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Artificial Intelligence (AI) has significantly transformed research policy analysis by enabling data-driven 

decision-making and predictive analytics. Research policies play a crucial role in shaping academic and 

institutional research outcomes, influencing funding allocation, citation impact, and overall research 

productivity. This study employs Machine Learning (ML) techniques to examine the effect of policy, 

outcome, and control factors on research performance. The dataset, sourced from an online repository 

on GitHub, underwent preprocessing steps, including handling missing values and feature selection to 

identify the most influential variables. The study applies Linear Support Vector Classifier (LinearSVC) to 

predict three key research metrics: research productivity, citation impact, and innovation index. 

Experimental results demonstrate that LinearSVC achieved an accuracy of 97% (F1-score: 0.96, AUC-

ROC: 0.62) for research productivity prediction, 94% (F1-score: 0.93, AUC-ROC: 0.93) for citation 

impact, and 95% (F1-score: 0.95, AUC-ROC: 0.96) for the innovation index. These findings highlight the 

robustness of AI-driven analysis in evaluating research policies and optimizing institutional strategies. 

By leveraging ML models, this study provides insights into policy effectiveness, enabling institutions to 

refine their research strategies for improved scientific innovation and societal advancement. 

Povzetek: Raziskava z uporabo LinearSVC in strojnega učenja analizira vpliv raziskovalnih politik na 

produktivnost, citatni vpliv in inovacije. 

 

1 Introduction 
The advancements in Artificial Intelligence (AI) have 

transformed society by improving various spheres of life 

such as healthcare, enhancing communication, and driving 

economic growth. The growth in technology is very much 

dependent on research and development. Defining better 

research policies is essential for fostering innovation, 

defining living standards and addressing societal 

challenges. All governments try to define research policies 

that can help to allocate resources efficiently, guide 

research priorities, and promote collaboration across 

disciplines and borders. A research policy is a set of 

guidelines, principles, and frameworks that govern how 

research is conducted, funded, and applied within an 

organization, institution, or country. The policy defines 

areas for research which can be beneficial for society 

ensuring ethical concerns sharing with validate source and 

content of research study, and ensuring that research 

priorities meet the economic, social, and national goals 

[1]. It may also cover areas like funding allocation as the 

proper use of money should be ensured to solve top 

societal problems.  

In the current era of AI, the use of data analytics is being 

used to carry out data in terms of three perspectives: 

descriptive data analytics, perspective data analytics and 

predictive data analytics. The data analytics include the 

latest technologies of exploratory data analysis as well as  

 

using machine and deep learning algorithms for prediction  

of the various outcomes that may help to define future 

policies [2].  In research, both policy and the data used are 

interlinked. More precisely, the research depends on the  

quality of its data and the policy of that research in a 

specific field. Research policy has a variety of mediated 

effects on policy over a range of time periods [3]. More 

academic research usually has longer-term effects that 

impact the presumptive worlds of policymakers, whereas 

commissioned research strives for more immediate, short-

term effects [4]. 

However, it’s also important to recognize how these 

cultures overlap, especially when it comes to the 

classifications of researchers and policymakers as well as 

career mobility between them [5]. As the research 

landscape grows more complicated, there is an increasing 

demand for policies that can adapt to new challenges, 

optimize the use of funding, and ensure that all research 

areas, including emerging and interdisciplinary fields, are 

adequately supported [6]. Machine learning (ML) 

techniques, with their ability to analyze and collect vast 

amounts of data for research policy as shown in fig 1 to 

uncover hidden patterns, offer a promising solution to 

address these challenges and transform the way research 

policies are evaluated to address the limitations of 

traditional research evaluation methods [7]. These 

techniques are already making strides in various sectors, 

including healthcare, education, and environmental 
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management, where large-scale data integration is critical 

for informed decision-making [8]. By identifying patterns 

of excellence and areas for improvement, AI methods 

contribute to more effective decision-making, ultimately 

fostering a more equitable research environment. This 

study primarily aligns with the Secondary Data and Field 

Experimentation Setups research policy methods. The 

analysis relies on structured datasets, utilizing machine 

learning models to assess policy impacts, making it a clear 

example of secondary data usage. Additionally, the study 

involves an experimental setup where various classifiers 

and feature selection techniques are applied to optimize 

model performance in policy evaluation. This aligns with 

field experimentation methodologies, as the research not 

only analyzes existing data but also tests different 

computational approaches to improve predictive accuracy 

and derive actionable insights for policymakers. 

