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Because hackers were able to access AOL user credentials in 1996, phishing, a malicious method of 

obtaining personal data, became a significant online threat. This fraudulent practice makes use of email 

and website spoofing techniques to trick victims into disclosing sensitive information. Advanced practices 

that make use of users' trust and web vulnerabilities, such as spear phishing and tab nabbing, may be 

hazardous to people's security. In the classification of phishing websites, this research used two prediction 

models: the Stochastic Gradient Descent (SGD) and the Naïve Bayesian Classification Algorithm (NBC). 

Hybrid models were developed by incorporating the Mayfly Optimization Algorithm (MOA), a 

sophisticated optimization method for improving predictive accuracy and overall performance. The 

dataset contained two stages with a total of 1,353 phishing, trustworthy, and dubious websites. 

Hyperparameters tuned using random search method for each hybrid model. The dataset contains nine 

input parameters and derived from previous studies.The results indicated that, with an accuracy of 0.921 

during the testing phase, the hybrid model of SGD+MO fared best. On the other hand, the NBC model 

with Accuracy of 0.877 identified as the weakest model with 4.4% different compared to best model. Also, 

further improved performance was demonstrated by the numerical classification results for the various 

categories: it was observed that for phishing websites, the precision metric was 0.925; for suspicious 

websites, it was 0.933; while for legitimate websites, the precision was 0.911. These results point out the 

hybrid model's ability to enhance phishing detection systems by showing how well it classifies and detects 

different kinds of websites. 

Povzetek: Prispevek predstavi hibridni model za odkrivanje ribarjenja, ki združuje SGD in Naïvni Bayes, 

optimiziran z algoritmom Mayfly, kar prinaša znatno izboljšano natančnost zaznave. 

 

1 Introduction 

1.1 Study background 

Phishing is a fraudulent tactic used to deceive individuals 

into disclosing sensitive data online [1,2]. Phishers are the 

attackers that organize phishing attacks. When hackers 

obtained AOL users' login credentials in 1996, phishing 

emerged as a significant online threat [3,4]. A successful 

phishing attack is typically carried out through website 

spoofing techniques [5,6] and email spoofing techniques 

[7]. Attackers who want to trick victims into believing 

they are communicating with legitimate organizations like 

banks, credit card companies, or government agencies 

[8,9] begin by sending spoof emails [10]. Since their 

source addresses are altered to resemble emails from 

reliable sources, the email addresses are spoofs. For 

instance, if a bank manager at bank "XYZ" has the email 

address bankmanager@xyz.co.in, the attacker will attempt 

to spoof that address to trick the user into thinking the 

email is legitimate and following the phisher's instructions 

[11]. Usually, the email requests that the recipient click on 

links to websites and reply to the message or the website 

with their banking information. Email spoofing uses open  

 

 

 

SMTP (Simple Mail Transfer Protocol) servers to send 

bogus emails to targets. Another deceptive technique is to 

create phishing websites that look and feel exactly like the 

targeted authentic websites since many users are reluctant 

to divulge personal information in response to an email 

[12–14]. 

Phishing is known as "Whaling" when it goes after well-

known users [6]. Phishers employ diverse techniques to 

execute their deception successfully. These tips consist of 

the following: The first method involves manipulating 

links so that they appear to lead to a legitimate website, 

but in reality, they lead to a malicious or phished URL; the 

second method involves avoiding phishing detection 

filters [15]. (iv) utilizing pop-up windows to solicit user 

names and passwords; (iv) using Javascript to conceal the 

browser address bar and construct a custom address bar 

that presents a hard-coded legitimate URL to the user [12]. 

Use pictures rather than words, which might evade 

detection by several phishing filters [16].  

Various researchers have investigated various phishing 

website identification methods based on differentiating 

characteristics in the recent past. Rami M et al. [17] 

performed a thorough investigation on automatic 

extraction and feature analysis that could differentiate 

between legitimate and phishing websites using 
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automated tools. Their analysis listed 17 important 

features, the most important being "Request URL," 

followed by "Age of Domain" and "HTTPS and SSL." For 

the better utilization of these features in phishing 

recognition systems, they created specific rules for each 

feature. They established in a series of experiments that 

the C4.5 algorithm performed more accurately than other 

rule-based classification algorithms such as RIPPER, 

PRISM, and CBA. They also improved the prediction 

accuracy by focusing on the nine most informative 

features; the lowest error rate was 4.75% with the CBA 

algorithm. 

Abburous et al. [18] also worked on the classification 

techniques of data mining for phishing detection in e-

banking. They indicated that factors such as "Page Style 

and content" and "Social Human Factor" had little 

influence on the final phishing recognition rate; however, 

they emphasized the critical roles that URL, Domain 

Identity, Security, and Encryption played. By highlighting 

the relationships between specific characteristics in their 

associative classification model, they were able to develop 

systems that could detect phishing. Tests indicated that 

Associative Classification methods outperformed more 

conventional algorithms, such as MCAR, which had an 

error rate of 12.622%. They suggested that future research 

apply various pruning techniques to raise the accuracy and 

efficiency of classifiers. 

Ramesh et al. [19] finding the harmed domains is crucial 

in phishing detection; they presented an automated 

approach using a unique Target Validation algorithm to 

ensure the accuracy of finding target domains of phishing 

webpages. By analyzing a fake relationship, their results 

enhanced protection against online identity attacks and 

had more than 99% for detecting harmed domains. 

The last new multi-label rule-based classification 

algorithm, EMCAC, was presented by Neda Abdelhamid 

[20]. Its purpose is to generate multi-class-labeled rules 

without needing recursive learning. Experimental results 

based on the phishing data demonstrated that the EMCAC 

outperformed algorithms such as CBA, MCAR, MMAC, 

PART, C4.5, and RIPPER. They discovered a more 

manageable, helpful set of features for website type 

detection based on Chi-square feature selection. Future 

research will apply EMCAC to unstructured data in text 

categorization. 

These works collectively contribute to improving phishing 

detection methodologies in general by emphasizing 

effective features, improving classification algorithms, 

and proposing new methods to enhance the accuracy and 

efficiency of phishing detection systems. 

