
https://doi.org/10.31449/inf.v49i17.8050 Informatica 49 (2025) 51–66 51

Blockchain-Based Distributed Network Security Architecture with

Smart Contract Vulnerability Detection Using Improved Tree CNN

Xiaoyan Huo

Information Construction and Management Center, Jiaozuo University, Jiaozuo 454003, China

E-mail: huoxiaoyan2004@163.com

Keywords: blockchain, distributed network architecture, privacy protection, smart contract, data security

Received: January 15, 2025

Abstract: In the era of big data, information security and privacy protection have become important issues

facing today's society. This study proposes a distributed network security architecture based on

blockchain to enhance the security of information privacy protection. The proposed architecture consists

of three primary levels: equipment layer, network service layer, and application layer. It also integrates

smart contracts. In addition, this study also proposes a vulnerability detection method based on improved

tree convolutional neural networks. The incorporation of a "continuous binary tree" approach effectively

addresses the limitation inherent to conventional tree convolution, wherein the number of nodes is fixed.

This refinement enables a more effective capture of the hierarchical structure and semantic nuances

inherent to smart contract code. The experiment used multiple datasets, each containing multiple IoT

attack types and smart contract vulnerability code snippets. These datasets were evaluated based on a set

of criteria, including but not limited to accuracy, recall, F1 scores, gas costs, and execution delays.

Experiments have shown that the proposed method performs well in accuracy, precision, recall, and F1

scores compared to existing state-of-the-art methods, with an accuracy range of 89.62% to 98.36%,

significantly better than Oyente (about 75%) and Securify (about 85%). Specifically, the proposed method

achieved 96.14% accuracy in detecting reentrant attacks, compared to 78% for Oyente and 82% for

Securify. The findings indicate that the architectural design exerts a substantial influence on enhancing

network security performance, thereby ensuring the stability of the system by effectively mitigating the

variability in response time.

Povzetek: Predlagana je distribuirana varnostna arhitektura omrežij na osnovi tehnologije veriženja

blokov z izboljšano metodo drevesnih CNN za zaznavanje ranljivosti pametnih pogodb.

1 Introduction
With the rapid development of information

technology, the internet has become an indispensable

infrastructure in modern society, widely used in various

fields such as finance, healthcare, education, and

government affairs. However, cybersecurity issues are

becoming increasingly prominent, with frequent incidents

such as hacker attacks, data breaches, and online fraud,

posing serious threats to personal privacy, corporate

interests, and even national security [1, 2]. The traditional

network security architecture mainly relies on centralized

protection mechanisms, such as firewalls, intrusion

detection systems, etc. These systems gradually show

many shortcomings when facing complex network

environments and increasing data volumes. Blockchain

technology provides a new solution for network security

with its decentralized, tamper-proof, and traceable

features [3]. In a Distributed Network Security

Architecture (DNSA), blockchain can serve as the

underlying infrastructure for data storage and

transmission. The data in the network are dispersed and

stored on multiple nodes, with each node holding a

complete copy of the data, thereby eliminating the risk of

a single point of failure. At the same time, the

immutability of blockchain ensures the authenticity and

integrity of data, and any unauthorized tampering

behavior will be quickly detected and prevented,

effectively preventing the risk of malicious modification

of data [4, 5]. However, the current processing speed and

storage capacity of blockchain cannot fully meet the needs

of large-scale network applications. Secondly, when

facing complex network attack methods, blockchain may

still have certain security risks. Therefore, this study

proposes a DNSA based on blockchain.

Blockchain technology is widely used in various

fields such as finance, supply chain, healthcare, etc. due to

its decentralized, tamper-proof, and transparent

characteristics. To detect and mitigate malicious attacks in

software-defined networks, Sharmila et al. used

unsupervised and supervised learning methods to perform

mitigation operations in software defined networks using

dynamic access control lists and implemented them

through Mininet. This technology effectively reduced

malicious attacks [6]. To enhance the security and privacy

protection of blockchain storage systems, Haque et al.

developed a security system that integrates the Ethereum

blockchain, IPFS, and deep Convolutional Neural

Networks (CNN) to achieve distributed storage and

privacy protection of data. The system had high accuracy,

sensitivity, and specificity, supporting efficient operation

52 Informatica 49 (2025) 51–66 X. Huo

for users [7]. To enhance the security of IoT devices,

Rangappa et al. developed a new key generation stage by

introducing lightweight blockchain technology and

Blowfish symmetric encryption algorithm and utilized the

immutability of blockchain to record transactions. This

scheme outperformed traditional algorithms in terms of

encryption time and memory overhead [8]. Kumar

designed an intrusion detection system based on a

variational autoencoder and attention-gated recurrent unit

for the security of zero contact networks. It achieved

secure data sharing through an authentication protocol that

combines blockchain, smart contracts, elliptic curve

cryptography, and authoritative proofs [9]. Hua et al.

designed a secure cloud storage service data deduplication

scheme to address the shortcomings of existing solutions

in key leakage and dynamic change support. By grouping

key servers and using threshold encryption, combined

with blockchain technology, secure key updates and

management have been achieved [10].

DNSA is the key to ensuring the secure operation of

distributed systems in complex network environments. To

enhance secure communication in wireless networks with

multi-user pairs and un-trusted amplification and

forwarding relays, Xie et al. proposed an adaptive optimal

channel access strategy by formulating channel access

problems, maximizing the throughput of the secure

system, and utilizing optimal sequential planning decision

theory. The numerical results have verified its

effectiveness and high efficiency [11]. Liu et al. proposed

a distributed multi-task security estimation algorithm

based on local outlier factors and inter-task correlations to

address multiple attacks in multi-task networks. A new

distributed time-varying fusion strategy has been

introduced, which allocates node weights through data

density balance to resist attacks. This method could

effectively resist various attacks [12]. To address the

threat posed by malicious nodes, Luo et al. proposed a new

paradigm inspired by distributed systems that ensures the

network's identity is unforgeable, non-repudiation, and

globally consistent. This scheme significantly reduced key

consumption compared to traditional pre-shared key

schemes [13]. To improve the real-time and security of

Internet of Vehicles communication, Thangam et al.

subdivided the roadside unit area and deployed edge

computing resources to reduce communication delay, and

introduced a consensus mechanism to ensure security.

This method had a success rate of over 95%, significantly

reduced consensus time, and effectively met the security

requirements of vehicle networking communication [14].

