories, assuring accurate forecasts. Risk-
sensitive applications need near-optimal classification per-
formance, which high AUC values suggest. The diagonal
random classifier line (AUC = 0.5) highlights the model’s
superiority over random guessing. This assessment is cru-
cial for verifying the proposed approach in real-world con-
texts where accurate risk categorisation supports strategic
decision-making.
In Figure 14, the ACRN’s training and testing accuracy

is shown across 28 epochs. The model improves steadily,
peaking at 98% accuracy at epoch 23. The model’s gen-
eralisation is shown by its testing accuracy matching train-
ing accuracy. The ACRN can learn complicated patterns
without overfitting, as seen in this graphic. Epoch 23 con-
vergence implies that more training does not improve per-
formance. For optimal training efficiency, low comput-
ing costs, and consistent performance across unknown data,
such insights are essential. The findings prove the model’s
real-world viability.
ACRN training and testing loss patterns across 28 epochs

are shown in Figure 15. At epoch 23, both curves converge
with negligible loss values. Effective loss function optimi-
sation during training shows the model’s capacity to min-
imise error. Testing and training loss curves are compara-
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Figure 14: Training and testing accuracy of ACRN

Figure 15: Training and testing loss of ACRN

ble, proving the model’s overfitting resilience. Decreased
returns may be avoided by ceasing training at convergence.
This study ensures high accuracy and reliability by assess-
ing the proposed method’s effectiveness in learning mean-
ingful representations from the dataset.
The impact of minor changes to the model’s hyperpa-

rameters on its overall accuracy may be measured via the
sensitivity analysis. With higher sensitivity scores, param-
eters like as ”Learning Rate” (0.88), ”Batch Size” (0.82),
and ”Dropout Rate” (0.91) are more affected by fine-tuning
these settings, which in turn affects model performance.
Given that these factors have a direct bearing on the reg-
ularization behavior and learning dynamics of deep neural
networks, this is not surprising. Parameters such as ”Num-
ber of Layers” and ”Kernel Size” on the other hand, had
somewhat lower sensitivity ratings, indicating that they do
less to increase accuracy right away after the baseline archi-
tectural depth is reached. Researchers may use these find-
ings to prioritize tuning efforts, increasing performance by
concentrating on more sensitive factors and decreasing the
expense of extensive searches across less influential ones.
Table 4 demonstrates that the proposed ACRN outper-

forms current categorization methods. ACRN’s high F1-

Figure 16: Sensitivity analysis of parameters for ACRN

Table 4: Classification results of different techniques

Techniques Log
Loss

TFF
(%)

Recall
(%)

Accuracy
(%)

Precision
(%)

F1-
Score
(%)

AUC
(%)

Naive Bayes [7] 0.295 79.8 84.7 86.5 85.0 85.5 85.1
Random Forest [9] 0.268 81.4 86.9 88.3 87.1 87.2 87.5
Gradient Boosting [13] 0.235 83.9 88.3 90.1 88.6 88.5 89.7
ResNet [15] 0.218 84.5 88.9 90.9 89.7 88.7 91.2
CNN [17] 0.210 86.2 90.4 92.0 91.2 90.2 91.5
VGG16 [18] 0.190 88.3 91.8 93.0 92.0 91.7 92.5
WideResNet [20] 0.160 89.5 94.3 95.0 94.5 94.0 94.8
MobileNet [21] 0.185 87.6 92.7 93.7 93.0 92.5 93.2
EfficientNet [23] 0.155 90.1 94.5 95.3 94.8 94.7 95.0
Transformer-Based Model [27] 0.175 89.0 93.0 94.1 93.3 93.2 93.7
GNN [24] 0.148 91.3 95.2 95.9 95.5 95.3 95.6
Hybrid Prophet + Transformer [25] 0.140 92.5 96.3 96.7 96.1 96.2 96.5
Proposed ACRN 0.070 94.8 98.0 98.5 98.6 98.1 99.0

