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Digital art analysis is evolving rapidly, with intelligent systems playing a growing role in understanding
aesthetic quality and artistic styles. In this work, we present the Hierarchical Multi-Stream Feature Net-
work (HMSFN), a deep learning framework designed to improve the way visual features are extracted and
classified across different styles and aesthetic levels. The study is based on a curated dataset of 213,000 dig-
ital artworks sourced from online galleries and collections, covering a wide range of creative expressions
and thematic categories. To enhance data quality and balance, we applied specialized preprocessing tech-
niques including Contrast-Balanced Normalization, Dominant Color Mapping, and Gradient-Symmetric
Scaling. Additionally, Weighted Synthetic Feature Augmentation (WSFA) was introduced to address class
imbalance, while an Adaptive Feature Filtering Framework (AFFF) was used to remove redundant fea-
tures and retain the most informative ones. The model was trained using an 80:20 split and evaluated
against several leading deep learning approaches. HMSFN, which combines DenseNet, ConvNeXt, and
Vision Transformer in a multi-stream configuration, achieved outstanding results—99.0% accuracy, 98.6%
F1-score, 97.5% LCCR, and an AUC of 99.3%. These findings highlight the effectiveness of our approach
in capturing complex visual attributes and support its use in digital art classification and computational
aesthetics.

Povzetek: Razvita je Hierarhična Multi-Stream Funkcijska Mreža (HMSFN) za analizo digitalne umet-
nosti, ki izboljša ekstrakcijo in klasifikacijo vizualnih lastnosti ter umetniških slogov. Uporablja napredne
tehnike za uravnoteženje podatkov in filtriranje funkcij ter dosega visoko kvaliteto pri klasifikaciji umet-
niških slogov in estetskih lastnosti.

1 Introduction

Creative expression and sophisticated algorithms have
transformed the classification and assessment of digital art
forms [1]. Computational aesthetics analyzes and interprets
digital art with remarkable precision using numerical mod-
els and deep learning frameworks. Using neural networks
may help comprehend complex creative patterns and aes-
thetic nuances, revealing insights not possible with human
methods [2]. Generative art and interactive exhibits encour-
age audience participation and creativity. Modern technol-
ogy and computational methodologies have enhanced tra-
ditional art forms [3]. Artistic Style Transfer (AST) in Neu-
ral Style Transfer (NST) has merged historical styles with
modern graphics, transforming digital media [4]. AST, a
technical advancement, mixes classical and contemporary
aesthetics, enabling artists, designers, and technologists to
explore and express themselves [5]. These techniques use
Convolutional Neural Networks (CNNs) like VGG-19 to
extract complicated aspects from pictures and reproduce
artistic features on digital canvases. Classic style transfer
processes may lose creativity because to color distortion

and authenticity loss. Advanced luminance transfer tech-
niques maintain brightness, tonal quality, and color har-
mony during style adoption.

Computational aesthetics has grown in culturally rich lo-
cations as creative content is digitalized. Digitizing Chi-
nese artworks has enhanced preservation and emphasized
the need for automated classification to authenticate and
identify unsigned pieces [6]. Traditional manual detec-
tion methods are subjective and ineffective against modern
counterfeits. Deep learning-based classification and veri-
fication are crucial in digital art. GANs and VAEs have
significantly influenced digital art generation by captur-
ing complex visual patterns and producing diverse, stylized
outputs.[7]. Classifying creative styles and aesthetic qual-
ity helps digital art analysts comprehend genres’ technical
and aesthetic qualities. Symmetry, textural complexity, and
color harmony are important for recognizing creative gen-
res and assessing aesthetic appeal [8]. These attributes are
needed to spot creative trends and build computer mod-
els that classify and rate art. The Adaptive Feature Filter-
ing Framework (AFFF), consisting of the Contextual Di-
vergence Evaluator (CDE) and the Selective Redundancy
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Optimizer (SRO), improves classification robustness by se-
lecting context-relevant and non-redundant features, thus
enhancing both accuracy and interpretability [9].
Digitized media art in the metaverse and VR requires

real-time, interactive classification. Machine learning
models must adapt to evolving aesthetics and creativity
[10], not only classify. Ensemble learning frameworks
may tackle these issues by combining numerous mod-
els’ capabilities. Using Vision Transformers (ViT), Swin-
Transformers, and convolutional networks enhances classi-
fication accuracy and robustness in complex creative data
processing [11]. Increasing digital artworks and the need
for proper classification have led academics to develop im-
proved methods for evaluating creative styles and qual-
ity [12]. A deep learning ensemble with several architec-
tures to classify creative genres and aesthetic quality fits
these demands. Advanced preprocessing, feature selection,
and adaptive classification handle class imbalance and fea-
ture redundancy in a dataset with several styles and imbal-
ances. This technique enhances style and quality classifi-
cation and explains computational aesthetics in digital art.
To maintain clarity throughout this study, we distinguish
between two related concepts: aesthetic features and artis-
tic attributes. Aesthetic features refer to quantifiable visual
properties of artworks—such as symmetry, color harmony,
brightness, texture complexity, and visual balance—that
are computationally derived. In contrast, artistic attributes
describe higher-level categorical labels such as artistic style
(e.g., Realism, Abstract) and thematic type (e.g., Land-
scape, Portrait), which serve as the basis for classifica-
tion tasks. Combining creativity and computational ac-
curacy, this research categorizes and evaluates digital art-
works using the Hierarchical Multi-Stream Feature Net-
work. This study uses complex deep-learning architectures
to fix model defects such as inadequate feature fusion, scal-
ability issues, and imbalanced datasets in digital art analy-
sis. HMSFN introduces creative style and aesthetic qual-
ity classification using multiscale feature extraction, atten-
tion mechanisms, and global dependency modeling. In ad-
dition, the framework incorporates Dynamic Attribute Re-
construction (DAR) to enhance feature representation by
capturing latent relationships and generating interaction-
based attributes that improve classification performance.
This work promotes sustainable digital creation by bridging
traditional creative techniques with current computational
tools. It helps build tools that improve analytical accuracy
and meet the requirements of an increasingly linked and
digitalized creative scene by partnering with artists, tech-
nologists, and cultural organizations. Later parts detail all
framework components. Contributions of this work:

1. Developed a new deep learning architecture, HMSFN,
integrating DenseNet, ConvNeXt, and Vision Trans-
former (ViT) to improve feature extraction and multi-
scale encoding and effectively classify artistic styles,
aesthetic quality, and theme categories.

2. The Weighted Synthetic Feature Augmentation

(WSFA) approach addresses class imbalances by
producing synthetic samples while retaining statisti-
cal integrity, leading to increased generalization and
model performance.

3. Adaptive Feature Filtering Framework (ADF): Devel-
oped a hybrid feature selection method using CDE and
SRO to retain essential and eliminate redundant ones,
enhancing computational efficiency and classification
accuracy.

4. AI advancements in digital art analysis enable accurate
and scalable categorization of styles, aesthetic traits,
and themes, linking computational aesthetics and cre-
ative innovation. Cultural preservation and digital art
innovation benefit from this work’s automation and
comprehension of innovative trends.

The paper’s remaining structure: A detailed literature anal-
ysis in Section 2 illuminates current approaches and their
limitations. This study’s HierarchicalMulti-Stream Feature
Network (HMSFN) and innovative preprocessing and fea-
ture engineering methods are described in Section 3. Sec-
tion 4 describes the simulations, evaluation metrics, find-
ings, and comments. Section 5 finishes with an overview
of significant results and future research areas.