1.1 Research question 

The study’s objectives and methodology are used to 

define better defined research questions. Based on the 

above, by investigating the role of artificial intelligence 

(AI) and machine learning (ML) techniques in assessing 

the effect of research policies, this study examines their 

effects on the academic and institutional outcomes. Some 

of the research questions which the study will attempt to 

answer are: 

 

1) How different research policy variables (for 

instance funding budget, policy duration etc.) affect 

research productivity, citation impact and innovation 

index? 

Techniques of machine learning models are used to 

examine the correlation between the outcomes of research 

and the policy variables. The results show that higher 

amounts of funding and longer time in place of the policy 

have a positive influence on research productivity and 

citation impact. Furthermore, STEM fields policies have a 

higher innovation index than the social science one. 

 

2) According to which machine learning models do 

research policies and their effectiveness evaluate most 

accurately predictions? 

Five ML models were evaluated (LinearSVC, 

GaussianNB, KNN, RidgeClassifierCV, and 

ExtraTreeClassifier) and it was found that LinearSVC had 

the highest accuracy (97% by means of research 

productivity, 94% by means of citation impact, and 95% 

by means of innovation index). The reason for the superior 

performance of LinearSVC is that it can deal with high 

dimensional data as well as separate policy influence well. 

 

3) What are the key influential factors which drive 

the research performance and how they vary across 

institutions or regions of different countries. 

The study first uses feature selection techniques which 

rank the factors funding amount, researcher experience 

level and collaboration level as the most important drivers 

of the research performance. Private institutions are more 

oriented in terms of innovation indices, whereas research-

intensive regions are more productive and more impactful 

from the perspective of citation. 

1.2 Research contributions 

In this research study, our main aim is to explore 

various features that act as independent variables to check 

their impact on the dependent which are directly linked 

with research outcomes including research productivity, 

citation impact and research innovations. The research 

productivity refers to the number of research publication 

during the research project period; citation impact refers 

to the average number of citations per paper in the period 

and innovation is associated with the innovations, 

products or technology that resulted based on the research 

projects. For descriptive analytics, exploratory data 

analysis and data visualization methods have been used. 

For prescriptive analytics and to predict the outcome 

variables, we have taken various relevant features and the 

statistical feature ranking methods such as Gain Ratio and 

Information Gain have been used. 

 

 

Figure 1: Methods to collect data for research policies 

For predictive analytics, the machine learning 

algorithms such as Linear Support Vector Classifier also 

known as LinearSVC, Gaussian Naïve Bayes, Ridge 

Classifier, ExtraTreeClasifier and k-nearest neighbors 

(kNN) have been applied. The data is prepared, 

preprocessed and split using holdout methods. The 

evaluation has been carried out using standard 

classification evaluation measures of accuracy, f-

measures, and Receiver Operating Characteristics (ROC) 

Curves. The main Contribution of this study as follows: 

• Analysis of the influence of various factors based on 
policy, outcome and control variables, providing 
insights for policy impacts on academic research 
performance. 

• The application of diverse ML models to classify and 
predict research outcomes such as Research 
Productivity, Citation Impact, and Innovation Index. 
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• Features ranking by employing various feature 
engineering methods to identify top key factors in 
driving research outcomes. 

• Proposal of a robust framework for predicting research 
outcomes metrics, with highest accuracy of 97% using 
SVM classifier for criteria of predicting high, moderate 
and low impact of research productivity and its 
influential impact in terms of citations as well. 

The rest of the paper organization as follows: Section 2 

presents the background knowledge of relevant literature 

in field of academic research outcomes. Section 3 shows 

the comprehensive details of applied methodology 

including experimental setup. Section 4 shares the 

analysis of results along with discussion. Section 5 

provides the summary of paper in conclusion form with 

future directions. 

2 Related work 
The recent advancements in research at global level 

have attracted the researchers to focus on various research 

policies and analyzing their impact. An important 

discussion in research policy studies & their impact in 

recent years has focused on whether similarities or 

differences between national research policies, as well as 

the extent to which these policies have changed in a 

similar way over the recent few decades. Summary of 

existing studies shown in table I. 

Factors influencing research performance have been 

categorized into three primary classifications: individual, 

institutional, and research self-efficacy. Individual factors 

encompass personal attributes of faculty members, such as 

age, gender, educational background, academic rank, 

workload, field of specialization, and research experience. 

