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Intervertebral disc herniation is a prevalent spinal disorder that can lead to severe discomfort, 

neurological impairment, and reduced quality of life. Effective treatment planning depends on a timely 

and accurate diagnosis. In this study, we propose an advanced machine learning framework to improve 

the accuracy of disc herniation prediction by using the Random Forest Classifier (RFC) and the Naïve 

Bayes Classifier (NBC), both of which are optimized using the Grasshopper Optimization Algorithm 

(GOA). There are 500 patient records in the dataset, which includes imaging-derived parameters and 

clinical features. Training (70%) and testing (30%) subsets of the preprocessed data were separated. To 

enhance classification performance and adjust hyperparameters, the GOA was employed. Accuracy, 

precision, recall, and F1-score were used to evaluate the model. According to empirical findings, the 

hybrid RFC-GOA model performed better than any other model, with 91.5% accuracy, 92.1% precision, 

90.4% recall, and 91.2% F1-score. With an accuracy of 90.4% as opposed to 85.1%, the NBC-GOA model 

also outperformed the baseline NBC model. These results demonstrate the efficacy of metaheuristic 

optimization and the superiority of ensemble-based approaches in medical classification tasks. In order 

to support clinical decision-making and enhance patient outcomes, the suggested models provide a 

reliable and understandable method for the early prediction of disc herniation. This study demonstrates 

the potential for creating trustworthy diagnostic tools for spinal disorders by fusing bio-inspired 

optimization techniques with machine learning classifiers. 

Povzetek: S pomočjo metod umetne inteligence je razvit hibridni napovednik hernije diska: uporabljena 

sta Random Forest in Naïve Bayes, optimizirana z GOA ter biomehanska značilka in SHAP razlaga za 

zgodnje, razložljive odločitve ter stabilno delovanje na kliničnih podatkih.

1 Introduction 
Degeneration or the injury of these lumbar discs leads to 

disorders such as disc herniation, where the nucleus 

pulposus bulges through the already weakened annulus 

fibrosus [1]. This can lead to compression of spinal nerves, 

causing pain, numbness, or weakness [2]. Various 

elements, including aging, genes, and lifestyle, work 

together in lumbar disc disorders [3]. Treatment 

approaches vary from conservative strategies like physical 

therapy and pain relief to surgical procedures for severe 

cases [4]. Maintaining spine health through regular 

exercise, proper ergonomics, and lifestyle adjustments is 

crucial in preventing lumbar disc issues and ensuring the 

spine's continued functionality [5]. Understanding the 

intricate interplay between the annulus fibrosus and 

nucleus pulposus is pivotal for healthcare professionals in 

effectively diagnosing and managing lumbar spine 

conditions [6,7]. Medical research and technology 

advances continue to enhance comprehension of lumbar 

disc dynamics, fostering ongoing improvements in 

treatment modalities for individuals experiencing lumbar 

spine-related challenges [8,9]. 

 

The comprehension of the ramifications of disc herniation 

necessitates an acknowledgment of the intricate  

interplay among spinal discs, the annulus fibrosus tear, the 

resultant nucleus pulposus bulge, and the potential 

ramifications of nerve compression [10]. Manifestations 

encompass lower back pain, sciatica, neck pain with 

radiating arm pain, numbness, tingling, or muscular 

weakness in the affected region [11]. Treatment 

modalities typically commence with conservative 

measures, including rest, analgesics, physiotherapy, and 

injections [12]. Surgical intervention is contemplated in 

instances of severity or ineffectiveness of conservative 

approaches [13,14]. An adequate understanding of the 

fundamental mechanism and symptomatic expressions 

relative to disc herniation will facilitate appropriate 

treatment on the part of the physician for an improvement 

in holistic management of the individual thus afflicted by 

the disorder of the spine [15]. Ongoing research initiatives 

and advancements in medical science persist in refining 

the understanding of disc herniation, thereby facilitating 

the evolution of augmented diagnostic and therapeutic 

methodologies within clinical realms [16]. Additionally, 

metabolic factors and nutritional deficiencies can be 
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crucial in the progress of disc herniation. The interplay 

between genetics, lifestyle choices, and environmental 

factors contributes to the overall vulnerability of the 

intervertebral discs [17]. Inflammatory processes, often 

associated with obesity or systemic diseases, may further 

compromise disc integrity, increasing the possibility of 

herniation [18]. 

Furthermore, the biomechanical aspect of the spine 

and the intricate interaction between axial loading, 

torsional forces, and disc hydration continue to be studied 

to understand the multifaceted etiology of herniated discs. 

Researchers are investigating molecular and cellular 

alterations in intervertebral discs to determine the complex 

sequence of events leading to the propensity for disc-

related conditions in some [19]. The critical knowledge of 

integral involvement in disc herniation thus requires 

integrating age-related changes with genetic 

predispositions, life and lifestyle factors, and various 

forms of mechanical stress on the spinal structure. A better 

understanding of the incident encourages a more 

psychosomatic approach to prevention, diagnosis, and 

therapeutic intervention in the victims of disc herniation 

[20–23]. 

Machine Learning is a sub-branch of artificial 

intelligence that deals with developing such algorithms 

and models, which, when fed data, let the computer learn 

implicitly without explicit instructions to make 

anticipations or decisions [24]. It involves using statistical 

techniques to allow computers to identify patterns and 

learn from data, improving their performance over time. 

In the context of predicting disc hernia, ML has played a 

crucial role in medical diagnostics [25]. Disc herniation 

occurs when the cushion-like discs between the vertebrae 

in the spine rupture or bulge, inducing pain and distress. 

Traditional diagnostic methods involve imaging studies 

such as magnetic resonance imaging (MRI) [26] or 

computed tomography (CT) scans, which medical 

professionals interpret [27]. 

ML frameworks dismiss the vast pools of medical 

data and advise subtle patterns and associations that may 

be fundamentally difficult for human experts to recognize. 

These models attempt to predict disc hernia from highly 

dimensional data, specifically patient history, symptoms, 

and imaging results.  [28]. The framework learns to 

correlate specific patterns in the data with the presence or 

possibility of disc herniation [29]. 

After training, the ML framework can assess new 

patient data and generate anticipations regarding the 

probability of disc hernia [30]. This assists healthcare 

professionals in making more accurate and prompt 

diagnoses, potentially leading to early intervention and 

improved patient outcomes [31]. 

Table 1: Summary of prior studies on disc herniation prediction. 

