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With the continuous development of intelligent transportation systems, traffic sign recognition (TSR) 

under complex scenarios such as low resolution and poor lighting has become a critical research focus. 

This study proposes a two-stage TSR framework that combines a Multi-scale Enhanced Channel 

Residual Network (MECRN) for image enhancement and a Deformable Convolutional YOLO-based 

detection network (PP-YOLO-DCN). In the enhancement stage, MECRN integrates dense connections, 

multi-scale convolution, and channel attention mechanisms to improve image clarity and detail 

preservation. In the recognition stage, deformable convolutions and depthwise separable convolutions 

are introduced into the PP-YOLO framework to enhance the detection of small, irregular traffic signs 

while reducing computational complexity. Experimental results show that the MECRN achieves a peak 

signal-to-noise ratio (PSNR) of 31.7 dB and a structural similarity index (SSIM) of 0.897. In low-light 

scenarios, the learned perceptual image patch similarity (LPIPS) reaches 0.185, indicating superior 

visual restoration. The PP-YOLO-DCN model attains a mean average precision (mAP@0.5) of 0.91 and 

0.86 under dense multi-target and adverse weather conditions, respectively, with real-time performance 

of over 40 FPS. Compared with baseline methods, the proposed framework significantly improves 

recognition accuracy and robustness in challenging traffic environments, providing effective technical 

support for intelligent transportation applications. 

Povzetek: Prispevek uvaja dvostopenjski sistem za prepoznavanje prometnih znakov z izboljšano 

natančnostjo in robustnostjo, ki združuje MECRN za izboljšavo slik in deformabilni PP-YOLO-DCN za 

zaznavo.

1  Introduction 
The rapid growth of the global intelligent 

transportation industry, coupled with the accelerated 

pace of urbanization and a substantial rise in 

transportation demand, has spurred ongoing exploration 

into efficient traffic management and safety enhancement 

technologies [1]. Traffic sign recognition (TSR) serves as 

a vital element within smart transportation networks, 

holding a crucial position in improving the accuracy of 

autonomous driving and traffic monitoring [2-3]. However, 

the precision of traffic sign identification faces 

significant challenges. Especially in low light 

environments such as nighttime and severe weather, 

low-quality images often make it difficult for traditional 

algorithms to accurately capture landmark information, 

affecting the detection efficiency and safety of the 

system [4-5]. In this context, combining image 

enhancement with TSR has become an effective way to 

enhance the robustness of intelligent transportation 

systems [6]. Fu et al. proposed a weak light image 

enhancement method based on brightness attention 

mechanism and generative adversarial network for image 

analysis of smart cities. The brightness attention 

mechanism was used to forecast the light distribution of  

 

low light images, guiding the enhancement network to 

adaptively improve image quality in various brightness 

regions [7]. Cheng X et al. raised an improved generative 

adversarial network algorithm that combined attention 

mechanism and multi-scale feature fusion to handle the 

problem of low resolution and blurry details in highway 

images resulting from complex weather conditions. The 

algorithm introduced strategies to increase attention to 

high-frequency region information and local 

discrimination. The outcomes indicated that the 

nighttime enhancement effect of the algorithm was raised 

by 12.89% [8]. Hu et al. proposed a joint image to image 

conversion enhancement method to address the issue of 

decreased accuracy in facial recognition of drivers in 

intelligent transportation systems due to multiple 

degradations of facial images. This method designed a 

fast diagonal symmetry pattern to generate a large 

number of degraded/clear image pairs as training data. In 

addition, the proposed dual residual block enhanced the 

network's ability to learn facial detail features [9]. 

Chenmin et al. raised a dehazing algorithm that 

combined division of sky zones and enhancement of 

transparency. First, the image was divided into regions 

through segmentation, and the transparency of the sky 
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region was further optimized. Subsequently, the 

simulated annealing algorithm was used to enhance the 

transmittance parameters and adaptively optimize the 

brightness and contrast of the image. The outcomes 

indicated that the algorithm could validly improve the 

subjective and objective effects of TSR [10]. 

Image enhancement technology has made 

significant progress in improving the clarity and details 

of low-quality traffic images, providing a good data 

foundation for TSR. However, achieving efficient and 

accurate TSR requires further reliance on advanced 

detection and classification methods. Ferencz et al. raised 

a TSR system grounded on convolutional neural 

networks (CNNs) to meet the widespread application 

needs of TSR in the area of computer vision. The system 

used deep CNNs to classify 43 categories of road signs in 

the TensorFlow framework. The results indicated that the 

model exhibited high accuracy on the hold out dataset [11]. 

Zhu Y et al. studied how to overcome environmental 

factors to achieve accurate and efficient TSR based on 

the trend of autonomous vehicles gradually maturing. 

The study evaluated the performance of TSR using You 

Only Look Once v5 (YOLOv5) and single shot 

multi-box detector (SSD) model. Experiments showed 

that YOLOv5 outperformed SSDs in both recognition 

accuracy and speed [12]. Min W et al. raised a TSR 

approach grounded on interpretation of scene semantics 

and architectural limitations. By constructing a spatial 

relationship model between traffic signs and surrounding 

objects, and combining it with an improved model for 

semantic analysis, the raised multi-scale dense-connected 

object detector was tested on two benchmark datasets for 

TSR, with accuracies of 92.8% and 99.90% [13]. Abdel 

Salam et al. raised an instantaneous image improvement 

CNN for the various TSR datasets, addressing the issues 

of significant environmental impact and poor real-time 

performance. The experiment was tested on traffic sign 

benchmarks in Germany, Belgium, and Croatia, with 

recognition rates of 99.75%, 99.25%, and 99.55% [14]. A 

summary of the existing studies is shown in Table 1. 