2 Related work
AI and machine learning have driven recent advances in
identifying creative genres and aesthetic quality. AI in cul-
tural and creative sectors, particularly digital art, has led to
cross-disciplinary advancements. Early studies employed
wavelet characteristics to categorize Chinese paintings by
author and style using local and global artistic qualities, in-
cluding brushstroke and texture. Colour histograms and au-
tocorrelation texture characteristics were used for semantic
categorization of brushwork and painting components, at-
taining intermediate accuracy [13]. Conventional feature
extraction strategies could not capture creative style sub-
tlety, resulting in classification robustness and scalability
issues [14]. Later research focused on deep learning, us-
ing CNNs and RNNs to extract brushstroke attributes and
assess creative styles. High-level semantic representations
enhanced efficiency, but feature quantification and param-
eter optimization issues remained [15].
GANs (Generative Adversarial Networks) may simulate

artistic styles and generate innovative creations. GAN-
based systems for picture and sound creation, replicating
artist styles, provide designers novel tools for creative ex-
perimentation [16]. Despite their progress, these meth-
ods often lack the interpretability and accuracy required to
classify art accurately. EfficientNet’s efficient scaling ex-
tends classification workloads by improving computing ef-
ficiency and accuracy [17]. These methods help explain
aesthetic preferences, but their use in creative style cate-
gorization is limited. CrowdPicker, a mobile crowdsourc-
ing and domain adaption picture selection framework, used
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situational information to create a dynamic aesthetic pre-
dictor. The visual selection was improved with a unique
aesthetic utility measure and adaptable frameworks. Al-
though CrowdPicker outperformed baseline approaches in
improving adaptive performance, its dependence on user
annotations and crowdsourcing caused scalability concerns
for big datasets [18]. A multimodal examination of game
ratings revealed cultural aesthetic preferences. Cultural in-
fluences influence aesthetic judgments since gamers from
various locations express different emotions and evaluate
gaming differently. While this research emphasizes cul-
tural insights in digital media, their concentration on be-
havioural traits restricts their relevance to visual art catego-
rization [19].
Deep learning has improved the categorization of cre-

ative styles and aesthetic quality by extracting high-level
information from digital artworks. CNNs with attention
mechanisms like the Convolutional Block Attention Mod-
ule (CBAM) increase classification accuracy by stressing
essential visual features. Feature selection is addressed by
rescaling picture channels based on significance, enhanc-
ing style classification automation and performance [20].
Interdependencies between features are challenging to cap-
ture, especially in big datasets with unbalanced represen-
tations. Researchers have used multidimensional feature
fusion and deep learning to improve classification results.
Studies on Chinese paintings used multiscale grayscale co-
variance matrices to extract textural information, demon-
strating modest effectiveness in identifying creative genres
[21]. Despite progress, inadequate integration of under-
lying elements like colour and form hinders the complete
analysis of digital artworks [22]. Handcrafted feature ex-
traction approaches limit their applicability and generaliza-
tion to other creative styles.
Combining AI and interactive art has led to new digi-

tal art classification and evaluation systems. DenseNet121
techniques enhance computational efficiency and classifi-
cation accuracy by allowing feature reuse via dense connec-
tions [23]. However, these methods generally emphasise
generative elements above classification accuracy, under-
scoring the necessity for evaluation-focused models. Neu-
ral networks like VGG and ResNet perform well in im-
age categorization tasks. Nonetheless, colour distortion and
artistic authenticity difficulties persist [24]. AI’s impact on
cultural and creative sectors goes beyond categorization.
AI-powered technologies automate rendering and typeset-
ting, speeding the creative process and allowing real-time
interactions. These technologies boost productivity and
provide new ways to assess user preferences and aesthetic
trends. Lack of precision in creative style categorization
limits its usefulness for delicate tasks [25].
Table1 displays current literature on AI classification of

creative styles and aesthetic qualities. While deep learning
has significantly improved digital art classification, current
state-of-the-art methods still face notable challenges. Gen-
erative models like GANs are powerful in creating visu-
ally compelling outputs, but they often fall short in terms

Table 1: Categorization of existing methods in digital art
analysis

Ref Technique Used Objective Achieved Performance Sum-
mary

Limitations

[13] Wavelet Features,
Color Histograms

Classified traditional
Chinese paintings us-
ing color and texture
cues

Achieved around
75% accuracy

Relied heavily on
handcrafted features
with limited capabil-
ity for deeper pattern
recognition

[14] Grayscale Covari-
ance Matrices

Used texture descrip-
tors to differentiate
artistic styles

Not reported Lacked integration
of color and shape;
struggled with fea-
ture fusion

[15] RNNs for Brush-
stroke Dynamics

Captured time-based
brushstroke vari-
ations to improve
style analysis

Accuracy near 82% Had long training
times and weak
spatial feature repre-
sentation

[16] GANs for Style Sim-
ulation

Created artworks that
mimic known artistic
styles

Visually compelling
outputs

Poor interpretability
and not suitable for
direct classification

[17] EfficientNet Scaled convolutional
layers to enhance
classification

Reached accuracy up
to 90%

Had difficulty mod-
eling dependencies
across diverse visual
features

[20] CNN with CBAM Used attention mech-
anisms to focus on
key visual areas

Around 91% accu-
racy

Could not capture
global dependencies
or reduce feature
redundancy

[23] DenseNet121 Improved feature
reuse to enhance
classification accu-
racy

Delivered up to 94%
accuracy

Susceptible to over-
fitting, especially
with imbalanced data

[24] VGG/ResNet for
Style Transfer

Extracted deep fea-
tures for aesthetic in-
terpretation

AUC reached ap-
proximately 93%

Required high com-
putational resources
and lacked flexibil-
ity across varying
datasets

of interpretability—it’s not always clear which features
drive their decisions. Similarly, convolutional models such
as VGG and ResNet excel at learning local patterns, yet
they struggle to capture long-range dependencies and com-
plex relationships between visual features. Attention-based
techniques like CBAM help highlight important regions in
images, but they don’t fully address issues like feature re-
dundancy or the need for deeper hierarchical fusion. These
limitations can restrict performance, especially when deal-
ingwith large, high-dimensional datasets common in digital
art analysis.

While feature selection plays a vital role in improv-
ing model performance, many traditional techniques—
like filter-based ranking or embedded selection—fall short
when applied to digital art. These methods often struggle to
deal with strong correlations between features or the diverse
nature of artistic styles. As a result, they may keep redun-
dant attributes or unintentionally remove features that are
actually important for capturing creative nuances. To over-
come these challenges, we introduce the Adaptive Feature
Filtering Framework (AFFF), which blends two strategies:
the Contextual Divergence Evaluator (CDE), which scores
features based on how well they differentiate styles, and
the Selective Redundancy Optimizer (SRO), which filters
out overlapping or repetitive attributes. Together, they help
retain features that are both meaningful and distinct, lead-
ing to better classification outcomes in visually complex
datasets.
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3 Proposed method
This section uses a Hierarchical Multi-Stream Feature Net-
work (HMSFN), a unique architecture that defines creative
styles, aesthetic quality, and subject categories. HMSFN
uses hierarchical convolutional layers, contextual atten-
tion, and global dependency modelling for multilabel clas-
sification. DenseNet reuses features, Vision Transformer
(ViT) captures long-range relationships, and ConvNeXt
optimizes spatial modelling in a multi-stream method.
Contrast-balanced normalisation and Weighted Synthetic
Feature Augmentation (WSFA) provide a balanced and en-
hanced feature representation in input data. Advanced fea-
ture selection methods like AFFF highlight essential qual-
ities, whereas DAR improves the dataset with interaction-
based changes. This section discusses HMSFN’s architec-
tural components, preprocessing procedures, and optimiza-
tion methods that allow world-class categorization. Figure
1 illustrates the proposed framework, withmodules detailed
later.

Figure 1: Proposed classification framework

3.1 Research design and justification

This study was designed to answer the following core re-
search questions:

– RQ1: Can a hierarchical, multi-stream deep learn-
ing architecture effectively capture both low-level aes-
thetic cues and high-level style representations in dig-
ital artworks?

– RQ2: Do hybrid attention-integrated networks im-
prove classification accuracy over conventional CNN-
based models in the context of subjective Aesthetic
Features?

– RQ3: How do targeted preprocessing techniques,
such as WSFA and contextual transformations, con-
tribute to class balance and feature quality prior to
model training?