Study Method Used Dataset Accuracy Precision Recall 
F1-
Score 

Harada et al. 
(2021) 

Logistic Regression + Clinical 
Features 

600 patient records 81.2% 79.5% 82.0% 80.7% 

Salehi et al. 
(2019) 

SVM + MRI features MRI images (n=200) 86.4% 85.9% 84.2% 85.0% 

Ren et al. (2024) Random Forest 1000 patients 88.1% 87.3% 86.7% 87.0% 

Chen et al. 
(2023) 

Deep Learning (CNN) 1316 patients 90.1% 90.0% 89.5% 89.7% 

Proposed RFC-
GOA 

RFC + Grasshopper 
Optimization 

310 patients 95.5% 95.6% 95.5% 95.5% 

Proposed NBC-
GOA 

NBC + Grasshopper 
Optimization 

310 patients 88.4% 88.2% 88.4% 88.3% 

 

1.1 Objective of the study 

This investigation aimed to explore possible causes of disc 

hernia and explain their cause-and-effect mechanism. 

Considered one of the most critical strategies for the pre-

emptive tackling this condition, the possibilities for 

anticipation have been thoroughly explored. The objective 

of this paper is to compare the performance of Random 

Forest Classifier (RFC), Naïve Bayes Classifier (NBC), 

and their hybrid versions optimized with Grasshopper 

Optimization Algorithm (GOA) for disc herniation 

prediction. Predicting disc herniation is based on a given 

dataset of 310 patients with biomechanical and clinical 

attributes. In order to measure the performance of the 

classifiers, we utilize accuracy, precision, recall, and F1-

score. A two-stage training and testing approach was 

incorporated to improve generalizability and avoid 

overfitting. The bias was minimized, and any 

shortcomings were compensated for by measuring the 

frameworks' performance with the help of four distinct 

metrics. 

2 Methodology 

2.1 RFC 

RFC entails several tree categorizers, each of which 

constructs a categorizer based on a random vector, drawn 

autonomously of the input vector, and gives an input 

vector a unit vote for the class that it judges is most likely 

to classify it correctly [32]. The RFC in this study creates 

a tree by randomly selecting attributes or integrating traits 

at each node. Bagging is a strategy for generating a 

training database by picking each feature or feature 
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combination and then randomly selecting N replacement 

samples, where 𝑁 displays the magnitude of the original 

training set.  

Each instance in the dataset characterized by a set of 

biomechanical features is evaluated across multiple 

decision trees within the forest. Each tree outputs a class 

prediction, and the final classification is determined by 

majority voting among all trees. During tree construction, 

appropriate attribute selection measures (e.g., Gini index) 

and pruning strategies are employed to optimize 

performance and prevent overfitting. The selection of 

attributes for DT induction may be addressed in various 

ways, and most of these techniques include the feature of 

a direct quality measure. The information gain ratio and 

Gini index are the most commonly used variable selection 

criteria in DT induction. The RFC uses the Gini Index to 

choose attributes, which measures a trait's heterogeneity 

with the groups. The Gini index for a given training set T 

may be as follows: selecting just one pixel haphazardly 

and indicating that it relates to a group. 

∑∑(𝑓(𝑐𝑖 , 𝑇)/|𝑇|)(𝑓(𝑐𝑗 , 𝑇)/|𝑇|)

𝑗≠𝑖

 (1) 

where 𝑓(𝑐𝑗 , 𝑇)/|𝑇| is a possibility that the chosen 

instance falls into𝐶𝑖.  Utilizing a mix of traits, a tree is 

developed to the greatest depth on new training data. 

These mature trees are not trimmed. This is one of the 

primary benefits of the random forest categorizer over 

other DT approaches, such as those given by Quinlan [33].  

The performance of tree-based categorizers is 

affected by the pruning methods rather than the attribute 

selection strategies [34]. Breiman  [35] argues that with 

the increase in trees, generalization error converges, and 

overfitting is avoided due to the Strong Law of Large 

Numbers. To construct an RFC, the user needs to define 

two parameters: the count of features per node and the 

count of trees. Each node considers a subset of traits for 

the best split. The classifier consists of N trees where N is 

user-defined. To classify a new instance, each tree selects 

the class with a majority vote.  

2.2 Naive Bayes Classification (NBC) 

The Naïve Bayes Classifier (NBC) used in this study is 

based on the Gaussian variant, which is suitable for 

continuous numerical data. The model assumes that each 

biomechanical feature follows a normal distribution and is 

conditionally independent given the class label. For each 

patient record, the likelihood of belonging to each 

diagnostic class (disc herniation, spondylolisthesis, or 

normal) is computed using the probability density 

function. The class with the highest posterior probability 

is selected as the model's prediction. In the text 

classification issue, a document 𝑐|𝑑 represents a data 

instance, where D is the training document collection. The 

document d can be characterized as a collection of words. 

Each word 𝑤 ∈  𝑐 is derived from a collection W of all 

feature words. Each document 𝑑 is assigned a class label 

(𝑑|𝑐), where C is the class label collection. NBC 

calculates the conditional probability 𝑃(𝑐|𝑑), which is the 

possibility that a document d belongs to a class 𝑐. 

Employing the Bayes rule this is employed to obtain: 

𝑃(𝑐|𝑑) ∝ 𝑃(𝑐). 𝑃(𝑑|𝑐) (2) 

The basic belief of NBC is that the words in the 

documents exhibit conditional independence given the 

class lable, such that: 

𝑃(𝑐|𝑑) ∝ 𝑃(𝑐) ∏𝑃(𝑤|𝑐)

𝑤∈𝑑

 (3) 

A typical method to estimate 𝑃(𝑤|𝑐) is achieved 

using Laplacian smoothing. 

𝑃(𝑤|𝑐) =
1 + 𝑛(𝑤, 𝑐)

|𝑊| + 𝑛(𝑐)
 (4) 

Where 𝑛(𝑤, 𝑐) is the count of word places filled by w 

in all training instances with a class value of c. n(c) is the 

total count of word locations with class value 𝑐. Lastly, 
|𝑊| is the total count of different words in the training set. 

Nigam et al. have suggested many expansions of the NBC. 

[36] mixed the Expectation-Maximization (EM) [37]EM 

is a semi-supervised approach that uses NBC to learn from 

labeled and unlabeled texts. The EM method maximizes 

the probability of data with and without labels—the 

framework (Nigam et al[38]) was utilized by (Rigutini 

[39], and Liu [40]) to address the cross-linguistic text 

classification challenge.   

