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Abstract: In the era of big data, information security and privacy protection have become important issues 

facing today's society. This study proposes a distributed network security architecture based on 

blockchain to enhance the security of information privacy protection. The proposed architecture consists 

of three primary levels: equipment layer, network service layer, and application layer. It also integrates 

smart contracts. In addition, this study also proposes a vulnerability detection method based on improved 

tree convolutional neural networks. The incorporation of a "continuous binary tree" approach effectively 

addresses the limitation inherent to conventional tree convolution, wherein the number of nodes is fixed. 

This refinement enables a more effective capture of the hierarchical structure and semantic nuances 

inherent to smart contract code. The experiment used multiple datasets, each containing multiple IoT 

attack types and smart contract vulnerability code snippets. These datasets were evaluated based on a set 

of criteria, including but not limited to accuracy, recall, F1 scores, gas costs, and execution delays. 

Experiments have shown that the proposed method performs well in accuracy, precision, recall, and F1 

scores compared to existing state-of-the-art methods, with an accuracy range of 89.62% to 98.36%, 

significantly better than Oyente (about 75%) and Securify (about 85%). Specifically, the proposed method 

achieved 96.14% accuracy in detecting reentrant attacks, compared to 78% for Oyente and 82% for 

Securify. The findings indicate that the architectural design exerts a substantial influence on enhancing 

network security performance, thereby ensuring the stability of the system by effectively mitigating the 

variability in response time. 

Povzetek: Predlagana je distribuirana varnostna arhitektura omrežij na osnovi tehnologije veriženja 

blokov z izboljšano metodo drevesnih CNN za zaznavanje ranljivosti pametnih pogodb. 

 

1 Introduction 
With the rapid development of information 

technology, the internet has become an indispensable 

infrastructure in modern society, widely used in various 

fields such as finance, healthcare, education, and 

government affairs. However, cybersecurity issues are 

becoming increasingly prominent, with frequent incidents 

such as hacker attacks, data breaches, and online fraud, 

posing serious threats to personal privacy, corporate 

interests, and even national security [1, 2]. The traditional 

network security architecture mainly relies on centralized 

protection mechanisms, such as firewalls, intrusion 

detection systems, etc. These systems gradually show 

many shortcomings when facing complex network 

environments and increasing data volumes. Blockchain 

technology provides a new solution for network security 

with its decentralized, tamper-proof, and traceable 

features [3]. In a Distributed Network Security 

Architecture (DNSA), blockchain can serve as the 

underlying infrastructure for data storage and 

transmission. The data in the network are dispersed and 

stored on multiple nodes, with each node holding a 

complete copy of the data, thereby eliminating the risk of 

a single point of failure. At the same time, the 

immutability of blockchain ensures the authenticity and  

 

integrity of data, and any unauthorized tampering  

behavior will be quickly detected and prevented, 

effectively preventing the risk of malicious modification 

of data [4, 5]. However, the current processing speed and 

storage capacity of blockchain cannot fully meet the needs 

of large-scale network applications. Secondly, when 

facing complex network attack methods, blockchain may 

still have certain security risks. Therefore, this study 

proposes a DNSA based on blockchain. 

Blockchain technology is widely used in various 

fields such as finance, supply chain, healthcare, etc. due to 

its decentralized, tamper-proof, and transparent 

characteristics. To detect and mitigate malicious attacks in 

software-defined networks, Sharmila et al. used 

unsupervised and supervised learning methods to perform 

mitigation operations in software defined networks using 

dynamic access control lists and implemented them 

through Mininet. This technology effectively reduced 

malicious attacks [6]. To enhance the security and privacy 

protection of blockchain storage systems, Haque et al. 

developed a security system that integrates the Ethereum 

blockchain, IPFS, and deep Convolutional Neural 

Networks (CNN) to achieve distributed storage and 

privacy protection of data. The system had high accuracy, 

sensitivity, and specificity, supporting efficient operation 



52 Informatica 49 (2025) 51–66 X. Huo 

for users [7]. To enhance the security of IoT devices, 

Rangappa et al. developed a new key generation stage by 

introducing lightweight blockchain technology and 

Blowfish symmetric encryption algorithm and utilized the 

immutability of blockchain to record transactions. This 

scheme outperformed traditional algorithms in terms of 

encryption time and memory overhead [8]. Kumar 

designed an intrusion detection system based on a 

variational autoencoder and attention-gated recurrent unit 

for the security of zero contact networks. It achieved 

secure data sharing through an authentication protocol that 

combines blockchain, smart contracts, elliptic curve 

cryptography, and authoritative proofs [9]. Hua et al. 

designed a secure cloud storage service data deduplication 

scheme to address the shortcomings of existing solutions 

in key leakage and dynamic change support. By grouping 

key servers and using threshold encryption, combined 

with blockchain technology, secure key updates and 

management have been achieved [10]. 