 

Table 1: Summary of existing studies 

Author Method description Results Limitations 

Fu J et al. [7] 
Brightness attention mechanism 

+ GAN-based enhancement 

Significant improvement in 

brightness and quality in low 

light 

Not integrated with 

detection; no sign 

recognition 

Cheng X et al. 

[8] 

GAN with attention and 

multi-scale fusion 

Nighttime enhancement 

improved by 12.89% 

Weak for small-object 

detection 

Hu C et al. [9] 
Image-to-image translation + 

dual residual blocks 

Improved facial image quality 

under degradation 

Focused on face images, 

not traffic signs 

Chenmin N et 

al. [10] 

Dehazing via sky segmentation 

and transmittance optimization 

Enhanced contrast and subjective 

clarity in traffic images 

High dependency on sky 

region segmentation 

Ferencz C et al. 

[11] 

CNN-based multi-class sign 

classification (43 classes) 

High classification accuracy on 

hold-out dataset 

Poor robustness to blur 

and distortion 

Zhu Y et al. [12] 
Comparison of YOLOv5 and 

SSD for detection 

YOLOv5 outperformed SSD in 

accuracy and speed 

Limited in low-light and 

small-object scenarios 

Min W et al. 

[13] 

Scene modeling + multi-scale 

dense detection 

Accuracy of 92.8% and 99.90% 

on two datasets 

Strong reliance on image 

clarity and resolution 

Abdel-Salam R 

et al. [14] 

Real-time image-enhanced CNN 

(RIECNN) 

Recognition rate of 99.75%, 

99.25%, and 99.55% on three 

datasets 

Lacks structural flexibility 

in complex backgrounds 

 

Although current TSR methods have achieved 

promising results under standard conditions, significant 

challenges remain under various forms of image 

degradation. Most existing studies fail to systematically 

identify the specific limitations of different degradation 

types and their direct impacts on recognition 

performance. In low-light environments, reduced 

brightness and signal-to-noise ratio hinder traditional 

CNNs from extracting critical textures of small targets, 

leading to increased false detections and omissions. In 

blurry images, the loss of edge sharpness disrupts spatial 

structure modeling, especially affecting the localization 

of irregular-shaped signs. In adverse weather conditions 

such as fog or rain, weakened contrast and increased 

background noise further degrade performance, 

particularly for models lacking robust multi-scale feature 

fusion capabilities. Moreover, many methods focus 

solely on either image enhancement or recognition, 

lacking an end-to-end co-optimization mechanism that 

ensures both visual quality and detection accuracy. To 

address these issues, this study proposes a dual-stage 

framework combining enhancement and detection. The 

first stage introduces a Multi-scale Enhanced Channel 

Residual Network (MECRN), which integrates 

multi-scale convolution, channel attention (CA), and 

dense residual connections to restore structural clarity 

and contrast. The second stage constructs an improved 

PaddlePaddle-You Only Look Once model based on 

Deformable Convolutional Networks and Depthwise 

Separable Convolutions (PP-YOLO-DCN), enhancing 

robustness in detecting small, irregular, and multi-scale 

signs. This framework achieves stable and accurate 

recognition across diverse degraded traffic scenarios. 
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2  Methods and materials 

2.1 Design of image enhancement model 

based on MECRN 
In intelligent transportation systems, the clarity of 

images will directly affect the accuracy of TSR, 

especially in conditions such as long distance and severe 

weather, where images often appear blurry or low 

resolution, affecting the recognition effect [15]. The 

widely-used Super-Resolution CNN (SRCNN) achieves 

direct mapping from low resolution images to 

high-resolution images through an end-to-end CNN 

structure, greatly improving the reconstruction effect 
[16-17]. However, in complex traffic scenarios, SRCNN 

shows limitations in handling fine textures and 

multi-scale features. As the network deepens, it tends to 

suffer from gradient vanishing and feature redundancy, 

which adversely affect training stability and 

reconstruction quality. To address these issues, this study 

aims to design an image enhancement model capable of 

adapting to various types of degradation, while 

improving the accuracy and robustness of subsequent 

TSR. The specific research questions include: (1) How 

can structurally clear and detail-rich images be 

effectively restored under conditions such as low 

illumination, blurring, and compression? (2) Can 

multi-scale feature fusion and CA mechanisms enhance 

the model’s ability to represent hierarchical texture 

information? (3) When used as a preprocessing module 

for detection, can the enhancement model significantly 

improve overall recognition performance? To answer 

these questions, this study introduces a strategy that 

combines dense connections and multi-scale convolution 

into the SRCNN framework, aiming to better meet the 

image enhancement needs of intelligent transportation 

systems and provide high-quality inputs for TSR. The 

structure of dense connections and multi-scale 

convolution is illustrated in Figure 1.

Filter Concat

3×3 

convolution

5×5 

convolution

H1

H2

H3

H4

x0

x1

x2

x3

x4

(a) Dense connections

1×1 

convolution

3×3 max 

pooling

Previous Layer

(b) Inception module  
 

Figure 1: Densely connected and multi-scale convolutional structures 

 

Figure 1 (a) and Figure 1 (b) respectively show 

dense connections and multi-scale convolution structures. 

In Figure 1 (a), the output of each layer is not only 

directly passed to subsequent layers, but also connected 

to deeper feature maps. By integrating shallow and deep 

features through cross layer connections, the propagation 

of information flow is enhanced, which can successfully 

mitigate the issue of gradient dissipation. In Figure 1 (b), 

the Inception module is a classic example of multi-scale 

convolution, which achieves multi-scale feature 

extraction through convolution kernels (CKs) and max 

pooling layers at different scales of 1×1, 3×3, and 5×5. 