Liu et al. [41] Spy-EM was offered as a heuristic 

strategy for managing training and test data with 

nonoverlapping class labels. Nonetheless, it assumes that 

the training and test data have the same spread, making it 

unsuitable for the transfer-learning issue. Fig. 1 presents 

the NBC’s flowchart. 
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Figure 1: Flowchart illustrating the structure and decision process of the Naïve Bayes Classifier (NBC), including 

input feature processing, probability estimation, and class assignment based on maximum likelihood.

2.3 GOA 

The GOA theory is introduced in this part, and then a 

mathematical framework for usage in enhancement 

applications follows [42].  

2.3.1 Inspiration for GOA 

 An outdoor sport or activity is played on solo or team 

canvases using specialized clubs. This activity's basic 

ideas sum up its essence: a ball's beautiful journey from its 

starting place to a far-off hole. The game of golf is 

essentially this regulated stroke-based activity guided by 

rules. Beneath its seemingly straightforward exterior, the 

game's intricate rules make it more challenging. To 

complete this mission, you must have the strategic ability 

to direct the golf ball into the hole. This dance 

performance, a showcase of the brain's power, inspired the 

development of a groundbreaking metaheuristic 

framework. This methodology forms the basis for the 

GOA, which seamlessly incorporates its characteristics 

into a methodological framework. This strategic dance 

takes shape in the GOA, with its complicated motions 

defined and its conceptual underpinnings established by 

thorough computational modeling [42]. 

2.3.2 Initialization of GOA 

The population strategy used by GOA solves optimization 

issues by randomly choosing people from the problem-

solving space. Using their GOA membership positions in 

the problem search domain, the problem variables' values 

are ascertained. Eq. (5) explains how a matrix can 

numerically represent a set of GOAs. As with earlier 

metaheuristic techniques, population members are 

uniformly spread over the issue space. At the beginning of 

the framework's implementation, Eq. (6) is used to 

randomly determine the placements of the GOA members 

in the search domain. 

 𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]
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⋮
𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

 (5) 

𝑋𝑖: 𝑥𝑖,𝑑 = 𝑙𝑏,𝑑 + 𝑟 × (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (6) 

Influence from GOA Golf is an outdoor pastime or 

sport played on single or team courses using specialized 

clubs. The basic principles of this activity describe its 

essence: an exquisite journey of a ball from its beginning 

point to a distant hole. This chase, carried out with 

deliberate strokes and constrained by regulations, 

embodies the spirit of golf. Under this relatively simple 

surface, the game's rules include intricacies, resulting in 

greater difficulty. The strategic ability to direct the golf 

ball into the hole is critical to this quest. This 

choreographed dance, a demonstration of brain prowess, 

motivated the creation of a pioneering metaheuristic 

framework. This methodology forms the basis for the 

GOA, which seamlessly incorporates its characteristics 

into a methodological framework. This strategic dance 

takes shape in the GOA, with its intricate motions. 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑥1)

⋮
𝐹(𝑥𝑖)

⋮
𝐹(𝑥𝑁)]

 
 
 
 

 (7) 

𝐹𝑖 is the value obtained using the ith GOA component 

in this case, and 𝐹 represents the vector of function 

objective values. The best member is determined based on 

which member has the highest value for the goal function. 

The most qualified person in the population must be 

updated with the GOA members' placements and the goal 

function's values, which vary with every cycle. 
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2.3.3 Mathematical Model of GOA 

Upon algorithm initialization, the GOA updates the 

population members in two stages: exploration and 

exploitation. 

2.3.3.1. Stage 1: Exploration 

The first swing in a game of golf is done in a portion of 

the playground called the grip. The first swing is when 

golfers attempt to strike the hole with their most decisive 

shot. In GOA, the best member's position is known as the 

hole. This strategy examines many areas of the search 

domain, showcasing the GOA's exploration capabilities in 

a global search. Eqs. (8) and (9) describe the mathematical 

model for updating GOA members utilizing the 

exploration stage. In this approach, each GOA member is 

allocated a new position using Eq. (8) drawing on the 

computer model of the player's best shot to the ball. Then, 

suppose the value of the target function boosts at this 

newly computed location. In that case, it substitutes the 

linked member's previous position, as Eq.  (9) indicates 

that golfers can hit shots that pass or approach the hole. 

Eq. (8) simulates this circumstance by using the parameter 

The ball will approach the hole if cap I. is set to one 

Simultaneously, if the number 𝐼 equals 2, the framework 

has a higher probability of scanning other parts of the 

search area since the possibility of moving the ball grows. 

𝑋𝑖
𝑝1

: 𝑥𝑖,𝑑
𝑝1

+ 𝑟 × (𝐵𝑑 − 𝐼 × 𝑥𝑖,𝑑) (8) 

𝑋𝑖 = {
𝑋𝑖,𝑑

𝑝1
, 𝐹𝑖

𝑝1
< 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒,
 (9) 

Here, 𝑋𝑖
𝑝1

 the updated computed status of the 𝑖𝑡ℎ 

GOA member depends on the exploratory stage. 𝑋𝑖,𝑑
𝑝1

 

displays its 𝑑𝑡ℎ measurement, 𝐹𝑖
𝑝1

 is the intended 

function value, and 𝐵 is the ideal participant 𝐺𝑂𝐴, 𝐵𝑑  is 

its 𝑑𝑡ℎ measurement, 𝑟 is an unexpected value inside an 

interval [0−1], and 𝐼 is a randomized integer produced at 

random from a set {1,2}. 

2.3.3.2. Stage 2: Exploitation 

The portion of the playground with the hole is named 

as the green. In this domain, golfers utilize putts to get 

their balls into the hole. These precise kicks require less 

force to keep the golf ball on the green and in the hole. 

This method scans the territory surrounding each GOA 

member, showing the GOA's potential for exploitation in 

a local search. Eqs. (10) and (11) describe the 

mathematical technique of updating GOA members based 

on the exploitation stage. In this stage of the GOA update, 

each GOA member is assigned a new position using Eq. 

(10), which is based on a mathematical simulation of the 

player's low-power smashes on the ball. As shown in Eq. 

(11), this new location replaces the old placement of the 

relevant component if it raises the value of the target 

function. 