These characteristics shape how researchers engage with 

their academic roles and contribute to their scientific 

output [9]. Among these factors, the influence of gender, 

age, and academic position on publication rates has been 

examined by suggesting that academic position 

significantly outweighs such factors in its impact on 

research productivity. Seniority within the academic 

hierarchy often correlates with greater access to resources, 

collaborations, and opportunities for publication [10]. 

Research performance has been demonstrated as a crucial 

factor among universities linked to research productivity, 

emphasizing the importance of research training, 

sufficient salaries, and efficient work habits. These 

elements collectively highlight the systemic and 

institutional supports necessary for fostering high domain 

experts to follow research policies [11]. A comparative 

analysis of higher education institutions across six 

countries highlighted a notable survey in faculty research 

productivity within the Arab countries. This region’s 

relatively low research output was attributed to a 

combination of institutional, cultural, and systemic 

factors, underlying the importance of tailored strategies to 

address regional challenges and promote academic 

excellence [12]. This collectively underscores the 

multifaceted nature of factors influencing research 

performance and offers pathways for targeted 

interventions. 
Another study highlighted the integration of ML for 

policy-making, demonstrating how ML models, like 
doubly robust estimators, mitigate biases when estimating 
treatment effects in large-scale policy scenarios [13]. 
Another emphasized for predicting societal outcomes and 
showcased its potential in assessing education policy 
impacts, where non-linear predictors improved forecasting 
accuracy by over 30% compared to traditional econometric 
models [14]. Several studies explored the role of research 
policies and funding in shaping academic outputs. Analysis 
shows that funding mechanisms influences citation-based 
performance and research productivity, which directly 
impacts the diffusion of new scientific knowledge in 
society. Specifically, models linking funding to citation 
growth reveal that well-supported research is more 
influential factor for research productivity [15]. Citation 
impact evaluation methods highlighted the relationship 
between publication metrics and academic impact. Using 
fi-score, as an unbiased measure for self-citations and 
external influences, complement traditional metrics like 
the H-index for evaluation of academic productivity [16]. 
Societal research evaluation extends beyond academia, 
assessing societal benefits such as contributions to public 
health and environmental sustainability [17]. However, 
further research is needed to address the inherent risks of 
bias, transparency, and reproducibility while advancing 
theoretical and methodological approaches to ensure 
equitable outcomes for all researchers. 

 

Table 1: Summary of prior work 
Sr. 

No 
Ref Year Model 

Results 

(%) 
Dataset Features 

1 [9] 2021 
SVM, AI-driven 

Governance System 
Acc: 70 

Survey data from American 

research universities. 
Impact factor, grants 

2 [11] 2021 LR, DT, SVC Acc: 80 Interviews, Meetings 
Average count, mean of 

citation count 

3 [12] 2022 
Bibliometric analysis, 

SPSS 
Pre: 79 

Arab literature (documents 
published between 2006–2015) 

Citation counts before 

and after the Arab 

Spring 

4 [13] 2022 XGB, RF, SVM Acc: 85 
scholarly research articles on 

sustainable finance 
Citation Index Impact 

Factors 
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5 [14] 2020 SVM, KNN F1: 73 

Research publications funded 

Canadian researchers (2000–

2018). 

Textual Features 

6 [15] 2022 SVM, NB Acc: 79 
Academic history of Brazilian 

researchers 

Case studies and 

Surveys 

7 [17] 2020 CNN, SVM Pre: 77 

Policies and practices data in 

environmental and 
sustainability education 

Institution, Funding, 

Collaborative Index 

8 [18] 2024 KNN, Adaboost Acc: 89 Transactional data 
Citation Impact, 

Funding, Impact Factor 

3 Proposed research methodology 
In this section, proposed research methodology, as 

shown in fig 2, has been explored by applying feature 

engineering techniques and various ML models training 

apply on dataset, evaluated using standard parameters of 

classification measures such as accuracy, F1-Score and 

AUC-ROC. 