To enhance the ability of IoT networks to combat

Distributed Denial of Service (DDoS) attacks, Mahdi et al.

constructed a detection model by combining k-nearest

neighbors, logistic regression, and stochastic gradient

descent classifiers, and integrated optimized parameters

through machine learning. The model achieved accuracies

of 99.965% and 99.968% on two datasets, surpassing

existing methods [15]. A summary of the comparison

between this method and existing literature is shown in

Table 1.

Table 1: Comparison of the proposed method with existing literature

Research purpose Method Result Shortcomings Reference

Secure data transmission in IoT

using remote sensing data

Theil-Sen Regressive

Miyaguchi–Preneel-based
Cryptographic Hash Blockchain

Enhanced secure data

transmission

Complexity in

implementation

Sharmila et

al. [6]

Privacy-preserving deep

learning for blockchain secure

storage

Privacy-preserving deep
learning framework

High authentication and
secure storage

High computational cost
Haque et al.

[7]

Secure data communication in

IoT healthcare systems
Lightweight Blockchain

Improved data security

in healthcare IoT
Limited scalability

Rangappa et

al. [8]

Secure zero touch networks

using blockchain
Deep-learning-based blockchain

Enhanced network

security

Dependence on deep learning

accuracy

Kumar et al.

[9]

Secure deduplication for large-

scale cloud storage

Blockchain-assisted secure

deduplication

Efficient and secure

cloud storage
Potential latency issues

Hua et al.

[10]

Secure channel access in
distributed cooperative

networks

Optimal secure channel access
Improved security in

untrusted relay

networks

Complexity in channel

management

Xie et al.

[11]

Secure distributed estimation

over multitask networks
Secure distributed estimation

Robust against multiple

attacks
High computational overhead

Liu et al.

[12]

Secure quantum key

distribution networks

Distributed information-

theoretical secure protocols

Enhanced security

against malicious nodes

Requires quantum

infrastructure

Luo et al.

[13]

Secure V2X communication
Edge-enabled DAG-based

Distributed Ledger System

Improved V2X

communication
security

Limited to edge-enabled

regions

Thangam et

al. [14]

Detection of DDoS attacks on

IoT networks
Machine learning algorithms

Real-time DDoS attack

detection

Dependence on training data

quality

Mahdi et al.

[15]

/
Practical Byzantine Fault

Tolerance (Baseline approach)
/

Communication overhead
and computational

complexity increase

/

Improve security and
processing speed of distributed

network architectures

Smart Contract Vulnerability
Detection Using Improved Tree

CNN

/ / This study

Blockchain-Based Distributed Network Security Architecture with… Informatica 49 (2025) 51–66 53

In summary, the application of blockchain technology

and DNSA has significant advantages. However, current

blockchain technology has limitations in processing

speed, especially when dealing with a large number of

concurrent transactions, which may result in delays. With

the continuous growth of blockchain data, nodes need to

store a large amount of data, which puts high demands on

the storage capacity of nodes. In response to the above

issues, this study innovatively designs a modular DNSA.

This architecture uses edge computing to improve system

security and flexibility. In response to Denial of Service

(DoS) attacks, this study proposes a blockchain-based

protection mechanism that identifies attacks through data

flow detection and filtering models and utilizes blockchain

and smart contracts to ensure the security and consistency

of policy management.

2 Methods and materials
To improve data privacy protection and network

security, and effectively detect and defend against

network attacks, especially vulnerabilities in smart

contracts, the research proposes a DNSA design based on

blockchain, which integrates smart contracts into the

architecture. The improved Tree-based Convolutional

Neural Network (TCNN) is used to improve the accuracy

and efficiency of vulnerability detection, and a protection

mechanism based on blockchain technology is proposed.

2.1 DNSA design based on blockchain

Traditional service systems are typically based on

centralized architectures, simplifying deployment

processes, reducing operational complexity, and ensuring

data consistency. However, it poses security risks when

resisting specific network attacks, such as DoS attacks in

LoRa networks. The utilization of LoRa terminals is

susceptible to security breaches due to their cost-

effectiveness and lightweight design, which are

inadequate in terms of security protection capabilities.

These terminals are prone to intrusion and control by

attackers, resulting in the generation of substantial attack

data. This, in turn, leads to a single point of failure, server

resource depletion, and service denial in centralized

systems. Reference [16] proposes a distributed IoT

network architecture based on blockchain, which ensures

data security and immutability through blockchain

technology and improves communication efficiency.

Reference [17] demonstrates the resource management

capabilities of blockchain in distributed systems. It proves

that a distributed service architecture has significant

advantages in providing flexibility, security, reliability,

and autonomy. To ensure the stability and security of the

system in the face of attacks, this study proposes a

blockchain-based DNSA, as shown in Figure 1.

Application layer

Smart city Intelligent agriculture Environmental monitoring

Registration

module

Gateway Gateway

Administrator

Scheduling

module
Load

balancing

Distributed

deployment

Network

control module

Web page
Distributed

deployment

Cloud computing

Application

service module
User

APIs

Equipment layer

Network service layer

Figure 1: Schematic diagram of DNSA based on blockchain

This architecture is typically divided into three main

levels and integrates various network components

including terminal devices, gateways, and cloud servers,

covering the entire process from data collection to

processing, storage, and management. The Equipment

layer is the foundation of the entire system and is

responsible for direct interaction with physical devices

and sensors. It not only ensures the accuracy and security

54 Informatica 49 (2025) 51–66 X. Huo

of the data but also provides a solid foundation for the

upper-layer network services. Through the collaboration

of the device layer and the network service layer,

intelligent application scenarios can be comprehensively

monitored and managed, thereby improving the efficiency

and effect of the entire system. The network service layer

focuses on providing core services such as access

management, protocol analysis, and information

transmission processing for terminal devices. The data

collected at the device layer are transmitted to the network

service layer through the gateway to provide basic

information for decision-making and control at the upper

layer. The network service layer can send commands to

the device layer through the gateway to control the

operation of the device and realize remote management

and control. As for the application layer, it mainly

undertakes the responsibilities of application data and user

management, while providing interface services and user

interfaces, as well as conducting in-depth analysis and

mining of data. A layered system architecture design can

ensure efficient operation and scalability of the network

while providing flexible and reliable network services for

various application scenarios. In response to security

challenges in data protection and management processes,

this study integrates smart contracts into a distributed

service model, as shown in Figure 2.