DNSA is the key to ensuring the secure operation of 

distributed systems in complex network environments. To 

enhance secure communication in wireless networks with 

multi-user pairs and un-trusted amplification and 

forwarding relays, Xie et al. proposed an adaptive optimal 

channel access strategy by formulating channel access 

problems, maximizing the throughput of the secure 

system, and utilizing optimal sequential planning decision 

theory. The numerical results have verified its 

effectiveness and high efficiency [11]. Liu et al. proposed 

a distributed multi-task security estimation algorithm 

based on local outlier factors and inter-task correlations to 

address multiple attacks in multi-task networks. A new 

distributed time-varying fusion strategy has been 

introduced, which allocates node weights through data 

density balance to resist attacks. This method could 

effectively resist various attacks [12]. To address the 

threat posed by malicious nodes, Luo et al. proposed a new 

paradigm inspired by distributed systems that ensures the 

network's identity is unforgeable, non-repudiation, and 

globally consistent. This scheme significantly reduced key 

consumption compared to traditional pre-shared key 

schemes [13]. To improve the real-time and security of 

Internet of Vehicles communication, Thangam et al. 

subdivided the roadside unit area and deployed edge 

computing resources to reduce communication delay, and 

introduced a consensus mechanism to ensure security. 

This method had a success rate of over 95%, significantly 

reduced consensus time, and effectively met the security 

requirements of vehicle networking communication [14]. 

To enhance the ability of IoT networks to combat 

Distributed Denial of Service (DDoS) attacks, Mahdi et al. 

constructed a detection model by combining k-nearest 

neighbors, logistic regression, and stochastic gradient 

descent classifiers, and integrated optimized parameters 

through machine learning. The model achieved accuracies 

of 99.965% and 99.968% on two datasets, surpassing 

existing methods [15]. A summary of the comparison 

between this method and existing literature is shown in 

Table 1.

Table 1: Comparison of the proposed method with existing literature 

Research purpose Method Result Shortcomings Reference 

Secure data transmission in IoT 

using remote sensing data 

Theil-Sen Regressive 

Miyaguchi–Preneel-based 
Cryptographic Hash Blockchain 

Enhanced secure data 

transmission 

Complexity in 

implementation 

Sharmila et 

al. [6] 

Privacy-preserving deep 

learning for blockchain secure 

storage 

Privacy-preserving deep 
learning framework 

High authentication and 
secure storage 

High computational cost 
Haque et al. 

[7] 

Secure data communication in 

IoT healthcare systems 
Lightweight Blockchain 

Improved data security 

in healthcare IoT 
Limited scalability 

Rangappa et 

al. [8] 

Secure zero touch networks 

using blockchain 
Deep-learning-based blockchain 

Enhanced network 

security 

Dependence on deep learning 

accuracy 

Kumar et al. 

[9] 

Secure deduplication for large-

scale cloud storage 

Blockchain-assisted secure 

deduplication 

Efficient and secure 

cloud storage 
Potential latency issues 

Hua et al. 

[10] 

Secure channel access in 
distributed cooperative 

networks 

Optimal secure channel access 
Improved security in 

untrusted relay 

networks 

Complexity in channel 

management 

Xie et al. 

[11] 

Secure distributed estimation 

over multitask networks 
Secure distributed estimation 

Robust against multiple 

attacks 
High computational overhead 

Liu et al. 

[12] 

Secure quantum key 

distribution networks 

Distributed information-

theoretical secure protocols 

Enhanced security 

against malicious nodes 

Requires quantum 

infrastructure 

Luo et al. 

[13] 

Secure V2X communication 
Edge-enabled DAG-based 

Distributed Ledger System 

Improved V2X 

communication 
security 

Limited to edge-enabled 

regions 

Thangam et 

al. [14] 

Detection of DDoS attacks on 

IoT networks 
Machine learning algorithms 

Real-time DDoS attack 

detection 

Dependence on training data 

quality 

Mahdi et al. 

[15] 

/ 
Practical Byzantine Fault 

Tolerance (Baseline approach) 
/ 

Communication overhead 
and computational 

complexity increase 

/ 

Improve security and 
processing speed of distributed 

network architectures 

Smart Contract Vulnerability 
Detection Using Improved Tree 

CNN 

/ / This study 
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In summary, the application of blockchain technology 

and DNSA has significant advantages. However, current 

blockchain technology has limitations in processing 

speed, especially when dealing with a large number of 

concurrent transactions, which may result in delays. With 

the continuous growth of blockchain data, nodes need to 

store a large amount of data, which puts high demands on 

the storage capacity of nodes. In response to the above 

issues, this study innovatively designs a modular DNSA. 

This architecture uses edge computing to improve system 

security and flexibility. In response to Denial of Service 

(DoS) attacks, this study proposes a blockchain-based 

protection mechanism that identifies attacks through data 

flow detection and filtering models and utilizes blockchain 

and smart contracts to ensure the security and consistency 

of policy management. 

2 Methods and materials 
To improve data privacy protection and network 

security, and effectively detect and defend against 

network attacks, especially vulnerabilities in smart 

contracts, the research proposes a DNSA design based on 

blockchain, which integrates smart contracts into the 

architecture. The improved Tree-based Convolutional 

Neural Network (TCNN) is used to improve the accuracy 

and efficiency of vulnerability detection, and a protection 

mechanism based on blockchain technology is proposed. 