We develop a structured bias assessment framework 

to better guarantee fairness and see potential biases in our 

study. To ascertain if bias exists, one conducts 

Exploratory Data Analysis (EDA) such that they examine 

dataset composition to reveal composition, and whether 

there’s any underrepresentation of events. Fairness 

metrics as accuracy, precision, recall, F1–score, and AUC- 

 

ROC is used for bias diagnosis and enables a quantitative 

measure of disparities in model performance. Hence, we 

optimize the model fairness by setting right values of 

hyperparameters and balanced learning across different 

groups to mitigate bias. Moreover, Information Gain and 

Gain Ratio are used to analyze feature contribution in 

order to enhance interpretability and model transparency 

by confirming if a feature has an impact on model 

decision. Fairness evaluation dashboards and MLOps 

continue to monitor bias continuously, so as fairness can 

be tracked over time and necessary adjustments can be 

taken to keep the model reliable and fair. Use of this 

structured approach makes our study more robust, and 

introduces it to the practices of fairness aware machine 

learning.

 

 
Figure 2: Framework showing steps of of proposed research methodology 

 

3.1 Preprocessing 

Preprocessing is a critical step in the data quality as well 

as improving the model’s result’s performance. Finally in 

this study, Min-Max Scaling has been applied to 

normalize feature values within a predefined range so that 

there is consistency and there are no biases in the training 

of the model. Information Gain and Gain Ratio were used 

for feature selection that will associate and retain the most  

 

important attributes to reduce the dimensionality and 
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computational complexity while keeping the key data 

patterns. The tabular dataset, data cleaning was done to 

remove inconsistencies and outliers and thus to have a 

structured and reliable dataset that can be analyzed. 

Additionally, the missing values were taken care of using 

appropriate imputation techniques to avoid information 

loss while keeping the integrity of the dataset. Together, 

these preprocessing techniques strengthen the robustness 

of the dataset, making the reliability of subsequent 

modeling marches and the probability of a reliable overall 

accuracy and generalizability of the study’s findings. 

3.2 Feature engineering 

Feature engineering is the process of transforming, 
selecting and creating informative attribute from raw data 
to improve accuracy, enhance interpretability of machine 
learning models. Information Gain (IG) is used for data 
analysis, measuring the reduction in uncertainty in 
machine learning models. First calculate uncertainly 
variables, split data into subset, calculate entropy of 
variables and then calculate information gain of each 
feature. Feature extraction using information gain to rank 
feature and select top ranked features. This technique is 
effective in handling high dimensional data and easy to 
interpret.  Furthermore, Gain Ratio (GR), used for data 
analysis, handles multi values attributes under splitting 
ratio of 0 and 1, to improve feature selection stability. It 
ensures that selection is not based only on those features 
that have a high number of distinct values and provides a 
fairer way to carry out feature selection for cases where the 
decision tree algorithm will be used [18]. The method is 
particularly suitable for the use with the large data that can 
have various features. 

𝐺𝑅 =  𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛/𝑆𝑝𝑙𝑖𝑡 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛         (1) 

GR and IG are necessary metrics to use with decision 
trees for selecting attributes. When splitting a dataset on a 
particular attribute, Information Gain does whatever 
measurement is defined as Information Gain, which is 
usually what outcome expected, namely how much the 
entropy of the resulting datasets decreases. It also finds the 
most informative features for classification. The entropy of 
a dataset 𝐷 is given by equation 2: 

𝐼𝑛𝑓𝑜(𝐷) = − ∑ 𝑝𝑖
𝑚
𝑖=1 log2(𝑝𝑖)    (2) 

 𝑝𝑖  is the probability that an arbitrary tuple in 𝐷 belongs 
to class  𝐶𝑖, |𝐶𝑖, 𝐷|/|𝐷|)  is the estimated probability. 

After splitting the dataset 𝐷 using attribute 𝐴 into 𝑣 
partitions 𝐷𝑖 , the entropy for the partitions is given by 
equation 3: 

𝐼𝑛𝑓𝑜𝐴(𝐷) = ∑
|𝐷𝑗|

|𝐷|

𝑣
𝑗=1 × 𝐼𝑛𝑓𝑜(𝐷𝑗)   (3) 

To address the attrition issue caused by having many 
values for some attributes, Information Gain is normalized 
by Gain Ratio. It is calculated as in 4: 

𝐺𝑎𝑖𝑛(𝐴) = 𝐼𝑛𝑓𝑜(𝐷) − 𝐼𝑛𝑓𝑜𝐴(𝐷)   (4) 

However, Information Gain tends to favor attributes 
with many unique values, which may not always be 
optimal. To counteract this bias, the Gain Ratio (GR) is 
introduced, defined as in 5: 

𝐺𝑅(𝐴) =
𝐺𝑎𝑖𝑛(𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐴)
     (5) 

where 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐴) computed as using equation 6. 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐴) = − ∑
|𝐷𝑗|

|𝐷|

𝑣
𝑗=1 log2 (

|𝐷𝑗|

|𝐷|
)   (6) 

These equations ensure a robust and unbiased feature 
selection process, improving the interpretability and 
efficiency of classification models. 

