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Wireless Sensor Networks (WSNs) localization is crucial for identifying the position of sensor nodes, as 

many applications, including environmental monitoring, target tracking, and disaster management, 

require accurate location information. The objective of this research is to conduct extensive data analytics 

using visualization techniques to explore key factors influencing localization error and to develop machine 

learning models for forecasting Average Localization Error (ALE) in WSNs. A dataset containing 107 

records, sourced from Kaggle’s online repository, was analyzed using eXtreme Gradient Boosting (XGB) 

for feature ranking to determine the most influential factors affecting ALE. Multiple regression models, 

including Support Vector Regression (SVR), Decision Tree (DT), K-Nearest Neighbors (KNN), and 

AdaBoost Regressor, were applied to predict ALE. The models were evaluated using R-squared (R²), Root 

Mean Square Error (RMSE), and computational efficiency. The results indicate that SVR achieved the 

highest accuracy with R² = 0.99 and the lowest RMSE of 0.01, significantly outperforming the other 

models (KNN: R² = 0.55, RMSE = 0.14; DT: R² = 0.41, RMSE = 0.16; AdaBoost: R² = 0.72, RMSE = 

0.16). This study demonstrates that SVR is a highly effective model for ALE prediction, reinforcing the 

importance of feature ranking and selection in improving localization accuracy. The findings contribute 

to advancing machine learning-driven localization error prediction in WSNs and provide a foundation 

for further exploration of hybrid and deep learning-based models. 

Povzetek: Predstavljen je SVR-model za napoved lokalizacijske napake v brezžičnih senzorskih omrežjih. 

Kvalitetno delovanje doseže z uporabo rangiranja značilk in XGB analize. 

 

1 Introduction 
Localization turns out to be an important process in 
Wireless Sensor Networks (WSN) since it aids in the 
identification of geographic locations of the sensor nodes 
which are of paramount importance in most applications 
ranging from environmental monitoring to tracking of 
targets to disaster management. In this way, accurate 
localization is important for meaningful data collection 
because it links measurements with certain locations. Due 
to these limitations of WSNs, particularly energy, 
processing power and coverage area, accurate and efficient 
localization algorithms are highly desirable [1]. Most of 
these techniques involve using anchor nodes with known 
coordinates, distance between different nodes and other 
optimizing algorithms that allows an approximate 
estimation of the non-anchor nodes without much error [2]. 

The Average Localization Error (ALE) is known to be a 

primary measure to assess the efficiency of localization 

algorithms. It looks at the difference between the expected 

position and the actual position of the sensor nodes and 

makes conclusions on the efficiency of the localization 

procedure [3]. These significant factors affect ALE in  

 

 

WSNs including density of anchor nodes, node mobility, 

environmental condition, and the measurement techniques 

that are used. The number, distribution and density of 

anchor nodes have been shown to play a very important 

role in the accuracy of localization. The number of anchor 

nodes should be small to reduce the burden for the search 

algorithm; however, this results in a larger ALE because 

there are few references points [4]. The high mobility 

introduces dynamic changes where most of the nodes’ 

positions undergo other changes which increases the 

localization error [5].  

 

 

Figure 1: Localization sensor network [7] 
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Environmental conditions are indexes such as signal 

attenuation, multipath propagation or obstacles that distort 

distance or angle measures, and, thus, increase ALE [6]. 

About the measurement techniques like RSSD, TOA and 

AOA [7] are fundamentally different in terms of their 

accuracy and tolerance to noise in present network 

environment. Fig 1 shows the localization sensor networks 

are composed of active sensor nodes receiving the target’s 

radio at current time step, with target’s position at specific 

prediction time step. 

ALE reduction provided by localization methods allow for 

correct positioning of sensors improving various 

applications, on environmental monitoring, targeting, and 

smart agriculture. In addition, network-based sensitive 

services [8] and efficient localization algorithms 

contribute significantly to the enhancement of network 

resource utilization sometimes shown from the energy 

consumed in the WSN hence enhancing the overall 

performance of WSNs in remote areas or in regions of 

resource constraint will be significantly influenced. Since 

WSNs are being used for critical applications there is more 

emphasis on getting the localization right for the best 

results for the network and to improve its performance. 

The ALE Analysis is very significant as it has various 

applications, including  

a) Disaster Management: Correct node localization also 

allows for effective organization of the necessary 

resources in the disaster area [9].  

b) Smart Agriculture: Accurate location of sensors 

increases the efficiency of environmental condition 

monitoring and balancing workload [10][11]. 

c) Military Surveillance: Accurate positioning is vital for 

tracking and monitoring critical defense applications [12].  

As a result of its widespread use in WSNs, there are 

diverse methods which can be employed to reduce ALE 

such as optimization, hybridization of WSN localization 

and machine learning mechanism. The algorithms such as 

Particle Swarm Optimization (PSO) and Genetic 

Algorithms (GA) do the optimization of the anchor node 

placement and reduce the error propagation as mentioned 

above [12]. Secondly, hybrid localization techniques are 

used to improve the accuracy of range-based and range-

free methods while at the same time being scalable [13]. 

Furthermore, current ML based approaches of supervised 

and unsupervised learning enhance the localization 

estimate while learning patterns in the network data [14]. 

This calls for the need to increase accuracy in localization 

in WSN, which is the motivation for this research given 

the various applications of WSN in many different and 

complex environments. Since WSNs are used in disaster 

relief, military, and environmental monitoring, the 

localization is significant for decision making and 

resource control. The increase of the WSN systems’ 

dynamic node behavior, different environmental 

conditions, and huge number of nodes increases demand 

for using more sophisticated algorithm that provide 

minimize ALE demand using energy consumption rules 

[15]. Machine learning and optimization approaches 

present potential solutions that are flexible and able to be 

constrained by the available data in real-time application 

that have better accuracy compared with conventional 

methods.