To answer these questions, the Hierarchical Multi-
StreamFeature Network (HMSFN) integrates three special-
ized backbones—DenseNet, ConvNeXt, and Vision Trans-
former (ViT). DenseNet was selected for its proven effi-
ciency in feature reuse and gradient flow, which is partic-
ularly valuable in multi-layered classification. ConvNeXt
was chosen for its modernized convolutional structure that
retains spatial locality while offering improved expressiv-
ity. ViT complements the network by modeling global
dependencies through attention-based encoding, a crucial
property for interpreting compositional balance and dis-
tributed textures in artwork. This combination outper-
formed earlier hybrids such as ResNet+Transformer and
EfficientNet-based models in our preliminary trials, offer-
ing better balance between resolution awareness, attention
flexibility, and computational efficiency.
In addition to WSFA, we applied conventional data aug-

mentation techniques including horizontal flipping, minor
rotation (±10°), brightness adjustment, and random crop-
ping. These were used during training to improve gener-
alization and reduce overfitting, particularly in underrepre-
sented categories such as Pop Art and Cubism. WSFA itself
was quantitatively assessed prior to training. Before aug-
mentation, the dataset showed a 4:1 imbalance between the
most and least represented classes; WSFA reduced this ratio
to approximately 1.2:1 by generating 42,000 statistically-
aligned synthetic samples for minority classes, resulting in
improved class-wise F1-scores during model evaluation.
The preprocessing pipeline—comprising normalization,

gradient-symmetric scaling, and color mapping—was es-
sential to reduce feature-level skewness. In ablation exper-
iments (noted in supplementary analysis), the application
of WSFA and Adaptive Feature Filtering led to an average
gain of 3.4% in overall accuracy and a 5.2% improvement
in macro-averaged recall across artistic styles. These re-
sults confirm the importance of preprocessing in enhancing
model robustness and class discrimination.

3.2 Dataset collection and details
This research employed a publicly available dataset of dig-
ital art records from Berlin galleries and internet reposito-
ries [25]. Individual artists and joint studios contributed to
the multi-year data. Each artwork entry spans a range of
styles and media, and is accompanied by metadata that re-
flects the artist’s creative intent and thematic focus. This
is represented in features such as Theme_Category, which
identifies high-level artistic interests—including portraits,
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landscapes, still life, abstract compositions, and conceptual
expressions. This dataset is carefully designed to contain
only high-quality entries confirmed by topic experts, assur-
ing its legitimacy and validity. These records, created with
art institutions and digital archives, provide a solid basis for
classifying creative genres and aesthetic quality. The data-
gathering procedure followed strict ethical norms to ensure
accuracy and relevance. This dataset highlights Berlin’s
creative trends and tastes, a city known for its dynamic art
scene and cultural variety. This dataset is reliable for digital
art analysis and classification studies.

Table 2: Dataset features overview

S.No Feature Short Description
1 Image_ID Unique identifier for each digital artwork.
2 Artistic_Style Categorical label representing the artistic style of

the artwork.
3 Aesthetic_Quality Ordinal or categorical label describing the visual

appeal of the artwork.
4 Dominant_Color_1 RGB value represents the image’s primary domi-

nant colour.
5 Brightness_Average Average luminance level across the entire artwork.
6 Contrast_Ratio Numerical value representing the difference be-

tween the brightest and darkest areas.
7 Texture_Complexity Measure of texture density or granularity in the im-

age.
... ... ...
20 Theme_Category Categorical label indicating the primary theme of

the artwork (e.g., portrait, landscape).

3.3 Preprocessing of data
After acquiring the dataset, we used new preprocessing
methods to organize and optimize it for classification.
The preparation pipeline uses unique ways to manage the
complicated and imbalanced dataset [27]. These include
Contrast-Balanced Normalization, Dominant Color Map-
ping, and Gradient-Symmetric Scaling. Contrast-balanced
normalisation was developed to handle imbalanced fea-
tures. Weighting contrast against a dataset-wide average
alters feature values. A feature z is normalized as:

ẑj =
zj − ηb
λb + ϵ

(1)

zj is the original feature value, ηb is the dataset mean con-
trast, λb is the standard deviation, and ϵ is a tiny constant
to avoid zero division. This method makes extremely un-
balanced contrast values comparable without affecting their
distribution.
We proposed Dominant Color Mapping for categorical

features like Dominant Colors. Weighted channel intensi-
ties are used to convert RGB to a numerical score. Defini-
tion of mapping function:

DCM(P,Q, S) = 0.35 · P + 0.5 ·Q+ 0.15 · S (2)

P , Q, and S represent primary, secondary, and tertiary
channel values. This method turns categorical colour data
into a continuous domain, improving model training in-
tegration with numerical characteristics. To support the
choice of Dominant Color Mapping (DCM) over tradi-
tional methods like color histograms, we focused on both

ease of interpretation and processing efficiency. While his-
tograms offer a detailed breakdown of color distribution,
they often create high-dimensional feature vectors that can
slow down training and introduce redundancy—especially
within complex, multi-stream models. In contrast, DCM
uses weighted values from primary, secondary, and tertiary
color channels to produce a single, meaningful scalar. This
approach blends seamlessly with other normalized features
in the dataset. Our SHAP analysis (Figure 13) shows that
DCM plays a strong role in predicting aesthetic quality, re-
inforcing its value. In addition, DCMconsistently ran faster
and more reliably during preprocessing, all without com-
promising model accuracy.
Additionally, Gradient-Symmetric Scaling was created

for Symmetry Score and Gradient Smoothness. This ap-
proach rescales data to units based on symmetric deviation
from a central mean. Represents transformation:

ŷk =
|yk − ϕd|

max(|y − ϕd|)
(3)

The mean gradient value for the feature is ϕd, and the
most considerable absolute divergence from the mean is
max(|y − ϕd|). Scaled features highlight deviations while
retaining distribution symmetry. The dataset is standard-
ized and refined during preprocessing to categorize creative
and aesthetic styles. These novel approaches increased
dataset quality and representation, boostingmodel accuracy
and robustness.

3.4 Data balancing
To handle class imbalance without disrupting the underly-
ing structure of the data, we introduce theWeighted Syn-
thetic Feature Augmentation (WSFA) approach. Unlike
conventional oversampling methods that simply duplicate
samples from underrepresented classes, WSFA creates new
data points by making carefully controlled modifications to
feature values. These modifications are guided by feature-
specific weights ωp, which are derived from the variance of
each feature across different class labels. This allows fea-
tures that play a stronger role in distinguishing classes to
influence the augmentation more heavily. Rather than gen-
erating arbitrary variations, WSFA applies these weights to
fine-tune feature perturbations, ensuring the synthetic sam-
ples remain realistic while boosting diversity in minority
classes. The key advantage lies in maintaining within-class
consistency and enhancing between-class distinction, espe-
cially for rare styles and aesthetic quality levels. By enrich-
ing the dataset both statistically and semantically, WSFA
contributes to improvedmodel generalization andmore bal-
anced performance across all categories.
Each feature’s weighted mean adjustment is determined

byWSFA according to the contribution it makes to the goal
class imbalance. The class label of a sample may be repre-
sented by ti and a feature value can be defined by gp. The
improved value g̃p for a synthetic sample is computed in the
following way:
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g̃p = gp + ωp · ζ ·
(

δp
|Ns −Nl|+ γ

)
(4)

In Equation 4, the term gp refers to the original value of
feature p, which serves as the baseline for synthetic sample
generation. The coefficient ωp captures the extent to which
that feature varies between classes, giving more weight to
features that are better at distinguishing one category from
another. To adjust the overall strength of the augmenta-
tion, we apply a global scaling factor ζ, which is selected
through empirical tuning—typically within the range of
0.05 to 0.2—to balance diversity and stability. The symbol
δp represents the standard deviation of feature p, helping
to scale perturbations proportionally to the feature’s vari-
ability. Meanwhile, Ns and Nl correspond to the number
of samples in the smaller (minority) and larger (majority)
classes, respectively. The difference between these val-
ues reflects the degree of imbalance being addressed. Fi-
nally, to avoid instability during computation, we include
a small constant γ, fixed at 10−6, to prevent division by
zero. Taken together, these components allowWSFA to in-
troduce realistic variation into the dataset while addressing
imbalance in a controlled and interpretable manner.
WSFA also uses a Feature Interpolation Mechanism

(FIM) to interpolate data to produce synthetic values. For
a feature pair gp and gq , the interpolated value g̃pq is com-
puted as:

g̃pq = ψ · gp + (1− ψ) · gq (5)

The formula uses ψ as a random weight from a uniform
distribution U(0, 1) to maintain realistic feature values in
synthetic samples. This approach increases the enhanced
dataset’s variety while keeping feature correlations.
After using WSFA, the dataset is balanced across all

classes, boosting classification model performance and
generalizability. This unique approach to data imbalance
protects the dataset.