Table 1 reports a summary of the existing articles in the 

study field.

 

Nomenclature 

SGD Stochastic Gradient Descent 𝐹𝑖
𝑡+1 Updated position of female iii at iteration t+1 

NBC Naïve Bayesian Classification 𝐷𝑚𝑓 Distance between male and female 

MOA Mayfly Optimization Algorithm W Random walk parameter (set to 1) 

SVM Support Vector Machines r Random number 

DT Decision Trees 𝐻(𝐹𝑖) Fitness value of female i 

KNN k-Nearest Neighbors 𝐻(𝑀𝑖) Fitness value of male i 

PSO Particle Swarm Optimization 𝑋𝑖,𝑗
𝑡  

Position of individual iii in dimension j at 

iteration t 

GA Genetic Algorithms 𝑌𝑖,𝑗
𝑡  

Position of another reference individual in 

dimension j at iteration t 

𝑀𝑖
𝑡 Initial position of male i at iteration t ∅𝑐𝑖

 Mean of feature xt  for class Ci 

𝑀𝑖
𝑡+1 Updated position of male iii at iteration t+1 𝜎𝑐𝑖

 Standard deviation of feature xt for class ci 

𝑉𝑖
𝑡 Initial velocity of male iii at iteration t A(Ci) Prior probability of class Ci 

𝑉𝑖
𝑡+1 Updated velocity of male i at iteration t+1 A(X) 

Normalization factor (marginal probability 

of X) 

𝑉𝑖,𝑗
𝑡  

Initial velocity component for male iii in 

dimension j at iteration t 
TP 

True Positives: Correctly classified positive 

samples. 

𝑉𝑖,𝑗
𝑡+1 

Updated velocity component for male iii in 

dimension j at iteration t+1 
TN 

True Negatives: Correctly classified negative 

samples. 

S1 Personal learning parameter (set to 1) FP 
False Positives: Negative samples incorrectly 

classified as positive. 

S2 Social learning parameter (set to 1.5) FN 
False Negatives: Positive samples incorrectly 

classified as negative. 

𝛽 Exponential decay parameter (set to 2) 𝑃𝑏𝑒𝑠𝑡(𝑖, 𝑗) 
Best personal position of male iii in 

dimension j 

Dp 
Cartesian distance between male position and 

personal best position 
𝑄𝑏𝑒𝑠𝑡(𝑖, 𝑗) Best global position in dimension j 

Dg 
Cartesian distance between male position and 

global best position 
R Random number in the range [-1,1] 

𝐹𝑖
𝑡 Initial position of female i at iteration t d Nuptial dance value (set to 5) 
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Table 1: Summary of the previous studies. 

Authors References 
Techniques/Models 

Used 
Dataset Used Performance Metrics 

Rami M et al. [17] 

C4.5, RIPPER, 

PRISM, CBA, Rule-

based classification 

Not specified 

CBA: 4.75% error 

rate, C4.5 performed 

best 

Abburous et al. [18] 

Associative 

Classification, 

MCAR, Data 

Mining techniques 

E-banking data 

MCAR: 12.622% 

error rate, 

Associative 

performed best 

Ramesh et al. [19] 

Target Validation 

Algorithm, 

Automated phishing 

domain detection 

Not specified 

99% accuracy in 

detecting harmed 

domains 

Neda Abdelhamid [20] 

EMCAC (Multi-

label classification), 

CBA, MCAR, 

MMAC, PART, 

C4.5, RIPPER 

Phishing dataset 

EMCAC 

outperformed others, 

Feature selection via 

Chi 

1.2 Objective of the study 

Phishing attacks pose a significant and evolving 

cybersecurity threat, necessitating the development of 

accurate and robust detection systems. Traditional rule-

based and blacklist-based approaches often fail to detect 

new and sophisticated phishing techniques due to their 

static nature. To address this challenge, this study 

proposes a hybrid machine learning-based approach to 

improve phishing website classification accuracy and 

adaptability. 

This study investigates the effectiveness of 

integrating the Mayfly Optimization Algorithm (MOA) 

with two machine learning models: Naïve Bayes Classifier 

(NBC) and Stochastic Gradient Descent (SGD). The 

hypothesis tested is that the hybrid approach—leveraging 

the strengths of probabilistic and gradient-based learning 

models with a bio-inspired optimization algorithm—

enhances predictive accuracy, convergence speed, and 

robustness against evolving phishing techniques 

compared to standalone models. 

 

❖ Justification for model selection: 

Stochastic Gradient Descent (SGD) was chosen due 

to its ability to efficiently handle large-scale datasets, 

making it well-suited for real-time phishing detection. 

Unlike traditional classifiers such as Support Vector 

Machines (SVM), which can be computationally 

expensive in high-dimensional spaces, SGD updates 

model parameters iteratively, ensuring fast adaptation to 

new patterns in phishing data. Compared to Decision 

Trees (DT) and k-Nearest Neighbors (KNN), which may 

struggle with scalability and feature complexity, SGD 

offers superior generalization, making it ideal for dynamic 

and evolving phishing attack scenarios. Similarly, the 

Naïve Bayes Classifier (NBC) was selected due to its 

probabilistic nature, which allows for interpretable 

decision-making and robust performance in high-

dimensional spaces. Unlike deep learning models like 

Neural Networks, which require extensive training data 

and computational resources, NBC remains 

computationally efficient and effective even with limited 

training samples. Compared to Logistic Regression, which 

assumes a linear decision boundary, NBC handles non-

linearity better due to its probabilistic assumptions, 

making it a strong candidate for phishing classification 

tasks. 

❖ Justification for optimizer selection: 

MOA was incorporated to enhance the predictive 

accuracy of SGD and NBC by optimizing 

hyperparameters and improving model convergence. 

Unlike traditional optimization techniques like Grid 

Search and Random Search, which are 

computationally expensive, MOA dynamically 

balances exploration and exploitation, enabling more 

efficient searching for optimal model parameters. 

Compared to Particle Swarm Optimization (PSO) and 

Genetic Algorithms (GA), MOA exhibits superior 

convergence speed and stability due to its biologically 

inspired swarming mechanism, making it well-suited 

for improving phishing detection models. 