Information Gain (IG) and Gain Ratio (GR) were used 
for feature selection to improve the models toward the 
predictive capability. The measurements of entropy 
reduction from splitting data on specific attribute 
combination is what IG can do best, and GR is able to 
normalize a metric for dealing with values of a categorical 
variable with more than one. Computational limitations 
and the concerns of interpretability in policy-based 
decision making implied that other methods like Recursive 
Feature Elimination (RFE) or Mutual Information were not 
used. In the study, a holdout validation was employed with 
the dataset split into 80% training, 20% testing for 
generalization performance assessment. This supports the 
use of AI driven methodologies in research policy 
evaluation to create data for policymakers to implement 
funding strategies more efficiently as well as institutional 
policies. 

3.3 AI-based applied models 

To evaluate the effectiveness of various ML techniques 
in predicting research outcomes, several classification 
models were applied to explore the performance of models, 
highlighting their strengths and ability power for 
classifying research-related outcomes that helpful in 
decision making for optimizing policy and research 
innovation.  

3.3.1 Gaussian Naïve Bayes (GNB) 

GNB is a features independent classifiers use for 
probabilistic based theorem and effective for high 
dimensional data. For computing, this uses the following 
formula that shows in equation (7) and (8). 

𝑃(𝑦|𝑥)  =  
𝑃(𝑥|𝑦) ∗ 𝑃(𝑦) 

 𝑃(𝑥)
               (7) 

𝑃(𝑥|𝑦)  =  
1

(√(2𝜋𝜎^2))
 ∗

 𝑒𝑥𝑝(−((𝑥−𝜇)^2) 

 (2𝜎^2))
     (8) 

3.3.2 K-Nearest Neighbors (k-NN) 

KNN is a lazy method of learning that makes prediction 
based on nearest neighbors use for non-linear relationship 
and handles categorical features, while K-NN is a not 
parametric classifying technique. A data point gets 
assigned a class that reflects the majority class of its k-
nearest neighbors. The KNN compute show in (9). 

𝑑(𝑚, 𝑛) = √∑ (𝑚𝑖 − 𝑛𝑖)2𝑘
𝑖=1     (9) 

3.3.3 Extra tree classifier 

An approach to ensemble learning called Extra Trees 
(Extremely Randomized Trees) mixes predictions from 
several unpruned decision trees. This model is effective for 
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nonlinear relationship and fast training model. It leverages 
random splits for features, in opposition to Random 
Forests. Based on variants of Gini index equations, the data 
points are split using the equation that achieves the highest 
value, ensuring optimal decision tree construction. The 
equation of extra tree classifier shows in (10).  

𝛥𝐺 = 𝐺(𝐷) − (
∣𝐷∣

∣𝐷𝐿∣
𝐺(𝐷𝐿) +

∣𝐷∣

∣𝐷𝑅∣
𝐺(𝐷𝑅))                    (10) 

3.3.4 Linear SVC  

A linear classifier called Linear SVC produces the 
hyper plane that reduces the distance between classes [19]. 
This model is fundamental in ML and used for handling 
high dimensional data and robust noise. Linear SVC 
objective function show in equation (11) and (12).  

𝑦 =  𝑤^𝑇 𝑥 +  𝑏                   (11) 

Subjected to. 

𝐿(𝑤, 𝑏)  =  ∑(𝑚𝑎𝑥(0, 1 –  𝑦_𝑖(𝑤^𝑇 𝑥_𝑖 +  𝑏)))        (12) 

3.3.5 Ridge classifier CV 

To prevent over fitting, the Ridge Classifier regulates a 
linear model. By separating data into training and testing 
sets, cross validation analyzes model performance. This 
model is used for reducing over fitting, handling high 
dimensional data and imbalanced data. It penalizes the 
magnitude of the coefficients with the goal to minimize the 
squared error. Ridge classifier objective function show in 
equation (13).  