Finally, by combining this multi-scale information 

through Concat, the network can maintain sparsity while 

maintaining high computational efficiency and 

adaptability. In dense connections, H  represents a set 

of nonlinear operations, including convolutions, 

activation functions, etc. The input of each layer is the 

cumulative output of the current layer and all previous 

layers, where the input expression is shown in equation 

(1). 

0 1 1([ , ,..., ])N N Nx H x x x −=       (1) 

In equation (1), N  means the total number of 

layers. Nx  is the input, and 0 1 1[ , ,..., ]Nx x x −  

represents the concatenation of all features from layer 0 

to layer 1N − . NH  performs non-linear 

transformations such as convolution and activation on 

these features. In the multi-scale convolution structure, 

the outputs of each branch are doing Concat in the 

channel dimension to obtain the output of the Inception 

module, as shown in equation (2). 

1 1 3 3 5 5( , , , )inception poolx Concat x x x x  =     (2) 

In equation (2), 1 1x  , 3 3x  , and 5 5x   represent 

the features extracted from the input feature map x  

using 1×1, 3×3, and 5×5 CKs. 5 5x   means the final 

output feature map. poolx  represents the maximum 

pooling operation and subsequent convolution to obtain 

characteristics from the given feature map x . To further 

enhance multi-scale feature representation and 

information modeling, a Multi-Scale Residual Feature 

Attention (MSRFA) module is designed based on the 

structure in Figure 1. Compared with conventional 

multi-scale fusion methods such as Feature Pyramid 

Network (FPN) and Atrous Spatial Pyramid Pooling 

(ASPP), MSRFA is more lightweight and capable of 

preserving multi-scale details while enhancing the 

response to key regions through residual connections and 



 

 

94   Informatica 49 (2025) 91-104                                                                       Z. Ye 

 

 

 

CA. This design improves image enhancement 

performance in challenging scenarios such as low light 

and blur, making it more suitable for intelligent 

transportation applications. The structure of MSRFA is 

shown in Figure 2.
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Figure 2: MSRFA structure 

 

As shown in Figure 2, the MSRFA module is an 

optimized implementation based on the concepts of 

multi-scale convolution and dense connections presented 

in Figure 1. The module first extracts initial features 

from the input feature map through two parallel branches 

with different kernel sizes (Conv1_2 and Conv1_3), 

capturing multi-scale features 1F  and 1T . These two 

branches represent a simplified version of the Inception 

structure in Figure 1(b), retaining 3×3 and 5×5 

convolutions to enhance medium and large receptive 

field feature extraction, while discarding the 1×1 

convolution and max-pooling branches to reduce 

computational complexity and improve structural detail 

modeling. In addition, a 1×1 convolution (Conv1_1) is 

introduced to complement local feature extraction, 

forming the shallow feature extraction stage together 

with Conv1_2 and Conv1_3. All three branches produce 

64 output channels. The concatenated features are then 

passed through Conv2_1 and Conv2_2 (3×3 and 5×5 

convolutions) to extract deeper multi-scale features, with 

the output dimension remaining at 64. Finally, Conv3_1 

applies a 1×1 convolution to compress the fused 

intermediate features into a 256-dimensional 

representation, which is further refined by a CA 

mechanism to enhance responses to key regions. This 

enables joint modeling of global context and local details, 

producing the final enhanced feature map. 

It is worth noting that Conv3_1 not only integrates 

the preceding multi-scale features but also employs 1×1 

convolution to compress channels and fuse spatial 

information, enabling the model to retain fine-grained 

local textures while introducing global contextual 

awareness. Combined with the CA mechanism, this 

design allows the model to simultaneously focus on key 

local regions and overall structural patterns, enhancing 

both perceptual consistency and structural fidelity in the 

enhanced image. 

Firstly, the initial feature extraction expression is 

shown in equation (3). 

1 1 1 1 1 1 3 3 1 5 5 1, , ( ), ( ), ( )n n nO F T X X X   −  −  −=     

                       (3) 

In equation (3), 1nX −  represents the input feature 

map of the previous layer. 1 1  , 3 3   and 5 5   

respectively represent the weights of different 

convolutions.   represents the combination of 

convolution and activation function Leaky ReLU. 1O , 

1F  and 1T  respectively represent feature information 

extracted through 1×1, 3×3, and 5×5 convolutions. 

Similarly, after deep feature fusion, the final output 

feature fusion expression is shown in equation (4). 

1 1 2 2 1 1( [ , , , ])n nX C T F O X  −=      (4) 

In equation (4), 2 2 1 1[ , , , ]nT F O X −  represents 

concatenating the multi-scale features 2F  and 2T  

obtained from two convolutions with the initial feature 

1O  and input feature 1nX − , integrating the multi-scale 

information of the intermediate layer. C  represents the 

CA mechanism. nX  is the final output feature map. 

Finally, grounded on the improved SRCNN network by 

integrating MSRFA, the MECRN image enhancement 

model structure is shown in Figure 3. 
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Fig. 3. MECRN structure diagram 

 

In Figure 3, the network structure of the MECRN 
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image enhancement model is divided into shallow and 

deep feature extraction modules, and upsampling 

modules. Firstly, the shallow feature extraction module 

extracts initial features from the input low resolution 

image through convolutional layers Conv1 and Leaky 

ReLU activation functions. Secondly, the deep feature 

extraction module includes multiple MSRFAs, which 

capture different levels of detail information in the image 

through multi-scale feature fusion and CA mechanism. 

Meanwhile, skip connections have been added between 

each MSRFA module to preserve shallow information 

and reduce gradient dissipation. Finally, the upsampling 

module enhances the spatial resolution of features 

through the Pixel Shuffle layer, generating the final 

super-resolution output image. 