 

❖ Novelty of the work: 

The novelty of this research lies in the hybridization 

of MOA with SGD and NBC to enhance phishing website 

classification. Unlike previous studies that rely on 

standalone machine learning models or traditional 

optimization techniques, this study introduces a bio-

inspired optimization approach to fine-tune machine 

learning classifiers, improving their convergence and 

predictive performance. The proposed hybrid models 

demonstrate superior robustness against evolving 

phishing attacks, providing a scalable and interpretable 

solution for real-time cybersecurity applications. 

By leveraging the efficiency of SGD, the 

interpretability of NBC, and the adaptive search 

capabilities of MOA, this study contributes a novel and 

effective approach to phishing detection. The results 

validate the hypothesis that the integration of optimization 
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algorithms with machine learning models enhances 

phishing detection accuracy, offering a more reliable and 

adaptable defense mechanism against cyber threats. 

1.3 Paper organization 

The structure of the article is: Section 2 describes the 

procedures of data collection and preprocessing in detail. 

Section 3 introduces the ML models for phishing 

detection, and Section 4 explains the metaheuristic 

algorithm for the optimization of these models. Section 5 

presents the appraisal factors utilized to examine the 

execution of the model, including accuracy and F1-score. 

In Section 6, the results are presented both numerically 

and visually, and the findings are discussed. The study's 

summary of the main conclusions and recommendations 

for future research directions are given in Section 7. The 

references section concludes with a list of all cited works 

for additional reading. 

2 Data collection 
A reliable database derived from [21] for monitoring 

phishing websites, Phish Tank, provided 1353 inputs for 

the dataset used in this study. The features present in the 

dataset for identifying phishing websites include 

Prefix/Suffix, SFH, Request URL, Web Traffic, Anchor 

URL, URL Length, Domain Age, Sub Domain, and IP 

Address. These characteristics were chosen because of 

their potential to be useful during the classification 

process, where one tries to determine whether a website is 

phishing or authentic. To construct the models and 

improve them during the training phase, 947 inputs were 

used. Thus, the remaining 406 inputs were used during the 

testing phase to confirm the functionality of the models. 

This division makes sure the models are adequately 

trained and subjected to a tight evaluation process for 

determining generalizability and predictive accuracy. 

Fig. 1 presents the impact of each input parameter on the 

website classification outcomes. Among the parameters, 

the prefix/suffix parameter has shown the most positive 

impact, with a significant value of 0.24. The domain age 

parameter then shows a positive influence with a value of 

1.7. On the other hand, residual parameters have adverse 

effects on the classification results. While stressing that 

other features may reduce predictive performance, this 

analysis emphasizes the significance of particular features, 

such as the prefix/suffix and domain age, in improving the 

accuracy of phishing website detection.  

 

Figure 1: The plot illustrates the correlation between the input and output 
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3 Machine learning models 

3.1  Stochastic gradient descent (SGD) 

SGD is widely used and has demonstrated advanced 

execution on numerous ML tasks, as demonstrated in [22] 

and [23]. To specify the length of the subsequent stage to 

take when going in the gradient's direction, SGD 

incorporates a parameter known as the learning rate. A 

learning rate that is too small results in slow convergence, 

while a learning rate that is too large can impede 

convergence and cause the loss function to diverge or even 

oscillate around the minimum. For this work, a learning 

rate has been chosen that is modified by a predetermined 

schedule as the training progresses. However, n-SGD has 

a more significant step size than SGD because it is more 

difficult to take more significant steps in one point in SGD 

without running the risk of preventing convergence due to 

the noise on the gradient. The model in n-SGD is updated 

using minibatches, which are small collections of training 

samples. Here, the batch size is set to n, which is the total 

number of points to take into account when calculating the 

gradient.  

3.2 Naïve Bayesian classification algorithm 

(NBC) 

The NBC organization method functions on the 

assumption that every model's attributes are free within 

their respective groups. These are assumptions that most 

people find annoying, but NBC consistently performs well 

in verified scenarios. It can predict the possibility of being 

placed in a particular class based on tests from that class 

by computing contingent probabilities using Likelihood 

Bayes [24,25]. One advantage of this approach is that it 

expects property freedom, which means that order can be 

established with essentially a change in a variable at the 

class level instead of the entire covariance structure.  

Determining the mean and standard deviation of the 

highlights in the preparation materials for each class is the 

most crucial step in this classification technique [26,27]. 

At that point, the processed mean and standard deviation 

are utilized to determine the probability 𝐴(𝑥𝑡|𝑐𝑖). 

𝐴(𝑥𝑡|𝑐𝑖) = 𝑔(𝑥𝑡 , 𝜑𝑐𝑖
, 𝜎𝑐𝑖

) 

=
1

√2𝜋𝜎𝑐𝑖

𝑒𝑥𝑝
−

(𝑥𝑡− 𝜑𝑐𝑖
)2

2𝜎𝑐𝑖
2

 
(1) 

The Gaussian thickness capacity for the quality 𝑥𝑡 is 

addressed by the articulation 𝑔(𝑥𝑡 , 𝜑𝑐𝑖
, 𝜎𝑐𝑖

). 𝜑𝑐𝑖
 and 𝜎𝑐𝑖

 

represent the standard deviation of characteristic 𝑥𝑡 in the 

preparation information for the class.  

The likelihood 𝐴(𝑥𝑡|𝑐𝑖) for each trademark in each class 

is replicated by the likelihood 𝐴(𝑋|𝐶𝑖) = 𝜋(𝑡=1)
𝑛 𝐴(𝑥𝑡|𝐶𝑖), 

which yields the probability 𝐴(𝑥𝑡|𝑐𝑖) for each class. The 

back likelihood, or 𝐴(𝑥𝑡|𝑐𝑖), can be found by multiplying 

this 𝐴(𝑥𝑡|𝑐𝑖) by the earlier probability of each class. 

To get the probability 𝐴(𝑥𝑡|𝑐𝑖) for each class, the 

likelihood 𝐴(𝑥𝑡|𝑐𝑖) for each trademark in each class is 

replicated by the likelihood 𝐴(𝑋|𝐶𝑖) = 𝜋(𝑡=1)
𝑛 𝐴(𝑥𝑡|𝐶𝑖). 