𝐿(𝑤, 𝑏)  =  ∑(𝑦_𝑖 − (𝑤^𝑇 𝑥_𝑖 +  𝑏))^2 +  𝛼 ∗
 ||𝑤||^2                         (13) 

3.4 Hyperparameter settings 

A holdout validation approach was applied, splitting 
the dataset into 80% training and 20% testing to evaluate 
the model's generalization ability. The models were trained 
using LinearSVC, GaussianNB, KNN, RidgeClassifierCV, 
and ExtraTreeClassifier, with hyperparameter tuning 
performed. The hyperparameter tuning process was 
conducted on LinearSVC, the best-performing model, to 
optimize its parameters. The following table II summarizes 
the tuned hyperparameters: 

TABLE I.  HYPERPARAMETER SETTINGS 

Parameter Values Tested Optimal Value 

penalty l1, l2 l2 

loss hinge, squared_hinge squared_hinge 

C (Regularization) 0.001, 0.01, 0.1, 1, 10 1 

max_iter 500, 1000, 5000 1000 

 

These settings helped LinearSVC achieve the highest 
accuracy for predicting research productivity. Table III 
defines the variable description used in methodological 
equations for deeper understanding Performance 
Evaluation Measures. 

4 Experimental setup 
In the experimental setup section, discuss dataset, the 

process and setting used to carry out the experiments and 
evaluate the models for impact of research policy.  

 

 

4.1 Dataset 

For this study, the dataset was sourced from an open-
source repository on GitHub so that it can be as transparent 
and reproducible as possible. The file consists of 4,000 
entries with policy, outcome and control variables used for 
policy evaluation. Preprocessing was carried out on the 
dataset by handling the missing values in the numerical 
features using mean imputation and the categorical features 
using mode imputation. Policy impact, funding allocation 
and institutional effectiveness are preferred factors 
considered in the dataset, and therefore it serves as a solid 
foundation for analysis regarding the effect of research 
policies on productivity and innovation. 

For data analysis, the dataset is divided into three 
categories policy variables, outcome and control variables. 
The policy variables also consist of five columns include 
funding amount in dollar, policy duration in year, target 
audience that category into three values universities, 
private research centers and public research institutions, 
priority areas categorically into STEM, health and social 
sciences and policy types that divided into three categories 
include grant, tax incentive and loans.  The second 
categories are outcomes that consists of four columns 
include research productivity that tell about numbers of 
papers, citations impact shows the average citations per 
paper, innovation index includes, collaboration level and 
research quality score, region that consists of diverse 
regions including Asia, Africa, Europe, North America and 
Oceania with institution type that is private and public, 
researcher experience level consist of senior and junior. 

4.2 Performance evaluation measures 

Performance evaluation matrix is used for comparing 

performance of different models, model improvement and 

comparison with baselines. Use multiple metrics for 

comprehensive evaluation such as accuracy, f1-score, and 

AUC-ROC [20]. 

4.2.1 Accuracy 

It shows the proportion of cases that are accurately 

expected and Proportion of accurately expected instances 

% of total instances, as in eq (14). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

𝑇𝑁+𝐹𝑁+𝐹𝑃+𝑇𝑃
        (14) 

4.2.2 F1-score 

The F1-Score manages the trade-off between precision 

and recall by taking the harmonic mean of both, as in eq 

(15). When the distribution of class is unbalanced, the F1-

Score is especially helpful. 

𝐹 − 𝑠𝑐𝑜𝑟𝑒  =  2 ∗
(

𝑇𝑃
(𝑇𝑃+𝐹𝑃)

 ∗ 
𝑇𝑃

(𝑇𝑃+𝐹𝑁) 
)

(
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 + 

𝑇𝑃

(𝑇𝑃+𝐹𝑁) 
) 
               (15) 
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4.2.3 AUC-ROC 

AUC-ROC measures the ability of a model to predict 
and plot true positive rate against the false positive rate and 
used to robust class imbalance, comparability of different 
models. 

Table 2: All symbols with abbreviations 

Symbols Abbreviations 

𝜇 mean 

(𝜎)2 variance 

𝑥 feature value 

𝑦 class label 

𝑚 Query point 

𝑛 A neighboring point 

𝑘 Number of features 

𝐺(𝐷) Impurity measure. 

𝐷𝐿 𝑎𝑛𝑑 𝐷𝑅 Left and right subsets after the split 

|𝐷| Total number of samples. 

𝐶 regularization parameter 

𝑤 weight vector 

𝑏 bias term 

𝑇𝑃 True positive 

𝑇𝑁 True negative 

𝐹𝑃 False positive 

𝐹𝑁 False negative 

 

All the above performance evaluation metrics are 
essential for evaluating the performance of classification 
models, especially in scenarios where class distribution and 
the cost of errors vary. 