Terminal

Terminal

Gateway

Gateway

Connecting

module

Abnormal or

duplicate data

DoS attack analysis

algorithm

Analyze data and

protection strategies

Smart contract

Connecting module

…

…

…

BlockchainBlock n+1 Block n

Consensus mechanism

Figure 2: Schematic diagram of smart contract implementation in DNSA

Essentially, smart contracts are automated execution

programs running on the blockchain, ensuring that all

parties to the contract automatically comply with the

agreement. Blockchain technology offers a decentralized,

secure, and immutable execution platform for smart

contracts, enabling any node in the network to participate

in execution without the need for third-party intervention.

This reduces the likelihood of default or fraudulent

behavior. However, attackers can consume network

resources through a large number of invalid transactions,

causing contracts to malfunction. To solve this problem, a

smart contract vulnerability analysis technique based on

improved TCNN is proposed.

The code of smart contracts usually has a hierarchical

structure, which can be represented by an Abstract Syntax

Tree (AST). TCNN can directly process the tree structure

data and capture the hierarchical and semantic information

of the code. While Graph Neural Networks (GNNs) and

Recurrent Neural Networks (RNNs) are both capable of

processing graph-structured data. The code structure of

smart contracts is better represented by a tree structure.

TCNNs demonstrate superior proficiency in capturing

semantic information within this hierarchical structure. In

contrast, RNNs and GNNs have the potential to disregard

these hierarchical characteristics, thereby introducing

unnecessary complexity when handling tree structures.

TCNN mainly uses AST as input to capture the

hierarchical and semantic information of smart contract

code through tree structure, so as to improve the accuracy

and efficiency of vulnerability detection. In a smart

contract, the set of all subtrees is defined as F N KX R   ,

where F represents the number of subtrees. H is the

maximum number of nodes in the subtree. K is the

dimension of the node vector. In a fixed depth

convolutional kernel, if there are n nodes corresponding

to word embeddings 1 2[, , ,]nx x x , the output of the

convolutional layer can be expressed as equation (1).

3

conv conv, , conv
1 1

n

j i i
i j


= =

 
=   + 

 
y W x b (1)

In equation (1), conv, ,j iW is the weight matrix. j

represents three different types of weights. convb is the

bias term. The activation function  is selected as a

nonlinear tanh function in the study. However, in equation

(1), a defect of tree convolution is that the number of nodes
n selected into the sliding window each time is not fixed,

which makes it a great difficulty to set how many conv,iW

variable matrices. To solve this problem, a method called

"continuous binary tree" is proposed, which can treat each

sub-tree of AST as a binary tree, regardless of its shape

and size. Figure 3 shows some definitions for applying the

continuous binary tree method.

Blockchain-Based Distributed Network Security Architecture with… Informatica 49 (2025) 51–66 55

The leftmost node

of the same layer

of node i

The rightmost

node of the

same layer of

node i

Node i

id

ip

t

i

l

i
r

i

Figure 3: Schematic diagram of the continuous binary tree method

As mentioned above, for each sliding window, three

variables
conv conv conv, ,t l rW W W need to be set, and the

corresponding coefficient , ,t l r

i i i   are respectively

defined as up, left, and right. Therefore, for each node in

the sliding window, its corresponding conv,iW is a linear

combination of these three variables, and the

corresponding coefficient is determined by the relative

position of the node in the sliding window sub-tree.

Even in complex situations where a node has multiple

child nodes, the network can still perform convolution

operations through three weight matrices. The calculation

method of the weight matrix is shown in equation (2).

conv, conv conv conv

t t l l r r

i i i iW W W W  = + + (2)

In equation (2),
conv

tW is the coefficient of the weight

matrix
t

i , and its calculation is shown in equation (3).

1

max 1

t i

i

d

d
 −

−

= (3)

In equation (3), id is the depth of node i within the

sliding window, and maxd is the maximum depth that the

sliding window can cover. The coefficients of the other

two weight matrices can be defined as equation (4).

1

(1)
1

(1)
1

l t i

i i

r t i

i i

n p

n

p

n

 

  −

−
= − −


 = −
 −

 (4)

In equation (4), ip is the sequential position of node

i among its peers. Through this formula, it can understand

how the specific position of nodes in the tree structure

affects the relative importance of the weight matrix.

Especially, nodes located on the left side of the tree will

have a weight matrix
conv

lW that accounts for more than

conv

rW when performing convolution operations, while

nodes located on the right side will have the opposite

situation. After the convolution operation, the pooling

layer extracts key features from the intermediate

expressions of the network and summarizes these features

in the form of high-dimensional vectors.

This study adopts the maximum pooling strategy,

which selects the most prominent elements from the

feature matrix generated by the convolutional layer.

Compared to average pooling, which calculates the mean

value of the pooling window, maximum pooling focuses

on the most significant features, making it more suitable

for capturing critical vulnerabilities in smart contract

code. This is of particular importance in the realm of

security applications, where the ability to detect rare but

severe vulnerabilities, such as re-entrancy attacks, is of the

essence. Additionally, maximum pooling reduces the

dimensionality of the feature map while preserving the

most relevant information, which enhances the efficiency

of the subsequent layers. For a given pooling window of

size k k , the maximum pooling operation can be

defined.

 pooling ,
, [0, 1]
max i s m j s n

m n k
x + +

 −
=V (5)

In equation (5), x is the input feature map. poolingV is

the output feature map. s is the stride. This operation

extracts the maximum value within each pooling window,

effectively reducing the dimensionality of the feature map

while preserving the most significant features.

After the pooling step is completed, the extracted

feature vectors are passed to the hidden layer, which

processes the features and feeds them into the classifier.

The classifier then generates the final output for the

prediction model. The hidden layer's role is to transform

the pooled features into a higher-level representation that

the classifier can use to make accurate predictions. Similar

to convolutional layers, hidden layers also use tanh

56 Informatica 49 (2025) 51–66 X. Huo

activation functions. The output of the hidden layer can be

expressed as equation (6).