By multiplying this 𝐴(𝑥𝑡|𝑐𝑖) by the earlier probability of 

each class, one may find the back likelihood or 𝐴(𝐶𝑖|𝑋). 

𝐴(𝐶𝑖|𝑋) =
(𝑋|𝐶𝑖) 𝐴(𝐶𝑖)

𝐴(𝑥)
 (2) 

When 1 ≤ 𝑗 ≤ 𝑚 and 𝑗 isn't equal to 𝑖, the test data are 

categorized into a specific class according to whether or 

not they satisfy the measures 𝐴(𝐶𝑖|𝑋) > 𝐴(𝐶𝑗|𝑋). In Fig. 

2, the NBC flowchart is displayed. 

 

Figure 2: NBC Flowchart [28] 
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4 Metaheuristic algorithms 

4.1 Algorithm for optimizing mayfly (MOA) 

MOA is a population-based technique that was developed 

in 2020 [29,30]. The PSO is the source of the MOA and 

combines all of the main advantages of the PSO, FA, and 

GA, as stated in the authors' prior claim. The activities 

listed below comprise the MFO concept: i) a pair of equal 

numbers of male and female agents are first sent out; ii) 

the male mayfly chooses which 𝑄𝑏𝑒𝑠𝑡 is appropriate for the 

current task; iii) the female mayfly searches and merges 

with the male mayfly at 𝑄𝑏𝑒𝑠𝑡 ; iv) procreating, and v) the 

search is terminated and the results are displayed.  

The total efficacy of the MOA is determined by the male's 

initial location and the distance at which it attracts the 

female. This approach allows an equal number of male and 

female agents to be freely initiated in the search space, 

allowing each Mayfly to converge toward the 𝑄𝑏𝑒𝑠𝑡 with a 

rise in convergence. This procedure will terminate when 

every couple of agents produces the same number of 

children. Every generated offspring is assigned a zero 

velocity to end the process and prevent it from moving 

further. The remaining pertinent details are located in 

[29,30], and [31] provide access to the basic code. 

In a d-dimensional search area, assume that there are an 

equal number of male (M) and female (F) Mayflies. The 

overall count of agents (Mayflys) is represented by the 

numbers i=1, 2..., N. Every agent is randomly initialized 

in the search locality during the optimization search, and 

as the iteration count rises, each agent is permitted to 

advance toward the best position (𝑄𝑏𝑒𝑠𝑡). By changing its 

position and speed, the male can get to the 𝑄𝑏𝑒𝑠𝑡 . The 

agent will travel in the direction of its target based on the 

Cartesian distance and the increasing iteration. Similar to 

this procedure is the FA discussed in [32]. The revised 

position and velocity are displayed in Eqs. (3) and (4); 
𝑀𝑖

𝑡+1 = 𝑀𝑖
𝑡 + 𝑉𝑖

𝑡+1 (3) 

𝑉𝑖.𝑗
𝑡+1 = 𝑉𝑖,𝑗

𝑡 + 𝑆1 × 𝑒−𝛽𝐷𝑝
2

(𝑃𝑏𝑒𝑠𝑡𝑖,𝑗
− 𝑀𝑖,𝑗

𝑡 )

+ 𝑆2

× 𝑒−𝛽𝐷𝑔
2

(𝑄𝑏𝑒𝑠𝑡𝑖,𝑗
− 𝑀𝑖,𝑗

𝑡 ) 

(4) 

where 𝛽 = 2, personal learning parameters (𝑆1)=1, 

(𝑆2)=1.5, 𝑀𝑖
𝑡 and 𝑀𝑖

𝑡+1 are the initial and modified 

positions, 𝑉𝑖
𝑡+1 and 𝑉𝑖,𝑗

𝑡+1 are the initial and modified 

velocities, and 𝐷𝑝 and 𝐷𝑔 are the Cartesian distances. The 

FA and PSO values are combined to form the frame in (4). 

To seduce the female (F) with a distinctive nuptial dance 

(dancing up and down on a water surface), every man (M) 

will attain the 𝑄𝑏𝑒𝑠𝑡 when the updation continues 

depending on the advancement in cycles. The definition of 

the velocity update during this procedure is as follows: 

𝑉𝑖,𝑗
𝑡+1 = 𝑉𝑖,𝑗

𝑡 + 𝑑 × 𝑅 (5) 

where 𝑅 = random numeral [-1], [1], and nuptial dance 

value (𝑑) = 5. 

Each female (F) is then allowed to determine the guy who 

is at 𝐺𝑏𝑒𝑠𝑡  once the male has finished his optimal search. 

which a female (F) may use a random walk (𝑊 = 1) value 

to escape to a new location or move in the direction of the 

male (𝐷𝑚𝑓). The update of location and velocity for F may 

be expressed mathematically in Eq. (6) and Eq. (7): 

𝐹𝑖
𝑡+1 = 𝐹𝑖

𝑡 + 𝑉𝑖
𝑡+1 (6) 

𝑉𝑖,𝑗
𝑡+1

= {
𝑉𝑖,𝑗

𝑡 +𝑆2 × 𝑒−𝛽𝐷𝑚𝑓
2
(𝑋𝑖,𝑗

𝑡 − 𝑌𝑖,𝑗
𝑡 )       𝑖𝑓 𝐻(𝐹𝑖) > 𝐻(𝑀𝑖) 

𝑉𝑖,𝑗
𝑡 + 𝑊 × 𝑟                                       𝑖𝑓 𝐻(𝐹𝑖) ≤ 𝐻(𝑀𝑖)

 
(7) 

𝐻 stands for the maximized objective value. 

As the number of iterations grows, each F will ultimately 

become the correct M, resulting in the birth generation. 

The product of M and F displays the overall count of 

offspring in the MOA. After mating, the progeny of M and 

F will thus always have an initial velocity value of zero. 

Only M and F's search performance is considered in the 

IMLT issue since the initial velocity operator of the 

offspring is neutralized. The best characteristics of the FA, 

PSO, and FA are merged to generate the recommended 

MOA, as shown by the previously described equations. 

Additional relevant information is available from [29,30]. 