Score (98.1%), AUC (99.0%), and TFF (94.8%) results
from its ability to capture temporal and spatial correlations
in the dataset. These parameters are critical for multi-label
categorization. A high F1-Score implies that the model bal-
ances accuracy and recall across several risk classes, de-
creasing false alarms and missed detections in project risk
assessments. The model’s 99.0% AUC score demonstrates
its strong ability to distinguish between low, medium, and
high-risk profiles. Temporal Feature Fidelity (TFF) mea-
sures how effectively the model retains time-based patterns
in its predictions, which is important in markets where tim-
ing affects regulatory compliance, investment viability, and
energy pricing strategies. Adaptive convolutional layers
with residual connections conserve essential features, elim-
inating vanishing gradient problems and enhancing learn-
ing efficiency. Although EfficientNet and WideResNet
perform well because to their advanced architectures, their
lower TFF scores show that they struggle with the dataset’s
temporal complexity. The limited results of Naive Bayes
and Random Forest demonstrate their feature scalability
and deep hierarchical learning limitations. This chart shows
that domain-specific model designs are essential for good
classification accuracy. Log Loss is not a conventional
evaluation score, but it provides insight into the model’s
probabilistic output confidence. This model makes accu-
rate predictions with high confidence if Log Loss is low.
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To augment categorization measures like Accuracy, Preci-
sion, Recall, and AUC in high-stakes decision contexts like
project risk forecasting, this assesses predicted probability
calibration.

Table 5: Statistical analysis of classification techniques us-
ing F-statistic and P-value

Statistical Method A
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Naive Bayes [17] 5.45 0.034 0.63 0.58 6.35 0.60
Random Forest [19] 6.82 0.022 0.75 0.66 7.62 0.72
Gradient Boosting [13] 7.10 0.019 0.81 0.70 8.04 0.78
ResNet [15] 7.45 0.015 0.85 0.73 8.76 0.80
VGG16 [18] 8.12 0.011 0.90 0.77 9.45 0.85
WideResNet [20] 8.35 0.009 0.91 0.78 9.67 0.87
MobileNet [21] 7.92 0.013 0.88 0.75 9.10 0.83
EfficientNet [23] 8.40 0.010 0.91 0.78 9.80 0.86
GNN [24] 8.52 0.008 0.92 0.80 9.95 0.88
Hybrid Prophet + Transformer [25] 8.65 0.007 0.93 0.81 10.05 0.88
Proposed ACRN 8.72 0.006 0.94 0.82 10.12 0.89

In Table 5, F-statistic, P-value, Pearson Correlation,
Kendall’s Tau, Chi-Square, and Spearman’s Rank Correla-
tion are used to analyse classification procedures. Adaptive
Convolutional Residual Network (ACRN) has the great-
est statistical performance across all parameters, with an
ANOVA F-statistic of 8.72, a P-value of 0.006, and Pear-
son and Spearman correlation values over 0.90. These find-
ings demonstrate ACRN’s capacity to capture complicated
temporal and geographical connections in the dataset. Due
to feature extraction efficiency, advanced deep learning ar-
chitectures like EfficientNet andWideResNet perform well
statistically. The lower correlation scores of simpler mod-
els like Naive Bayes and Random Forest indicate their
inability to capture nonlinear interactions. The complete
measurements demonstrate ACRN’s resilience and gener-
alisability, making it perfect for power market planning.