 ()T

hide hide pooling hidetanh=  +y W V b (6)

Subsequently, the output of the hidden layer is fed

into the classifier. This study uses a softmax classifier to

predict the probability of various types of vulnerabilities

occurring, expressed as equation (7).

 softmax()=
output hide

y y (7)

Figure 4 shows the architecture of a vulnerability

detection method based on an improved TCNN. Smart

contract vulnerabilities are the premise for attackers to

launch attacks, and attackers use the vulnerabilities in

smart contracts to achieve their malicious purposes. The

research identifies potential vulnerabilities in smart

contracts, such as reentrant attacks, integer overflow, etc.,

through improved TCNN technology. Based on the type

of vulnerability and its potential impact range, the risk

level of each vulnerability was evaluated to help

developers prioritize high-risk vulnerabilities. When an

attack is detected, the defense mechanism can respond in

real time, for example, by restricting access to malicious

nodes or adjusting Gas charges to stop the attack. The

vulnerability information identified by the vulnerability

detection method can provide the basis for the defense

mechanism and help the system better cope with potential

attacks. The defense mechanism can prevent attackers

from using identified vulnerabilities to launch attacks,

thereby enhancing the actual effect of vulnerability

detection.

Smart contract

training set

Vulnerability tag

Intermediate

expression

TCNN

Smart contract

to be analyzed

Intermediate

expression

Prediction

model

Vulnerability

report

Validation and

adoption

Add

Feedback

Training phase

Detection phase

Figure 4: Vulnerability detection method architecture based on improved TCNN

2.2 Protection mechanism based on

blockchain technology

DNSA faces complex system security issues in its

application process, therefore it is necessary to establish

effective security barriers. This study classifies and

analyzes existing attack methods, proposes corresponding

defense strategies, and constructs a relatively complete

blockchain security defense system to combat DoS and

DDoS attacks. The operation process is detailed in Figure

5. DoS attacks and DDoS attacks can launch a large

number of invalid requests, consume network resources,

and make services unavailable. An attacker can launch a

coordinated attack by taking control of multiple nodes or

devices. The attack may be continuous (continuous DoS

attack) or intermittent (pulsed DoS attack), affecting the

response time and stability of the system. When the

detected abnormal traffic exceeds the preset security

threshold, the connection module will activate the smart

contract in the blockchain platform to record and respond

to attack behavior. Smart contracts will determine

corresponding punishment measures and restriction

periods based on the frequency and duration of attack

behavior. Subsequently, the processing results of the smart

contract will be encapsulated into a new block and

recorded on the blockchain through the network consensus

mechanism.

Blockchain-Based Distributed Network Security Architecture with… Informatica 49 (2025) 51–66 57

Smart contract

Block n-1

Data

Block n

Data

Block n+1

Data

Block …

Data

Smart contract Smart contract

Edge

equipment

Application layer

Equipment layer

Network service layer

Figure 5: Blockchain-based DoS attack protection mechanism

According to Figure 5, to get rid of the disadvantages

of a centralized management model and make full use of

edge device resources, smart contracts are usually

executed and verified by edge devices. However,

limitations such as wide-area deployment, complex

environment, and hardware performance of edge devices

make them easier targets for attackers. Compared with

other cyber attacks, the anonymity of blockchain

technology also gives the attacker a natural camouflage,

making the attack behavior with low risk, high profit, and

easy-to-realize characteristics [18, 19]. Therefore, there is

an urgent need for appropriate and efficient detection

methods to conduct comprehensive security analysis for

IoT smart contracts before deployment.

Edge computing is a paradigm that facilitates the

execution of data processing and analytics at the periphery

of the network, in closer proximity to the data sources and

users. This approach has the potential to markedly reduce

the time required for data transfer to remote data centers,

thereby decreasing latency. With the increase of IoT

devices, the amount of data has risen dramatically. By

processing data locally and sending only critical data to

the cloud, edge computing effectively reduces the pressure

on network bandwidth and reduces data transmission

costs. To reduce the response time of the system and

enhance the efficiency of data transmission, this study also

introduces edge computing and integrates multiple service

modules to form the edge layer, as shown in Figure 6.

Scheduling

module

Application

service module

Network services database

Connecting

module

Network

control module

Registration

module

Gateway

connection

module

Gateway

network

control module

Gateway

registration module

Gateway database

Terminal

Gateway

forwarding

module

Service request

Data synchronization

Marginal layer Network service layer

Gateway

Figure 6: Network service architecture based on edge computing

A comparison with Figure 6 reveals that the original

gateway, which is responsible for data forwarding,

deployed a variety of service modules and is divided into

edge layers. The diagram shows the gateway deploying all

optional functional modules, including the connection

module, registration module, and network control module,

as well as the lightweight database. It should be noted that

the gateway forwarding module is the basic function of the

original gateway and is mainly responsible for receiving

and packaging the physical layer data of the terminal. The

network service layer retains all modules in the original

system and provides complete service functions to ensure

that all types of gateways can be accessed.

Considering that DoS attacks may occur in various forms,

for example, some terminals may be frequently attacked

in a short period, while other terminals may be

intermittently attacked for a longer period [20, 21].

Therefore, the analysis method must simultaneously

consider the frequency and time interval of attacks in order

to update corresponding defense strategies. This study

proposes a calculation method for the penalty parameter

 based on the time interval of abnormal behavior

58 Informatica 49 (2025) 51–66 X. Huo

occurrence. When calculating the penalty parameter 
, the system takes into account the time interval between

the latest attack t and the last attack T . The penalty

parameter exhibits a proportional relationship with the

increase in the number of attacks, thereby ensuring that the

terminal with the shorter attack interval is subjected to a

more severe penalty. The formula is defined as equation

(8).

 ()prev a t T  = +  − (8)

In equation (8), prev is the previous penalty

parameter, a is a positive weight factor that determines

the sensitivity of the penalty adjustment, and t T− is the

time interval between attacks. The weight factor a is set

to 0.1 based on empirical testing, ensuring that the penalty

increases gradually but significantly for frequent

attackers. This approach aligns with the system's goal of

dynamically adjusting restrictions based on attack

behavior. Using penalty parameters, smart contracts are

responsible for determining and adjusting the restriction

period for terminals exhibiting aggressive behavior. This

strategy is achieved by setting a limit period d for the

terminal, as shown in equation (9).

 d d p = +  + (9)

In equation (9), d  is the previously set limit period.

 is a positive adjustment factor used to adjust the

restriction period based on the penalty parameter p .  is

a random variable that is uniformly distributed within a

predetermined range. The introduction of randomness is

to alleviate the instantaneous peak pressure that DoS

attacks may cause and to impose varying degrees of

restrictions on malicious terminals launching attacks

simultaneously [22]. As terminal abnormal behavior

accumulates, the restriction period will gradually be

extended. Finally, based on the restriction period et , the

specific time point for implementing the restriction

measures is determined, as shown in equation (10).