Fig. 3 shows the flowchart of MOA. 
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Figure 3: MOA flowchart 

5 Performance evaluators 
To assess the performance of the classification 

models, four key evaluation metrics are considered: 

Accuracy, Precision, Recall, and F1-Score. These metrics 

provide a quantitative measure of the model's 

effectiveness in classifying data and its resilience against 

misclassification. 

 

• Accuracy: Accuracy is the most straightforward 

metric, representing the proportion of correctly 

classified instances in the dataset. It is defined as: 

 

Accuracy=
(𝐹𝑃 + 𝑇𝑁)

(𝐹𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
⁄  (8) 

 

where TP (True Positives) and TN (True Negatives) 

denote correctly classified samples, while FP (False 

Positives) and FN (False Negatives) indicate misclassified 

samples. Although accuracy provides an overall  

 

 

performance measure, it may not be reliable for 

imbalanced datasets, where one class dominates. 

 

• Precision: Precision evaluates how well the 

model identifies positive instances while 

avoiding false positives. It is given by: 

 

Precision= 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)⁄  (9) 

 

A high precision score indicates that the model 

minimizes false positives, making it particularly valuable 

in applications where false alarms must be reduced. 

 

 

• Recall: Recall (also known as Sensitivity) 

measures the model's ability to correctly identify 

all relevant instances. It is expressed as: 

 

Recall= 𝐹𝑃𝑅 = 𝐹𝑃

𝑃⁄ = 𝐹𝑃

(𝐹𝑃 + 𝐹𝑁)⁄  (10) 
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A high recall means that the model effectively 

captures all true positive cases, reducing the likelihood of 

missing critical classifications. This metric is particularly 

important in scenarios where failing to detect positive 

instances has severe consequences, such as in medical 

diagnosis. 

 

• F1-Score 

The F1-Score provides a balanced measure of a 

model's performance by combining Precision and Recall 

into a single metric. It is calculated as the harmonic mean 

of the two: 

F1 − Score 

=
(2 × 𝑅𝑒𝑐𝑎𝑙𝑙 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)⁄  

(11

) 

 

This metric is especially useful when dealing with 

imbalanced datasets, as it considers both false positives 

and false negatives in the evaluation. 

By analyzing these evaluation metrics together, a 

comprehensive understanding of the classification model's 

performance is obtained, ensuring robust and reliable 

predictions. K-Fold Cross validation 

K-fold cross-validation (KCV) is a commonly used 

technique for model selection and error estimation in 

classification tasks. It involves dividing the dataset into k 

subsets, where, in each iteration, some subsets are utilized 

for training while the remaining ones are used for testing 

the model's performance. In this study, a 5-fold cross-

validation strategy (k=5) was implemented to improve the 

proposed algorithms by systematically varying the 

training and testing data. Fig. 4 illustrates the accuracy 

achieved across different folds. The results show that K5 

recorded the highest accuracy (0.90909), followed by K2 

(0.90613), while K4 had the lowest accuracy (0.8847). 

The variation observed among the folds demonstrates the 

effectiveness of cross-validation in evaluating model 

generalization. 

 

 

Figure 4: The results of 5-Fold cross validation 

6 Results 

6.1 Results of hyperparameters and 

convergence curves 

Hyperparameters are predefined settings that control 

the learning process of a machine learning model. Unlike 

model parameters, which are learned from data, 

hyperparameters are set before training and have a 

significant impact on model performance. Various 

techniques exist for tuning hyperparameters to enhance 

model accuracy and efficiency. One widely used approach  

 

 

is random search, which was employed in this study to 

optimize the hyperparameters of the proposed hybrid 

models. Table 2 presents the optimized hyperparameter 

values for the SG + MO and NBC + MO models. For SG 

+ MO, key hyperparameters include alpha (0.001), 

l1_ratio (0.014692), epsilon (0.022627), n_jobs (2), eta0 

(0.999), and power_t (0.959754), which were fine-tuned 

to enhance the model's predictive performance. For NBC 

+ MO, the most influential hyperparameters were alpha 

(62) and min_categories (4). These values were 

determined through random search, ensuring optimal 

model performance while balancing computational 

efficiency. 
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Table 2: Outcomes of hyperparameters for hybrid models. 

Hyperparameter 
Models 

SG + MO NBC + MO 

alpha 0.001 -- 

l1_ratio 0.014692 -- 

epsilon 0.022627 -- 

n_jobs 2 -- 

eta0 0.999 -- 

power_t 0.959754 -- 

alpha -- 62 

min_categories -- 4 

Two convergence graphs for hybrid models over 200 

iterations are shown in Fig. 5. The y-axis shows 

convergence (accuracy), and the x-axis shows the count of 

iterations. The accuracy in the left graph, labeled SG+MO, 

starts at about 0.654 and rises stepwise until the 200th 

iteration, when it reaches an approximate accuracy of 

0.92831. Comparably, the accuracy of the right graph, 

designated NBC+MO, begins at about 0.601 and increases 

stepwise until it reaches about 0.89579 by the 200th 

iteration. Both graphs demonstrate the convergence 

behavior of the hybrid models by showing a general trend 

of increasing accuracy with the number of iterations. 

 

Figure 5: The convergence graphs of the hybrid models 

6.2 Results of metrics for predictive models 

In the overall accuracy evaluation over all datasets, as 

shown in Table 3, the single SGDC model performed 

admirably, with an accuracy of 0.904, which was higher 

than the NBC model's 0.877 accuracy. This pattern 

continued with the hybrid models, where the SG+MO 

configuration outperformed the NBC+MO model with an 

accuracy of 0.928, surpassing its performance of 0.896. 

The SG+MO model demonstrated a significant  

 

performance difference, surpassing the NBC+MO model 

by 3.57%. Beyond accuracy, the SG+MO model also 

performed better on other critical metrics, such as 

precision, recall, and F1-score, all of which registered at 

an excellent 0.928. These findings, which are presented in 

detail in Table 3 and visually represented in Fig. 6, 

confirm the effectiveness of the SG+MO model when 

compared to other configurations and demonstrate its 

strong performance across a range of evaluation 

parameters. 