2.1 DNSA design based on blockchain 

Traditional service systems are typically based on 

centralized architectures, simplifying deployment 

processes, reducing operational complexity, and ensuring 

data consistency. However, it poses security risks when 

resisting specific network attacks, such as DoS attacks in 

LoRa networks. The utilization of LoRa terminals is 

susceptible to security breaches due to their cost-

effectiveness and lightweight design, which are 

inadequate in terms of security protection capabilities. 

These terminals are prone to intrusion and control by 

attackers, resulting in the generation of substantial attack 

data. This, in turn, leads to a single point of failure, server 

resource depletion, and service denial in centralized 

systems. Reference [16] proposes a distributed IoT 

network architecture based on blockchain, which ensures 

data security and immutability through blockchain 

technology and improves communication efficiency. 

Reference [17] demonstrates the resource management 

capabilities of blockchain in distributed systems. It proves 

that a distributed service architecture has significant 

advantages in providing flexibility, security, reliability, 

and autonomy. To ensure the stability and security of the 

system in the face of attacks, this study proposes a 

blockchain-based DNSA, as shown in Figure 1.
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Figure 1: Schematic diagram of DNSA based on blockchain

This architecture is typically divided into three main 

levels and integrates various network components 

including terminal devices, gateways, and cloud servers, 

covering the entire process from data collection to 

processing, storage, and management. The Equipment 

layer is the foundation of the entire system and is 

responsible for direct interaction with physical devices 

and sensors. It not only ensures the accuracy and security 
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of the data but also provides a solid foundation for the 

upper-layer network services. Through the collaboration 

of the device layer and the network service layer, 

intelligent application scenarios can be comprehensively 

monitored and managed, thereby improving the efficiency 

and effect of the entire system. The network service layer 

focuses on providing core services such as access 

management, protocol analysis, and information 

transmission processing for terminal devices. The data 

collected at the device layer are transmitted to the network 

service layer through the gateway to provide basic 

information for decision-making and control at the upper 

layer. The network service layer can send commands to 

the device layer through the gateway to control the 

operation of the device and realize remote management 

and control. As for the application layer, it mainly 

undertakes the responsibilities of application data and user 

management, while providing interface services and user 

interfaces, as well as conducting in-depth analysis and 

mining of data. A layered system architecture design can 

ensure efficient operation and scalability of the network 

while providing flexible and reliable network services for 

various application scenarios. In response to security 

challenges in data protection and management processes, 

this study integrates smart contracts into a distributed 

service model, as shown in Figure 2.
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Figure 2: Schematic diagram of smart contract implementation in DNSA

Essentially, smart contracts are automated execution 

programs running on the blockchain, ensuring that all 

parties to the contract automatically comply with the 

agreement. Blockchain technology offers a decentralized, 

secure, and immutable execution platform for smart 

contracts, enabling any node in the network to participate 

in execution without the need for third-party intervention. 

This reduces the likelihood of default or fraudulent 

behavior. However, attackers can consume network 

resources through a large number of invalid transactions, 

causing contracts to malfunction. To solve this problem, a 

smart contract vulnerability analysis technique based on 

improved TCNN is proposed. 

The code of smart contracts usually has a hierarchical 

structure, which can be represented by an Abstract Syntax 

Tree (AST). TCNN can directly process the tree structure 

data and capture the hierarchical and semantic information 

of the code. While Graph Neural Networks (GNNs) and 

Recurrent Neural Networks (RNNs) are both capable of 

processing graph-structured data. The code structure of 

smart contracts is better represented by a tree structure. 

TCNNs demonstrate superior proficiency in capturing 

semantic information within this hierarchical structure. In 

contrast, RNNs and GNNs have the potential to disregard 

these hierarchical characteristics, thereby introducing 

unnecessary complexity when handling tree structures. 

TCNN mainly uses AST as input to capture the 

hierarchical and semantic information of smart contract 

code through tree structure, so as to improve the accuracy 

and efficiency of vulnerability detection. In a smart 

contract, the set of all subtrees is defined as F N KX R   , 

where F  represents the number of subtrees. H  is the 

maximum number of nodes in the subtree. K  is the 

dimension of the node vector. In a fixed depth 

convolutional kernel, if there are n  nodes corresponding 

to word embeddings 1 2[ , , , ]nx x x , the output of the 

convolutional layer can be expressed as equation (1). 

 

 
3

conv conv, , conv
1 1

n

j i i
i j


= =

 
=   + 

 
y W x b  (1) 

 

In equation (1), conv, ,j iW  is the weight matrix. j  

represents three different types of weights. convb  is the 

bias term. The activation function   is selected as a 

nonlinear tanh function in the study. However, in equation 

(1), a defect of tree convolution is that the number of nodes 
n  selected into the sliding window each time is not fixed, 

which makes it a great difficulty to set how many conv,iW  

variable matrices. To solve this problem, a method called 

"continuous binary tree" is proposed, which can treat each 

sub-tree of AST as a binary tree, regardless of its shape 

and size. Figure 3 shows some definitions for applying the 

continuous binary tree method.
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Figure 3: Schematic diagram of the continuous binary tree method

As mentioned above, for each sliding window, three 

variables 
conv conv conv, ,t l rW W W  need to be set, and the 

corresponding coefficient , ,t l r

i i i    are respectively 

defined as up, left, and right. Therefore, for each node in 

the sliding window, its corresponding conv,iW  is a linear 

combination of these three variables, and the 

corresponding coefficient is determined by the relative 

position of the node in the sliding window sub-tree. 