Table 6: Performance Metrics for Regression Methods in
Forecasting Labels
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Naive Bayes [17] 13.1 3.72 0.79 4.45 0.78 19.80 12.6 0.77
Random Forest [19] 11.9 3.41 0.84 4.01 0.83 16.08 11.0 0.82
Gradient Boosting [13] 11.2 3.30 0.86 3.85 0.85 14.82 10.4 0.84
ResNet [15] 10.4 3.18 0.88 3.67 0.87 13.47 9.8 0.86
VGG16 [18] 9.6 2.98 0.89 3.50 0.88 12.25 9.1 0.87
WideResNet [20] 9.3 2.90 0.90 3.38 0.89 11.42 8.8 0.88
MobileNet [21] 9.0 2.84 0.91 3.30 0.90 10.89 8.5 0.89
EfficientNet [23] 8.7 2.78 0.92 3.20 0.91 10.24 8.3 0.91
GNN [24] 7.9 2.60 0.93 3.02 0.92 9.12 7.6 0.92
Hybrid Prophet + Transformer [25] 6.8 2.45 0.94 2.87 0.93 8.24 6.9 0.93
Proposed ACRN 2.33 1.90 0.97 1.85 0.96 3.42 2.9 0.96

In Table 6, regression approaches for label forecast-
ing are compared using performance measures such as
MAPE,MAE, R-Squared (R2), RMSE,AdjustedR2, MSE,
SMAPE, and Variance Score. The suggested ACRN
achieves excellent performance with low MAPE (2.33%),

MAE (1.90), and RMSE (1.85). These findings show it can
reduce error andmake precise forecasts. ACRN can explain
data variability in complicated temporal datasets with its
high R-Squared (0.97) and Variance Score (0.96).ACRN’s
capacity to represent complex relationships outperforms
advanced approaches like EfficientNet and WideResNet,
which extract features well. Traditional models like Naive
Bayes andRandomForest struggle with nonlinear and high-
dimensional data. ACRN’s novel design is crucial to attain-
ing cutting-edge power market forecasting outcomes.

Figure 17: Time complexity analysis of ACRN and exising
methods

Figure 17 shows the efficiency of the Proposed Adap-
tive Convolutional Residual Network (ACRN) compared
to other approaches for different data sizes using execu-
tion time analysis. The ACRN outperforms rivals like
ResNet and MobileNet in execution times by an average of
10%. ACRN’s optimised design eliminates computational
overhead with adaptive convolutional layers and residual
connections that speed up feature extraction and learning.
Because they cannot effectively handle high-dimensional
datasets, Random Forest and VGG16 take longer to exe-
cute, especially for bigger data volumes. Advanced mod-
els like WideResNet and EfficientNet perform well but de-
mand more computer resources, which slows execution.
This investigation shows that ACRN is scalable, making it
appropriate for large-scale power market planning and fore-
casting.

4.1 Interpretation of results
The suggested ACRN model has significant practical im-
plications for energy market planning and decision assis-
tance beyond its numerical performance. The model has a
classification accuracy of 98.5% and an AUC of 0.99, in-
dicating almost flawless differentiation across project risk
categories (low, medium, high). This precision decreases
investment feasibility assessment uncertainty and helps en-
ergy planners pick low-risk, high-return projects. This
granularity is helpful in regulatory situations where mis-
classifying high-risk projects might cause budget overruns
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or policy inefficiencies. A 12% decrease in Mean Abso-
lute Percentage Error (MAPE) in power price forecasting
yields significant financial and operational advantages. Just
a slight increase in price forecasting accuracy may help
utility providers and market operators balance demand and
supply, compete in energy markets, and optimize energy
purchase strategies. This precision prevents over-reliance
on expensive peak-hour reserves and facilitates stable tariff
design in regulated markets.
Additionally, the ACRN model’s 10% reduction in pro-

cessing cost makes it more suitable for edge computing.
ACRNmay predict on smart grid nodes or real-time control
systems with minimal hardware using a leaner design that
saves overhead. Decentralized, low-latency forecasting is
essential for contemporary energy systems, when choices
must be taken in minutes or seconds. These results show
that ACRN is a technically solid model that can improve
operational responsiveness, investment planning, and grid
dependability in dynamic power markets.