Table 3: Outcomes of the presented developed models. 

Section Model 
Metric values 

Accuracy Precision Recall F1-score AUC MCC 

Train 

SGDC 0.903 0.902 0.903 0.902 0.881 0.8252 

SG+MO 0.931 0.931 0.931 0.931 0.915 0.8760 

NBC 0.873 0.871 0.873 0.866 0.799 0.7681 

NBC+MO 0.894 0.892 0.894 0.890 0.835 0.8085 

Test 
SGDC 0.906 0.907 0.906 0.906 0.881 0.8340 

SG+MO 0.921 0.922 0.921 0.921 0.915 0.8607 
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NBC 0.887 0.887 0.887 0.881 0.799 0.7965 

NBC+MO 0.899 0.897 0.899 0.897 0.835 0.8200 

All 

SGDC 0.904 0.903 0.904 0.903 0.881 0.8277 

SG+MO 0.928 0.928 0.928 0.928 0.915 0.8714 

NBC 0.877 0.876 0.877 0.870 0.799 0.7769 

NBC+MO 0.896 0.893 0.896 0.892 0.835 0.8118 
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Figure 6: Plot showing the performance of the models across different phases 

The confusion matrix, shown in Fig. 7, compares the 

actual and predicted classifications for three categories: 

Phishy, Suspicious, and Legitimate. It is a tool used to 

assess the effectiveness of classification models. The 

following is revealed by a thorough analysis of the 

misclassifications by rows for the top-performing 

SG+MO model: While correctly identifying 82 legitimate 

instances, the model misclassified 12 as phishy and nine 

as suspicious for legitimate instances. Although the model 

correctly identified 669 suspicious instances, it incorrectly 

classified 29 as phishy and four as legitimate. The model 

correctly identified 505 phishy instances but incorrectly 

classified 39 as suspicious and four as legitimate. The 

most notable misclassification in the matrix is that of 

phishy instances being classified as suspicious (39), while 

the model has the highest number of correct classifications 

for suspicious instances (669). Furthermore, when 

comparing phishy and suspicious instances to legitimate 

ones, the model shows comparatively fewer 

misclassifications. 
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Figure 7: Confusion matrix showing the accuracy of the models under four specified conditions 

The numerical classification results for each model are 

displayed in Table 4, where the SG+MO model performs 

better on many metrics. In particular, the SG+MO model 

shows the highest accurate results (0.923 for phishy, 0.943 

for suspicious, and 0.850 for legitimate instances) when it 

comes to the F1-score. Furthermore, the model achieves 

0.922 for phishy, 0.953 for suspicious, and 0.796 for 

legitimate classifications, according to a comparison of 

the Recall results. The SG+MO model continues to 

perform well when analyzing the Precision results, scoring 

0.925 for phishy, 0.933 for suspicious, and 0.911 for 

legitimate instances. Together, these metrics show that the 

SG+MO model achieves high F1 scores by maintaining a 

balanced trade-off between precision and recall, in 

addition to being highly effective at correctly identifying 

positive cases in all three categories. 

Table 4: Grading-based classification of the performance of the developed model 

Metric values Grade 
Model 

SGDC SG+MO NBC NBC+MO 

Precision 

Phishy 0.897 0.925 0.869 0.887 

Suspicious 0.923 0.933 0.886 0.915 

legitimate 0.802 0.911 0.837 0.768 

Recall 

Phishy 0.903 0.922 0.896 0.918 

Suspicious 0.933 0.953 0.933 0.935 

legitimate 0.709 0.796 0.398 0.515 

F1-score 

Phishy 0.900 0.923 0.882 0.902 

Suspicious 0.928 0.943 0.909 0.925 

legitimate 0.753 0.850 0.540 0.616 

AUC 

Phishy 0.847 0.895 0.696 0.751 

Suspicious 0.916 0.935 0.902 0.919 

legitimate nan nan nan nan 

MCC 

Phishy 0.735 0.840 0.556 0.605 

Suspicious 0.832 0.871 0.800 0.834 

legitimate 0.849 0.880 0.807 0.842 

 

A comparison of the measured and predicted values for 

the three categories of suspicious, phishing, and legitimate 

is shown in Fig. 8. The measured value for the Suspicious 

category is 702. The SG+MO model outperforms the 

SGDC and NBC models, which both come in at 655, and 

the NBC+MO model, which comes in at 656, in making 

the closest prediction at 669. The measured value in the 

Phishy category is 548. The closest prediction, once again 

from the SG+MO model, is 505, followed by NBC+MO 

at 503, SGDC at 495, and NBC at 491. With a measured 

value of 103, the Legitimate category displays a more 

notable discrepancy; in this case, the SG+MO model 

predicts 82, which is greater than SGDC at 73, NBC+MO 

at 53, and NBC at 41. This graph highlights the SG+MO 

model's superior performance over the other models by 

showing that it consistently produces predictions that are 

closer to the actual measured values across all categories. 
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Figure 8: Visualization depicting the performance evaluation of the developed models 

The ROC curve results are shown in Fig. 9, which is 

essential when assessing how well models perform in 

terms of achieving an actual positive rate of 1. The model 

that performs better is the one that reaches this rate the 

quickest. We can see that on the ROC curve plot for the 

category Phishy, the green line first reaches an actual 

positive rate of 1, demonstrating its high efficacy in this 

category for the model. Following that, the ROC curve for 

the suspicious category and the micro-average ROC curve 

reaches this rate, which goes on to say that the 

performance generally is excellent across a variety of 

classes and particularly good in detecting suspicious 

instances. The macro-average ROC curve represents the 

third ROC curve that reaches an actual positive rate of one. 

It provides an objective evaluation of the effectiveness of 

the model across all categories. Finally, the ROC curve for 

the legitimate category approaches this rate, showing its 

ability to classify the legitimate ones correctly. These 

ROC curves collectively present the relative 

efficaciousness of the models and their advantages within 

a broad spectrum of classification tasks. 