Even in complex situations where a node has multiple 

child nodes, the network can still perform convolution 

operations through three weight matrices. The calculation 

method of the weight matrix is shown in equation (2). 

 

 
conv, conv conv conv

t t l l r r

i i i iW W W W  = + +  (2) 

 

In equation (2), 
conv

tW  is the coefficient of the weight 

matrix 
t

i , and its calculation is shown in equation (3). 

 

 
1

max 1

t i

i

d

d
 −

−

=  (3) 

 

In equation (3), id  is the depth of node i  within the 

sliding window, and maxd  is the maximum depth that the 

sliding window can cover. The coefficients of the other 

two weight matrices can be defined as equation (4). 
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In equation (4), ip  is the sequential position of node 

i  among its peers. Through this formula, it can understand 

how the specific position of nodes in the tree structure 

affects the relative importance of the weight matrix. 

Especially, nodes located on the left side of the tree will 

have a weight matrix 
conv

lW  that accounts for more than 

conv

rW  when performing convolution operations, while 

nodes located on the right side will have the opposite 

situation. After the convolution operation, the pooling 

layer extracts key features from the intermediate 

expressions of the network and summarizes these features 

in the form of high-dimensional vectors. 

This study adopts the maximum pooling strategy, 

which selects the most prominent elements from the 

feature matrix generated by the convolutional layer. 

Compared to average pooling, which calculates the mean 

value of the pooling window, maximum pooling focuses 

on the most significant features, making it more suitable 

for capturing critical vulnerabilities in smart contract 

code. This is of particular importance in the realm of 

security applications, where the ability to detect rare but 

severe vulnerabilities, such as re-entrancy attacks, is of the 

essence. Additionally, maximum pooling reduces the 

dimensionality of the feature map while preserving the 

most relevant information, which enhances the efficiency 

of the subsequent layers. For a given pooling window of 

size k k , the maximum pooling operation can be 

defined. 

 

 pooling ,
, [0, 1]
max i s m j s n

m n k
x + +

 −
=V  (5) 

 

In equation (5), x  is the input feature map. poolingV  is 

the output feature map. s  is the stride. This operation 

extracts the maximum value within each pooling window, 

effectively reducing the dimensionality of the feature map 

while preserving the most significant features. 

After the pooling step is completed, the extracted 

feature vectors are passed to the hidden layer, which 

processes the features and feeds them into the classifier. 

The classifier then generates the final output for the 

prediction model. The hidden layer's role is to transform 

the pooled features into a higher-level representation that 

the classifier can use to make accurate predictions. Similar 

to convolutional layers, hidden layers also use tanh 
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activation functions. The output of the hidden layer can be 

expressed as equation (6). 

 

 ( )T

hide hide pooling hidetanh=  +y W V b  (6) 

 

Subsequently, the output of the hidden layer is fed 

into the classifier. This study uses a softmax classifier to 

predict the probability of various types of vulnerabilities 

occurring, expressed as equation (7). 

 

 softmax( )=
output hide

y y  (7) 

 

Figure 4 shows the architecture of a vulnerability 

detection method based on an improved TCNN. Smart 

contract vulnerabilities are the premise for attackers to 

launch attacks, and attackers use the vulnerabilities in 

smart contracts to achieve their malicious purposes. The 

research identifies potential vulnerabilities in smart 

contracts, such as reentrant attacks, integer overflow, etc., 

through improved TCNN technology. Based on the type 

of vulnerability and its potential impact range, the risk 

level of each vulnerability was evaluated to help 

developers prioritize high-risk vulnerabilities. When an 

attack is detected, the defense mechanism can respond in 

real time, for example, by restricting access to malicious 

nodes or adjusting Gas charges to stop the attack. The 

vulnerability information identified by the vulnerability 

detection method can provide the basis for the defense 

mechanism and help the system better cope with potential 

attacks. The defense mechanism can prevent attackers 

from using identified vulnerabilities to launch attacks, 

thereby enhancing the actual effect of vulnerability 

detection.
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Figure 4: Vulnerability detection method architecture based on improved TCNN