5 Discussion

The Adaptive Convolutional Residual Network (ACRN)
outperforms several state-of-the-art energymarket forecast-
ing methods. Table 1 and Tables 4, 5, and 6 demon-
strate that ACRN outperforms established machine learn-
ing and deep learning approaches in many assessment met-
rics. ACRN has lower regression error rates (MAPE:
2.33% vs. 11.9–13.1%) and greater classification accu-
racy (98.5% vs. 86.5–90.1%) than conventional models
like Random Forest and Gradient Boosting. ACRN out-
performs deeper architectures like ResNet, WideResNet,
EfficientNet, and Transformer-based models with an F1-
score of 98.1% and AUC of 99.0%, while reducing compu-
tational cost by 10%. ACRN models complicated nonlin-
ear relationships and temporal patterns better because to its
dual-task design, dynamic convolutional layers, and adap-
tive feature refinement.
Most SOTA approaches concentrate on single-task learn-

ing, however ACRN addresses classification (project risk)
and regression (electricity price) in a single pipeline for
decision-making. The residual connections alleviate the
vanishing gradient issue in larger networks, and the tempo-
ral feature fidelity (TFF) measure preserves time-based re-
lationships, which energy informatics requires. ACRN has
drawbacks despite its success. Due to its hierarchical depth,
the model needs more training time and technology than
other deep learning approaches, despite its lower comput-
ing costs. Second, ACRN may overfit smaller datasets or
noisy input like other deep designs. We reduced this risk via
dropout regularization and early halting, but further testing
in low-data or turbulent markets may be helpful. Finally, al-
though the model was verified on Frankfurt regional data,
it must be tested in other geographic and policy settings to
be generalized.
The proposed ACRN architecture covers important fore-

casting model deficiencies and provides a scalable and ac-
curate foundation for long-term power market planning. Its
ability to merge classification and regression aims helps
policymakers and energy planners get high-resolution, real-
time information.

6 Conclusion
Integration of renewable energy sources, market volatility,
and policy dynamics complicate electricity market plan-
ning. Advanced forecasting algorithms that handle multi-
dimensional data and various tasks are needed to address
these issues. This paper introduces the Adaptive Convolu-
tional Residual Network (ACRN), a deep learning system
for dual-task forecasting that integrates project risk cate-
gorisation with electricity price regression. The framework
performs well on 2018–2024 power market data. With an
accuracy of 98% and an AUC over 0.99, the categorisation
job efficiently manages risk in market preparation. ACRN
beats state-of-the-art regression algorithms, yielding a 12%
MAPE improvement and a 10% computational time re-
duction. These findings demonstrate the model’s capacity
to capture temporal dependencies and non-linear interac-
tions and scale to huge datasets. Technically, hierarchical
feature aggregation and adaptive feature refinement solve
feature selection and scalability problems. The dynamic
convolutional layers improve computing performance, al-
lowing real-time applications and broadening the frame-
work’s commercial applications. These contributions make
ACRN a reliable long-term power market forecasting solu-
tion. Beyond technical contributions, this research gives
energy informatics stakeholders meaningful insights that
bridge predictive modelling and strategic decision-making.
The framework links predictive insights with current elec-
tricity market operating demands by allowing accurate risk
assessment and price forecasting, supporting resource opti-
misation and sustainable energy planning.
The architecture can potentially be made more adapt-

able to high market volatility and varied geographical lo-
cations by incorporating transfer learning, region-specific
calibration layers, and fine-tuning on localized datasets.
Adding socio-economic or environmental information may
enhance the model’s holistic predictions. This research em-
phasises the relevance of computational intelligence in scal-
able and efficient power market solutions. Moreover, This
dataset primarily covers the electricity market in Frank-
furt, however the regulations, integration of renewable en-
ergy sources, and market dynamics seen there are typical of
many organized energy systems in North America and Eu-
rope. However, due to differences in governmental frame-
works, deregulated or emerging markets may have limited
external validity. The flexibility and resilience of ACRN
will be evaluated in future research by verifying it across
various geographic and market situations.
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