 
Figure 2: Steps of applied research methodology

In this research study, we plan to achieve the aim of 
predicting the Average Localization Error (ALE) through 
a big dataset collected from online repositories where all 
the possible network parameters affecting localization 
accuracy are incorporated including anchor ratio, iteration, 
transmission range and node density. The dataset used is 
then pre-processed for performing feature ranking and their 
importance analysis using the ensemble-based regressor 
model XGB before proceeding to determine parameters 
influencing the ALE. Subsequently, we build four 
regression models such as Support Vector Regression 
(SVR), Decision Tree Regressor (DT), K-Nearest 
Neighbor Regressor (KNN), and AdaBoost Regressor to 
predict ALE using ranked features. The accuracy of these 
models is determined by R-squared, and Root Mean Square 
Error (RMSE) from which it emerged that. Besides, the 
time taken in performing calculations is captured for each 

of them to determine their time efficiency in carrying out 
real-time analyses. This kind of approach, describes using 
fig 2, brings about comprehensive evaluation of ALE 
prediction, aside from the overall efficiency of the models 

2 Related work 
There has been various types of localization methods 

that have been proposed to enhance the various challenges 
that have developed over the years such as the energy 
problems, accuracy and scalability. The existing studies 
can further be categorised into below different categories, 
as shown in fig 3, describing: Range-based localization 
utilizes received signal strength indication, direction, 
angle, time-of-arrival, time-difference-of-arrival, and 
signal strength to estimate a node position. Some of the 
commonly used techniques include; a) time of arrival b) 



Machine Learning-based Regression Analysis and Feature Ranking… Informatica 49 (2025) 27–40 29 

received strength indicator. Time of Arrival is a technique 
that determines the time that takes for signal to be received 
between a transmitter and a receiver. This method is very 

accurate, but may be tricky because the timings of these 
procedures should be synchronized; not a simple feat in 
WSNs [16]. 

 
Figure 3: Taxonomy of localization studies

The Received Signal Strength Indicator (RSSI) uses signal 

strength signal strength to determine distance with 

reference to attenuation. While it is power saving and 

simple to set up, it is vulnerable to environment for 

example barriers and intensifications [17]. Angle of 

Arrival helps in deciding as to what direction, a signal 

reaches a particular node. It is effective in reducing 

localization error but the complication of the method 

demands complex hardware such as antenna arrays 

leading to high costs [18]. 

The range-free techniques do not make use of distance or 

angle estimation, which makes them ideal for low-cost 

large-scale deployment. There are main methods which 

include centroid localization, DV-Hop algorithm and 

Approximate Point in Triangle (APIT) [19]. Centroid 

localization technique involves using the centroid of 

anchor nodes within the communication range as a basis 

of estimating unknown node’s position. Even though this 

method is simpler and computationally less demanding, it 

proved less accurate in sparse networks [20]. DV-Hop is a 

distributed method used in estimating node positions 

through hop counts of neighboring nodes and the average 

hop distance. It is accurate to measure occurrences of 

transmission but is not directly scalable to networks of 

irregular topologies [21].  

By employing anchor nodes and triangulating the network 

area, a node’s position is derived by its membership to 

particular triangular regions. While it works well in some 

situations, the rate at which it achieves its goal declines in 

networks which involve node mobility [22].  Hybrid 

localization is a process of combining both range-based 

and range-free methods their strengths while avoiding the 

weaknesses associated with each type. For example, in the 

Hybrid TOA-DV-Hop method where the TOA provides 

accurate distance resolution while the DV-Hop, although 

less accurate due to its low complexity is scalable [23]. 

Likewise, machine learning based hybrid methods like 

Artificial Neutral network and support vector machine can 

also deal with NLOS issues and environmental 

fluctuations [24].  Such use of ML techniques as deep 

learning allows nodes to improve estimations of location 

based on past data and environment [25]. In particular, 

algorithms such as particle swarm optimization and ant 

colony optimization originating from Swarm Intelligence, 

biological systems, effectively place anchors and localize 

nodes [26]. The IoT Integration techniques with 5G 

includes Integration of WSNs with 5G & IoT technologies 

enable ultra-reliable, low-latency localization which 

creates new opportunities of application like autonomous 

vehicle and smart city etc. [27]. 

The localization capabilities of WSNs have been 

improved greatly by integrating machine learning (ML) 

into WSNs by overcoming the issues of NLOS situations, 

environmental noise, and energy use [28]. Based on the 

above, self learning algorithms help WSN nodes forecast 

and respond to changes in the surroundings and enhance 

the degree of localization accuracy [29]. Supervised 

learning models of the localization algorithms cost more 

as they need labeled data to operate from. Some of the 

common used algorithms in WSN localization include; 

Support Vector Machines (SVM) and Neural Network 

(NN). SVMs are use in localization classification and 

regression. They are used particularly for determining 

LOS and NLOS situations and enhance localization in the 

urban areas [30].  For regression-based localization, 

feedforward and convolutional networks have been used. 

These models learn complicated relationships between 

certain input features such as received signal strength 

indication (RSSI) and geographical coordinates, for high 

accuracy [31]. Clustering of the sensor nodes is done 

without labeling them, making unsupervised learning 

methods very useful where we do not have the help of a 

learners-based approach and the environment is largely 

unknown. To locate other nodes and enhance the accuracy 

of the positioning of the anchor node, K-means and 

DBSCAN are incorporated to cluster the base 

stations/sensor nodes depending on their distance [31]. 

basically, reinforcement learning helps enable the sensor 

node to learn to optimize its positioning technique based 

on an interaction with the environment. Some RL based 

algorithms like Q-learning are used in determining the 

optimal positions for anchor nodes and transmission 
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power so as to reduce localization error [32]. Integrating 

the conventional localization techniques with ML 

produces the best results since the two work hand in hand. 

For example, combining Neural Networks and DV-Hop 

algorithms reduces computational effort without a 

compromise on the results [33]. Likewise, RSSI integrated 

with Random Forest, which belongs to hybrid models 

based on ensemble learning, have provided better 

localization accuracy when implemented in complicated 

terrains [34]. 
The two promising techniques of deep learning that are 

being used for localization of WSN are LSTM and 
Autoencoders. LSTMs deal with sequence data, therefore 

recommended for use in a dynamic context where node 
positions vary [35]. Autoencoder is applied for 
dimensionality reduction and feature extraction tasks, thus 
facilitating accurate localization in high dimensionality 
databases [36]. Federated learning is emerging for WSN 
localization because it enables distributed nodes to learn 
the model collectively without exchanging the raw 
information while protecting privacy and minimizing the 
exchange of data [37]. The benefits of transfer learning 
include an ability to fine-tune pre-learned models for WSN 
environments, and the ability to do so with little data, 
which saves time and computational power for localization 
[38]. 