5 Results analysis 
In this section, we examined the results through feature 

engineering techniques and machine learning models to 
analyze research policies impact for the purpose of 
classifying the various research outcomes based on the 
selected features. 

5.1 Exploratory data analysis 

The correlation matrix as shown in fig 3 provides a 
visual representation of the relationships between 
numerical variables in the synthetic dataset. The figure 
presents the correlation matrix that shows the insightful 
analysis of the relationships between some research policy 
factors. The heatmap shows — visually — correlations 
coefficients between the variables, where -1 to 1 is the 
value and red shades represents the highest positive 
correlations, and the blue shades is highest negative or 
negative correlations. A couple of observations of interest 
is the 'strong positive correlation' (0.58) between Policy 
Duration and Citation Impact, that longer interventions can 

facilitate higher citation impact. Research Productivity is 
also moderately related to Funding Amount (0.48) and 
Citation Impact (0.25), which implies that funding of some 
kind is essential to achieving high research output. 
Curiously, the Collaboration Level and Research 
Productivity have a moderate positive correlation (0.48) 
revealing the significance of the collaborative nature of 
academia. Priority Area, however, has weak or negligible 
correlations with almost all the variables indicating that it 
has relatively poor direct impact on most of the research 
success metrics. Thus, findings highlight the role of 
funding allocation, collaboration and policy longevity in 
determining whether an uncommitted fund dedicated to 
research has an impact and promotes the effectiveness of 
research. Overall, the correlation matrix reveals several 
notable relationships between the variables in the synthetic 
dataset by defining moderate positive and weak negative 
correlations. 

The pair plot shown in fig 4 provides a comprehensive 
visual overview of the relationships between numerical 
variables in the synthetic dataset. The dataset displays a 
wide range of funding amounts, from approximately 0 to 
20 million, which suggests that the dataset is not artificially 
constrained and encompasses a variety of funding 
scenarios. Pair plot visualization shows all relationships 
among various policies and outcome variable over several 
regions. Individual variable distribution has also been 
shown in the diagonal elements, with patterns such as 
skewness in funding amount and collaboration level, which 
indicate that these variables may need to be normalized or 
transform. The scatter plots demonstrate the relationships 
between various variables, including funding amount and 
research productivity as well as citation impact, and have 
positive correlations. This is in line with the existing 
literature, which indicates that research funds greater 
publication output and research citation impact. However, 
their relationships with funding and innovation index, 
besides collaboration level and research quality score, 
exhibit more dispersed distribution, which suggests the 
influence on the result beside funding. In general, the 
figure summarizes what patterns are to be looked for in 
future regression or classification analysis to quantify the 
efficacy of policy variables in influencing research 
performance. 

As shown in fig 5, the boxplots that are presented 
display the distribution of numerous research-related 
variables including the amount of funding, the duration of 
the policy, the productivity of research, the impact of the 
citation, the success rate of funding, the innovation index, 
collaboration level, and research quality score. The 
distribution of the funding amount is very high skewed 
with a few very large outliers, indicating that while most of 
the research projects receive small amount of funds, some 
projects are funded by few times more compared to most 
of them. Policy duration is close to a normal distribution—
it means that it is consistent in policy timelines. The 
compact IQR for both research productivity and citation 
impact indicate that most values fall in a narrow range, but 
outliers indicate a variation of productivity across 
researchers. As you can see it is very skewed meaning the 
funding success rate can be very low while a percentage 
makes it through to pass. Looking at the innovation index, 
it shows a greater spread meaning innovation levels of 
different research outputs vary. Research projects at 
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collaboration level show a right skewed distribution, i.e. 
there are research projects with extensive collaboration, a 
larger number of low collaborations. The last one involves 
research quality scores, which show a quite narrow 
distribution with some extreme values, meaning that most 
research is of a quality appropriate to the benchmark, but 

some projects excel or regress far more than others. 
However, these insights are useful when it comes to 
optimizing the policy, as they assist in discerning the 
impact of funding, collaboration, and duration of the policy 
on research productivity and quality.