2.2 Protection mechanism based on 

blockchain technology 

DNSA faces complex system security issues in its 

application process, therefore it is necessary to establish 

effective security barriers. This study classifies and 

analyzes existing attack methods, proposes corresponding 

defense strategies, and constructs a relatively complete 

blockchain security defense system to combat DoS and 

DDoS attacks. The operation process is detailed in Figure 

5. DoS attacks and DDoS attacks can launch a large 

number of invalid requests, consume network resources, 

and make services unavailable. An attacker can launch a 

coordinated attack by taking control of multiple nodes or 

devices. The attack may be continuous (continuous DoS 

attack) or intermittent (pulsed DoS attack), affecting the 

response time and stability of the system. When the 

detected abnormal traffic exceeds the preset security 

threshold, the connection module will activate the smart 

contract in the blockchain platform to record and respond 

to attack behavior. Smart contracts will determine 

corresponding punishment measures and restriction 

periods based on the frequency and duration of attack 

behavior. Subsequently, the processing results of the smart 

contract will be encapsulated into a new block and 

recorded on the blockchain through the network consensus 

mechanism.
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Figure 5: Blockchain-based DoS attack protection mechanism

According to Figure 5, to get rid of the disadvantages 

of a centralized management model and make full use of 

edge device resources, smart contracts are usually 

executed and verified by edge devices. However, 

limitations such as wide-area deployment, complex 

environment, and hardware performance of edge devices 

make them easier targets for attackers. Compared with 

other cyber attacks, the anonymity of blockchain 

technology also gives the attacker a natural camouflage, 

making the attack behavior with low risk, high profit, and 

easy-to-realize characteristics [18, 19]. Therefore, there is 

an urgent need for appropriate and efficient detection 

methods to conduct comprehensive security analysis for 

IoT smart contracts before deployment. 

Edge computing is a paradigm that facilitates the 

execution of data processing and analytics at the periphery 

of the network, in closer proximity to the data sources and 

users. This approach has the potential to markedly reduce 

the time required for data transfer to remote data centers, 

thereby decreasing latency. With the increase of IoT 

devices, the amount of data has risen dramatically. By 

processing data locally and sending only critical data to 

the cloud, edge computing effectively reduces the pressure 

on network bandwidth and reduces data transmission 

costs. To reduce the response time of the system and 

enhance the efficiency of data transmission, this study also 

introduces edge computing and integrates multiple service 

modules to form the edge layer, as shown in Figure 6.
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Figure 6: Network service architecture based on edge computing

A comparison with Figure 6 reveals that the original 

gateway, which is responsible for data forwarding, 

deployed a variety of service modules and is divided into 

edge layers. The diagram shows the gateway deploying all 

optional functional modules, including the connection 

module, registration module, and network control module, 

as well as the lightweight database. It should be noted that 

the gateway forwarding module is the basic function of the 

original gateway and is mainly responsible for receiving 

and packaging the physical layer data of the terminal. The 

network service layer retains all modules in the original 

system and provides complete service functions to ensure 

that all types of gateways can be accessed. 

Considering that DoS attacks may occur in various forms, 

for example, some terminals may be frequently attacked 

in a short period, while other terminals may be 

intermittently attacked for a longer period [20, 21]. 

Therefore, the analysis method must simultaneously 

consider the frequency and time interval of attacks in order 

to update corresponding defense strategies. This study 

proposes a calculation method for the penalty parameter 

  based on the time interval of abnormal behavior 
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occurrence. When calculating the penalty parameter 
, the system takes into account the time interval between 

the latest attack t  and the last attack T . The penalty 

parameter exhibits a proportional relationship with the 

increase in the number of attacks, thereby ensuring that the 

terminal with the shorter attack interval is subjected to a 

more severe penalty. The formula is defined as equation 

(8). 

 

 ( )prev a t T  = +  −  (8) 

 

In equation (8), prev  is the previous penalty 

parameter, a  is a positive weight factor that determines 

the sensitivity of the penalty adjustment, and t T−  is the 

time interval between attacks. The weight factor a  is set 

to 0.1 based on empirical testing, ensuring that the penalty 

increases gradually but significantly for frequent 

attackers. This approach aligns with the system's goal of 

dynamically adjusting restrictions based on attack 

behavior. Using penalty parameters, smart contracts are 

responsible for determining and adjusting the restriction 

period for terminals exhibiting aggressive behavior. This 

strategy is achieved by setting a limit period d  for the 

terminal, as shown in equation (9). 

 

 d d p = +  +  (9) 

 

In equation (9), d   is the previously set limit period. 

  is a positive adjustment factor used to adjust the 

restriction period based on the penalty parameter p .   is 

a random variable that is uniformly distributed within a 

predetermined range. The introduction of randomness is 

to alleviate the instantaneous peak pressure that DoS 

attacks may cause and to impose varying degrees of 

restrictions on malicious terminals launching attacks 

simultaneously [22]. As terminal abnormal behavior 

accumulates, the restriction period will gradually be 

extended. Finally, based on the restriction period et , the 

specific time point for implementing the restriction 

measures is determined, as shown in equation (10). 
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In equation (14), t  is the maximum possible value 

of the time stamp.   serves as a critical value for 

evaluating the behavior of the terminal. The system 

employs a two-tiered approach to handle DoS attacks: 

temporary restrictions for initial or intermittent attacks, 

and permanent restrictions for persistent offenders. When 

a terminal exhibits repeated attack behavior, the system 

dynamically adjusts the restriction period based on the 

frequency and severity of the attacks. If the terminal 

continues to attack after multiple temporary restrictions 

and its accumulated restriction time exceeds a critical 

threshold  , the system will impose permanent measures 

to prohibit further access. This ensures a balanced 

approach between mitigating immediate threats and 

preventing long-term abuse. 