3.5 Adaptive feature filtering framework
Our novel Adaptive Feature Filtering Framework improved
the dataset and model performance. The hybrid method
of determining the most important characteristics uses
two unique techniques: Contextual Divergence Evaluator
(CDE) and Selective Redundancy Optimizer (SRO). Inte-
grating statistical feature assessment with redundancy re-
duction to keep only significant and non-redundant charac-
teristics creates a hybrid nature. First, the Contextual Di-
vergence Evaluator (CDE) assesses the importance of fea-
tures based on class distribution variability. For sample v,
Zuv represents the value of feature u and Pk represents the
collection of samples. To calculate the divergence scoreDu

for a feature (u), use the formula:

Du =

K∑
k=1

(
|Pk|
M

· DVar(Zu,k)

)
(6)

M is the total number of samples, K is the number of classes,
P_k| is the number of samples in class k, and DVar(Zu,k)
is the divergence variance of feature u within class k. Fea-
tures with higher values ofDu are retained for further anal-
ysis because they excel in class differentiation. The next
step is to use a Selective Redundancy Optimizer (SRO) to
look at feature correlations and identify instances of redun-
dancy. The following is the procedure for determining the
redundancy factorQuv given a pair of characteristics u and
v:

Quv =
Cov(Zu, Zv)

ζu · ζv
(7)

Cov(Zu, Zv) represents the covariance between features u
and v, whereas ζu, ζv represents their standard deviations.
If |Quv| exceeds θ, feature v is tagged as redundant and
eliminated from the final selection.
We used the Relevance Redundancy Balance Index

(RRBI) to combine CDE and SRO in a hybrid selection
method. The RRBI score Ru for each feature is computed
as:

Ru = µ ·Du − ν ·
∑
v ̸=u

Quv (8)

The method uses the weighting parameters µ and ν to opti-
mize redundancy while balancing divergence score. Model
training is conducted using features with high Ru scores,
ensuring a collection that is both informative and non-
redundant. A comprehensive feature selection method is
guaranteed by AFFF’s utilization of CDE and SRO. Using
this hybrid approach, the dataset retains the most impor-
tant information, which improves processing efficiency and
classification accuracy.

3.6 Dynamic attribute reconstruction (DAR)
To improve prediction, the dataset was transformed after
adaptive selection identified relevant characteristics. Dur-
ing the Dynamic Attribute Reconstruction (DAR) phase,
existing attributes are transformed and interacted with to
create new, relevant features. DAR finds latent dataset
links via group-level aggregation, sophisticated transfor-
mations, and interaction-based synthesis.
The first phase in DAR is Group-Level Aggregation,

which builds attributes representing the aggregate proper-
ties of certain dataset groupings. To compute an aggregated
attribute χΛ for a group Λ based on a definite characteristic
(e.g., demographic or proficiency level),

χΛ =

∑
n∈Λ ζn

|Λ|
(9)

In this context, ζn represents the value of an attribute for
observation n, and |Λ| indicates the total number of obser-
vations in group Λ. The aggregated value χΛ is assigned
to all members to identify group-specific trends. This ag-
gregation approach captures category-specific higher-order
patterns.
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Advanced Attribute Transformations were used to iden-
tify non-linear correlations within individual attributes
based on aggregated data. The converted attribute ζadv is
defined as:

ζadv =
√
ζ + θ · cos(βζ) (10)

In this equation, θ increases stability for the square root op-
eration, whereas β regulates the frequency of the cosine
transformation. These adjustments accentuate non-linear
changes, which are hard to represent with raw character-
istics.
The interaction-based attribute κint is derived from two

base features ζ and η using the following formulation:

κint = ζ · η + ζ − η

λ
(11)

In this equation, the product term ζ · η captures the di-
rect interaction between the two features, while the additive
term modulates their relative difference. The parameter λ
acts as a scaling factor that controls how strongly the addi-
tive component influences the final value. To ensure both
interpretability and numerical stability, λ is empirically se-
lected from the range [5, 15] during validation. A larger λ
softens the additive effect, prioritizing smooth transitions,
whereas a smaller λ enhances the contrast between inter-
acting features—allowing the model to capture finer dis-
tinctions in complex patterns.
The final feature set, Φenhanced, combines original and

newly generated features, defined as:

Φenhanced = Φoriginal ∪ {χΛ, ζ
adv, κint} (12)

The original collection of characteristics is Φoriginal,
whereas the extended feature set is the additional attributes
produced via aggregation, transformation, and synthesis.
This enhanced dataset includes global and localized pat-
terns, improving representation and prediction.
After feature transformation, the enlarged dataset was

ready for training and assessment, guaranteeing that the
produced characteristics strengthened the modelling pro-
cesses. Equations 9 to 12 explain DAR’s mathematical un-
derpinning, emphasizing its systematic approach to enhanc-
ing data quality and expressiveness.

3.7 Context-aware feature expansion
(CAFE)

After feature selection and transformation, the dataset
underwent a new transformation method called Context-
Aware Feature Expansion (CAFE). CAFE transforms qual-
ities based on their contextual connections to create more
expressive features. The dataset’s capacity to capture
complicated patterns is improved via contextual scaling,
interaction-based non-linear expansion, and polynomial
mapping. First in CAFE is Contextual Scaling, which ad-
justs feature values based on their connection with other

relevant characteristics. An original feature ξ and a related
feature ω are used to define the scaled feature ξscaled

ξscaled =
ξ − µω

σω
× ζξ (13)

In Equation 13, the interrelation between the primary fea-
ture ξ and the contextual feature ω is captured through a
normalization-based scaling transformation. Specifically,
ω is selected based on its contextual dependency or seman-
tic correlation with ξ, such as pairing texture-related fea-
tures or luminance with color attributes. The transforma-
tion modifies ξ by centering it around the mean µω and
scaling it relative to the standard deviation σω of the contex-
tual feature ω, and then amplifies the adjusted value with a
feature-specific variance-preserving factor ζξ. This formu-
lation enables the model to incorporate relational insights
between features, helping it better capture non-linear inter-
actions and contextual dependencies that are common in
complex visual domains such as digital art classification.
This transformation modifies each characteristic to reflect
underlying correlations depending on its contextual con-
nection with other relevant information.
After that, Interaction-BasedNon-Linear Expansion uses

non-linear transformations to create new features from ex-
isting ones. The interaction feature ϕinter is calculated for
two characteristics ξ and ω as follows:

ϕinter =

(
ξ · ω +

ξ

ω

)αξ,ω

(14)

The parameter αξ,ω controls the interaction intensity.
The multiplicative word ξ ·ω represents direct interactions,
whereas the ratio ξ

ω represents inverse or proportionate re-
lationships. By introducing non-linearity using the power
transformation ((·)αξ,ω , the model may capture more com-
plicated interactions between characteristics.
After interaction-based expansion, Contextual Polyno-

mialMapping (CPM) transforms features to capture higher-
order connections. For a feature ξ, the polynomial feature
ξpoly is computed as:

ξpoly = ξ2 + κ · ξ + λ (15)
In this equation, κ andλ regulate the polynomial’s degree

and offset. Depending on data connection complexity, this
transformation adds quadratic or cubic terms to the feature
set. The final feature set Ωenhanced is formed by mixing the
original and newly developed features.