, :

, :
e

t d if d
t

t if d





+ 
= 


 (10)

In equation (14), t is the maximum possible value

of the time stamp.  serves as a critical value for

evaluating the behavior of the terminal. The system

employs a two-tiered approach to handle DoS attacks:

temporary restrictions for initial or intermittent attacks,

and permanent restrictions for persistent offenders. When

a terminal exhibits repeated attack behavior, the system

dynamically adjusts the restriction period based on the

frequency and severity of the attacks. If the terminal

continues to attack after multiple temporary restrictions

and its accumulated restriction time exceeds a critical

threshold  , the system will impose permanent measures

to prohibit further access. This ensures a balanced

approach between mitigating immediate threats and

preventing long-term abuse.

3 Results
This study first conducts performance testing on the

newly proposed DNSA and conducts in-depth

comparisons of the performance of various methods to

reveal their differences.

3.1 DNSA performance testing based on

blockchain

The testing environment for this study is Intel(R)

Core(TM) i5-2430M, CPU@2.40GHz, and 64 bit

Windows 7 system. The IoTID20 dataset used in this

study is a dataset specially created for the research of

intrusion detection systems in the IoT environment, which

contains a variety of IoT attack types, such as DDoS, DoS,

Mirai, and ARP spoofing, etc. These datasets can provide

rich data for the training and evaluation of intrusion

detection models. Both the datasets CWE-119-SET and

CWE-399-SET are based on the U.S. National

Vulnerability Database and the National Institute of

Standards and Technology's Software Assurance

Reference dataset. The dataset CWE-119-SET contains

10,440 code gadgets related to buffer errors, which are

commonly used for training and testing deep learning

models. The dataset CWE-399-SET covers Resource

Management Errors, such as resource leakage and post-

release use. It also contains 7,285 code snippets related to

resource management errors: used to train and test

vulnerability detection models to identify resource

management related vulnerabilities. To ensure that the

model has enough data for training and the reliability of

verification and testing process, the dataset is divided into

training set, test set, and verification set according to the

ratio of 6:2:2. Batch size is set to 32 to improve training

efficiency and stability. The number of training rounds is

set to 100 to ensure full convergence of the model. Table

2 shows the definition of each hyperparameter and the

optional values.

Table 2: Definitions and optional values of hyperparameters

Hyper parameter Definition Optional value

conv_filter The number of filters in the convolution layer [32, 256] (step=32)

conv_kernel Convolution window size [3, 7]

pool_size Maximum pool window size [2, 4]

lstm_units Number of units in the LSTM layer [32, 512] (step=32)

Blockchain-Based Distributed Network Security Architecture with… Informatica 49 (2025) 51–66 59

dropout_rate Random dropout rate of dropout layer 1 [0.2,0.5]

dense_units The number of units in the fully connected layer [32, 512] (step=32)

dense_dropout_rate Random dropout rate of dropout layer 2 [0.2, 0.5]

optimizer Adaptive optimizer Adam,RMSProp,SGD

learning_rate Training learning rate [0.01, 0.005, 0.001, 0.0005, 0.0001]

Figure 7: Exact code for model training

The exact code for model training is shown in Figure

7. To prevent overfitting, the optimized experiment

collocation is adjusted using the early stop method and the

learning rate scheduler. In the experiment, the main

evaluation index of the early stop method is loss. The early

stop strategy is that when the performance of the model on

the verification set does not improve for ten consecutive

epochs, it is considered that the model begins to over-fit

and stop training. Table 3 shows all hyperparameter

settings for the 10 Bayesian optimization experiments,

with batch_size defaulting to 32. Finally, it is determined

that the hyperparameters of the eighth experiment are the

optimal settings of TCNN.

Table 3: Hyperparameter settings of 10 Bayesian optimization tests

Trial_id 0 1 2 3 4 5 6 7 8 9

conv_filter 192 32 224 96 256 224 160 32 256 256

conv_kernel 7 6 4 6 4 5 7 7 7 7

pool_size 2 4 3 4 2 2 3 2 2 2

Ismm_units 480 128 320 384 288 384 448 512 512 512

dropout_rate 0.41153
0.417

5

0.321

32

0.477

35
0.40378 0.40965

0.468

95
0.5 0.5 0.5

dense_units 96 352 128 256 32 192 192 32 32 416

dense_dropout_

rate
0.30759

0.498

36

0.298

13

0.318

99
0.41386 0.41325

0.326

15

0.211

52

0.422

92

0.311

77

optimizer
RMSPr

op
SGD SGD Adam

RMSPr

op

RMSPr

op
Adam Adam Adam Adam

leamning_rate 0.005 0.01 0.005 0.005 0.0001 0.0001 0.001 0.005 0.001 0.01

Figure 8 shows the trend of throughput changes in the

network service layer. The median response time refers to

the value in the middle of a set of response time data

arranged in order from smallest to largest. In a computer

system or network system, the median response time can

be used to evaluate the performance of the system. For

example, for a website's response time data, the median

can reflect the response time when most users visit the

website. In Figure 8 (a), when the number of LoRa devices

connected to the network is small, the network service

layer can effectively manage all received data streams,

resulting in a direct proportional relationship between

throughput and the number of devices. When the number

of terminals is small (for example, less than 2000), the

throughput difference between the three scheduling

modules is small. With the increase of the number of

terminals, the impact of the number of scheduling modules

on throughput gradually appears, and the advantage of

using four scheduling modules is more obvious. In Figure

8 (b), even with a small number of terminals, the system's

response time exceeds 200 milliseconds. This

phenomenon is attributed to the DoS attack defense

60 Informatica 49 (2025) 51–66 X. Huo

mechanism implemented in the network service system.

However, as long as the number of terminals does not

reach the maximum carrying capacity of the system, the

median response time will remain stable. However, once

the server faces the limit of its processing capacity, the

median response time will significantly increase, mainly

due to the server hardware performance reaching its limit,

resulting in a significant extension of data processing time.