3 Results 
This study first conducts performance testing on the 

newly proposed DNSA and conducts in-depth 

comparisons of the performance of various methods to 

reveal their differences. 

3.1 DNSA performance testing based on 

blockchain 

The testing environment for this study is Intel(R) 

Core(TM) i5-2430M, CPU@2.40GHz, and 64 bit 

Windows 7 system. The IoTID20 dataset used in this 

study is a dataset specially created for the research of 

intrusion detection systems in the IoT environment, which 

contains a variety of IoT attack types, such as DDoS, DoS, 

Mirai, and ARP spoofing, etc. These datasets can provide 

rich data for the training and evaluation of intrusion 

detection models. Both the datasets CWE-119-SET and 

CWE-399-SET are based on the U.S. National 

Vulnerability Database and the National Institute of 

Standards and Technology's Software Assurance 

Reference dataset. The dataset CWE-119-SET contains 

10,440 code gadgets related to buffer errors, which are 

commonly used for training and testing deep learning 

models. The dataset CWE-399-SET covers Resource 

Management Errors, such as resource leakage and post-

release use. It also contains 7,285 code snippets related to 

resource management errors: used to train and test 

vulnerability detection models to identify resource 

management related vulnerabilities. To ensure that the 

model has enough data for training and the reliability of 

verification and testing process, the dataset is divided into 

training set, test set, and verification set according to the 

ratio of 6:2:2. Batch size is set to 32 to improve training 

efficiency and stability. The number of training rounds is 

set to 100 to ensure full convergence of the model. Table 

2 shows the definition of each hyperparameter and the 

optional values.

Table 2: Definitions and optional values of hyperparameters 

Hyper parameter Definition Optional value 

conv_filter The number of filters in the convolution layer [32, 256] (step=32) 

conv_kernel Convolution window size [3, 7] 

pool_size Maximum pool window size [2, 4] 

lstm_units Number of units in the LSTM layer [32, 512] (step=32) 
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dropout_rate Random dropout rate of dropout layer 1 [0.2,0.5] 

dense_units The number of units in the fully connected layer [32, 512] (step=32) 

dense_dropout_rate Random dropout rate of dropout layer 2 [0.2, 0.5] 

optimizer Adaptive optimizer Adam,RMSProp,SGD 

learning_rate Training learning rate [0.01, 0.005, 0.001, 0.0005, 0.0001] 

 

 
Figure 7: Exact code for model training

The exact code for model training is shown in Figure 

7. To prevent overfitting, the optimized experiment 

collocation is adjusted using the early stop method and the 

learning rate scheduler. In the experiment, the main 

evaluation index of the early stop method is loss. The early 

stop strategy is that when the performance of the model on 

the verification set does not improve for ten consecutive 

epochs, it is considered that the model begins to over-fit 

and stop training. Table 3 shows all hyperparameter 

settings for the 10 Bayesian optimization experiments, 

with batch_size defaulting to 32. Finally, it is determined 

that the hyperparameters of the eighth experiment are the 

optimal settings of TCNN.

Table 3: Hyperparameter settings of 10 Bayesian optimization tests 

Trial_id 0 1 2 3 4 5 6 7 8 9 

conv_filter 192 32 224 96 256 224 160 32 256 256 

conv_kernel 7 6 4 6 4 5 7 7 7 7 

pool_size 2 4 3 4 2 2 3 2 2 2 

Ismm_units 480 128 320 384 288 384 448 512 512 512 

dropout_rate 0.41153 
0.417

5 

0.321

32 

0.477

35 
0.40378 0.40965 

0.468

95 
0.5 0.5 0.5 

dense_units 96 352 128 256 32 192 192 32 32 416 

dense_dropout_

rate 
0.30759 

0.498

36 

0.298

13 

0.318

99 
0.41386 0.41325 

0.326

15 

0.211

52 

0.422

92 

0.311

77 

optimizer 
RMSPr

op 
SGD SGD Adam 

RMSPr

op 

RMSPr

op 
Adam Adam Adam Adam 

leamning_rate 0.005 0.01 0.005 0.005 0.0001 0.0001 0.001 0.005 0.001 0.01 

Figure 8 shows the trend of throughput changes in the 

network service layer. The median response time refers to 

the value in the middle of a set of response time data 

arranged in order from smallest to largest. In a computer 

system or network system, the median response time can 

be used to evaluate the performance of the system. For 

example, for a website's response time data, the median 

can reflect the response time when most users visit the 

website. In Figure 8 (a), when the number of LoRa devices 

connected to the network is small, the network service 

layer can effectively manage all received data streams, 

resulting in a direct proportional relationship between 

throughput and the number of devices. When the number 

of terminals is small (for example, less than 2000), the 

throughput difference between the three scheduling 

modules is small. With the increase of the number of 

terminals, the impact of the number of scheduling modules 

on throughput gradually appears, and the advantage of 

using four scheduling modules is more obvious. In Figure 

8 (b), even with a small number of terminals, the system's 

response time exceeds 200 milliseconds. This 

phenomenon is attributed to the DoS attack defense 
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mechanism implemented in the network service system. 