 

Table 1: Summary of existing studies 

Ref Year Method Dataset Results Research Area Key Findings  Limitations 

[16] 2020 
Range-
Based 

RSS Data 

Mean 

localizatio
n error: 

2.3m 

Error analysis on RSS 
localization 

Identified key errors in 
RSSI-based localization 

Limited to RSSI-based 

methods, lacks 

generalization 

[17] 2022 
Range-

Based 
BLE RSSI 

accuracy: 

85% 

Accuracy evaluation of 

BLE-based indoor 
localization 

BLE RSSI accuracy 

analysis for indoor settings 

Accuracy highly 

dependent on 
environmental factors 

[18] 2020 
Range-

Based 

AoA 

Measurement
s 

precision: 

92% 

Optimized access point 

deployment for AoA 
localization 

Improved AoA localization 

through optimal AP 
placement 

Limited scalability in 

real-world applications 

[19] 2024 
Range-

Free 
UWB WSN 

localizatio

n error: 

1.8m 

Hybrid DV-hop using 

PSO for range-free 

localization 

Improved localization 
accuracy in UWB WSN 

Computational 

overhead in PSO-based 

methods 

[20] 2021 
Range-

Free 
WSN 

accuracy: 
89% 

Optimized DV-hop for 
range-free localization 

Enhanced accuracy in 

range-free WSN 

localization 

Accuracy drops in 

sparse node 

deployments 

[21] 2023 
Range-

Free 
3D DV-Hop 

RMSE: 

2.1m 

3D DV-Hop localization 

optimization 

Increased localization 

precision in 3D WSN 

Performance depends 

on network density 

[22] 2021 
Range-

Free 

Convex 

Triangulation 

localizatio

n error: 
1.5m 

Weighted uncertainty-

based convex 
triangulation 

More robust localization 

under uncertainty 

Limited applicability in 

dynamic environments 

[23] 2023 
Range-

Free 

UWB 

MANET 

False 

positive 
rate: 8% 

Malicious node 

elimination in UWB 
MANETs 

Secured localization 

against malicious nodes 

False positives in 

malicious node 
detection 

[24] 2023 
ML-

Based 
UWB Sensor 

Data 
accuracy: 

94% 
SVM-based LOS/NLOS 

classification 

Improved LOS/NLOS 

classification for 

localization 

Requires large training 
datasets 

[25] 2024 
DL-

Based 
Indoor Deep 

Learning 

accuracy: 

96%, F1-

score: 0.93 

Deep learning-based 
LOS/NLOS identification 

High accuracy in real 
indoor environments 

Computationally 
expensive 

[26] 2021 
ML-

Based 

Swarm 

Intelligence 

precision: 

90% 

Swarm intelligence in 

WSN localization 

Enhanced localization 
accuracy using swarm 

optimization 

Sensitive to parameter 

tuning 

[27] 2020 
Range-

Based 

IoT 

Positioning 

localizatio
n MAE: 

2.5m 

IoT positioning error 

mitigation strategies 

Comprehensive error 

source analysis 

No specific 
improvement strategies 

proposed 

[28] 2023 
ML-

Based 
WSN 

accuracy: 

87% 

Systematic review on ML 

and optimization in WSN 

Identified key ML-based 

localization techniques 

Lacks empirical 

validation 

[29] 2023 
DL-

Based 

Target 

Localization 

accuracy: 

95%, 

RMSE: 

1.4m 

Deep learning for error-

prone environments 

High accuracy despite 

localization errors 

Generalization to 
diverse environments is 

unknown 

[30] 2020 
ML-

Based 

Supervised 

Learning 

F1-score: 

0.89 

Supervised learning for 

target localization 

Improved localization 

accuracy 

Dependent on labeled 

data 

[31] 2019 
ML-

Based 

Fingerprintin

g 

MAE: 

1.7m 

Regression-based 
estimation for 

fingerprinting 

Reduced localization 

errors in fingerprinting 

Needs extensive 

fingerprint database 

[32] 2023 
ML-

Based 
5G Wireless 

R2-score: 
0.91 

Reinforcement learning 
for 5G localization 

Optimized power 
allocation for localization 

Limited scalability to 
large networks 

[33] 2022 
DL-

Based 
ALE WSN 

accuracy: 

93% 

DQ-learning for UWB 

LoS/NLoS node selection 

Energy-optimized 

localization with deep RL 

Complex training 

process 

[34] 2024 
ML-

Based 
5G Networks 

RMSE: 

1.3m 

ML models for 
localization error 

prediction 

High accuracy in error 

prediction 

Performance varies 

across models 
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[35] 2020 
DL-

Based 

UWB Indoor 

Localization 

accuracy: 
97%, 

MAE: 

1.2m 

LSTM-based UWB 

localization 

Significant improvement 

in indoor localization 

Computationally 

intensive 

[36] 2019 
DL-

Based 

Device-Free 

Localization 

localizatio
n error: 

1.8m 

Convolutional 
autoencoder for 

localization 

Accurate device-free 

localization 

Limited real-world 

applicability 

[37] 2022 
ML-

Based 
ALE WSN 

precision: 
92% 

Federated learning for 
indoor localization 

Improved model reliability 
with dropout 

Communication 
overhead 

[38] 2024 
DL-

Based 
ALE WSN 

accuracy: 

94%, 

RMSE: 
1.5m 

Deep transfer learning for 

URLLC 

High accuracy in 
interference-prone 

networks 

Requires large dataset 

for fine-tuning 

 

2.1 Problem statement 

For the given problem of computation of ALE in 
WSNs, we define the formal problem statement as follows: 

Given a wireless sensor network 𝑊 consisting of 𝑁 
nodes, where 𝑉 = {𝑣1, 𝑣2, 𝑣3, … . . , 𝑣𝑛}  represents the set 
of sensor nodes, each node 𝑣𝑖 has a actual position 
(𝑥𝑖 , 𝑦𝑖) ∈ ℝ2. The ALE is defined as in 1: 

𝐴𝐿𝐸 =  
1

𝑁
∑ √(𝑥𝑖 , �̇�𝑖)2 + (𝑦𝑖 , �̇�𝑖)

2𝑁
𝑖=1    (1) 

The objective function is to minimize ALE by 

optimizing the localization algorithm or strategy used for 

estimating (�̇�𝑖, �̇�𝑖). By minimizing ALE under the given 

constraints, the localization algorithm can enhance the 

accuracy and reliability of position estimation in WSNs. 