 

 

 

 

 

2.2 Design of TSR model based on 

PP-YOLO 
After constructing the MECRN-based image 

enhancement model, a TSR model is further developed 

based on the enhanced high-quality images. The study 

mainly focuses on the following questions: (1) Can 

deformable convolution (DCN) enhance the model's 

feature adaptability to irregular traffic signs? (2) Can 

depthwise separable convolution (DSC) reduce 

computational cost while maintaining detection accuracy? 

(3) Can the integration of image enhancement and 

detection improve recognition robustness in complex 

scenarios? The TSR model is based on PP-YOLO, and is 

a lightweight target detection algorithm based on YOLO 

architecture [18-19]. PP-YOLO inherits the efficient 

real-time detection capability of the YOLO series, and 

achieves a good balance between computational 

efficiency and accuracy by introducing more efficient 

model structures and feature optimization strategies. Its 

network structure is shown in Figure 4 [20]. 
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Figure 4: PP-YOLO network structure 

 

In Figure 4, PP-YOLO includes three parts: feature 

extraction network, FPN, and detection head. 

ResNet50-vd, as its feature extraction network, 

convolves the input image layer by layer to extract 

feature maps of different levels C1 to C5, where C5 

represents the depth features of the highest level. 

Secondly, the FPN module is used to fuse the feature 

maps of P3, P4, and P5 at different scales. Subsequently, 

the feature maps output by FPN are passed to the 

detection head, and each layer of feature map 

corresponds to a detection head. The YOLO Loss serves 

the purpose of computing the classification loss, 

bounding box loss, and confidence loss. Finally, the 

network outputs the Class, Box, and Confidence of each 

target. 

Due to the fact that traffic signs often exhibit 

different shapes and scales due to factors such as 

perspective, distance, and lighting, to raise the feature 

extraction capability of the model for irregular and 

small-scale traffic signs in complicated traffic scenes, a 

DCN is introduced into PP-YOLO. DCN can 

dynamically adjust the sampling position of the CK, so 

that the network can focus on the key areas of the target, 

thereby capturing the detailed features of traffic signs 

more flexibly and efficiently. DCN is a key component 

of DCN, as shown in Figure 5. 

Conv

Offsets

Offsets field

2N

Deformable convolution

Input feature 

map

Output feature 

map

 

Figure 5: Schematic diagram of DCN 

 

As illustrated in Figure 5, traditional convolution 

operations utilize fixed sampling positions arranged in a 

regular grid pattern (e.g., 3×3 centered on a pixel). 

However, in real-world traffic scenes, objects often 

exhibit complex variations such as deformation, 

occlusion, and tilt, making fixed sampling insufficient 

for capturing critical structural information. To address 

this limitation, DCN introduces learnable offsets that 

allow each sampling point in the convolutional kernel to 

dynamically adjust its position based on the input feature 

map. These offsets are generated by an independent 
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convolutional branch and added to the original regular 

grid positions to produce new, content-adaptive sampling 

locations. This mechanism enables the kernel to focus on 

structurally variant regions, such as object boundaries, 

curved contours, or partially missing areas, thereby 

enhancing the model’s capability to represent 

fine-grained details. Bilinear interpolation is used to 

extract features from non-integer sampling coordinates, 

ensuring spatial continuity in the output. 

Equations (5) to (7) describe the three core 

processes of DCN: offset calculation, non-uniform 

sampling, and weighted feature aggregation. Specifically, 

Equation (5) defines the adaptive adjustment of sampling 

positions. Equation (6) reconstructs features at fractional 

locations through bilinear interpolation. Equation (7) 

aggregates all sampled features to produce the final 

output map. Compared to standard convolution, DCN 

increases the flexibility of spatial modeling and improves 

adaptability to irregularly shaped objects. This structure 

is selected due to its strong compatibility with 

YOLO-based architectures and its effectiveness in 

handling small targets, partial occlusions, and geometric 

deformations, which are common challenges in TSR 

scenarios. Firstly, the offset calculation is shown in 

equation (5). 

( )n offsetp f x =               (5) 

In equation (5), np  represents the dynamic offset 

of each sampling point, and offsetf  represents the 

convolution function used to generate the offset. 

Subsequently, the variability convolution operation is 

shown in equation (6). 

0 0( ) ( ) ( )
n

n n n

p R

y p p x p p p


=  + +    (6) 

In equation (6), 0( )y p  represents the value of the 

output feature map at position 0p , and 

0( )n nx p p p+ +  means the value of the input 

feature map at the position of the dynamic sampling 

point. ( )np  is the weight of the CK, consistent with 

traditional convolution operations. Finally, the overall 

output feature map of the variable convolution is 

represented by equation (7). 

0

0( , ) ( ) ( )
n

deform n n n

p X p R

Y f X P p x p p p
 

=  =  + + 

   (7) 

In equation (7), Y  is the output feature map after 

variable convolution. deformf  is the DCN operation, and 

X  means the input feature map. P  is the offset 

field. 0p X  represents traversing all positions of the 

input feature map. Considering that increasing the depth 

of convolution will lead to an increase in parameter 

count and computational overhead, this study attempts to 

introduce DSC. By decomposing the standard 

convolution into deep convolution and 1×1 convolution, 

it can effectively reduce the computational and parameter 

count, and improve the computing speed. The structure is 

shown in Figure 6. 