Ωenhanced = Ωoriginal ∪ {ξscaled, ϕinter, ξpoly} (16)
In this dataset, Ωoriginal represents the original features,

whereas ξscaled, ϕinter, and ξpoly represent newly created fea-
tures that increase representation capacity.
Context-Aware Feature Expansion (CAFE) adds charac-

teristics representing local and global feature connections to
the dataset. Equations 13 to 16 offer a mathematical frame-
work for this transformation technique, enabling the model
to learn increasingly complicated and meaningful data rep-
resentations.
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3.8 Proposed classification framework
The Hierarchical Multi-Stream Feature Network
(HMSFN), shown in Figure 2, is a groundbreaking
multi-layered design that tackles the intricacy of cat-
egorization jobs. Using global dependency modeling,
contextual attention, and hierarchical convolutional layers,
this architecture combines many processing streams. A
layered framework for high-dimensional feature represen-
tation, HMSFN integrates improvements from DenseNet
[27], ConvNeXt [28], and Vision Transformer (ViT) [29].
By analyzing input features at several resolutions, the
Multi-Scale Convolutional Encoder (MSCE), the first
layer of HMSFN, captures both fine-grained and global
patterns. The input image is denoted by I and an r-times-r
convolutional kernel is represented by Cr > 0. The
decoded feature mapHr computed at scale r is as follows:

Hr = ϕ (Cr ∗ I + ωr) (17)

In this case, the convolution operation is represented by
∗, the bias term is ωr, and the activation function is ϕ. To
create the multi-scale representationHMSCE, many encoded
feature mapsHr1 ,Hr2 , are joined together.
To better capture the subtle details that define artistic

styles, this module processes the input across multiple spa-
tial resolutions. By learning both fine-grained textures and
broader structural patterns, the MSCE directly responds to
the challenge of modeling nuanced artistic features high-
lighted in our review of existing work. The MSCE’s output
is sent to the Dense Feature Aggregation Block (DFAB),
where every convolutional layer is tightly coupled with
every layer before encouraging feature reuse. This block
plays a key role in improving feature fusion, which many
previous models struggled with. By connecting each con-
volutional layer to all preceding ones, DFAB encourages
feature reuse and helps the network build richer, more in-
tegrated representations—essential for understanding com-
plex aesthetic compositions. Let Pq stand for the output of
layer q, and [P0, P1, . . . , Pq−1] the concatenated outputs of
earlier layers. Computed as the aggregated output Pq is:

Pq = ϕ (Ψq · [P0, P1, . . . , Pq−1] + θq) (18)

The weights and biases for layer q are Ψq and θq . This
extensive connection lets the network learn low-level and
high-level properties concurrently.
To make the model more interpretable and focused, this

module assigns greater importance to spatial regions that
are most relevant to artistic categorization. It effectively
guides the network’s attention toward visually meaningful
patterns, helping it distinguish between styles that may ap-
pear similar at a glance. Contextual Attention Refinement
Module processes feature maps after DFAB. This module
refines feature maps using spatial attention weights to con-
centrate on classification-relevant locations. Given a fea-
ture map P , the refined map P̃ is:

P̃ = P ⊙ Softmax (Υ · P + κ) (19)

Υ and κ represent attention weights and biases, whereas
⊙ indicates element-wise multiplication. Normalizing at-
tention ratings with softmax dynamically prioritizes essen-
tial spatial areas.
To overcome the lack of precision observed in earlier

models, this component models long-range relationships
across image regions. It provides a global understanding
of the artwork’s layout and structure, which is especially
valuable when styles share local features but differ in their
overall composition. The Hierarchical Transformer Encod-
ing Layer (HTEL) from improved feature maps captures
global interdependence and hierarchical linkages via multi-
head self-attention. Calculate the output representation Zu

for token u:

Zu =

T∑
t=1

Softmax
(
QtK⊤

t√
ηt

)
Vt (20)

Qt,Kt,Vt represent query, key, and value matrices for head
t, T represents the number of attention heads, and ηt repre-
sents key vector dimensionality. This mechanism models
incorporate space-wide long-range interdependence.
A Feature Fusion Layer (FFL) aggregatesMSCE, DFAB,

CARM, and HTEL outputs using multi-scale, dense, and
attention-refined features. Define the fused feature repre-
sentation Ẑ:

Ẑ = α1·HMSCE+α2·PDFAB+α3·P̃CARM+α4·ZHTEL (21)

The learnable weights (α1, α2, α3, α4 govern the contri-
bution of eachmodule. A fully connected layer and softmax
activation create class probabilities from the final fused rep-
resentation Ẑ .
Layered feature extraction, dense connection, spatial at-

tention, and global dependency modelling enable robust
and reliable classification using the Hierarchical Multi-
Stream Feature Network (HMSFN). Its hierarchical de-
sign excels in classification jobs on complicated, high-
dimensional datasets.

3.9 Performance evaluation metrics
Traditional and novel measures were used to assess the pro-
posed categorization system. Traditional measures include
accuracy, precision, recall, and F1-score [30]. Accuracy
quantifies the percentage of successfully categorized ex-
amples to the total occurrences, assessing the model’s per-
formance. Precision measures the model’s class identifica-
tion reliability by comparing genuine and total optimistic
predictions. Recall, or sensitivity, assesses the model’s
ability to recognize positive examples from the dataset’s
positives. The F1-score, the harmonic mean of accuracy
and recall, balances the trade-off and benefits unbalanced
datasets. Three new performance assessment measures
were created for the hierarchical and multi-stream catego-
rization architecture. WFCI, LCCR, and ICDD are these
measurements. The Weighted Feature Contribution Index
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Figure 2: Proposed HMSFN layered architecture

(WFCI) measures feature proportionality across network
processing streams. It promotes balance by preventing any
feature or stream from dominating categorization decisions.
Using p processing streams and q features, WFCI is defined
as:

WFCI = 1− 1

p

p∑
u=1

∣∣∣∣ ∑q
v=1 αuv∑p

w=1

∑q
v=1 αwv

− 1

p

∣∣∣∣ (22)

Equation 22 introduces the Weighted Feature Contribu-
tion Index (WFCI), which helps assess how evenly the
HMSFNmodel utilizes features across its different process-
ing streams. In this context, p refers to the number of archi-
tectural streams—such as those built from DenseNet, Con-
vNeXt, and ViT components—while q is the total number
of input features. The term αuv represents the importance
or contribution weight of feature v in stream u, as accu-
mulated through the stream’s internal computations. WFCI
essentially measures the consistency of feature influence
across the network’s multiple streams. It calculates how
far each stream’s overall contribution deviates from an ide-
ally balanced scenario, where all streams contribute equally
(i.e., 1

p ). A WFCI score approaching 1 indicates that the
model is drawing information fairly from all streams, sug-
gesting good architectural balance and reduced risk of over-
fitting to any single component. If the score is notably
lower, it may imply that certain streams dominate the learn-
ing process, potentially limiting the model’s ability to gen-
eralize across diverse data.
The Layered Classification Confidence Ratio (LCCR)

measures the model’s hierarchical decision-making confi-
dence across network layers. Define γt as the final layer
confidence score for class t and δ(h)t as the intermediate
confidence at layer h. We define LCCR as:

LCCR =
1

T

T∑
t=1

H∏
h=1

(
γt · δ(h)t

)
(23)

The total number of classes is T , and the number of hi-
erarchical levels is H . This measure provides excellent
model confidence throughout hierarchical processing, re-
vealing intermediate and final prediction stability.
The Inter-Class Distribution Divergence (ICDD) as-

sesses class feature distribution separability. It helps de-
termine how successfully the model identifies overlapping
classes. For classes R and S, ICDD is defined as:

ICDD(R,S) =
|ηR − ηS |√
ζ2R + ζ2S

(24)

In this context, ηR and ηS represent the means and
variances of feature distributions for classes R and S, re-
spectively. Higher ICDD values imply class separability,
whereas lower values show feature distribution overlap.
These three unique metrics, in addition to established

measures, give further insights into model performance.
WFCI balances feature contributions across processing
streams, LCCR measures hierarchical classification confi-
dence, and ICDD analyzes inter-class separability. These
criteria and standardmetrics provide a complete assessment
framework for the hierarchical and multi-stream classifica-
tion model.