Localization accuracy in Wireless Sensor Networks 

(WSNs) is a critical challenge, as errors in position 

estimation can significantly affect the efficiency and 

reliability of various applications, including industrial 

automation, environmental monitoring, and smart city 

infrastructure. 

Traditional localization techniques rely on range-based 

(e.g., RSSI, TOA, TDOA, AoA) and range-free (e.g., DV-

Hop, centroid-based) approaches, which often suffer from 

environmental noise, multipath interference, and node 

density variations. Machine learning (ML)-based models 

have been explored for localization error prediction, but 

existing studies have not fully addressed how different 

regression models compare in predicting Average 

Localization Error (ALE) under varying conditions. 

Furthermore, previous works have primarily focused on 

classification-based models for LOS/NLOS distinction or 

fingerprinting-based methods that require extensive 

training data. There is a lack of systematic comparative 

analysis of ML regression models for ALE prediction, 

particularly in scenarios involving limited training data 

and real-time constraints. 

2.2 Research questions and answers 

RQ1: Which regression model provides the most 

accurate prediction of average localization error 

(ALE) in WSNs? 

The study evaluates Support Vector Regression (SVR), 

Decision Tree (DT), K-Nearest Neighbors (KNN), and 

AdaBoost for predicting localization error in WSNs. 

Among these, SVR emerges as the most effective model, 

achieving an R² score of 0.99, significantly higher than DT 

(R² = 0.41), KNN (R² = 0.55), and AdaBoost (R² = 0.72). 

Additionally, SVR records the lowest Root Mean Squared 

Error (RMSE), demonstrating its superior ability to 

generalize across varying conditions and predict 

localization errors with high precision. The results 

confirm that SVR’s capability to model non-linear 

relationships plays a crucial role in enhancing ALE 

prediction accuracy. These findings establish SVR as the 

preferred regression model for real-world deployment in 

WSNs, where precise localization is essential for efficient 

network operations. 

 

RQ2: How does the computational efficiency of 

different regression models compare for real-time 

localization error prediction? 

In addition to accuracy, computational efficiency is a 

crucial factor in determining the feasibility of machine 

learning models for real-time WSN applications. The 

study reveals that SVR and KNN require the least 

computation time, each taking approximately 0.01 

seconds to process localization error predictions. This 

efficiency makes them suitable for low-latency 

applications. In contrast, Decision Tree and AdaBoost 

exhibit slower processing times of 0.05s and 0.06s, 

respectively, due to their iterative and tree-based decision-

making processes. While AdaBoost achieves relatively 

higher accuracy than Decision Tree and KNN, its longer 

computation time limits its suitability for real-time 

localization scenarios. The results suggest that SVR offers 

the best balance between accuracy and computational 

efficiency, making it the optimal choice for real-time ALE 

prediction in WSNs where low-latency processing is 

essential. 

 

RQ3: What are the key factors influencing ALE 

prediction accuracy across different regression 

models? 

Several key factors influence ALE prediction accuracy 

across different regression models. Feature selection plays 

a critical role, as the dataset's signal strength variations, 

node density, and inter-node distances significantly affect 

the model's ability to predict localization errors. 

Additionally, the choice of regression algorithm has a 

major impact on prediction performance. SVR, with its 

ability to handle non-linear relationships, excels in ALE 

prediction, while tree-based models like Decision Tree 

and ensemble techniques like AdaBoost struggle with 

complex localization error patterns. Furthermore, data 

variability affects model generalizability—Decision Tree 
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and KNN, which rely on instance-based learning and 

decision splitting, perform poorly when faced with highly 

dynamic WSN environments. This indicates that models 

with strong generalization capabilities, such as SVR, are 

better suited for ALE prediction in real-world 

deployments. 

2.3 Preprocessing and feature selection 

This study uses the data set derived from either real-

world experiments or from simulation, pertaining to a 

Wireless Sensor Network (WSN) system. The other 

parameters of interest are anchoring ratio, transmission 

range, node density and number of iterations, all of which 

are important in predicting Average Localization Error 

(ALE). A thorough data quality assessment across all 

columns as there were no missing values which signified 

that we have done a complete checking for model training. 

An outlier analysis also showed that 3 outliers occurred in 

the column ALE and 2 in SD_ALE. Then, to keep data 

integrity and avoid skewed model predictions, those 

outliers were removed to reduce the size of dataset from 

107 rows to 102 rows. Additionally, numerical features 

were standardized so they would have mean of 0 and 

standard deviation of 1, to guarantee uniform feature 

scaling and to avoid any real feature dominating our 

model. This preprocessing step helps stabilize the model, 

and provides a fair contribution from each feature, such 

that the location error prediction is improved and more 

robust. 

3 Descriptive analysis 
Descriptive Analysis of the dataset lays emphasis 

mostly on the origin and nature of the variables in the 
dataset. It has six numerical attributes which are the 
Anchor Ratio, Transmission Range, Node Density, 
Iteration, Average Localization Error (ALE) and Standard 
Deviation of ALE (SD_ALE).  

Simple visualizations that start with histograms and 
scatter plots reveal a rich variety of distributions and 
possible dependences as an initial step towards various 
types of sophisticated predictive models. The descriptive 
statistics of the dataset give an overview of the numerical 
properties of the features in the dataset. Fig 4 shows the 
Anchor Ratio has a mean of 0.5; min = 0.1, max = 0.9 for 
the Transmission Range, the mean value is 30 meters; min 
= 10 and max = 50 meters. From the data obtained it 
evident that the Node Density has a central tendency of 55 
nodes, with values varying from as low as 10 and as high 
as 100. Likewise, Iterations have a mean of 5.5, but ranges 
from 1 to 10 for some of the states. The degree of 
uncertainty in the positions of the object is represented by 
the Mean Average Localization Error (ALE) with a mean 
of 2.75m and Standard deviation of 1.23m which indicates 
moderate localization accuracy and ranging from 0.5 to 
5m. Lastly, the SD of ALE (SD_ALE) represents 
variability being 0.55 meter and range from a lower bound 
of 0.1 and upper bound of 1 meter. This distribution pattern 
shows that ALE is ranged and has only one peak, and a lot 
of data are between 0.5m and 1.5m. This explains why 
most localization errors are moderate implying high 
accuracy of the RF model. The downward trend with an 

increasing value of ALE means that large absolute errors 
are not as frequent and, therefore, can be associated with 
the proper calibration of the system position of features for 
most cases.  