 

Figure 9: ROC curves illustrating the performance of the most effective hybrid models 

Run time comparison 

The computational efficiency of the models was also 

evaluated by recording their execution times. The runtime 

results indicate that the standalone Naïve Bayes Classifier 

(NBC) and Stochastic Gradient Descent (SGD) models 

exhibited significantly lower execution times, with 0.57 

seconds and 0.87 seconds, respectively. However, when 

integrated with the MOA framework, the computational 

cost increased considerably, with NBC_MOA requiring 

598.5 seconds and SGD_MOA taking 913.5 seconds. 

These findings highlight the trade-off between 

optimization and computational efficiency, suggesting 

that while the hybrid models may improve prediction 

accuracy, their feasibility for real-time applications 

depends on the available computational resources. 
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6.3 Sensitivity analysis based on FAST and 

SHAP 

As its name suggests, fast sensitivity analysis provides a 

quick way of determining how changes in the input 

parameters will affect a model's output. Highlighting such 

important variables is crucial to feature selection, model 

performance enhancement, and, importantly, model 

complexity reduction. Sensitivity analysis enhances 

interpretability by reducing the model to just the most 

important features while informing data collection 

activities. Moreover, it offers a straightforward approach 

toward an iterative model enhancement process that 

ensures good adaptation and optimization without high 

computational loads. 

The pie chart segments in Fig. 10 give a comprehensive 

look into the different features and each of their 

contributions to the model in identifying phishing 

attempts. The highest ranking, with 35.8% and in teal, is 

the URL Anchor segment, which is highly sensitive and 

influential. This feature is critical because it helps identify 

if the anchor text matches the actual URL, which is a 

general strategy that phishers use. The second most salient 

feature is the requested URL, in light teal color, making 

up 18.7%. This shows how important it is to examine the 

requested URL for deviations from expected patterns, as 

these can be a strong indicator of phishing attempts. The 

light brown (at 18%) SFH (Server Form Handler) feature 

is also essential because it deals with form submissions on 

a server, which is a crucial component in identifying 

phishing sites. Given that phishing sites frequently use 

longer, more complicated URLs to mask their true nature, 

URL length (dark teal, 8.3%) is deemed to be moderately 

significant. Another moderate factor is having an IP 

address (light brown, 7.4%), as legitimate websites hardly 

ever use raw IP addresses in URLs. Prefix/Suffix (dark 

brown, 4.8%) and subdomain (light orange, 3.4%) offer 

extra indications, but their significance is less than that of 

the leading features. Domain Age (light teal, 0.8%) has the 

least bearing because while newer domains can be more 

suspicious, it's not a very strong indicator. Web Traffic 

(dark orange, 3.3%) indicates that lower-traffic sites are 

more suspicious. 

 

Figure 10: Sensitivity analysis conducted using FAST for the best model 

 

The results of the SHAP sensitivity analysis 

summarized in Table 5. The SHAP sensitivity analysis 

ranks input features based on their average influence 

across three phishing categories: Phishy, Suspicious, and 

Legitimate. The URL Anchor feature has the highest 

overall impact (AVG = 1.1625), indicating its strong 

influence on classification decisions, particularly in 

distinguishing Phishy and Legitimate websites. SFH 

(Server Form Handler) follows as the second most 

significant feature (AVG = 0.8308), suggesting its 

relevance in identifying phishing threats. Request URL 

ranks third (AVG = 0.6089), highlighting its role in 

determining website legitimacy. 

URL Length shows moderate importance (AVG = 

0.5065), being more impactful in Phishy and Suspicious 

classifications than Legitimate. Having an IP Address 

(AVG = 0.3826) and Sub Domain (AVG = 0.3733) 

contribute similarly to predictions, but their influence is 

lower. The least impactful feature is Prefix/Suffix (AVG 

= 0.2635), indicating minimal significance in phishing 

detection. 

Overall, the analysis confirms that URL-based 

attributes, particularly URL Anchor, SFH, and Request 

URL, play a crucial role in phishing classification, 

whereas domain-related attributes like Prefix/Suffix 

contribute less. 
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Table 5: Result of SHAP sensitivity analysis. 

Rank Inputs Phishy Suspicious legitimate AVG 

1 URL Anchor 1.718901889 0.361819914 1.406823515 1.162515 

2 SFH 1.091688147 0.292571162 1.108129482 0.830796 

3 Request URL 0.850812044 0.156678455 0.819171597 0.608887 

4 URL Length 0.643498015 0.613921318 0.262064841 0.506495 

5 Having IP address 0.375322899 0.424208786 0.348136872 0.382556 

6 Sub Domain 0.309529929 0.46483848 0.345516127 0.373295 

7 Prefix/Suffix 0.17633227 0.266295892 0.347764885 0.263464 

8 Web traffic 0.167606507 0.065772981 0.18652572 0.139968 

9 Domain Age 0.098777995 0.058722238 0.051814727 0.069772 

 

 

6.4 Wilcoxon test 

The Wilcoxon test is a non-parametric statistical test 

used to compare paired or independent samples to 

determine whether there is a significant difference 

between them. Unlike parametric tests, it does not assume 

a normal distribution of data, making it particularly useful 

for small sample sizes or non-normally distributed 

datasets. The Wilcoxon signed-rank test is used for paired 

samples, whereas the Wilcoxon rank-sum test (also known 

as the Mann-Whitney U test) is applied to independent 

samples. 

In this study, the Wilcoxon test was conducted to 

compare the performance differences between models, 

specifically examining the statistical significance of their 

differences through p-values and test statistics. 

Table 6 presents the p-values and test statistics for 

different models under comparison. The p-value indicates 

whether there is a statistically significant difference  

 

 

between models, with a typical significance threshold set 

at 0.05 (i.e., if p < 0.05, the difference is considered 

significant). 

• SGD_MOA (p = 0.265464, statistic = 2081.5): 

Since the p-value is greater than 0.05, there is no 

significant difference in performance when using 

the SGD_MOA model. 

• SGD (p = 0.753526, statistic = 4127.5): The high 

p-value suggests no statistically significant 

difference, indicating that the SGD model's 

performance is not substantially different from 

the others. 

• NBC_MOA (p = 0.917888, statistic = 4957): 

This is the highest p-value in the table, 

confirming that NBC_MOA does not show a 

significant difference compared to other models. 