4 Simulation results

4.1 Experimental setup
The Hierarchical Multi-Stream Feature Network (HMSFN)
was implemented in Python, using TensorFlow and Scikit-
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learn to handle model design, training, and evaluation. All
experiments were carried out on a systemwith an Intel Core
i7 12th Gen processor, 32 GB of RAM, and an NVIDIA
RTX 3080 GPU. We trained the model for 30 epochs using
the Adam optimizer, with convergence generally occurring
around the 24th epoch. Key hyperparameters—such as a
learning rate of 0.001, batch size of 64, and dropout rate of
0.3—were fine-tuned through testing to balance accuracy
and overfitting.
The dataset was divided using an 80:20 train-test split

to ensure consistent evaluation. Preprocessing steps in-
cluded normalization, contrast-balanced scaling, and domi-
nant color mapping. We also applied the WSFAmethod for
class balancing and data enhancement. To further refine
the input features, we used the Adaptive Feature Filtering
Framework (AFFF), which helped improve the model’s fo-
cus and efficiency. Altogether, this setup includes all the
essential details for reproducing our results or adapting the
HMSFN model to other digital art classification problems.

4.2 Results

Figure 3: Distribution of artistic styles in the full dataset,
showing class imbalance across six categories

Figure 3 displays the distribution of creative styles in the
dataset, highlighting their relative popularity and represen-
tation. Abstract, Realistic, Cubistic, Surrealistic, Impres-
sionist, and Pop Art are in the dataset. Abstract art has the
most samples (80,000) and Pop Art the fewest (20,000).
This graphic shows style imbalance, which might affect
classification performance if not preprocessed. This distri-
bution is essential for knowing which creative styles dom-
inate and how they may affect model training. With fewer
samples, Cubism or Surrealism may have worse classifi-
cation accuracy than Abstract, which is well-represented.
This insight informs balancing methods to reduce these dis-
crepancies. This picture is essential for analyzing dataset
fairness and setting an appropriate preprocessing approach
to ensure downstream tasks treat all styles equally.
Figure 4 shows the dataset’s distribution of aesthetic

quality levels (Low, Medium, and High). The dataset

Figure 4: Aesthetic quality distribution in the dataset

is mostly medium-quality, with 100,000 samples, 52,000
high-quality, and 60,000 low-quality. Preprocessing meth-
ods like synthetic oversampling are needed to solve under-
represented classes, such as high-quality photographs, due
to the imbalance in aesthetic quality. This distribution il-
lustrates the dataset’s aesthetic variety. It stresses the diffi-
culty of anticipating underrepresented classes. A dispro-
portionate percentage of Medium-quality data may skew
classification model predictions toward Medium. This im-
age shows the dataset’s biases and the need for balanced
training to predict aesthetic quality accurately and fairly.
The graphic shows the dataset’s baseline features and em-
phasizes the need to balance tactics for accurate categoriza-
tion.

Figure 5: 3D relationship between artistic style, aesthetic
quality, and symmetry score

Figure 5 depicts the 3D correlation between artistic
styles, aesthetic quality, and symmetry scores. Each data
point represents a combination of an artistic style (Ab-
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stract, Realism, etc.), aesthetic quality level (Low,Medium,
High), and its corresponding symmetry score. Realism has
more excellent symmetry ratings than 0.8 for High qual-
ity across all quality levels. Cubism, which is fractured
and abstract, has lower symmetry ratings. The graphic
shows how symmetry—a crucial aesthetic feature—varies
between creative genres and quality levels. According to
this image, realism is strongly correlated with more ex-
cellent symmetry scores. This relationship is essential for
model interpretability and identifying features driving aes-
thetic quality predictions. The figure shows that symmetry
is critical in assessing creative Style and quality.

Figure 6: Theme category distribution across artistic styles

In Figure 6, a stacked bar chart compares Portrait, Land-
scape, Still Life, Abstract, and Conceptual topics among
creative genres. For example, realism emphasizes Land-
scape (50%), whereas Abstract art balances Abstract and
Portrait (20%) subjects. This distribution shows style-
specific thematic preferences and how themes affect art.
This figure can find patterns in topic distributions, essen-
tial for understanding creative styles. This indicates that
realism is theme-driven, whereas abstract art is more var-
ied. This insight helps identify Style classification-relevant
thematic aspects.
Figure 7 shows a radar chart comparing critical aspects

of the Realism style. Symmetry, texture complexity, bright-
ness, contrast, and edge density are normalized between 0
and 1. In realism, symmetry (0.9) and contrast (0.8) are
strong, while edge density and brightness (0.75) and 0.85
are moderate. This graphic emphasizes realism’s multidi-
mensionality and aesthetic appeal via symmetry and con-
trast. This chart illustrates Realism feature strengths, which
may influence classification model feature weighting. This
infographic helps readers understand realism’s main char-
acteristics.
In Figure 8, a heatmap shows the distribution of aes-

thetic quality levels (Low, Medium, High) among creative
forms. Pop art has a more equal mix of low, medium,
and high characteristics than realism, which primarily has
medium and high attributes. Abstract and Impression-
ism have higher Medium quality counts, indicating their
concentration on detailed but balanced work. This image

Figure 7: Feature comparison for realism artistic style

Figure 8: Heatmap of artistic styles vs. aesthetic quality
distribution

shows how Style affects quality distributions, essential for
constructing accurate prediction models. Realism’s domi-
nance in high quality shows that symmetry and texture com-
plexity substantially influence quality judgment. Visualiz-
ing this distribution reveals style-specific quality patterns,
improving feature engineering and model design for aes-
thetic categorization.
A grouped bar chart in Figure 9 displays the average tex-

ture complexity for each creative Style at different aesthetic
quality levels (Low, Medium, High). Realism has consider-
able texture complexity, particularly for high-quality sam-
ples, with an average score of 0.8. With values from 0.3 to
0.6, Cubism has decreased texture complexity at all qual-
ity settings. The technical result of this graphic shows how
texture complexity distinguishes creative genres and qual-
ity levels. It shows how Realism and Impressionism use
detailed textures to improve aesthetics, but Cubism does
not. This knowledge is essential for feature selection and
weighting to account for texture complexity and quality dif-
ferences among styles.
The violin plot in Figure 10 displays symmetry scores for

six art styles: Abstract, Realism, Cubism, Surrealism, Im-
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Figure 9: Grouped bar chart of texture complexity by artis-
tic style and aesthetic quality

Figure 10: Violin plot of symmetry scores across artistic
styles

pressionism, and Pop Art. Realism emphasizes balance and
proportionality, with many symmetry scores in the higher
range (0.6 to 0.9). Cubism’s scores are spread out, with
most at 0.3 to 0.7, indicating its fractured and abstract char-
acter. The violin plot shows stylistic variation, revealing
symmetry-related aesthetics. This graphic visualizes fea-
ture distributions, which helps explain how symmetry af-
fects aesthetic quality and categorization. Symmetry dis-
tinguishes artistic genres, especially Realism and Impres-
sionism.
Figure 11 displays the correlation matrix for 16 charac-

teristics, revealing pairwise correlations between proper-
ties, including symmetry, texture complexity, brightness,
and contrast. The matrix shows considerable connections
between symmetry and contrast (0.8) and colour harmony
and light symmetry (0.9), showing their dependency on
aesthetic quality. Pattern repetition and gradient smooth-
ness correlate with edge density, indicating secondary ef-
fects on artistic appraisal. This graphic identifies strongly
linked characteristics that may affect model performance
if ignored. Strongly linked characteristics may cause re-
dundancy, whereas weak correlations may indicate sepa-
rate categorization. These figures aid in feature selection
and refining for an efficient, understandable model.
Figure 12 displays feature significance ratings from the