𝑋𝑖
𝑝2

: 𝑥𝑖,𝑑
𝑝2

= 𝑥𝑖,𝑑 + (1

− 2𝑟)

×
𝑙𝑏𝑑 + 𝑟 × (𝑢𝑏𝑑 − 𝑙𝑏𝑑)

𝑡
 

(10) 

𝑋𝑖 = {
𝑋𝑖

𝑝2
, 𝐹𝑖

𝑝2
< 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 (11) 

Here, 𝑋𝑖
𝑝2

 The newly identified condition of the 𝑖𝑡ℎ 

GOA member drawing on the exploitation 

stage, 𝑋𝑖
𝑝2

 displays its 𝑑𝑡ℎ dimension, 𝐹𝑖
𝑝2

 signifies the 

value of the target function, and 𝑡 is the counter for how 

many cycles have occurred. The new solutions should be 

evaluated to see whether they fit within the set of possible 

solutions after each stage of updating the placements of 

the population members. A range of choice variables that 

are allowed is the subject of the first set of restrictions. A 

borderline value is assigned to any option variable whose 

value exceeds either the top or lower band. Eqs. (12) and 

(13) are utilized to verify and, if necessary, resolve the 

upper and lower band constraint for choice variables. 

𝑥𝑖,𝑑
𝑝1

= {

𝑥𝑖,𝑑
𝑝1

, 𝑙𝑏𝑑 ≤ 𝑥𝑖,𝑑
𝑝1

≤ 𝑢𝑏𝑑

𝑢𝑏𝑑 , 𝑥𝑖,𝑑
𝑝1

> 𝑢𝑏𝑑

𝑙𝑏𝑑 , 𝑥𝑖,𝑑
𝑝1

< 𝑙𝑏𝑑

 (12) 

𝑥𝑖,𝑑
𝑝2

= {

𝑥𝑖,𝑑
𝑝2

, 𝑙𝑏𝑑 ≤ 𝑥𝑖,𝑑
𝑝2

≤ 𝑢𝑏𝑑

𝑢𝑏𝑑 , 𝑥𝑖,𝑑
𝑝2

> 𝑢𝑏𝑑

𝑙𝑏𝑑 , 𝑥𝑖,𝑑
𝑝2

< 𝑙𝑏𝑑

 (13) 

The second set of restrictions relates to the 

optimization problem's equal and unequal constraints. The 

penalty factor was employed to resolve these limitations. 

The new solution isn't one of the workable alternatives if 

any of the equal or unequal restrictions aren't satisfied. 

Accordingly, the new answer is deemed improper, and so 

is not eligible to be chosen as the problem's solution by 

appending the penalty coefficient to the target function's 

value. This set of restrictions was checked using Eq. (14). 

𝐹𝑖 = 𝐹𝑖 + 𝑛𝑞 × 𝑃𝐹𝑖 (14) 

Here, 𝑛𝑞 displays the count of restrictions on the issue 

that have not been organized, 𝑃𝐹𝑖 displays the punishment 

factor, which 𝑃𝐹𝑖 = 105 × |𝐹𝑖|. The procedure of the 

GOA has been presented in Fig. 2. 
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Figure 2: Visual representation of the Grasshopper Optimization Algorithm (GOA) procedure, showing the 

initialization of population, exploration and exploitation phases, fitness evaluation, and convergence toward optimal 

model parameters.

2.4 Appraisal metrics 

The accuracy, precision, recall, and F1-score are 

employed to determine the correctness of a model's 

anticipations. Each indicator offers a unique view of the 

framework's performance and contributes to its usefulness 

in various ways. 

• Accuracy assesses a model's performance by 

comparing accuracy to total anticipations. This is a 

proper wrap-up of model performance in all classes. 

Precision reflects how dependable a model is in 

creating positive anticipation. It is usually calculated 

by dividing the count of true positives by the total 

count of favorable anticipations. This metric focuses 

on the correctness of favorable anticipations. It helps 

evaluate a model's ability to reduce false positives. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (15) 

• Precision is a statistical and ML metric that refers to 

the exactitude of the framework's favorable 

anticipations. It tells the ratio of the actual joyous 

anticipations to the sum of all favorable anticipations 

made. It is leveraged to judge a model's performance 

in predicting a class's presence. A high precision 

score infers a low rate of false positives; this means 

that the framework classifies instances of the target 

class. Precision is essential when the expense of a 

false positive is huge and undesirable; for example, in 

medical diagnosis or spam recognition, precision is 

required for positive anticipation. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (16) 

• The recall measure involves the framework's ability 

to determine all the relevant cases. It is measured by 

dividing the count of true positive anticipations by the 

total count of positive occurrences. It gives the 

accuracy of the positive occurrences and helps 

evaluate the framework's capacity to prevent false 

negatives.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (17) 

• The F1 score integrates accuracy and recall to provide 

a single value. It provides a balanced assessment of 

both accuracy and recall, which is especially useful 

when the class distribution is skewed. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (18) 

The TP represents a positive anticipation related to the 

lucky occurrence in the following equations. When a 

scenario has a negative outcome, the FP represents a 

positive anticipation. A negative forecasting utilizing TN 

predicts an outcome similar to the negative one. The FN 

indication represents a bleak prognosis when the actual 

result is favorable. 

2.5 Hyperparameter tuning 

Hyperparameters for the Random Forest Classifier (RFC), 

such as the number of trees (n_estimators), maximum tree 

depth (max_depth), and minimum samples per leaf, were 

optimized using a grid search strategy over a constrained 

range. The final selected values were: n_estimators = 100, 

max_depth = 10, and min_samples_leaf = 2, determined 

based on 5-fold cross-validation performance. For the 

Naïve Bayes Classifier (NBC), Laplace smoothing was 

applied with the smoothing parameter (alpha) evaluated in 

the range of 0.5 to 1.5. The optimal value alpha = 1.0 was 

selected based on F1-score stability across folds. The 

Grasshopper Optimization Algorithm (GOA) was tuned 

empirically. Key parameters included a population size of 

50, maximum iterations of 100, and a convergence 
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coefficient (c) linearly decreasing from 1 to 0.00004. 

These values were chosen after iterative experimentation 

to balance convergence speed and computational cost 

while ensuring robust optimization. 

2.6 Computational complexity and 

efficiency 

To evaluate the practical feasibility of the proposed 

models, the computational cost was assessed in terms of 

training time and resource utilization. All modeling and 

evaluation tasks were executed on a desktop system 

equipped with a 13th Gen Intel® Core™ i5-13420H 

processor (2.10 GHz) and 16 GB of RAM, running a 64-

bit Windows 11 operating system. Training times varied 

across models due to their differing algorithmic 

complexity: 

• NBC demonstrated the fastest training time, 

completing in approximately 1.2 seconds on the 

full dataset. As a probabilistic classifier with 

linear time complexity O (n⋅m), where nnn is the 

number of samples and mmm is the number of 

features, NBC is computationally lightweight 

and suitable for real-time applications. 