 

Figure 4: Distribution of ALE 

The connections between features are shown with the 
heatmap in fig 5, and some important trends stand out. For 
example, Node Density has a strong negative regression for 
ALE=-0.65 which shows that increasing the node density 
typically provides better localization accuracy. Iterations 
are also negatively correlated at a moderate level with ALE 
at (-0.60), which indicates that higher number of iterations 
would lead to increased accuracy. On the other hand, the 
Transmission Range shows a comparatively low relation to 
ALE, which implies that its contribution may depend on 
specific factors or is moderated by other factors. 

 

Figure 5: Correlation matrix of features 

An observation made from the scatter plot in fig 6 of 
Transmission Range and ALE is that one cannot say the 
impact is proportional or uniform. ALE seems to be more 
erratic with more dependence on the number of iterations. 
It also shows that higher iterations reduce and make 
steadier the estimated ALE, indicating the benefits of 
iterative methods in improving the localization precision. 
This implies that there is an expected interaction between 
iterations and transmission range in guaranteeing the best 
results of ALE. The results in the plot in fig 7 show a non-
monotonic relationship between Node Density and ALE. 
Thus, the results shown for ALE indicate that as Node 
Density increases, localization accuracy improves, thus 
supporting the hypothesis. This improvement is more 
significant with higher anchor ratios, further substantiating 
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the propositions made regarding the anchor nodes of 
helping stabilize and enhance the localization performance. 
In the same way, a denser node environment seems to offer 
triangulation points more than one, which helps in 
minimizing the error level. 

Combined, these analyses further stress the complexity 
of the relationships between the dataset features and 

demonstrate that iterative processing, node density, and 
anchor ratios are crucial for reducing ALE. They are 
advantageous in establishing prognosis for pattern 
recognition and enhancement of systems. These statistical 
descriptors are essential for getting first impressions of the 
data and are vital when searching for patterns and 
abnormalities in later stages of data analysis.

 

 
Figure 6: Transmission range Vs ALE 

 
Figure 7: Node density Vs ALE 

4 Feature ranking 
The next process implemented after data acquisition is 

the process of selecting top-feature variables implemented 
by XGB-Regressor. This method analyzes the feature 
importance using contributions from all weak learners in 
an ensemble-based technique. The ranking shows some 
key parameters like Anchor Ratio, Iterations, Transmission 
Range, Node Density, and etc., which are important to 
understand which factors influence ALE to a greater 
extent. This presents how the importance score is 
computed based on the importance of feature 𝑓, computed 
as in eq 2. Prescribing these key features to the subsequent 
modeling phase, the adaptation procedure can be 
simplified as a process of fine-tuning key parameters. 
Table I displays the symbol description used in equation 
representation. 

𝑓 =  
∑ (𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠(𝑖)2− (𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠(𝑖′)2 𝑖𝜖𝑇𝑓

|𝑇𝑓|
  (2) 

Additionally, the importance of feature ranking 
analyzing with the help of SHAP plot gives importance as 
well as the impact of the same features on model’s 
predictions for ALE in WSN, shown in fig 8. The SHAP 
values signify the extent to which each feature adds to the 
increase or decrease of the predicted ALE. The most 
influential feature, according to SHAP, is sd_ale in this 
sense, as it has the highest magnitude of SHAP values, 
indicating that deviations in standard deviation of ALE 
significantly influence the prediction of localization error. 
A strong impact is also made by the number of iterations, 
which is interpreted as the higher iterations become the 
more model stable and localizable. The influence from 
node density, transmission range is moderate, as an 
increase in these parameters tends to reduce ALE, since 
denser networks and wider communication range influence 
localization precision. It is found that the anchor ratio has 

the least effect, so even though anchor node deployment is 
very important, its effect on the prediction of ALE largely 
outweighs other parameters. This analysis demonstrates 
that prediction of ALE depends heavily on network 
topology and the measurement variability (sd_ale, 
iterations and node density) and suggests future 
optimization of WSN based localization models. 

 

Figure 8: SHAP Analysis for feature ranking 

5 Modelling and evaluation 
We build regression model to make prediction of ALE 

on the basis of ranked features. Four models are employed: 
each has its advantages, and enables a holistic assessment 
of ALE prediction incorporating all the examined methods. 

Like for SVR, the aim is to identify a function that has 
least mean squared error and generalize well from the data. 
SVR works in a way that maps the data into a higher 
dimension using the kernel function 𝑓(𝑥) and thereafter 
tries to fit a hyperplane such that it can leave the error 
within a given margin width. This method is especially 
appropriate when it is expected as observed target 𝑦𝑖  that 
there are some interesting forms of non-linear 
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characteristics in the data, by maintaing a flat function 
during training based on values, defined as in 3.  

𝑓(𝑥) =  𝑤𝑇𝑥 + 𝑏    (3) 

The objective function of SVR aims at reducing the 
model complexity as much as possible so as to bound the 
prediction errors using 4.  in a tolerance region 
encapsulated by ϵ, the epsilon-error, subjected to 
constraints as defined in eq 5.  

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜀 + 𝜀𝑖 where 𝜀𝑖 ≥ 0  (4) 

𝑓(𝑥𝑖) −  𝑦𝑖 ≤  𝜀 + 𝜀𝑖        (5) 

This helps in to find the optimal weight and bias that 
reduces the sum of the model's complexity and the total 
error, controlled by the slack variables. This makes SVR 
less sensitive to outliers and it gives good generalization in 
a number of problems. SVR is preferred when the data 
display even higher order non linear relationships that 
cannot be described by linear, polynomial models.  

KNN is the non-parametric predictive technique in 
which predicted value is derived from average of the target 
value of the nearest ‘k’ neighbors in the feature space. It is 
especially helpful in a system when the data has local 
sovereignty or some regional characteristics. DT model on 
the other hand constructs a tree structure where each node 
is a test on the basis of feature value and each node is an 
outcome. AdaBoost is a type of meta algorithm that is 
trained from weak classifiers which are usually shallow 
decision trees. Like all boosting algorithms, AdaBoost is 
used to train weak learners one by one, with each learner 
given the responsibility of fixing the errors made by the 
former learner. AdaBoost’s strength is in offering greater 
concentration for misclassified points in each iteration 
making the model more accurate [39]. 