T
h

ro
u

g
h

p
u
t

(s
e
c
o

n
d

s/
p

ie
c
e
)

0

40

80

120

160

200

240

0 3000

(a) Throughput changes of parallel

functional modules in distributed

deployment

6000 9000 12000

280

320

15000

Number of terminals
M

e
d
ia

n
 r

es
p
o

n
se

 t
im

e
 (

in

m
il

li
se

c
o

n
d
s)

0

300

600

900

1200

0 3000 6000 9000 12000 15000

Number of terminals

(b) Median response time for distributed

deployment of parallel functional modules

1500

1800
1. Scheduling

module

2. Scheduling

module

4. Scheduling

module 1. Scheduling

module

2. Scheduling

module

4. Scheduling

module

Figure 8: Throughput variation trend of network service layer

To measure the performance of the gateway in the

edge computing environment, the experiment compares

two types of uplink data: registration information and

MAC command messages. According to Figure 9, in the

case of a small number of terminal devices, the data

processing throughput of both architectures shows a linear

increase trend with an increase in the number of devices.

However, when the number of terminal devices reaches

1600, the data processing capacity of the gateway reaches

its limit, and its maximum throughput remains stable at

about 53 data per second. In addition, the performance of

the gateway in handling these two types of data is basically

the same. Due to the original architecture deploying

functional modules directly on the server, it provides

strong computing power, ensuring further improvement in

throughput. Although the processing power of a single

gateway is limited, it can indeed undertake some of the

computing work of the backend network system.

0

40

80

120

160

200

240

C
P

U
 U

sa
g

e
 (

%
)

0 500

Distance (km)

(b) Comparison of average CPU utilization between

the edge computing architecture and the original

architecture

1000 1500 2000 2500

Registration Data & Original Architecture

Registration data & edge computing gateway

Registration data & edge computing network

MAC layer instructions & original architecture

MAC layer instructions & edge computing gateway

MAC layer instruction & edge computing network

T
h

ro
u

g
h

p
u
t

(s
e
c
o

n
d

s/
p

ie
c
e
)

0

10

0

Number of LoRa terminals

(a) Throughput comparison between the edge computing

architecture and the original architecture

20

30

40

50

60

70

500 1000 1500 2000 2500

Registration Data & Original Architecture

Registration data & edge computing architecture

MAC layer instructions & original architecture

MAC layer instructions & edge computing architecture

Figure 9: Feasibility analysis of network security architecture based on edge computing

Figure 10 depicts the fluctuation of the median

response time of conventional data under continuous and

pulse DoS attack scenarios. In Figure 10 (a), under

sustained DoS attacks, the fixed duration restriction

strategy significantly reduces response latency after two

applications and showed slight fluctuations in the

subsequent time period. The proposed protection strategy

can more quickly control the fluctuation of response time

and reduce the amplitude of the fluctuation. This is thanks

to the introduction of randomized parameters and penalty

mechanisms in the strategy, which can dynamically adjust

the duration of restrictions and effectively alleviate the

continuous impact of attack traffic. In Figure 10 (b), the

fixed duration restriction strategy cannot adjust the

restriction duration on malicious nodes, resulting in a

significant increase in response time for each attack,

which may temporarily render the service unavailable. In

contrast, the research strategy gradually increases the

Blockchain-Based Distributed Network Security Architecture with… Informatica 49 (2025) 51–66 61

punishment after identifying the attack behavior multiple

times, reducing the impact of the attack on the system's

processing capability and ensuring the stability of

response time.
M

e
d
ia

n
 r

es
p
o

n
se

 l
a
te

n
c
y

(m
il

li
se

c
o

n
d
s)

0 20 40 60 80 100

Time (seconds)

(a) Continuous DoS attack

600

900

1800

2100

300

0

1200

1500

M
e
d
ia

n
 r

es
p
o

n
se

 l
a
te

n
c
y

(m
il

li
se

c
o

n
d
s)

0 20 40 60 80 100

Time (seconds)

(b) Pulse type DoS attack

600

900

1800

2100

300

0

1200

1500

Figure 10: Data response time under different DoS attack scenarios

3.2 Performance analysis of TCNN

vulnerability detection

To verify the effectiveness of the TCNN vulnerability

detection method, this study analyzes accuracy, precision,

recall, and F1 score as indicators, as shown in Table 4.

When TCNN identifies vulnerabilities of five different

categories, the accuracy of the test dataset ranges from

89.62% to 98.36%. This proves that the predictive model

performs well in identifying potential vulnerabilities in the

training samples. In addition, the accuracy and recall of

this technology also meet high-performance requirements,

effectively reducing the occurrence of misidentification

and missed problems.

Table 4: Performance results of TCNN detecting different types of vulnerabilities

Vulnerability type Data set Accuracy (%) Precision (%) Recall rate (%) F1 score (%)

Re-entrant attack
Training set 98.36 97.96 98.28 98.12

Test set 96.14 96.38 95.23 95.80

Integer overflow
Training set 93.79 96.31 86.43 91.10

Test set 89.62 90.22 80.23 84.93

Integer underflow
Training set 96.64 89.53 72.43 80.08

Test set 96.66 90.84 71.64 80.11

Predictable

variable attack

Training set 97.06 99.56 93.09 96.22

Test set 95.94 98.66 91.16 95.55

Abnormal state
Training set 93.84 86.28 77.04 81.40

Test set 93.14 83.33 74.38 78.60

Figure 11 (a) shows the best performance results of

Oyente, Securify, and TCNN models in the unknown

vulnerability detection of smart contracts. The TCNN

model has the best effect, achieving the highest value in

the four evaluation indicators, which verifies the

significant advantages of TCNN in the unknown

vulnerability detection of smart contracts. In Figure 11 (b),

TCNN has the highest accuracy in all attack types, and the

detection accuracy of Sybil attack and Replay attack both

exceeds 90%. Securify performs second on most attack

types but outperforms Oyente on Integer underflow and

Integer overflow. Oyente has a relatively low accuracy

rate across all attack types, particularly on Integer

underflow and Integer overflow.

62 Informatica 49 (2025) 51–66 X. Huo

100

80

60

40

20

0

A
c
cu

ra
c
y

 r
a
te

 (
%

)

Oyente Securify TCNN
100

80

60

40

20

0

E
v

a
lu

a
ti

o
n

 i
n
d

e
x

 s
c
o

re
 (

%
)

Oyente Securify TCNN

Accuracy

Precision

Recall

F1-score

(a) Performance comparison in the detection

of unknown vulnerabilities in smart contracts

(b) Comparison of the accuracy of detecting

different types of leakage holes

Model

Vulnerability type

Figure 11: Performance assessment of multiple types of vulnerabilities

To evaluate the computational cost of deploying smart

contracts, the Gas fees and execution delays for different

settings (Table 5) are measured. TCNN achieves the

lowest Gas fees (38,000 Gwei) and execution delay (90

ms), significantly outperforming Oyente and Securify.