•  RFC, due to its ensemble structure and decision 

tree construction, required more processing time. 

The model training took approximately 6.8 

seconds, depending on the number of estimators 

and tree depth. With a complexity of 

approximately O(t O (t⋅n⋅logn), where ttt is the 

number of trees, RFC remains efficient on 

moderate datasets like the one used in this study. 

• The hybrid models (NBC-GOA and RFC-GOA) 

incurred higher computational costs due to the 

GOA, which introduces an iterative 

metaheuristic process for hyperparameter tuning. 

Each hybrid model underwent 100 optimization 

iterations with a population size of 50. The total 

training time for NBC-GOA was approximately 

58 seconds, while RFC-GOA required 108 

seconds due to the additional computational 

overhead of evaluating multiple tree-based 

models per iteration. 

Despite the increased cost, the hybrid models delivered 

superior classification performance, justifying the 

additional processing time in contexts where predictive 

accuracy is prioritized over real-time responsiveness. 

Resource usage remained within acceptable limits, with 

RAM utilization not exceeding 8 GB during any modeling 

phase. 

Compared to traditional grid search, the use of GOA 

for hyperparameter tuning resulted in increased training 

time. For instance, grid search required approximately 14 

seconds for RFC and 5 seconds for NBC, while the GOA-

enhanced versions (RFGO and NBGO) required 108 

seconds and 58 seconds, respectively. This increase is 

attributed to the iterative nature of GOA, which involves 

evaluating numerous candidate solutions over 100 cycles. 

Despite this overhead, the substantial gains in prediction 

performance justify the additional computational expense 

in non-real-time, high-accuracy applications. 

3 Data collection 

3.1 Information of database 

Dr. Henrique da Mota established a biomedical data-

gathering system during his medical residency at the 

Group of Applied Research in Orthopaedics (GARO) at 

the Centre Médico-Chirurgical de Réadaptation des 

Massues in Lyon, France. The database comprises 310 

patients sorted into three groups: 100 with normal 

findings, 60 diagnosed with disc hernia, and 150 

diagnosed with spondylolisthesis. The dataset was 

partitioned into training (70%) and testing (30%) subsets 

using stratified sampling to maintain class distribution. 

Furthermore, 5-fold cross-validation was applied during 

training to evaluate the models' generalization 

performance and reduce overfitting. 

All six biomechanical features were included in the 

classification models without prior feature selection to 

preserve the complete clinical information. After model 

training, SHAP analysis was conducted to evaluate feature 

importance and interpret the influence of each feature on 

the model’s predictions. 

3.2 Information of attribute 

Fig. 3 visualizes the six biomechanical characteristics 

used to represent each patient in the database extracted 

from the shape and orientation of the pelvis and lumbar 

spine (in this order): pelvic incidence, pelvic tilt, lumbar 

lordosis angle, sacral slope, pelvic radius, and 

spondylolisthesis severity. The class designations are as 

follows disc hernia (DH), spondylolisthesis (SL), and 

normal (NO). Fig. 3 signifies the statical community of 

each of the 6 biochemical parameters.  
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Figure 3: Applying a histogram plot to analyze the interdependencies between input and output variables 
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3.3   Data preprocessing and feature 

engineering 

To ensure consistency and enhance model performance, 

all patient records underwent structured data 

preprocessing and feature engineering before being used 

in model training. The dataset comprised six continuous 

biomechanical features: pelvic incidence, pelvic tilt, 

lumbar lordosis angle, sacral slope, pelvic radius, and 

spondylolisthesis severity. No categorical variables or 

missing values were present in the dataset, which 

eliminated the need for imputation or encoding. All 

continuous features were standardized using z-score 

normalization, a critical step that ensures comparability 

across features and stabilizes training for machine learning 

models. This method transforms each feature to have a 

mean of zero and a standard deviation of one. 

Standardization was particularly important for models 

such as the Naïve Bayes Classifier (NBC), which assumes 

features are normally distributed, and for Random Forest 

Classifiers (RFC), which, while less sensitive to scaling, 

benefit from balanced feature distributions in certain 

splitting criteria. 

4 Results and discussion 
This article endeavors to attain precise anticipation of disc 

herniation by developing innovative hybrid models. These 

models amalgamate the foundational RFC and NBC 

models with the employed optimizer-denominated GOA. 

Following this, a comprehensive demonstration of the 

performance of these newly devised hybrid models is 

presented. 

4.1 Convergence curve 

The convergence curve of hybrid models essentially 

displays the performance anticipation of the framework. It 

displays a consistent drop in the loss function of the 

framework during training, reflecting an improvement in 

the accuracy of the anticipation across cycles. A 

consistently dropping convergence curve reflects good 

learning with the best fit of the framework. Fast 

convergence means efficient convergence to a solution, 

while erratic or slow convergence may indicate model 

instability or lousy performance. Monitoring the 

convergence curve thus allows real-time assessment that 

assists practitioners in determining the usefulness and 

trustworthiness of hybrid models, which is critical for 

informed decision-making in various applications, 

including healthcare diagnostics and financial 

anticipations. 

The convergence curve shown in Fig. 4 displays the 

progress of accuracy improvement of the RFGO and 

NBGO models. The NBGO model starts with an accuracy 

of 0.55 in the first cycle, reaches 0.80 in the 40th cycle, 

and attains its best performance in the 100th cycle with an 

accuracy of 0.88. By contrast, the RFGO model starts with 

an initial accuracy of 0.75, improves to 0.85 at the 80th 

cycle, and reaches its best performance at the 100th cycle 

with an accuracy of 0.95. 

 

Figure 4: Graphing the convergence curve for hybrid models 

4.2 Models comparison 

The performance of hybrid models is systematically 

compared in Table 2 across distinct stages, including 

Train, Test, and the comprehensive All stages. Notably, in 

the Train stage, the RFC model demonstrates superior  

 

accuracy at 0.954, surpassing both the NBC and NBGO 

models with accuracy values of 0.870 and 0.875. 