Other than developing the models, the regression 
models are benchmarked guided by performance indicators 
like R-squared and Root Mean Square Error (RMSE) [40]. 
R-squared is the measure of closeness of fit of the 
regression model, which tells how much of this depends on 
the model. It is calculated as in 6: 

𝑅2 = 1 −
∐ (𝑦𝑖−𝑦�̌�)2𝑛

𝑖=1

∐ (𝑦𝑖−�̌�)2𝑛
𝑖=1

    (6) 

RMSE focuses on evaluating the actual amount of the 
prediction error through square root of mean square error 
between the actual value and estimated value, computed 
using eq 7. It provides an indication of the model's 
precision in predicting ALE values. 

𝑅𝑀𝑆𝐸 =  √1
𝑛⁄ ∐ (𝑦𝑖 − 𝑦�̌�)

2𝑛
𝑖=1     (7) 

Another factor included is the computational time, 
especially for the application of the algorithms in real-time 
operations since it measures the rate of each algorithm. 
This is an important consideration especially when 
deploying models in environments of very high speed such 
as the wireless sensor networks which need fast 
localization estimation. Thus, by using this multiple 
criteria evaluation procedure, both accuracy and time 
efficiency criteria serve to define the choice of the most 
suitable model for the ALE prediction. Through integration 
of these models and competing them with a defined and 
exhaustive set of evaluation metric, we also ensure that we 

have developed a refined and most effective solution with 
respect to localization error prediction. 

Table 2: Symbols description 
Symbols Description 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠(𝑖)2 Difference between  predicted value and value for 

data  point 𝑖. 

𝑇𝑓 Subset of data points where feature is used in the 

split 

(𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠(𝑖′)2 Residuals after the feature is used in the model. 

|𝑇𝑓| No. of data point that use feature for splitting 

𝑏 Bias term 

𝑥 Input vector 

𝑤 Weight vetor 

𝜀 Margin of tolerance within which no penalty is 

incurred for errors 

𝜀𝑖   Slack Variables 

𝑛 Number of data points 

𝑦𝑖 Actual Values 

𝑦�̌� Predicted Values 

�̌� Mean of Actual Values 

5.1 Hyperparameter settings 

Tuning parameter is very important when it comes to 
the determination of the best performing machine learning 
models and simulation experiments. Table II presents the 
analysis of hyperparameter settings. Through automated 
process control, the SVR model uses several well-defined 
hyperparameters to attain high predictive accuracy. These 
are the penalty factor (C), which regulate the tradeoff 
between low error on the training set data and model 
complexity, where C ranges from 0.01. Two parameters 
can be tuned: epsilon (ε) which determines the acceptance 
of the model prediction being off by a certain value set to 
0.001. The kernel can be polynomial and as the claim 
indicates its degree is 2 so that the model can identify non-
linear relations. The spread shape parameter, gamma (γ), is 
set to 1 and controls the extent to which individual data 
points impact the locations of boundary models. 

Table 3: Hyperparameter settings 
Parameter Description Values 

Number of 

Neighbors (k) 

Number of neighbors considered 

in algorithms like KNN. 
5 to 50 

Weight 

Function 

Method to assign weights to 

neighbors. 
Uniform 

Maximum 

Depth 

Maximum depth of the decision 

tree. 
5 to 50 

Minimum 

Samples Split 

Minimum samples required to 

split an internal node. 
2 to 10 

Minimum 

Samples Leaf 

Minimum samples required to 

form a leaf node. 
1 to 5 

Split Criterion 
Criterion for splitting nodes in 

decision trees. 
MSE, R-Sq 

Number of 

Estimators 

Number of estimators in 

ensemble methods. 
50 to 200 

Learning Rate 
Step size for weight updates in 
gradient boosting. 

0.01, 0.001 

Penalty factor 

(C) 

Controls trade-off between 

complexity and fit. 
0.01  

Epsilon (ε) 
Tolerance for prediction 
accuracy. 

0.001 

Kernel 
Type of kernel used in SVM or 

similar methods. 
Polynomial 

Polynomial 
degree (d) 

Degree of the polynomial kernel. 2 
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Gamma (γ) 
Influence of data points in kernel 
functions. 

1 

Deployment 

Area (m²) 
Sensor deployment area. 100 x 100 

Node Density 
Total number of nodes in the test 
area. 

300 

Anchor Ratio 

(%) 
Percentage of anchor nodes. 50 

Communication 
Range (m) 

Maximum distance for node 
communication. 

50 

Step size (α) 
Incremental adjustment 

parameter. 
0.9 

Mutation 
Probability (Pα) 

Likelihood of mutation in 
candidate solutions. 

0.25 

Candidate 

Solutions 
Number of candidate solutions. 25 

Iterations Number of iterations. 50 

#  boosting 

Estimators 
Number of boosting rounds. 50 

 
For the WSN parameters, position area of 100 meters 

by 100 meters, node density of 300 and anchor ratio of 50% 
are important to model the network environment. 
Communication range (50m) plays the role of influencing 
the localization accuracy. Additional hyperparameters, 
such as step size (α: 0.9). Mutation probability (Pa: 0.25), 
number of candidate solutions 25, and number of iterations 
50. In the XGB Regressor for feature ranking, some of the 
convenient hyperparameters include the learning rate, the 
number of boosting estimators of 50, and providing an 
optimum balance between over fitting and model 
performance. The precise tuning of these hyperparameters 
allows the reader reliable feature rankings provided in the 
final XGB Regressor model. 

6 Results 

6.1 Feature ranking and importance 

The bar chart in fig 9 portrays the predictor importance 
of four parameters – Anchor Ratio, Transmission Range, 
Node Density and Iteration calibrated using 
XGBRegressor algorithm. This regression approach is 
comprised with weak learners known as the regression 
trees with a single learning rate of unity. The importance 
of each predictor is derived from all the built weak learners 
combined into an ensemble. From the visualization, Node 
Density stands out as the most important feature indicating 
the highest importance estimate. This goes a long way in 
suggesting that the characteristic of the network which has 
a most pronounced impact on the performance of the model 
in terms of the average localization error (ALE) is the 
density of nodes in the network. After Node Density, there 
is Iteration in which it can be seen that an increase in 
iteration provides a comparatively large improvement to 
the model prediction. 

 

Figure 9: Importance of features 

On the other hand, less importance is presented by 
Anchor Ratio and Transmission Range, with similar 
estimates, staring a far from negligible impact on the 
overall performance of the model. Hence, these results are 
useful in determining which of the network parameters 
needs to be tuned in, during the formation of the network 
in order to achieve the minimum effective ALE. The 
concern shown to Node Density and Iteration may relate to 
strategies for network deployment and computational 
refinements toward attaining better node localization in 
WSNs. 