Adaptive Feature Filtering Framework. The graphic shows

Figure 11: Correlation matrix of selected features

Figure 12: Feature importance chart based on the adaptive
feature filtering framework

Light Symmetry (0.9), Color Harmony (0.88), and Symme-
try (0.85) as the most critical aesthetic categorization fac-
tors. The high rankings of Texture Complexity (0.8) andVi-
sual Complexity (0.82) emphasize their relevance in assess-
ing creative styles and quality. Pattern Repetition (0.58)
and Brushstroke Size (0.55) are less critical but still valu-
able for the model. This figure prioritizes aesthetic features
for model building, ensuring that informative properties get
more training attention. This graphic helps enhance feature
engineering and classification performance by recognizing
feature significance.
Figure 13 shows the SHAP-based feature importance

plot, highlighting how each feature contributes to the classi-
fication of digital artworks. Features like Light Symmetry,
Color Harmony, and Texture Complexity have the highest
influence, confirming their critical role in aesthetic evalua-
tion. Mid-ranked features such as Gradient Smoothness and
Brushstroke Size also play a meaningful part in style differ-
entiation. Lower-impact features like Theme Encoding still
contribute contextually, ensuring a well-rounded model un-
derstanding. The ranking supports the effectiveness of our
feature selection and preprocessing strategies.
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Figure 13: SHAP-based feature importance plot

Figure 14: Confusion matrix for artistic style classification,
highlighting correctly and incorrectly predicted style labels

Figure 14 shows the Artistic Style categorization con-
fusion matrix, comparing anticipated and actual labels
for six categories: Abstract, Realism, Cubism, Surreal-
ism, Impressionism, and Pop Art. Diagonal values show
high accuracy across all classes for successfully catego-
rized samples. Low false positives and negatives show
the model’s ability to recognize brushstrokes and textures.
This chart shows that Abstract and Realism are the most
precise, but Realism and Cubism have slight misclassifi-
cations. The matrix shows that the suggested model can
capture intricate creative style nuances, making it suitable
for multilabel categorization. Figure 15 shows the con-
fusion matrix for judging Aesthetic Quality in three cat-
egories: Low, Medium, and High. Most samples were
correctly categorised, demonstrating good performance.
Medium-quality photos have the most accuracy owing to
their unique visual patterns, whereas Low and High labels
overlap somewhat. Minimal false negatives and positives
demonstrate the model’s ability to generalize across aes-
thetic levels. This figure shows that the model can reliably

Figure 15: Confusion matrix: aesthetic quality

evaluate and predict aesthetic quality, essential for subjec-
tive artistic appraisal.

Figure 16: Confusion matrix: theme category

Figure 16 displays the confusion matrix for Theme Cat-
egory categorization, comparing anticipated and actual la-
bels for Portrait, Landscape, Still Life, Abstract, and Con-
ceptual categories. The model performs well in the Portrait
and Landscape categories, classifying most samples appro-
priately. Abstract topics are often confused with Concep-
tual ones owing to visual patterns. Low false positive and
negative rates confirm themodel’s theme discrimination ac-
curacy. This matrix shows the model’s ability to capture
thematic characteristics needed for creative theme analysis.
To strengthen the statistical validity of our findings, we

report 95% confidence intervals (CIs) for the key perfor-
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Table 3: Performance comparison of HMSFNwith baseline
techniques under identical training settings
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ResNet [24] 91.5 82.8 0.215 89.2 74.5 85.7 89.5 90.1 91.1
CNN [20] 92.3 83.7 0.205 90.3 76.5 86.9 90.7 91.2 91.8
EfficientNet [17] 93.0 84.5 0.198 91.5 77.8 87.6 91.8 92.0 92.6
DenseNet121 [23] 93.7 85.8 0.183 92.7 78.9 88.3 92.5 93.4 93.2
VGG [24] 94.1 86.2 0.179 93.0 79.5 89.0 92.9 93.8 93.5
GANs [16] 92.0 83.0 0.225 90.0 75.2 86.0 90.0 90.5 91.0
RNNs [15] 90.7 81.5 0.232 88.5 73.2 84.7 88.9 89.4 89.9
Proposed HMSFN 99.0 97.5 0.059 98.9 92.8 97.2 98.6 98.7 99.3

mance metrics. For the proposed HMSFN model, classifi-
cation accuracy had a 95% CI of [98.76%, 99.21%], and
the F1-score ranged between [98.35%, 98.83%]. These
narrow intervals indicate high reliability and low vari-
ance in repeated experiments. Additionally, we per-
formed a Wilcoxon signed-rank test to compare HMSFN’s
performance with the top three baseline models (VGG,
DenseNet121, and EfficientNet). The test revealed statis-
tically significant improvements with p-values below 0.01
in all cases, confirming that HMSFN’s performance gains
are not due to random variation. Table 3 compares ma-
chine learning and deep learning algorithms for identify-
ing creative Style and aesthetic quality. Accuracy, LCCR,
log loss, recall, WFCI, ICDD, F1-score, precision, and
AUC are assessed. Advanced deep learning models like
DenseNet121, EfficientNet, and VGG beat classic accu-
racy and feature extraction approaches. The suggested Hi-
erarchical Multi-Stream Feature Network (HMSFN) leads
with 99.0% accuracy and 98.6% F1-score, demonstrating
its capacity to handle complicated datasets. Its revolu-
tionarymulti-stream architecture blends attention processes
and smart feature selection algorithms. WFCI and ICDD
show the model’s capacity to prioritize essential character-
istics and capture inter-class dispersion, boosting perfor-
mance.

Table 4: Ablation study of HMSFN components

Model Variant Accuracy (%) F1-Score (%) AUC (%) WFCI (%) ICDD (%)
Full HMSFN (Proposed) 99.0 98.6 99.3 92.8 97.2
Without Contrast-Balanced Normalization 96.9 95.8 97.1 86.2 93.6
Without WSFA 95.2 94.8 96.0 84.9 91.7
Without Feature Filtering Framework (AFFF) 94.7 94.1 95.5 82.3 89.4
Without Vision Transformer Component 96.3 95.2 96.6 87.1 92.8

Table 4 shows how each component of the HMSFN ar-
chitecture contributes to overall model performance. When
any major module was removed—whether it was the nor-
malization, augmentation, filtering, or transformer block—
there was a clear drop in accuracy and other evaluation met-
rics. The Adaptive Feature Filtering Framework (AFFF)
and WSFA, in particular, played a key role in helping
the model generalize better and handle imbalanced classes.
Meanwhile, the Vision Transformer component proved im-
portant for distinguishing between visually similar cate-
gories. These results highlight the value of each component
and support their integration into the final HMSFN design.
Table 5 compares categorization algorithms using met-

Table 5: Comprehensive statistical analysis of classifica-
tion methods (F-statistic and P-value)

Statistical Method Pearson Correlation (r) Chi-Square (χ2) ANOVA Spearman’s Rank (ρ) Student’s t-test Kendall’s Tau (τ )
ResNet [24] 0.85 8.75 7.62 0.81 0.013 0.73
CNN [20] 0.87 8.10 7.05 0.83 0.019 0.76
EfficientNet [17] 0.88 8.40 7.45 0.84 0.016 0.77
DenseNet121 [23] 0.90 8.95 7.94 0.86 0.012 0.78
VGG [24] 0.91 9.15 8.15 0.88 0.010 0.79
GANs [16] 0.82 7.80 6.85 0.80 0.021 0.70
RNNs [15] 0.80 7.40 6.25 0.78 0.026 0.68
Proposed HMSFN 0.93 9.95 8.60 0.90 0.007 0.81

rics including Pearson Correlation, Chi-Square, ANOVA,
Spearman’s Rank, Student’s t-test, and Kendall’s Tau.
It ranks the Hierarchical Multi-Stream Feature Network
(HMSFN) first in all categories. The highest Pearson Cor-
relation (0.93) and Chi-Square (χ2) score (9.95) indicate
great predictive consistency and accuracy for HMSFN. The
improvements’ low P-value (0.007) supports their statisti-
cal significance. HMSFN’s multi-stream design and fast
feature selection overcome other approaches’ feature fusion
and scalability issues. The table 5 highlights HMSFN’s ro-
bustness and efficacy in classification tasks.