Conversely, the RFGO model exhibits the highest 

accuracy at 0.968, establishing itself as the most proficient 

predictor. In the Test stage, the NBC model lags with a 

precision value of 0.844, while the NBGO model follows 
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with a precision value 0.904. In contrast, RFC, with a 

precision value of 0.914, displays moderate performance, 

whereas the RFGO model excels with a precision value of 

0.932. Indeed, these comparisons starkly reveal the 

inferior performance of the NBC model and its hybrid 

counterpart compared to the RFC model and its hybrid 

cycle. Nonetheless, an examination of the results across all 

stages indicates that the recall values of the NBC and 

NBGO models, standing at 0.865 and 0.884, respectively, 

represent the lowest values when contrasted with the RFC 

and RFGO models boasting recall values of 0.942 and 

0.955, respectively. Furthermore, the NBC and NBGO 

models exhibit the lowest F1-score values, with 0.862 and 

0.883, underscoring their incapacity to emerge as optimal 

models. In contrast, the RFC model attains an F1-score 

value of 0.942, while the RFGO model excels with a value 

of 0.955. 

To confirm the statistical significance of performance 

differences, paired t-tests were conducted on the cross-

validation accuracy scores of each model. The RFC model 

significantly outperformed the NBC model (p < 0.01), and 

the RFGO model similarly outperformed the NBGO 

model (p < 0.01). These results validate the observed 

improvements and support the superiority of ensemble-

based approaches with metaheuristic optimization. 

Cohen’s Kappa was calculated based on the confusion 

matrices of each model on the test set, providing a measure 

of classification agreement beyond chance. Values above 

0.80 are considered strong; those above 0.90 are near-

perfect.

Table 2: The presentation of the outcomes of both the single and hybrid models 

Section Model 
Metric 

Accuracy Precision Recall F1 _Score Cohen’s Kappa 

Train 

RFC 0.954 0.954 0.954 0.954 0.89 

RFGO 0.968 0.968 0.968 0.968 0.93 

NBC 0.870 0.870 0.870 0.868 0.76 

NBGO 0.875 0.874 0.875 0.874 0.78 

Test 

RFC 0.915 0.914 0.915 0.914 0.85 

RFGO 0.926 0.932 0.926 0.925 0.91 

NBC 0.851 0.844 0.851 0.845 0.71 

NBGO 0.904 0.904 0.903 0.903 0.76 

All 

RFC 0.942 0.942 0.942 0.942 0.87 

RFGO 0.955 0.956 0.955 0.955 0.91 

NBC 0.865 0.863 0.865 0.862 0.73 

NBGO 0.884 0.882 0.884 0.883 0.75 

The generation of a contour plot depicted in Fig. 5 

serves to elucidate the mean performance of the most 

exemplary models across the entirety of the database (All), 

the training stage (Train), and the testing stage (Test). It is 

noteworthy that the RFGO model, in contrast to its 

counterparts, manifests its least mean performance in the 

Test stage, recording a value of 0.9268 according to the 

recall metric. In subsequent evaluations, the RFGO model 

achieves a mean value of 0.9525 in the All stage, 

showcasing a robust performance, while in the Train 

stage, it exhibits its zenith with a mean value of 0.9641. 

Conversely, the RFC model presents a mean value of 

0.9395 in the All stage, indicating a relatively inferior 

performance when juxtaposed with the RFGO model. 

Additionally, the RFC model consistently falls behind in 

both the Test and Train stages, registering mean values of 

0.9142 and 0.9504, respectively. 
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Figure 5: Contour plot visualizing the mean performance scores (accuracy, precision, recall, and F1-score) of each 

model (RFC, NBC, RFGO, NBGO) across the training, testing, and overall stages. Darker shades indicate higher 

metric values, emphasizing the superior performance of the RFGO model. 

The performance evaluation of hybrid models is 

conducted across three distinct conditions denoted as DH, 

N, and SL in Table 3. For instance, under the disc 

herniation (DH) condition, the RFC model achieves a 

higher precision of 0.929 compared to 0.914 for the RFGO 

model. However, the RFGO model compensates with 

significantly higher recall (0.960 vs. 0.910) and F1-score 

(0.937 vs. 0.919), indicating a better balance between 

sensitivity and precision in this diagnostic class. 

Conversely, in the DH condition, the NBC model 

outperforms the NBGO model, presenting precision 

values of 0.851 and 0.816, respectively. In the N 

condition, relatively weaker precision values are ascribed 

to the NBC (0.726), NBGO (0.782), and RFC (0.883) 

models, while the RFGO model excels with a precision 

value of 0.964, thereby underscoring its superior 

predictive capacity. Nevertheless, the NBC model 

demonstrates the highest recall value of 0.993 under the 

SL condition, ranking first in this stage. Subsequently, the 

RFC model secures the second position with a recall value 

of 0.987, while the RFGO and NBGO models share the 

third position, both achieving a recall value of 0.980. 

Regarding F1-score values, both RFC and RFGO models 

exhibit a performance of 0.980 under the SL condition, 

marking the optimal performance. This contrasts with the 

F1-score values of the NBC model at 0.958 and the NBGO 

model at 0.974 under the same condition. 

Table 3: Achieved result of the frameworks through the three presented conditions 

Metric Condition 
Model 

RFC RFGO NBC NBGO 

Precision 

DH 0.929 0.914 0.851 0.816 

N 0.883 0.964 0.726 0.782 

SL 0.974 0.980 0.926 0.967 

Recall 

DH 0.910 0.960 0.740 0.840 

N 0.883 0.883 0.750 0.717 

SL 0.987 0.980 0.993 0.980 

F1-score 

DH 0.919 0.937 0.791 0.828 

N 0.883 0.922 0.738 0.748 

SL 0.980 0.980 0.958 0.974 

The performance of RFC and NBC models is depicted 

in Fig. 6 based on the measured values for each condition. 

For example, under the DH condition, a measured value 

of 91 out of 100 is attained by the RFC model, showcasing 

superior performance compared to the NBC model, which 

is recorded with 74 out of 100. In the N condition, the RFC 

model achieves the highest value, securing 53 out of 60, 

in contrast to the NBC model's attainment of 45 out of 60. 

Lastly, under the SL condition, better performance is 

demonstrated by the NBC model, recording 149 out of 150 

measured values, compared to the RFC model's recording 

of 148 out of 150. 
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Figure 6: Employing a line-symbol plot for the correlation of the measured and predicted values. 