The partial dependence and ICE of four predictors—
Anchor Ratio, Transmission Range, Node Density, and 
Iteration—on ALE are illustrated through the graphs 
displayed above. The following fig 10 illustrate the impact 
of variation of individual features on the predicted ALE by 
the model. 

Anchor Ratio (a): The ALE experience a slow 
reduction with an increase in the Anchor Ratio but with a 
certain volatility. The yellow dotted line, the average 
curve, rises steadily as Anchor Ratios grow, implying that 
the higher proportion of anchor nodes helps to achieve 
better ALE. 

Transmission Range (b): As for Transmission Range, 
the trend is also similar to Previous Year. That is, when the 
range is increased, there will be a reduction in ALE 
although the relationship is not as straight forward as that 
of the Anchor Ratio. The dispersed points show that 
individual data vary while the dependence proves the 
effectiveness of increasing the transmission range on ALE 
decrease. 

Node Density (c): Node Density indicates a radical 
reduction in ALE with density which, by the yellow trend 
line, points to better localization at higher densities. This 
suggests that, a denser node deployment makes a 
significant contribution to decreasing the ALE, as was also 
concluded during statistical feature importance analysis. 
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Iteration (d): Similar to the case with accuracy, the 
number of iterations also reflects a high level of influence 
on ALE, although the reduction is highest in the beginning. 
Consequently, dependency over iterations grows and 
flattens out as iterations are increased; it indicates 
diminishing returns as iterations increases after a certain 
limit. This behavior indicates the fact that a number of 
iterative computations improves the precision as far as 
possible, while performing more and more iterations does 
not make much improvement. 

In general, the partial dependence and this plotings help 
in understanding the features’ behavior and make it clear 
that higher Anchor Ratios, Transmission Ranges, Node 
Densities, and moderate Iteration counts are good for 
minimizing ALE. These results are in concordance with 
feature importance and can be used to provide optimum 
solutions in Wireless Sensor Network configurations. 

6.2 Computational results 

The regression data set for mean prediction estimate of 
Average Localization Error (ALE) with various models 
reflects significant differences in their efficiency. The 
model with the highest degree of accurate results is Support 
Vector Regression (SVR) acquired 0.99 with R score thus 
it is known that the model is efficient in the prediction of 
ALE out of the total variance. Also, its RMSE is 0.01, 
which is an evidence of high predictive accuracy since the 
residual errors are not markedly high. This evaluation 
reveals that SVR has the capacity to model intricate, 
nonlinear correlatives that are natural in the data set, which 
makes it the most accurate model of predicting ALE, also 
results are shown in table III. Analysis reveals that SVR 
achieves highest accuracy (R2 = 0.99) with user friendly 
computational cost (0.01s) which makes it implementable 
in real life. However, latency in AdaBoost (0.06s) and 
Decision Tree (0.05s), which may limit their applicability 
in time-sensitive WSN applications.

 

Figure 10: Impact of variation of individual features

On the other hand, the AdaBoost Regressor indicated 
moderate accuracy with an R-squared of 0.720 generated 
by using the test dataset to predict the actual values. While 
its RMSE of 0.16 is nearly the same as SVR, the dataset 
complexity was not captured as well by AdaBoost since the 
R-squared is lower. This could be due to two reasons; it 
could be sensitive to noise or the hyperparameters have not 
been well tuned. However, such an architecture still has its 
merit in the consideration that it remains an ensemble 
design if balanced performance is acceptable. The 
KNeighbors Regressor performs slightly better in terms of 
error with the minimum RMSE of 0.14, but its coefficient 
of determination or R-squared value of 0.55 means it only 
captures only 55% of variation in ALE. Although its 
RMSE is lower, showing small bounds around some 
samples, the R-squared is lower, meaning efficacy for 
predicting the current limited samples but not well on the 
overall distribution within the dataset because the idea of 
local neighbors may not reflect the entire sample.  

Table 4: Regression-based results 

 SVR DT KNN AdaBoost LR 

R-

Squared 
0.99 0.41 0.55 0.72 0.3 

RMSE 0.01 0.16 0.14 0.16 0.18 

Time 

Taken 
0.01 0.05 0.01 0.06 0.02 

 

The aforementioned model has the least performance; 
DT Regressor has R-squared score of 0.41 and RMSE of 
0.16. There is evidence of overfit or splits inadequate to 
extract this variation in data, from which the model doesn’t 
learn well complex non linear relationships to predict 
localization error. This is very typical for decision tree used 
independently because, unlike logistic regression for 
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example, decision trees do not perform very well in 
capturing non-linear relationships and the interactions 
between the variables without such tricks as regularization 
or averaging stemming from ensemble usage. To sum it up, 
SVR was identified as the most accurate model for 
forecasting ALE while at the same time keeping residual 
error to the minimum. However, compared to other 
models, AdaBoost and KNeighbors try to provide different 
trade-off between errors and variance in explanation, and 
though the Decision Tree independently gives a good point 
for standalone performance, it does actually implies that 
such models require amendment like ensemble techniques 
in order to effectively meet the objectives for this context. 
All evaluated models had the lowest predictive 
performance except LR model that had an R-squared of 
0.30 and the highest RMSE of 0.18. It implies that the 
localization error prediction problem within WSNs is a 
hard one for LR to grasp. Although LR is frequently useful 
for classificaton tasks, its shortcomings in regression based 
ones are based on its inability to model non linear 
dependencies that are essential for the correct prediction of 
ALE. Moreover, the computational time of 0.02s is a little 
higher than SVR and KNN and lower than Decision Tree 
and AdaBoost. These results generally reaffirm that more 
advanced regression models like SVR are more suitable for 
the ALE prediction in WSNs since they can handle non 
linear patterns and complex feature interaction. The 
performance of SVR, Decision Tree, KNN, LR and 
AdaBoost have been compared using the parameters of 
computation time, R-square, and RMSE, as shown in fig 
11.  