However, as long as the number of terminals does not 

reach the maximum carrying capacity of the system, the 

median response time will remain stable. However, once 

the server faces the limit of its processing capacity, the 

median response time will significantly increase, mainly 

due to the server hardware performance reaching its limit, 

resulting in a significant extension of data processing time. 
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Figure 8: Throughput variation trend of network service layer

To measure the performance of the gateway in the 

edge computing environment, the experiment compares 

two types of uplink data: registration information and 

MAC command messages. According to Figure 9, in the 

case of a small number of terminal devices, the data 

processing throughput of both architectures shows a linear 

increase trend with an increase in the number of devices. 

However, when the number of terminal devices reaches 

1600, the data processing capacity of the gateway reaches 

its limit, and its maximum throughput remains stable at 

about 53 data per second. In addition, the performance of 

the gateway in handling these two types of data is basically 

the same. Due to the original architecture deploying 

functional modules directly on the server, it provides 

strong computing power, ensuring further improvement in 

throughput. Although the processing power of a single 

gateway is limited, it can indeed undertake some of the 

computing work of the backend network system.
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Figure 9: Feasibility analysis of network security architecture based on edge computing

Figure 10 depicts the fluctuation of the median 

response time of conventional data under continuous and 

pulse DoS attack scenarios. In Figure 10 (a), under 

sustained DoS attacks, the fixed duration restriction 

strategy significantly reduces response latency after two 

applications and showed slight fluctuations in the 

subsequent time period. The proposed protection strategy 

can more quickly control the fluctuation of response time 

and reduce the amplitude of the fluctuation. This is thanks 

to the introduction of randomized parameters and penalty 

mechanisms in the strategy, which can dynamically adjust 

the duration of restrictions and effectively alleviate the 

continuous impact of attack traffic. In Figure 10 (b), the 

fixed duration restriction strategy cannot adjust the 

restriction duration on malicious nodes, resulting in a 

significant increase in response time for each attack, 

which may temporarily render the service unavailable. In 

contrast, the research strategy gradually increases the 
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punishment after identifying the attack behavior multiple 

times, reducing the impact of the attack on the system's 

processing capability and ensuring the stability of 

response time.
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Figure 10: Data response time under different DoS attack scenarios

3.2 Performance analysis of TCNN 

vulnerability detection 

To verify the effectiveness of the TCNN vulnerability 

detection method, this study analyzes accuracy, precision, 

recall, and F1 score as indicators, as shown in Table 4. 

When TCNN identifies vulnerabilities of five different 

categories, the accuracy of the test dataset ranges from 

89.62% to 98.36%. This proves that the predictive model 

performs well in identifying potential vulnerabilities in the 

training samples. In addition, the accuracy and recall of 

this technology also meet high-performance requirements, 

effectively reducing the occurrence of misidentification 

and missed problems.

Table 4: Performance results of TCNN detecting different types of vulnerabilities 

Vulnerability type Data set Accuracy (%) Precision (%) Recall rate (%) F1 score (%) 

Re-entrant attack 
Training set 98.36 97.96 98.28 98.12 

Test set 96.14 96.38 95.23 95.80 

Integer overflow 
Training set 93.79 96.31 86.43 91.10 

Test set 89.62 90.22 80.23 84.93 

Integer underflow 
Training set 96.64 89.53 72.43 80.08 

Test set 96.66 90.84 71.64 80.11 

Predictable 

variable attack 

Training set 97.06 99.56 93.09 96.22 

Test set 95.94 98.66 91.16 95.55 

Abnormal state 
Training set 93.84 86.28 77.04 81.40 

Test set 93.14 83.33 74.38 78.60 

Figure 11 (a) shows the best performance results of 

Oyente, Securify, and TCNN models in the unknown 

vulnerability detection of smart contracts. The TCNN 

model has the best effect, achieving the highest value in 

the four evaluation indicators, which verifies the 

significant advantages of TCNN in the unknown 

vulnerability detection of smart contracts. In Figure 11 (b), 

TCNN has the highest accuracy in all attack types, and the 

detection accuracy of Sybil attack and Replay attack both 

exceeds 90%. Securify performs second on most attack 

types but outperforms Oyente on Integer underflow and 

Integer overflow. Oyente has a relatively low accuracy 

rate across all attack types, particularly on Integer 

underflow and Integer overflow.
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Figure 11: Performance assessment of multiple types of vulnerabilities

To evaluate the computational cost of deploying smart 

contracts, the Gas fees and execution delays for different 

settings (Table 5) are measured. TCNN achieves the 

lowest Gas fees (38,000 Gwei) and execution delay (90 

ms), significantly outperforming Oyente and Securify. 

This result demonstrates the efficiency of the proposed 

architecture in real-time applications. 