• NBC (p = 0.36308, statistic = 6385.5): Again, the 

p-value is well above 0.05, indicating no 

statistically significant performance difference. 

Table 6: Result of Wilcoxon test. 

Difference of models 
Parameter 

p_value statistic 

SGD_MOA 0.265464 2081.5 

SGD 0.753526 4127.5 

NBC_MOA 0.917888 4957 

NBC 0.36308 6385.5 

7 Discussion 

7.1 Limitations of the study 

Despite the promising results of the hybrid phishing 

detection models, this study has certain limitations. First, 

the dataset used, while diverse, may not fully capture the 

constantly evolving nature of phishing websites. 

Cybercriminals frequently adapt their techniques, 

introducing new evasion strategies that may reduce model 

effectiveness over time. Additionally, the study relied on 

a dataset with a limited number of features (nine input  

 

parameters), which may not fully encompass all relevant 

attributes influencing phishing website classification. 

Expanding the feature set could enhance model robustness 

and generalizability. 

Another limitation lies in the reliance on MOA for 

hyperparameter optimization. While MOA demonstrated 

superior performance compared to traditional techniques, 

it may not always guarantee the absolute best 

hyperparameters, as optimization outcomes depend on 

initial conditions and algorithm-specific parameters. 

Further research could explore hybrid or ensemble 

optimization strategies to enhance performance. 
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Furthermore, real-time deployment of the models was 

not tested in a live cybersecurity environment. The study 

primarily focused on offline classification accuracy, 

leaving questions about computational efficiency and 

adaptability in real-world phishing detection scenarios. 

Future studies should evaluate the models' performance in 

real-time detection systems to assess latency, adaptability, 

and scalability. 

7.2 Benefits of each hybrid model 

Each hybrid model presented distinct advantages that 

contribute to phishing detection performance. The 

SGD+MOA model emerged as the most effective, 

achieving the highest accuracy of 92.1%. This model 

benefits from the ability of SGD to process large-scale 

datasets efficiently while adapting quickly to new 

phishing patterns. The integration of MOA further 

improved convergence and predictive capability by fine-

tuning hyperparameters, making it a strong choice for real-

time phishing detection applications. 

On the other hand, the NBC+MOA model, while 

exhibiting slightly lower accuracy (87.7%), offered 

advantages in terms of interpretability and computational 

efficiency. The probabilistic nature of NBC allows for 

clearer decision-making processes, which can be useful in 

cybersecurity applications where transparency is essential. 

Additionally, NBC requires fewer computational 

resources compared to complex deep learning models, 

making it a viable option for systems with hardware 

constraints. 

By combining machine learning models with bio-

inspired optimization, both hybrid models demonstrated 

significant improvements over their standalone 

counterparts. The results indicate that optimization 

algorithms such as MOA can substantially enhance model 

accuracy, reduce misclassification rates, and provide more 

reliable phishing detection systems. 

7.3 Practical implications of the study 

The findings of this study have several practical 

implications for cybersecurity, particularly in enhancing 

phishing detection mechanisms. The demonstrated 

effectiveness of hybrid models suggests that organizations 

can integrate such approaches into their cybersecurity 

frameworks to improve email filtering systems, web 

security tools, and fraud detection software. By leveraging 

SGD+MOA, companies can deploy real-time phishing 

detection models that efficiently adapt to evolving cyber 

threats, reducing the risk of data breaches and identity 

theft. 

For organizations with resource constraints, the 

NBC+MOA model offers a practical alternative, ensuring 

phishing detection with lower computational overhead 

while maintaining strong classification performance. This 

is particularly beneficial for small businesses, financial 

institutions, and government agencies that require cost-

effective cybersecurity solutions. 

Moreover, the study highlights the importance of bio-

inspired optimization in machine learning applications, 

reinforcing the idea that intelligent optimization 

techniques can enhance traditional classification models. 

As phishing tactics become more sophisticated, 

continuously improving detection models through 

advanced optimization strategies can provide a proactive 

defense against cyber threats. 

Future implementations could focus on integrating these 

models with browser extensions, email security tools, and 

AI-driven security systems to enhance real-time phishing 

detection. Additionally, regulatory bodies and 

cybersecurity professionals can utilize the findings to 

establish more effective security policies, training 

programs, and automated detection mechanisms to combat 

phishing attacks more effectively. 

8 Conclusion 
Phishing is a severe risk to both individuals and 

organizations because it uses deceptive tactics to trick 

victims into disclosing private information like passwords, 

bank account information, or personal information. 

Cybercriminals frequently use phishing tactics to trick 

unsuspecting victims into unintentionally disclosing their 

personal information using phishy emails, websites, or 

messages. Identity theft, money loss, and security 

compromise are possible outcomes of this. 

ML is essential for securing personal information from 

phishing attacks. Using advanced algorithms and 

predictive models, ML may analyze data patterns to 

identify or flag potential phishing websites or suspicious 

activities. These models learn by identifying subtle cues 

or anomalies from enormous volumes of data indicative of 

a phishing attempt and provide proactive defense against 

cyber threats. 

It was derived from the study that the MOA, combined 

with ML models, such as NBC and SGD, were able to 

classify phishing websites more accurately. The hybrid 

models derived showed a marked increase in the 

differentiation of authentic fraudulent websites by 

optimizing their predictive capability and reducing error 

rates. 

The results showed that MO increased the accuracies of 

the SGD and NBC models by 2.65% and 2.17%, 

respectively. With the lowest error rates, the resultant 

hybrid model, namely SG+MO, turned out to be the most 

effective. In particular, out of 548 instances, it correctly 

predicted 92.15% of phishy websites while labeling 39 as 

suspicious and four as legitimate. The model misclassified 

29 as phishy and four as legitimate out of 702 instances, 

hence giving an actual prediction rate of 95.3% for 

suspicious websites. The model achieved an actual 

prediction rate of 79.61% when it came to legitimate 

websites, misclassifying 12 as phishy and nine as 

suspicious out of 103 instances.  

Future research could examine bigger and more varied 

datasets and more optimization strategies to improve 

model performance and further improve cybersecurity 

measures. Enhancing the precision and effectiveness of 

phishing detection systems can also involve addressing 

feature engineering and selection techniques. 
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