Filters*4 Map*4

3 channel input

Filters*3

(a) Regular convolution (b) DSC
 

Figure 6: Schematic diagram of depth-wise separable convolution 

 

Figures 6(a) and 6(b) illustrate the operations of 

standard convolution and DSC, respectively. In Figure 

6(a), for a 5×5 input with three channels, four 3×3 

convolutional kernels are applied. Each kernel performs 

a 3×3 convolution across all three input channels, and the 

results are summed to produce one output feature map, 

generating a total of four output channels. This operation 

involves simultaneous computation across spatial and 

channel dimensions, with computational cost increasing 

rapidly with the number of channels and kernels. In 

contrast, Figure 6(b) shows that DSC decomposes the 

convolution into two steps: First, depthwise convolution 

is applied separately to each input channel using a single 

corresponding kernel, maintaining the same number of 

output channels. Second, a 1×1 pointwise convolution is 

used to fuse information across channels. This design 

significantly reduces the number of multiplications and 

parameters while retaining spatial feature extraction and 

inter-channel interaction capabilities. 

Compared to standard convolution, DSC offers 

higher efficiency and practicality in TSR tasks. On one 

hand, these tasks demand real-time inference, and the 

high computational cost of standard convolution in the 

channel dimension often becomes a bottleneck during 

early-stage feature extraction. DSC alleviates this issue 

by reducing the parameter count and computational load, 

thereby accelerating inference. On the other hand, traffic 

signs are typically small objects with clear structural 
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boundaries. DSC preserves spatial detail sensitivity 

through depthwise convolution and enhances semantic 

representation via pointwise convolution, improving the 

model’s ability to extract edge and texture features. 

Therefore, the structure depicted in Figure 6(b) is highly 

suitable for integration into lightweight object detection 

models. The calculation of deep convolution is shown in 

equation (8). 
1 1

, , , , , ,

0 0

K K

c i j c i m j n c m n

m n

y x 
− −

+ +

= =

=           (8) 

In equation (8), , ,c i jy  means the value of the 

output feature of channel c  at ( , )i j . , ,c i m j nx + +  is 

the value of channel c  at ( , )i m j n+ + , and , ,c m n  

is the weight of the K K  CK on channel c . 

Subsequently, the point by point convolution calculation 

is shown in equation (9). 
1

, , , , ,

0

C

k i j c i j k c

c

z y v
−

=

=              (9) 

In equation (9), , ,k i jz  means the value of channel 

k  at ( , )i j . ,k cv  is the weight of the stationary 

convolution, applied to , ,c i jy  and output channel k . 

Therefore, based on the above improvements, in the 

PP-YOLO-DCN model, the input image is first subjected 

to enhancement preprocessing. Secondly, the 

ResNet50-vd network is applied to obtain characteristics 

layer by layer, and the recognition adaptability is 

improved through FPN multi-scale fusion. DCN dynamic 

sampling is applied to capture details at key locations, 

computational efficiency is optimized through DSC, and 

ultimately the category, position, and confidence of 

traffic signs are output through detection heads to 

achieve efficient recognition in complex scenes. 

3  Results 

3.1 Performance testing of MECRN image 

enhancement model 
The experiment utilized high-capacity calculation 

devices to guarantee effective training and evaluation of 

image enhancement and object recognition models. The 

experimental environment used Ubuntu operating system, 

Python as the programming language, combined with 

PyTorch deep learning framework and OpenCV image 

processing library to implement the algorithm. In terms 

of hardware configuration, the device was equipped with 

Intel Core i9 processor, NVIDIA RTX 3090 graphics 

card, and 128GB of memory. The Set14 dataset was used 

for training and testing in the image enhancement stage, 

as it contains structurally complex and texture-rich 

images suitable for evaluating detail restoration. As a 

general-purpose enhancement module, MECRN does not 

depend on the semantic content of the image. Its ability 

to improve visual clarity directly supports downstream 

TSR tasks, demonstrating strong generalizability. For 

TSR, the TT100K dataset was adopted, featuring 

real-world road scenes with small, blurred, and occluded 

signs, making it ideal for testing model robustness. All 

images were normalized and resized to 224×224 for 

enhancement and 640 × 640 for detection. Data 

augmentation such as brightness jittering, rotation, and 

random cropping was applied to improve generalization. 

For hyper-parameters, the enhancement model used the 

Adam optimizer with a learning rate of 1e-4, batch size 

of 16, and 500 epochs. The detection model used SGD 

with a learning rate of 0.001, batch size of 32, and 300 

epochs. The loss functions included a combination of L1 

and SSIM for enhancement, and multi-task YOLO loss 

for detection. 

Firstly, as MECRN was composed of multiple 

modules, the ablation test outcomes are in Figure 7. 

24

26

28

30

32

0 100
Iterations

P
S

N
R

/d
B

(a) PSNR test

200 300 400 500
0.80

0.84

0.86

0.88

0.90

100
Iterations

S
S

IM
 

(b) SSIM test

200 300 400 500

RC

MS-CA

MS

CA

MECRN

0.82

RC

MS-CA

MS

CA

MECRN

 
Figure 7: Ablation test results 
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Figure 8: Qualitative analysis results 

 

Figures 7 (a) and 7 (b) show the test results of Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM) as they vary with the number of iterations, 

respectively. PSNR reflects reconstruction accuracy, 

while SSIM measures structural fidelity—both widely 

used in image enhancement tasks. MS, CA, RC, and 

MS-CA respectively represent the removal of multi-scale 

convolution, CA mechanism, residual connection, 

multi-scale convolution, and attention mechanism. In 

Figure 7 (a), when the number of iterations was 500, the 

PSNRs of removing MS, CA, RC, MS-CA, and the 

complete MECRN model were 30.4 dB, 30.9 dB, 31.1 

dB, 30.1 dB, and 31.7 dB, respectively. In Figure 7 (b), 

the SSIMs without MS, CA, RC, MS-CA, and the 

complete MECRN model were 0.876, 0.879, 0.883, 

0.862, and 0.897, respectively. The results demonstrated 

that each component of MECRN played a vital role in 

performance enhancement. RC helped maintain 

structural consistency and facilitates shallow-to-deep 

feature propagation, improving model stability. MS 

expanded the receptive field and strengthened the 

model’s ability to capture fine textures and edges, which 

was particularly beneficial in upscaling and deblurring 

scenarios. CA enhanced the response to dark and critical 

semantic regions while suppressing redundant features. 