This result demonstrates the efficiency of the proposed

architecture in real-time applications.

Table 5: Gas fees and execution delay analysis

Setting
Gas Fee (Average,

in Gwei)

Execution Delay

(Average, in ms)

Reference

[21]
50,000 120

Reference

[22]
45,000 110

Oyente 55,000 150

Securify 52,000 140

TCNN

(Proposed)
38,000 90

Figure 12 shows the results of the comparison

between different scenarios and different approaches. In

Figure 12 (a), the False Negative Rate (FNR) and False

Positive Rate (FPR) are not significantly different in all

data sets, indicating that the model has more balanced

types of misjudgment on these data sets. To verify the

statistical significance of the performance differences

between the Settings, a paired T-test is performed for the

FNR and FPR values and it is found that both CWE-399-

SET and IoTID20 are significantly better than CWE-119-

SET (P<0.05). The effect deviation of the overall

vulnerability detection is within the acceptable range,

which also indicates that the method in this paper is

generally applicable to different vulnerability types.

Figure 12 (b) shows the Receiver Operating Characteristic

curve (ROC) graph between the proposed model and

references [21] and [22]. From the area represented in the

figure, the ROC curve of the proposed method is closer to

the upper left corner, indicating that the proposed method

has better performance.

Blockchain-Based Distributed Network Security Architecture with… Informatica 49 (2025) 51–66 63

References [21]

This study

References [22]

1.0

0.8

0.6

0.4

0.2

0
0.2 0.40

FPR

0.8 1.0

(a) Comparison of false positive rate and false

negative rate in different data sets (Note: "**"

means P< 0.05)

CWE-119-SET CWE-399-SET IoTID20

0

10

20

0.6

T
P

R

FPRTPR

E
v

a
lu

a
ti

o
n

 i
n
d

e
x

 s
c
o

re
 (

%
)

(b) ROC curves of different detection methods

Data set

**
**

**
**

Figure 12: Comparison results between different scenarios and different methods

4 Discussion
The proposed DNSA architecture has significant

advantages over existing methods, mainly due to its deep

integration of smart contracts and high efficiency of

improved TCN. First, the integration of smart contracts

enables the system to automate the execution of security

policies and attack responses, reducing the need for human

intervention and improving the real-time and reliability of

the system. Although the scheme proposed by Yu et al.

enhances the security of data transmission, its

implementation is complicated and relies on manual

intervention, which is difficult to cope with large-scale

network attacks [23]. The privacy-protecting deep

learning framework of Miglani et al., despite its excellent

performance in storage security and authentication

performance, relies on complex models, resulting in a

substantial increase in computational overhead [24]. By

automatically recording and responding to attack

behaviors through smart contracts, this architecture

significantly improves the automation level of the system.

In particular, when dealing with DoS and DDoS attacks, it

can dynamically adjust the restriction policy (as shown in

Figure 5), effectively alleviating the impact of attacks on

the system. Second, the improved TCNN excelled in

vulnerability detection, with a significantly higher

accuracy (89.62% to 98.36%) than existing methods such

as Oyente (around 75%) and Securify (around 85%).

TCNN solved the problem that the number of nodes in

traditional tree convolution was not fixed by "continuous

binary tree" method. TCNN could better capture the

hierarchical structure and semantic information of smart

contract code, thereby improving the accuracy and

efficiency of vulnerability detection. TCNN also

outperformed Oyente (55,000 Gwei/150 ms) and Securify

(52,000 Gwei/140 ms) in terms of Gas costs (38,000

Gwei) and execution latency (90 ms), making it more

suitable for real-time application scenarios.

In summary, this architecture significantly improves

the security, real-time performance, and scalability of the

system through the comprehensive application of

automatic execution of smart contracts, efficient

vulnerability detection of TCNN, and dynamic defense

mechanisms. It is superior to existing methods in dealing

with complex network attacks and large-scale data.

However, the training of the TCNN model relies on large-

scale labeled data sets, and its training process consumes

a lot of computing resources. Although the overfitting

problem is alleviated by Bayesian optimization and early

stop strategy, the model training cost may still become the

deployment bottleneck. In addition, although edge

computing reduces network layer latency, the gateway's

throughput ceiling may limit its scalability in high-

concurrency scenarios. Future research could optimize

blockchain storage efficiency by introducing sharding

technology, and explore lightweight TCNN models to

balance detection accuracy with computational overhead.

5 Conclusion
This study was based on the design of DNSA using

blockchain technology, which addressed the shortcomings

of traditional network security architectures in dealing

with complex network environments and large-scale data

volumes. By combining blockchain technology with

DNSA, this study has achieved significant results in data

security, privacy protection, and resistance to network

attacks. Experiments have shown that this architecture can

effectively reduce response latency and maintain high

throughput when handling numerous concurrent

transactions. For example, when the number of LoRa

devices reached 1600, the maximum throughput of the

gateway remained stable at about 53 data per second,

demonstrating good data processing capabilities. In the

case of sustained DoS attacks, research strategies could

more quickly control the fluctuation of response time and

reduce the amplitude of the fluctuation. This was thanks

to the introduction of randomized parameters and penalty

64 Informatica 49 (2025) 51–66 X. Huo

mechanisms in the strategy, which can dynamically adjust

the duration of restrictions and effectively alleviate the

continuous impact of attack traffic. After identifying the

attack behavior multiple times, the punishment was

gradually increased, reducing the impact of the attack on

the system's processing capability and ensuring the

stability of response time. In addition, the smart contract

vulnerability detection method based on the improved

TCNN performed well in accuracy, precision, recall, and

F1 score, with an accuracy ranging from 89.62% to

98.36%, significantly better than other existing methods.

The results demonstrated the effectiveness of the proposed

architecture in improving network security performance.

References
[1] Abdullah N F, Kairaldeen A R, Abu-Samah A, Nordin

R. Machine learning-based transactions anomaly

prediction for enhanced IoT Blockchain network

security and performance. KSII Transactions on

Internet and Information Systems, 2024, 18(7): 1986-

2009. DOI:10.3837/tiis.2024.07.014.

[2] Li Y, Liang L, Jia Y, Wen W, Tang C, Chen Z.

Blockchain for data sharing at the network edge:

trade-off between capability and security.