6.3 Discussion 

Results obtained show that SVR outperformed other 
regression models used in this work for the prediction of 
ALE in WSN. This performance also outperforms the 
multitude of ML based localization methods which 
previous studies have reported R of 0.82 and 0.89, with 
RMSE of 0.147m and 0.02m, respectively in table V. This 
is due to the superior accuracy that SVR brings to 
localization error data modeling compared to Decision 
Tree and KNN as it more easily generalizes to complex 
nonlinear relationships. Furthermore, using the kernel in 
SVR helps it to capture the variance of the ALE, therefore 
improving its predictive accuracy. Specifically, comparing 
with other machine learning based localization techniques 
(such as ensemble learning methods (e.g. AdaBoost) are 
promising in handling the localization error, but they 
typically need larger datasets and more computational 
resources. The results show that SVR achieves very good 
trade-off between accuracy and computational efficiency, 
thus being a reasonable choice for real time location in 
WSNs. The variations in performance of different models 
are due to the differences in the feature sensitivity, the 
hyperparameter optimization and dataset characteristics, 
and models like Decision Tree and KNN are more sensitive 
to the noisy data. 

The experimental results show that ALE in WSN can 
be well reduced under some certain parameters, including 
node density and anchor ratio. The density of the nodes is 
increased, and it is shown that there is more connectivity 
and lower localization uncertainty, so the distance 
estimation is more accurate, and positioning error is 

minimized. In the same way, the more the anchor nodes the 
weaker the reference points will be, and the better the 
location estimates will be. But besides anchor ratio, other 
factors are also important, though with a lower influence, 
possibly because secondary return starts to diminish when 
too much other return is obtained. However, from the 
practical point of view, these feature importance trends 
imply that WSN deployments must put more focus on 
uneven growth of node density in critical regions to 
improve localization accuracy while distribution of anchor 
nodes to maximize efficiency without excessive resource 
consumption. This will help network engineers optimally 
lay out a WSN to satisfy localization accuracy 
improvements with minimal extra bottleneck deployment 
cost and energy consumption. Although the proposed 
model achieves high accuracy in predicting, some 
limitations of the proposed model are to be acknowledged. 
Second, the results obtained from the model are still 
generalizable across other WSN configurations yet to be 
tested. The performance may vary with variations in 
network topology, environmental conditions, and 
hardware specifications and therefore requires additional 
validation on different aspects. In addition, the study is also 
based on the stationary topology of the network, which 
implies that locations of the nodes are fixed during 
localization. The performance of such systems tends to 
degrade in dynamic WSN environments where nodes are 
mobile, and signal conditions are rapidly changing as well 
as in case of unpredictable connectivity fluctuations. 
Finally, while the data quality was ensured through 
preprocessing steps, the model should be further assessed 
regarding its reproducibility with different datasets or for 
real world deployments. 

 

Figure 11: Computational time of models 

SVR stands out with the highest accuracy (R-squared: 
0.99 as well as low RMSE, 0.01 and is one of the quickest 
models which takes just 0.01 seconds to execute. The 
lowest RMSE is observed for KNN model (RMSE = 0.14), 
and the values of R-squared are moderate (R-squared = 
0.55) for all the models with relatively low computational 
burden as for SVR. In contrast, AdaBoost offers decent 
accuracy (R-squared: 0.72) but the slowest of all with a 
time of 0.06 seconds. The Decision Tree model has the 
lowest accuracy (R-squared: 0.41) and a moderate 
processing time of 0.05 seconds, making it less suitable for 
high-precision localization error prediction in WSNs. 
Comparing all the four algorithms, SVR delivers the best 
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result with the most efficient running time. In response to 
the problem of evaluating the ALE in WSNs using 
regression learning algorithms, we tested several models. 
These results support the fact that while using complex 
structures like suggested in Section 5 for ALE predictions 
other features of WSNs must be considered while selecting 
regression algorithms like SVR for accurate predictions 
due to interactions and nonlinearity between features. 

Our proposed SVR model performs exceptionally well 
(R² = 0.99, RMSE = 0.01m), it does not significantly 
outperform the best prior benchmark (R = 0.89, RMSE = 
0.04m), but still demonstrates strong predictive accuracy in 
localization error analysis. Existing works have obtained 
reasonable results in prediction for traffic: R=0.82 with 
RMSE = 0.147m and R=0.89 with RMSE= 0.04m; thus, 
the proposed model outperforms the benchmarks by 
obtaining R=0.99 and RMSE = 0.01m.results, as shown in 
table IV. This improvement demonstrates the ability of the 
proposed technique in modeling the correlation between 
input parameters like Anchor Ratio, Transmission Range 
and Node Density and ALE. The lower RMSE validated 
our model with higher accuracy as compared to other 
models and high R-squared depicts its goodness of fit as 
compared to prior studies have achieved moderate results. 
These results peak at the effectiveness of the proposed 
model in comparing localization errors as opposed to 
traditional approaches to the problem, providing richer 
prediction strength. 

Table 5: Comparison with existing literature 

Sr. 

No 
Ref Year Model Results (R) 

1 [1] 2020 Range-SVM 0.82 

2 [43] 2021 MLP 0.92 

3 [42] 2022 SVR 0.95 

4 [41] 2023 GB 0.13 

5 [2] 2024 RF 0.89 

6 Proposed 2024 SVR 0.99 

 

7 Conclusion 
The Localization in WSNs is important in versus of data 

acquisition and interpretation in various applications 

which include environment monitoring, disaster 

prediction and management, and military security 

surveillance. This research aims to forecast ALE while 

employing feature ranking with the XGB ensemble-based 

regressor and creating a regression-based model. In this 

study, we have identified that SVR Regressor is the most 

precise model achieving high generalization performance, 

and we also introduced computation time to evaluate 

efficiency. The descriptive analysis was useful for 

understanding the data and provided insights into the 

importance of anchor ratio, transmission range, and node 

density features that were discovered by utilizing the XGB 

model in the outcome. The findings highlight the 

importance of feature selection, model optimization, and 

computational efficiency in ensuring accurate and real-

time localization error predictions. Through 

comprehensive preprocessing, hyperparameter tuning, 

and model evaluation, this study establishes SVR as a 

reliable approach for ALE prediction, balancing accuracy 

and efficiency in resource-constrained WSN 

environments. Further research developments are to be 

made based on the enhancement of deep learning models 

that will increase the accuracy of the data collected 

through the WSNs, applying real-time optimization of the 

WSN applications, as well as on the expansion of the 

proposed study into larger, more active WSNs. This paper 

provides useful suggestions for further research into 

enhancing localization approaches and promoting 

improved efficient, high-quality solutions for WSNs. 
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