The largest performance drop occurred when both MS 

and CA were removed, highlighting their complementary 

effect in structural reconstruction and perceptual quality. 

These components together formed the core of the 

MSRFA module, and their integration enabled MECRN 

to achieve superior enhancement results through both 

independent effectiveness and mutual reinforcement. 

Subsequently, Super Resolution CNN (SRCNN), 

Super Resolution Generative Adversarial Network 

(SRGAN), and Deep Recursive Residual Network 

(DRRN) were selected as comparison models. Three 

images were extracted from Set14, and then processed 

using models. The restoration effects of each model on 

image details and textures were examined. The 

qualitative assessment outcomes are in Figure 8. 

Figure 8 shows the qualitative analysis results of 

super-resolution processing using different models. The 

enhancement effect of SRCNN was relatively poor, with 

blurry image details, especially in images with rich 

details such as Zebra and Pepper. The main reason was 

that SRCNN had a simple structure and lacked sufficient 

ability to capture details. SRGAN introduced generative 

adversarial networks, which could improve details to a 

certain extent, but there was still room for improvement 

in its performance on complex textures. DRRN 

effectively improved image clarity and edge details 

through recursive residual connections, but still had 

limitations in some multi-scale feature processing. In 

contrast, the MECRN model combined multi-scale 

convolution and CA mechanisms, which could more 

comprehensively capture multi-scale details and local 

features, resulting in the best texture and structure 

restoration effect and the highest clarity of the image. 

MECRN exhibited better enhancement effects in areas 

with rich details, such as Zebra stripes and Pepper 

surface textures. Finally, to simulate scenes in the real 

world where image quality is often affected by various 

factors, low lighting, low resolution, noise interference, 

and image blurring conditions were set. The test 

outcomes are in Table 2. 

 

 

 

 

 

 

 

 

 

Table 2: Multi-index test outcomes under different environmental conditions 
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Environment condition Metric SRCNN SRGAN DRRN MECRN 

Low light 

PSNR 27.45 28.32 29.54 30.75 

SSIM 0.812 0.826 0.846 0.871 

LPIPS 0.347 0.282 0.232 0.185 

Low resolution 

PSNR 26.31 27.12 28.66 29.91 

SSIM 0.804 0.819 0.836 0.861 

LPIPS 0.362 0.297 0.241 0.201 

Noise interference 

PSNR 25.81 26.53 27.92 29.21 

SSIM 0.791 0.806 0.826 0.851 

LPIPS 0.371 0.321 0.271 0.223 

Blurred image 

PSNR 24.91 25.71 27.13 28.51 

SSIM 0.776 0.791 0.811 0.842 

LPIPS 0.386 0.343 0.293 0.253 

Compression artifacts 

PSNR 25.35 26.18 27.45 28.68 

SSIM 0.788 0.812 0.821 0.842 

LPIPS 0.365 0.328 0.283 0.236 

 

Table 2 presents the quantitative evaluation results 

of different models. The Learned Perceptual Image Patch 

Similarity (LPIPS) is a metric for assessing perceptual 

image quality, where lower values indicate that the 

enhanced image is more perceptually similar to the 

ground truth. Unlike PSNR and SSIM, which mainly 

measure pixel-level differences and structural similarity, 

LPIPS focuses on perceptual consistency in deep feature 

space. This makes it more effective in capturing the 

restoration of edges, textures, and fine details, which is 

particularly valuable for improving feature extraction and 

discrimination in TSR. Under different environmental 

conditions, the MECRN surpassed other models in terms 

of PSNR, SSIM, and LPIPS metrics. Under low light 

conditions, MECRN's PSNR, SSIM, and LPIPS were 

30.75, 0.871, and 0.185, respectively, demonstrating its 

excellent low light enhancement ability. This was 

because MECRN combined multi-scale convolution and 

CA mechanisms, which could better capture dark details. 

Under low resolution conditions, its PSNR and SSIM 

were 29.91 and 0.861, respectively, indicating its 

excellent amplification capability. For noise interference 

and blurry images, MECRN performed well in denoising 

and deblurring, with LPIPS of 0.223 and 0.253 

respectively, indicating that it could effectively restore 

visual perception quality. In addition, under compression 

distortion conditions, MECRN effectively suppressed 

compression artifacts, and SSIM reached 0.840. MECRN 

exhibited stronger robustness and adaptability in 

complex environments. 

The advantage of MECRN in LPIPS performance 

mainly stems from its effective modeling of image 

details and perceptual consistency. The multi-scale 

convolution captures texture and edge information at 

different scales, helping to restore key details in 

upscaling and blurring scenarios. The CA mechanism 

enhances responses to dark regions and important areas, 

reducing interference from irrelevant features. Dense 

connections facilitate the transfer of shallow features to 

deeper layers, improving structural and detail 

reconstruction, thereby reducing LPIPS and enhancing 

overall visual quality. 

 

3.2 Experimental analysis of 

PP-YOLO-DCN object recognition model 
The experimental environment was the same as the 

previous section, and the comparison models were 

PP-YOLO, the classic SSD, and the Faster Regional 

CNN (Faster R-CNN). The dataset was the TT100K 

traffic dataset, which contains 100000 real road scene 

images in China, covering more than 100 different traffic 

signs, suitable for small object detection and TSR in 

complex scenes. Firstly, to thoroughly assess the sorting 

performance of the recognition model in TSR, especially 

in similar category and multi-category detection, the 

results of the confusion matrix for each model are shown 

in Figure 9. 