Figure 17: ROC curve for all labels

Figure 17 shows the ROC curve for Artistic Style, Aes-
thetic Quality, and Theme Category. The curves illustrate
the model’s ability to distinguish classes, with AUC val-
ues between 0.96 and 0.99 indicating strong classification
performance. Artistic Style has the most excellent AUC
at 0.98, followed by Aesthetic Quality at 0.97 and Theme
Category at 0.96. These findings demonstrate the HMSFN
model’s ability to capture complex dataset patterns and re-
lationships in multilabel classification problems. This chart
shows the model’s discriminative capability, crucial for un-
derstanding performance across labels. It shows the bal-
ance between sensitivity (True Positive Rate) and speci-
ficity (False Positive Rate), enabling informed categoriza-
tion results assessment.
Figure 18 displays HMSFN model training and test ac-

curacy trends across 30 epochs. The model improves con-
sistently, reaching a maximum accuracy of 98% at the 24th
epoch. This fast convergence shows the model’s optimiza-
tion efficiency and generalisation capacity to new inputs.
The tiny difference between training and test accuracy sug-
gests low overfitting, demonstrating design resilience. This
significant graphic shows the model’s learning behaviour
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Figure 18: Training and test accuracy of HMSFN over
epochs

and verifies the hyperparameters and training approach.

Figure 19: Training and Test Loss of HMSFNOver Epochs

Figure 19 displays HMSFN training and test loss curves
over 30 epochs. Model optimization is stable when loss val-
ues converge at the 24th epoch. Test loss closely matches
training loss, indicating modest generalization error. The
learning rate and other hyperparameters are suitable since
loss values decrease smoothly. This number is crucial for
assessing the model’s success in reducing prediction errors
and preserving dataset consistency.
Figure 20 shows the sensitivity analysis of HMSFN hy-

perparameters, such as Learning Rate, Batch Size, Epochs,
Dropout Rate, and Regularization Strength. Epochs had the
most incredible sensitivity (0.94), significantly influenc-
ing model performance. Dropout Rate and Regularization
Strength are sensitive, minimizing overfitting and ensuring
robust learning. This study helps fine-tune the model’s per-
formance by analyzing each hyperparameter’s impact.

4.3 Discussion
The experimental results highlight the effectiveness of the
HMSFN model in handling the challenges of digital art
classification. As shown in Table 3, HMSFN consis-
tently delivered the strongest performance across all key
metrics—achieving 99.0% accuracy, a 98.6% F1-score, and
an AUC of 99.3%. These outcomes clearly surpassed other
well-established models like VGG, DenseNet121, and Ef-
ficientNet. Further supporting this, the statistical analysis
in Table 5 confirms the model’s reliability, with HMSFN
showing top scores across correlation and variance-based

Figure 20: Sensitivity analysis of HMSFNhyperparameters

tests, and the lowest p-value, indicating the significance of
these results.
Amajor reason behind this strong performance lies in the

use of three custom evaluationmetrics—WFCI, LCCR, and
ICDD. These metrics offer deeper insights into the model’s
internal learning behavior. The Weighted Feature Contri-
bution Index (WFCI), for instance, reflects how evenly fea-
tures contribute across the network’s different streams, re-
ducing the risk of over-reliance on any single feature group.
The Inter-Class Distribution Divergence (ICDD) helps as-
sess how well the model can distinguish between similar
styles, which is particularly useful in dealing with subtle
visual differences in art. The Layered Classification Con-
fidence Ratio (LCCR) tracks how confident the model is
across its hierarchical layers, indicating both stability and
reliability in decision-making.
Several design choices contributed to HMSFN’s edge

over other models. The multi-stream architecture allows
the model to analyze artwork at multiple scales, picking up
on both fine textures and broader compositional elements.
Contextual attention helps focus on the most visually im-
portant regions of an image, which is critical for identi-
fying artistic style and quality. Additionally, techniques
like Adaptive Feature Filtering (AFFF) and Weighted Syn-
thetic Feature Augmentation (WSFA) helped improve the
dataset’s balance and relevance, enhancing the model’s
generalization.
That said, we recognize a few limitations in the dataset

that could influence the outcomes. Some artistic styles,
such as Abstract, are heavily represented, while others like
Pop Art and Cubism have relatively fewer samples. Al-
though the WSFA method was used to balance these dis-
crepancies, minor bias may still exist. Also, since aes-
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thetic quality labels involve some level of human interpre-
tation, there’s a chance of subjective variation—especially
between categories like Medium and High. These factors,
although addressed through preprocessing and validation,
should be kept in mind when applying the model to other
or broader datasets.
Some styles in the dataset naturally lend themselves to

more accurate classification because of how visually struc-
tured they are. Realism, for example, typically features
balanced composition, consistent textures, and identifiable
subjects—traits that make it easier for the model to detect
and learn clear patterns. On the other hand, styles like Ab-
stract and Surrealism are more open to interpretation, of-
ten lacking fixed forms or predictable features. This artis-
tic freedom introduces greater variation, which can make
it more challenging for the model to distinguish between
classes. These style-based differences are reflected in both
the feature comparison and confusion matrix analyses, as
seen in Figures 7 and 14.
While an AUC score of 0.99 might seem unusually high

at first glance, it accurately reflects the strong visual distinc-
tions present in our dataset—particularly in styles like Ab-
stract and Realism that have clear and consistent features.
Since the dataset is high-resolution and carefully curated,
the model can distinguish between styles with a high degree
of confidence. In the context of digital art classification,
especially under controlled data conditions, AUC values in
the 0.95 to 0.99 range are not uncommon. That said, we
recognize that in more complex or noisy real-world scenar-
ios, such performance might vary and would likely require
additional model tuning and data refinement.
MMoreover, HMSFN not only outperforms existing ap-

proaches in terms of classification results but also brings a
well-structured and interpretable design that is well-suited
for the nuanced task of analyzing digital artwork.

5 Conclusion

Classifying digital art forms, aesthetic quality, and sub-
ject categories is difficult. This study developed a Hier-
archical Multi-Stream Feature Network (HMSFN). The re-
search found that unique preprocessing and feature selec-
tion methods help the model balance feature representa-
tion and prioritize essential qualities, resulting in excellent
classification accuracy. Multi-scale convolutional layers,
contextual attention mechanisms, and global dependency
models were necessary to capture the dataset’s intricate
interactions. Symmetry, textural complexity, and colour
harmony distinguished creative styles and aesthetic qual-
ities. The model’s excellent accuracy and vital assessment
metrics demonstrate its capacity to handle unbalanced and
high-dimensional input. The study also emphasizes fea-
ture engineering, where Weighted Synthetic Feature Aug-
mentation (WSFA) and Adaptive Feature Filtering Frame-
work (AFFF) guarantee a balanced and enhanced dataset.
Balance was essential for lowering bias toward overrepre-

sented classes and enhancing generalization across under-
represented ones. The model’s excellent accuracy shows its
ability to learn adaptive patterns and correlations, which are
crucial for subjective and aesthetic judgments. Good accu-
racy shows the model’s technical efficiency and capacity
to match human interpretability and decision-making pro-
cesses, spanning computational precision and artistic sig-
nificance.
HMSFN will be scaled to fashion design and multimedia

content analysis to prove its adaptability. The model might
be improved by using unsupervised and semi-supervised
learning methods to handle unlabeled data frequently in
artistic and cultural datasets. Expanding the dataset to in-
corporate additional creative styles and cross-cultural in-
fluences will deepen global aesthetic trends and test the
model’s universality. With real-time categorisation pro-
cesses, interactive digital art installations and adaptive con-
tent recommendation systems will be possible.
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