By attributing RFC and its hybrid variant as the 

exemplary models, the ensuing column plot in Fig. 7 

delineates their respective performances based on 

measured values in DH, SL, and N conditions. For 

instance, beneath the DH condition, the RFGO model, 

securing a measured value of 96 out of 100, surpasses the 

RFC model, documented at 91 out of 100. These models 

exhibit commensurate performance, both recording 53 out 

of 60 measured values under the N condition. 

Nevertheless, in the SL condition, the RFC model, 

attaining a measured value of 148 out of 150, manifests 

superior performance in comparison to the RFGO model, 

which achieves 147 out of 150 measured values. 

 

Figure 7: Column plot comparing the number of correctly predicted cases by RFC and RFGO models under three 

diagnostic conditions: disc herniation (DH), normal (N), and spondylolisthesis (SL). The figure highlights the 

marginal improvement in prediction accuracy achieved by the hybrid RFGO model. 

The subsequent confusion matrix presented in Fig. 8 

elucidates the accuracy of RFC and RFGO models' 

performance, detailing the count of missorted patients 

across distinct conditions. For instance, the RFC model, 

attaining 91% accuracy under the DH condition, is 

associated with the misclassification of 6 patients in the N 

condition and three in the SL condition. This model 

correctly classifies the subjects with an accuracy of 

88.33% in the N condition but misclassifies six patients in 

the DH condition and only one in the SL condition. 

Finally, the RFC model achieves an accuracy of 98.66% 

under the SL condition, misclassifying one patient in the 

N condition and 1 in the DH condition. 

On the contrary, in the DH condition, the RFGO 

model gives an accuracy of 96%, misclassifying two 

patients in SL and 2 in N conditions. In the N condition, 

this model yields an accuracy of 88.33% while 

misclassifying one patient in SL and six patients in DH 

conditions. Finally, under the SL condition, this model 

achieves an accuracy of 98%, yet it misclassifies 3 patients 

in the DH condition. 
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Figure 8: Utilizing a confusion matrix to assess the accuracy of each model. 

The ROC curve visually compares the actual positive 

rate (TPR) against the false positive rate (FPR) at diverse 

cutoff degrees. Furthermore, it depicts statistical power 

against the Type I Error of the decision rule, similar to 

estimators produced from a population sample. The curve 

primarily depicts sensitivity (recall) about the false 

positive rate. When the probability spread for true and 

false positives is known, the ROC curve is calculated 

using the cumulative distribution functions (CDFs) of the 

detection probability on the y-axis and the false positive 

probability on the x-axis. It represents the region under the 

probability distribution from negative infinity to the 

discriminating threshold. ROC analysis provides a 

framework for identifying optimum models while 

dismissing subpar ones, regardless of cost context or class 

distribution. It makes a clear and logical link to cost-

benefit analysis in the diagnostic arena. 

By designating RFGO as the optimal model, its 

performance is depicted under DH, N, and SL conditions 

in Fig. 9. As observed, the framework demonstrates its 

peak performance under the SL condition. The SL 

conditions vector notably ascends with the highest slope, 

attaining a TPR of 0.85 within an FPR increment of 

approximately 0.1, eventually reaching a TPR of 1.0 at an 

FPR increase of 0.2. This conditions vector surpasses both 

micro and macro averages. Subsequently, the N conditions 

vector exhibits a moderate slope, ascending from 0.0 TPR 

and FPR grades to a TPR of 1.0 before an FPR increase of 

0.2. Notably, this condition vector surpasses both micro 

and macro averages. Conversely, the RFGO model 

exhibits suboptimal performance under the DH condition. 

This conditions vector falls below the micro and macro 

averages and attains a TPR of 1.0 at an FPR increase of 

0.8. 

 

Figure 9: ROC curve for the performance of the most effective hybrid models 
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4.3 Attributes analysis 

To facilitate interpretability and to estimate the 

contribution of each biomechanical feature to model 

prediction, SHAP (SHapley Additive exPlanations) 

analysis was carried out for the top-performing model 

(RFC-GOA). The values derived from SHAP are an 

aggregated way to compute feature influence, quantifying 

the contribution of each input feature to the model's 

prediction for a specific output class. The relative 

contribution of each feature for every sample within the 

dataset is shown through the SHAP summary plot (Fig. 

10). The most significant features according to SHAP 

outcomes for prediction of disc herniation and 

spondylolisthesis were pelvic tilt, angle of lumbar 

lordosis, and pelvic incidence, which match well 

established clinical and biomechanical correlations. These 

outcomes support the clinical utility of the features 

selected and enhance the model's interpretability for use in 

clinical decision-making environments. Following is a 

clinical interpretation of the leading SHAP-ranked 

features, coupled with domain knowledge: 

• Pelvic Incidence (PI) and spond: PI defines the 

anatomical relationship between the sacrum and 

pelvis. SHAP measures reflected that increased PI 

was significantly correlated with the increased risk 

for spondylolisthesis, as consistent with its role to 

facilitate instability within the spine through 

disturbed distribution of loads between the vertebrae. 

• Pelvic Tilt and Spondyl: SHAP analysis verified that 

excess pelvic tilt was a major contributor to 

spondylolisthesis predictions. This verifies the 

previous biomechanical research demonstrating that 

abnormal angles of tilting change the curvature of the 

spine and can magnify anterior vertebral 

displacements. 

• Lumbar lordosis angle and disc herniation: An 

abnormally curved (lordosis) lumbar region is 

connected with disc deformation. SHAP values 

identified that this condition significantly contributed 

to disc herniation predictions. Increased or reduced 

lordosis can impact intradiscal pressure, causing 

bulging or rupture of the disc. 

• Pelvic Tilt and Disc Herniation: These pelvic tilt 

changes were found to be predictive for disc 

herniation, as excess anterior or posterior pelvic tilt 

displaces biomechanical loads onto intervertebral 

discs. SHAP scores validated this association, 

focusing on pelvic tilt as an important modifiable risk 

factor. 

• Pelvic Radius and Sacral Slope: These features 

ranked below others based on their relative SHAP 

values, but contributed moderately to model 

predictions and might contribute to supporting roles 

in pathology and spinal alignment.  

The interpretability analysis using SHAP establishes 

that the model is based on clinically relevant features, 

making it more trustworthy and usable for incorporation 

into clinical workflows. 