As shown in Figure 9, PP-YOLO-DCN 

outperformed other models in classification accuracy 

across various traffic sign categories. In particular, 

categories such as "go straight" and "school zone," which 

share similar shapes and subtle edge differences, 

exhibited 4 and 3 false detections respectively in 

PP-YOLO and SSD. Faster R-CNN also showed 

confusion in the "speed limit" category. In contrast, 

PP-YOLO-DCN demonstrated minimal misclassification 

across all categories. This performance improvement 

could be attributed to the architectural differences, 

especially the incorporation of DCN. Unlike standard 

convolution, DCN enabled dynamic adjustment of 

sampling positions based on the input features, allowing 

the model to better align with object boundaries and 

internal structures. This structural adaptability enhanced 

the model’s ability to distinguish fine-grained differences 

in small or partially occluded signs. The improvements 
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observed in the confusion matrix directly reflected the 

effectiveness of DCN in handling complex and visually 

similar traffic sign categories. Subsequently, to evaluate 

the feature focusing capability of the model in TSR, 

gradient-weighted class activation mapping (Grad CAM) 

visualization technology was applied to display the 

attention regions of the model when detecting traffic 

signs, in order to intuitively analyze the capture effect 

and detail attention of each model on key features. The 

results are shown in Figure 10. 

As shown in Figure 10, the Grad-CAM 

visualizations revealed clear differences in attention 

distribution among the models. PP-YOLO mainly 

focused on the central region of the sign, with weak 

responses along the edges, which may lead to 

localization errors. SSD showed a more uniform 

attention map but lacked distinct activation for critical 

visual cues such as arrows and cross lines. Faster R-CNN 

demonstrated strong attention in both central and 

boundary areas, indicating more balanced feature 

extraction. PP-YOLO-DCN exhibited the most precise 

and concentrated attention, effectively covering both the 

center and the boundaries of the signs, particularly 

highlighting detailed patterns and contours. This was 

directly related to the DCN mechanism. By learning 

spatial offsets, the convolutional kernels could shift their 

sampling positions to better align with object boundaries 

and local structures. This enhanced the model’s ability to 

extract detailed features from curved edges, fine textures, 

and variable shapes. Under conditions such as low 

resolution or partial occlusion, this precise sampling 

enabled more complete structural representation, 

reducing false detections and omissions in TSR. Finally, 

considering the presence of TSR in complex scenarios in 

practical applications, the test results of each model in 

different environments are in Table 3. 
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Figure 9: Confusion matrix test 

 

(a) PP-YOLOMaster drawing (a) SSD (a) Faster R-CNN (a) PP-YOLO  
Figure 10: Heatmap visualization results 
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Table 3: Model performance testing in complex scenarios 

Model Scenario mAP@0.5 FPS 
Processing 

latency/ms 

Robustness 

score 

PP-YOLO 

Dense multi-target 0.82 45 22 0.74 

Dynamic background 0.78 47 21 0.70 

Adverse weather 0.75 43 24 0.66 

Low light 0.72 40 26 0.63 

Motion blur 0.71 42 25 0.61 

SSD 

Dense multi-target 0.83 30 34 0.70 

Dynamic background 0.76 32 32 0.65 

Adverse weather 0.72 29 35 0.60 

Low light 0.69 28 36 0.57 

Motion blur 0.68 31 33 0.55 

Faster R-CNN 

Dense multi-target 0.87 15 66 0.81 

Dynamic background 0.84 16 64 0.75 

Adverse weather 0.82 14 69 0.70 

Low light 0.78 13 71 0.68 

Motion blur 0.76 14 68 0.64 

PP-YOLO-DC

N 

Dense multi-target 0.91 42 25 0.85 

Dynamic background 0.88 44 23 0.82 

Adverse weather 0.86 40 27 0.78 

Low light 0.84 39 28 0.75 

Motion blur 0.82 41 26 0.73 

 

As shown in Table 3, PP-YOLO-DCN 

demonstrated significant advantages in complex traffic 

scenarios such as dense multi-target and adverse weather 

conditions, achieving mAP@0.5 values of 0.91 and 0.86 

respectively, outperforming other models in detection 

accuracy. Under low-light and motion-blurred conditions, 

its robustness scores reached 0.75 and 0.73, indicating 

strong resistance to environmental interference. 

Additionally, the model maintained a stable frame rate 

across all tested scenarios, ranging from 39 to 44 FPS, 

ensuring reliable real-time detection performance. In 

Table 3, the robustness score was introduced to 

comprehensively evaluate a model’s ability to maintain 

performance under challenging conditions. It considered 

multiple factors, including the drop in mAP, changes in 

false detection rates, and fluctuations in processing 

latency. This metric reflected the overall stability and 

interference resistance of the model. In contrast, although 

Faster R-CNN achieved relatively high accuracy in some 

scenarios, its frame rate remained below 20 FPS, 

resulting in high latency and limited real-time 

applicability. Meanwhile, PP-YOLO and SSD exhibited  

 

weaker robustness, with scores of 0.63/0.61 and 

0.57/0.55 in low-light and motion blur conditions, 

respectively, showing greater sensitivity to visual 

degradation. Overall, PP-YOLO-DCN achieved a strong 

balance among accuracy, efficiency, and robustness, 

making it well-suited for deployment in complex 

real-world traffic environments. 

PP-YOLO-DCN maintained high FPS while 

improving accuracy due to its optimized architecture. 

DSCs reduced parameters and computation, while DCNs 

enhanced adaptability to complex shapes with minimal 

impact on speed. Additionally, the lightweight one-stage 

design of PP-YOLO ensured strong real-time 

performance, achieving a good balance between 

precision and efficiency. 