Table 5: Gas fees and execution delay analysis 

Setting 
Gas Fee (Average, 

in Gwei) 

Execution Delay 

(Average, in ms) 

Reference 

[21] 
50,000 120 

Reference 

[22] 
45,000 110 

Oyente 55,000 150 

Securify 52,000 140 

TCNN 

(Proposed) 
38,000 90 

Figure 12 shows the results of the comparison 

between different scenarios and different approaches. In 

Figure 12 (a), the False Negative Rate (FNR) and False 

Positive Rate (FPR) are not significantly different in all 

data sets, indicating that the model has more balanced 

types of misjudgment on these data sets. To verify the 

statistical significance of the performance differences 

between the Settings, a paired T-test is performed for the 

FNR and FPR values and it is found that both CWE-399-

SET and IoTID20 are significantly better than CWE-119-

SET (P<0.05). The effect deviation of the overall 

vulnerability detection is within the acceptable range, 

which also indicates that the method in this paper is 

generally applicable to different vulnerability types. 

Figure 12 (b) shows the Receiver Operating Characteristic 

curve (ROC) graph between the proposed model and 

references [21] and [22]. From the area represented in the 

figure, the ROC curve of the proposed method is closer to 

the upper left corner, indicating that the proposed method 

has better performance.
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Figure 12: Comparison results between different scenarios and different methods

4 Discussion 
The proposed DNSA architecture has significant 

advantages over existing methods, mainly due to its deep 

integration of smart contracts and high efficiency of 

improved TCN. First, the integration of smart contracts 

enables the system to automate the execution of security 

policies and attack responses, reducing the need for human 

intervention and improving the real-time and reliability of 

the system. Although the scheme proposed by Yu et al. 

enhances the security of data transmission, its 

implementation is complicated and relies on manual 

intervention, which is difficult to cope with large-scale 

network attacks [23]. The privacy-protecting deep 

learning framework of Miglani et al., despite its excellent 

performance in storage security and authentication 

performance, relies on complex models, resulting in a 

substantial increase in computational overhead [24]. By 

automatically recording and responding to attack 

behaviors through smart contracts, this architecture 

significantly improves the automation level of the system. 

In particular, when dealing with DoS and DDoS attacks, it 

can dynamically adjust the restriction policy (as shown in 

Figure 5), effectively alleviating the impact of attacks on 

the system. Second, the improved TCNN excelled in 

vulnerability detection, with a significantly higher 

accuracy (89.62% to 98.36%) than existing methods such 

as Oyente (around 75%) and Securify (around 85%). 

TCNN solved the problem that the number of nodes in 

traditional tree convolution was not fixed by "continuous 

binary tree" method. TCNN could better capture the 

hierarchical structure and semantic information of smart 

contract code, thereby improving the accuracy and 

efficiency of vulnerability detection. TCNN also 

outperformed Oyente (55,000 Gwei/150 ms) and Securify 

(52,000 Gwei/140 ms) in terms of Gas costs (38,000 

Gwei) and execution latency (90 ms), making it more 

suitable for real-time application scenarios. 

In summary, this architecture significantly improves 

the security, real-time performance, and scalability of the 

system through the comprehensive application of 

automatic execution of smart contracts, efficient 

vulnerability detection of TCNN, and dynamic defense 

mechanisms. It is superior to existing methods in dealing 

with complex network attacks and large-scale data. 

However, the training of the TCNN model relies on large-

scale labeled data sets, and its training process consumes 

a lot of computing resources. Although the overfitting 

problem is alleviated by Bayesian optimization and early 

stop strategy, the model training cost may still become the 

deployment bottleneck. In addition, although edge 

computing reduces network layer latency, the gateway's 

throughput ceiling may limit its scalability in high-

concurrency scenarios. Future research could optimize 

blockchain storage efficiency by introducing sharding 

technology, and explore lightweight TCNN models to 

balance detection accuracy with computational overhead. 

5 Conclusion 
This study was based on the design of DNSA using 

blockchain technology, which addressed the shortcomings 

of traditional network security architectures in dealing 

with complex network environments and large-scale data 

volumes. By combining blockchain technology with 

DNSA, this study has achieved significant results in data 

security, privacy protection, and resistance to network 

attacks. Experiments have shown that this architecture can 

effectively reduce response latency and maintain high 

throughput when handling numerous concurrent 

transactions. For example, when the number of LoRa 

devices reached 1600, the maximum throughput of the 

gateway remained stable at about 53 data per second, 

demonstrating good data processing capabilities. In the 

case of sustained DoS attacks, research strategies could 

more quickly control the fluctuation of response time and 

reduce the amplitude of the fluctuation. This was thanks 

to the introduction of randomized parameters and penalty 
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mechanisms in the strategy, which can dynamically adjust 

the duration of restrictions and effectively alleviate the 

continuous impact of attack traffic. After identifying the 

attack behavior multiple times, the punishment was 

gradually increased, reducing the impact of the attack on 

the system's processing capability and ensuring the 

stability of response time. In addition, the smart contract 

vulnerability detection method based on the improved 

TCNN performed well in accuracy, precision, recall, and 

F1 score, with an accuracy ranging from 89.62% to 

98.36%, significantly better than other existing methods. 

The results demonstrated the effectiveness of the proposed 

architecture in improving network security performance. 
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