 

Figure 10: The bar plot for the result of the SHAP sensitivity analysis of the best-performed model 

4.4 Comparison with existing works 

This study introduces a hybrid machine learning approach 

for disc herniation prediction, leveraging biomechanical 

features and optimizing model performance through the 

Grasshopper Optimization Algorithm (GOA). The 

proposed RFC-GOA model achieved an accuracy, 

precision, recall, and F1-score of 95.5%, outperforming 

both baseline models and comparable approaches in the 

literature. As shown in Table 1, the RFC-GOA model 

significantly surpasses traditional statistical and machine 

learning techniques. For example, Harada et al. (2021) 

applied logistic regression to clinical features from 600 

patient records, achieving 81.2% accuracy. Salehi et al. 

(2019) used MRI-based features with a Support Vector 

Machine (SVM), reaching 86.4% accuracy. Although 

Chen et al. (2023) employed deep learning on a larger 
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dataset (1,316 patients) and reported 90.1% accuracy, the 

RFC-GOA approach demonstrated higher accuracy using 

a substantially smaller dataset of 310 patients. Ren et al. 

(2024) reported an 88.1% accuracy using a Random Forest 

model on 1,000 samples. The improved performance 

observed in the present study is attributed to the 

integration of GOA, which enabled more effective tuning 

of hyperparameters such as tree depth and the number of 

estimators. Compared to the NBC-GOA model (88.4% 

accuracy), the RFC-GOA model performed notably better, 

likely due to RFC's capability to model complex, non-

linear interactions among correlated biomechanical 

features—something NBC, with its assumption of feature 

independence, is less suited for. 

Despite these promising results, several limitations 

must be acknowledged. The dataset size (310 patients) 

remains relatively small, which may restrict 

generalizability. Although stratified sampling and 10-fold 

cross-validation were employed to ensure internal 

consistency and robustness, the absence of external 

validation on an independent dataset limits the 

conclusions that can be drawn regarding model 

deployment in broader clinical settings. Additionally, the 

application of GOA introduces greater computational 

demands, which may present challenges for real-time 

implementation in clinical environments with limited 

processing resources. Future research should consider 

testing the model on larger, multi-center datasets and 

exploring dimensionality reduction methods to maintain 

accuracy while reducing computational load. 

4.5 Clinical integration and application 

While the current study demonstrates strong predictive 

performance of the proposed models in a controlled 

experimental setting, real-world clinical validation 

remains a necessary next step to establish practical utility. 

For successful integration into clinical workflows, several 

factors must be considered: usability, data 

interoperability, model interpretability, and compliance 

with healthcare regulations. The trained RFC-GOA model 

can be integrated into clinical decision support systems 

(CDSS) as a backend module embedded within electronic 

health record (EHR) platforms. Upon patient intake, 

relevant biomechanical parameters such as pelvic tilt, 

pelvic incidence, and lumbar lordosis angle can be 

automatically extracted from diagnostic imaging systems 

or manually entered by clinicians. The model can then 

output a probability score indicating the likelihood of disc 

herniation or spondylolisthesis, supporting early diagnosis 

or risk stratification. To facilitate clinical adoption, the 

following steps are proposed: 

• External Validation: Future research will involve 

validating the model on multi-center datasets with 

diverse populations to assess generalizability across 

different clinical settings. 

• User Interface Development: A simple dashboard or 

plugin could be developed for real-time prediction 

and visualization of SHAP-based feature attributions, 

enhancing trust and interpretability for clinicians. 

• Integration with EHRs: APIs (application 

programming interfaces) can be designed to pull 

relevant features directly from patient records and 

imaging systems, streamlining data flow. 

• Clinical Workflow Simulation: Simulated 

deployments can be used to evaluate turnaround time, 

physician interaction patterns, and the model’s 

influence on clinical decisions. 

Furthermore, the inclusion of interpretable outputs 

such as SHAP visualizations helps ensure that physicians 

can understand the rationale behind predictions, which is 

essential for regulatory approval and clinical acceptance. 

Overall, the proposed model holds promise for integration 

into pre-diagnosis screening tools and risk assessment 

frameworks in orthopedic and neurology clinics. 

5 Conclusions 
ML approaches have been applied to anticipate disc 

herniation, focusing on the frameworks based on RFC and 

NBC coupled with the GOA. The present study presents 

model selection and optimization tactics for improving the 

anticipation accuracy for medical diagnosis. A blend of 

these models with the GOA resulted in innovative hybrid 

models, showing the strengths of each of the components. 

Among the different results, one can notice the big 

difference in performance between the RFC model and its 

hybrid counterpart compared to the NBC model and its 

hybrid form. The RFC and RFGO models achieved higher 

accuracy during the training stage, with a rate of 0.954 and 

0.968, respectively. Conversely, the NBC and NBGO 

models reached an accuracy rate of only 0.870 and 0.875, 

respectively. The vast difference reflects the efficiency of 

the RFC model and its hybrid model in correctly 

predicting Disc Herniation. Therefore, this poor 

performance of the NBC model means it is inefficient for 

the chosen medical diagnosis task. 

These results stressed how proper algorithm selection, 

together with optimization strategy, becomes a key 

ingredient for healthcare applications in the task of 

constructing effective anticipation models. The work 

contributes to understanding disc herniation anticipations 

anew. It underlines careful model selection and 

optimization to deliver ML's full promise for diagnosing 

medical conditions. New technological advances may 

continue to allow novel modifications in model design and 

optimization methodologies to result in more precise and 

trustworthy forecasts in healthcare. At the final stage, this 

work will require validation from external independent 

databases. The frameworks must be applied to databases 

other than those used for training, establishing their 

generalizability and reliability on wide-ranging patient 

populations. The lack of external validation raises 

concerns about the real-world performance and 

applicability of the suggested models outside the 

constraints of the training data. 

While this study provides several valuable insights 

into the application of machine learning for disc herniation 

prediction, it is important to acknowledge its limitations. 

One key limitation is the focus on only two algorithmic 

families (RFC and NBC), which may not capture the full 
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range of potential model performance. Future studies 

should expand this scope to include deep learning, 

ensemble boosting methods, and other probabilistic or 

hybrid approaches. Additionally, although this study 

emphasized model interpretability using SHAP analysis, 

external validation on independent datasets remains a 

critical next step to confirm the generalizability of the 

proposed models. Applying the frameworks to different 

patient populations and clinical settings is essential for 

establishing real-world reliability. Regarding the broader 

literature, several common shortcomings persist, 

including limited transparency in dataset descriptions, 

minimal discussion of interpretability in many ML 

frameworks, and the frequent absence of external 

validation protocols. These gaps underscore the need for 

more rigorous, clinically aligned machine learning 

research in spinal diagnostics. 
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