To further verify that the proposed PP-YOLO-DCN 

model maintains high detection accuracy while ensuring 

computational efficiency, this study compared it with 

mainstream YOLO variants (YOLOv3, YOLOv5-M, and 

YOLOv5-L) in terms of model parameters, 

computational cost (GFLOPs), and inference speed 

(FPS). The results are shown in Table 4. 
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Table 4: Comparison of algorithmic complexity and performance 

MODEL PARAMETERS 

(M) 

COMPUTATION 

(GFLOPS) 
FPS (640 ×
640) 

MEAN ACCURACY 

(MAP@0.5) 

YOLOV3 61 118 30 0.87 

YOLOV5-M 44 98 45 0.88 

YOLOV5-L 77 109 35 0.89 

PP-YOLO-DCN 47 86 42 0.91 

 As shown in the table, PP-YOLO-DCN achieved a 

favorable trade-off between detection accuracy and 

computational efficiency. With 47 million parameters 

and 86 GFLOPs, it was lighter than YOLOv5-L and 

YOLOv3, and significantly reduced computation 

compared to YOLOv5-L (by approximately 21%). In 

terms of inference speed, PP-YOLO-DCN reached 42 

FPS, slightly below YOLOv5-M but notably faster than 

YOLOv3 and YOLOv5-L. Overall, the model 

demonstrated strong performance in terms of accuracy, 

size, and real-time capability, making it well-suited for 

practical deployment in TSR scenarios. 

4  Discussion 
In TSR tasks, image quality is closely tied to 

detection accuracy. Although prior studies have explored 

both image enhancement and object detection 

independently, many existing methods still face 

limitations when applied to complex real-world scenarios. 

Compared with these approaches, the proposed MECRN 

enhancement module and PP-YOLO-DCN detection 

model demonstrated superior overall performance and 

adaptability across diverse conditions. In terms of image 

enhancement, Fu J et al. [7] proposed a method that 

integrated a brightness attention mechanism with a GAN 

to enhance image brightness in low-light environments. 

However, the method was not integrated with 

downstream recognition tasks, leading to a disconnect 

between enhancement quality and detection performance. 

Cheng X et al. [8] employed multi-scale fusion and 

attention mechanisms to improve nighttime image 

quality but showed limited capability in restoring 

small-object details. In contrast, the proposed MECRN 

model utilized multi-scale convolution to extract texture 

information at various scales, incorporated CA to 

enhance the response to dark regions and target areas, 

and introduced dense connections to improve feature 

reuse and training stability. As a result, MECRN 

improved traditional metrics such as PSNR and SSIM 

while significantly reducing perceptual distortion 

measured by LPIPS, ultimately providing higher-quality 

inputs for detection models. 

In terms of detection, Zhu Y et al. [12] compared 

YOLOv5 and SSD and found that YOLOv5 achieved a 

better balance between speed and accuracy. However, 

both models exhibited performance drops in low-light 

and small-object scenarios. While Faster R-CNN 

delivered high accuracy, it suffered from heavy 

computational cost and high latency, making it 

unsuitable for real-time deployment. The proposed 

PP-YOLO-DCN introduced DCN to enable dynamic 

sampling, enhancing the model’s ability to capture 

object boundaries and complex structures. This proved 

especially effective in degraded conditions such as blur 

and occlusion, where accurate localization of small 

targets was challenging. Additionally, the integration of 

DSC reduced redundant computation, achieving a good 

trade-off between accuracy and inference speed. The 

proposed model outperformed others in terms of 

robustness and real-time performance under complex 

conditions. In summary, MECRN and PP-YOLO-DCN 

demonstrated strong adaptability to low-quality image 

conditions and effectively addressed the trade-off 

between accuracy and efficiency in TSR, offering 

promising potential for real-world deployment. 

5  Conclusion 
In response to the difficulty of recognizing traffic 

signs in complex traffic scenarios such as low light and 

long distance, the MECRN image enhancement model 

and PP-YOLO-DCN object recognition model were 

proposed to improve the image quality and detection 

accuracy of intelligent transportation systems. In the 

ablation test, the PSNR of the complete MECRN model 

was 31.7 dB, and the SSIM was 0.897, confirming the 

effectiveness of the study in improving MECRN. In 

qualitative analysis, MECRN had the best image 

enhancement effect and the highest clarity. Under low 

light conditions, the PSNR, SSIM, and LPIPS of 

MECRN were 30.75, 0.871, and 0.185, respectively, 

indicating good low light enhancement effect. The 

PP-YOLO-DCN model had the lowest number of false 

positives and false negatives in confusion matrix testing. 

In Grad CAM testing, the heatmap of PP-YOLO-DCN 

covered the edges and internal details of the logo, 

especially with high attention to key features. Under 

conditions of dense multi-target and adverse weather 

conditions mAP@0.5 reached 0.90 and 0.86 respectively, 

the FPS remained above 40 frames per second. The 

outcomes indicated that the raised method attained a high 

degree of recognition accuracy in various complex 

scenarios. 

Although the proposed model demonstrated strong 

performance in TSR, achieving high accuracy, real-time 

speed, and robustness across challenging conditions such 

as low light and motion blur, there remains room for 

further improvement. First, the current evaluation was 

conducted on high-performance GPUs, and the model's 

inference efficiency on edge devices has yet to be 
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validated. Second, the experiments were primarily based 

on the TT100K dataset, lacking cross-domain 

generalization testing on international benchmarks such 

as GTSRB. Finally, while the model exhibited relatively 

high robustness scores, it has not been systematically 

evaluated under extreme conditions such as severe 

occlusion, heavy noise, or adversarial perturbations. 

Future work will focus on improving model adaptability 

through edge deployment, cross-dataset validation, and 

robustness analysis under more challenging real-world 

scenarios. 
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