IEEE/ACM Transactions on Networking, 2024,

32(3): 2616-2630.

DOI:10.1109/TNET.2024.3364023.

[3] Wang J, Ou W, Wang W, Sherratt R S, Ren Y, Yu X.

Data security storage mechanism based on

blockchain network. Computers, Materials &

Continua, 2023, 74(3): 4933-4950.

DOI:10.32604/cmc.2023.034148.

[4] El Ghazouani M, Ikidid A, Zaouiat C A, Aziz L,

Lachgar M, Er-Rajy L. A Blockchain-based method

ensuring integrity of shared data in a distributed-

control intersection network. International Journal of

Advanced Computer Science and Applications,

2023, 14(10): 489-497.

DOI:10.14569/IJACSA.2023.0141052.

[5] Fkaier S, Khalgui M, Frey G, et al. Secure distributed

power trading protocol for networked microgrids

based on blockchain and elliptic curve cryptography.

IET Smart Grid, 2023, 6(2): 175-189.

DOI:10.1049/stg2.12087.

[6] Sharmila B, Kalavathi Devi T. Theil-Sen regressive

Miyaguchi-Preneel-based cryptographic hash

blockchain for secure data transmission using remote

sensing data in IoT. IETE Journal of Research, 2024,

70(1): 116-129. DOI:10.2139/ssrn.4156878.

[7] Haque S M U, Sofi S A, Sholla S. A privacy-preserving

deep learning framework for highly authenticated

blockchain secure storage system. Multimedia Tools

and Applications, 2024, 83(36): 84299-84329.

DOI:10.1007/s11042-024-19150-7.

[8] Rangappa J D, Manu A P, Kariyappa S, Chinnababu S

K, Lokesh G H, Flammini F. A lightweight

Blockchain to secure data communication in IoT

network on healthcare system. International Journal

of Safety & Security Engineering, 2023, 13(6): 1015-

1024. DOI:10.18280/ijsse.130604.

[9] Kumar R, Kumar P, Aloqaily M. Deep-learning-based

blockchain for secure zero touch networks. IEEE

Communications Magazine, 2022, 61(2): 96-102.

DOI:10.1109/MCOM.001.2200294.

[10] Hua Z, Yao Y, Song M, Zheng Y, Zhang Y, Wang C.

Blockchain-Assisted secure Deduplication for large-

scale cloud storage service. IEEE Transactions on

Services Computing, 2024, 17(3): 821-835.

DOI:10.1109/TSC.2024.3350086.

[11] Xie J, Zhang Z, Atapattu S, Ye Y, Zhang H. Optimal

secure channel access in distributed cooperative

networks with untrusted relay. IEEE Wireless

Communications Letters, 2023, 12(6): 1091-1095.

DOI:10.1109/LWC.2023.3262287.

[12] Liu Q, Ye M, Chen F. Secure distributed estimation

over multitasks networks against multiple attacks.

IEEE Transactions on Aerospace and Electronic

Systems, 2022, 59(3): 2480-2493.

DOI:10.1109/TAES.2022.3215948.

[13] Luo Y, Li Q, Mao H K. Distributed information-

theoretical secure protocols for quantum key

distribution networks against malicious nodes.

Journal of Optical Communications and Networking,

2024, 16(10): 956-968. DOI:10.1364/JOCN.530575.

[14] Thangam S, Chakkaravarthy S S. An edge enabled

region-oriented DAG-based distributed ledger

system for secure V2X communication. KSII

Transactions on Internet and Information Systems,

2024, 18(8): 2253-2280.

DOI:10.3837/tiis.2024.08.011.

[15] Mahdi Z, Abdalhussien N, Mahmood N, Zaki R.

Detection of real-time distributed denial-of-service

(DDoS) attacks on internet of things (IoT) Networks

using machine learning algorithms. Computers,

Materials & Continua, 2024, 80(8): 2139-2159.

DOI:10.32604/cmc.2024.053542.

[16] Sharma R K, Pippal R S. Blockchain based efficient

and secure peer-to-peer distributed IoT network for

non-trusting device-to-device communication.

Informatica, 2023, 47(4): 515-522.

DOI:10.31449/inf. v47i4.3494.

[17] Lyu Z, Cheng C, Lv H, Song H. Blockchain based

intelligent resource management in distributed digital

twin’s cloud. IEEE Network, 2023, 38(4): 143-150.

DOI:10.1109/MNET.2023.3326099.

[18] Wu W, Yu L, Yang L, Zhang Y, Wang P. Efficient

digital twin placement for blockchain-empowered

wireless computing power network. Computers,

Materials & Continua, 2024, 80(7): 587-603.

DOI:10.32604/cmc.2024.052655.

[19] Singh U, Sharma S K, Shukla M, Jha P. Blockchain-

based BATMAN protocol using mobile ad hoc

network (MANET) with an ensemble algorithm.

International Journal of Information Security, 2024,

23(3): 1667-1677. DOI:10.1007/s10207-023-00804-

w.

[20] Filatovas E, Stripinis L, Orts F, Paulavičius R.

Advancing research reproducibility in machine

learning through blockchain technology.

Informatica, 2024, 35(2): 227-253.

DOI:10.15388/24-INFOR553.

Blockchain-Based Distributed Network Security Architecture with… Informatica 49 (2025) 51–66 65

[21] Pise R G, Patil S. Pioneering automated vulnerability

detection for smart contracts in blockchain using

KEVM: Guardian ADRGAN. International Journal

of Information Security, 2024, 23(3): 1805-1819.

DOI:10.1007/s10207-024-00817-z.

[22] El Haddouti S, Khaldoune M, Ayache M, Ech-Cherif

El Kettani M D. Smart contracts auditing and multi-

classification using machine learning algorithms: an

efficient vulnerability detection in ethereum

blockchain. Computing, 2024, 106(9): 2971-3003.

DOI:10.1007/s00607-024-01314-w.

[23] Yu D, Chen Y. The analysis of the characteristics and

evolution of the collaboration network in blockchain

domain. Informatica, 2021, 32(2): 397-424.

DOI:10.15388/20-INFOR437.

[24] Miglani A, Kumar N. A blockchain based matching

game for content sharing in content-centric vehicle-

to-grid network scenarios. IEEE Transactions on

Intelligent Transportation Systems, 2023, 25(5):

4032-4048. DOI:10.1109/TITS.2023.3322826.

66 Informatica 49 (2025) 51–66 X. Huo