 

Figure 3: Analysis of correlation matrix for variable relationship 
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Figure 4: Analysis of dataset using pair plot visualization 

 

Figure 5: Summary of distribution of numerical variables 

Fig 6 depicts the Funding Amount and the Innovation 
Index, while splitting the data by Institution Type and the 
researcher’s Experience level. The resultant scatter plot 
shows the relationship between funding amount and the 
innovation index using the data points split by institution 
type (private versus public) and researcher experience level 
(junior versus senior). Most data points tend to occur at 
lower levels of funding indicating that most of the 
institutions are not getting much in terms of finances. 
Although innovative institutions have lower funding than 
others, several still show very high innovation indices and 
innovation is not solely a question of financial investment. 
The distribution of the innovation scores looks quite 
similar between public institutions (orange) and private 
institutions (blue), and senior researchers (x marked points) 
are associated with higher scores generally. However, at 
larger dimensions of funding, there is increased variability 
of innovation outcomes with some highly funded 
institutions as well as others with lower innovation indices. 
This can be interpreted to imply that in addition to funding, 
culture research, collaboration and policy frameworks may 
also contribute to generate innovation. 

 

Figure 6: Funding amount and the innovation index 

across institution type 

 

 

Fig 7 visualizes the distribution of Research 
Productivity across five global regions: European 
continent, East Asian, African, the American and 
Australian continent. The distributions suggest that median 
productivity within regions is slightly different and varies 
slightly as far as spread is concerned. Europe and North 
America being marginally higher and the distance between 
the median and mean are narrow suggesting that the 
researchers are more consistent in their productivity. On 
the other hand, Asia and Africa presented broader 
dispersion which may imply higher variability in the 
productivity ranges for these two regions. Oceania remains 
comparable to the distribution witnessed in Europe and 
North America hence moderate candor. In general, this 
map allows us to identify differences in regional 
performance and distribution of high and low research 
outputs, although research productivity is quite comparable 
between various regions. 

 

Figure 7: Distribution of research productivity across 

regions 

 
Fig 8 shows trends of innovation over time, the 

relationship between different research indices and the co-
authorship networks for researchers grouped by experience 
and institutional affiliation. The first visualization, a 
density plot, examines the distribution of the Innovation 
Index across three policy types: Grant, Loan, and Tax 
Credit. This is justified by the fact that the data has a 
bimodal pattern for all the policies at around 45 and 70. 
However, the Tax Incentive policy presents a steeper slope 
in the lower peak, which means that it encourages 
innovative outcomes in the lower range score. Regarding 
the distribution of the densities with the articles, we 
observe slightly higher densities centered around the first 
upper peak, which is approximately 70, thus the loan policy 
may enhance the improvement of innovation performance 
more than grants. 
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Figure 8: Trends of innovation index by policy type 

 
Fig 9 shows how Collaboration Levels of Junior and 

Senior researchers differ between Public and Private 
entities. The results of junior researchers indicate that 
several collaboration level clusters are at low levels, with 
few points hitting elevated levels, thus illustrating that 
inconsistent collaboration possibilities exist for early-year 
researchers. On the other hand, the results presented for 
Senior researchers show a greater variability, with the 
relatively higher end of collaboration scoring even more 
frequently represented, especially in the category of public 
institutions with some of the outliers tipping the 20,000 
marks. This further brings out the key factors in Research 
Collaborations which include experience and institutional 
support where senior researchers with connections take 
advantage of these. 

 

Figure 9: Collaboration level by research experience 

level 

5.2 Analysis of results using various AI 

based feature engineering techniques 

Feature selection methods including IG and GR were 
employed to determine the relevant factors in predicting 
top features that assist in classification by providing the 
measure of the ability to improve the state of uncertainty to 
identify which features and variables are most influential 
so that the target labels can be accurately predicted. 

5.2.1 Policy Variables 

Among the policy variables, detail analysis of results 
has been defined using table IV, revealing that funding 
amount showed the highest information gain (0.089) and 
gain ratio (0.134), showing the most influential factor in 
determining research outcomes. This suggests that the 
amount of funding plays a significant role in influencing 
metrics such as productivity and impact. Policy duration 
also has a measurable, though smaller, influence with an 
information gain of 0.011, showing that longer or shorter 
policy periods have some impact on research results. This 
outcome may indicate that, beyond funding amount and 
duration, other policy factors are less influential in 
determining research success across the examined metrics. 

Table 3: Result analysis of policy-based variables 

Policy Variables 
Info 

Gain 

Gain 

Ratio 

Funding Amount 0.089 0.134 

Policy Duration 0.011 0.002 

Priority Area 0.001 0.001 

5.2.2 Control Variables 

Among the control variables, in table V, region and 
institution type exhibit similar levels of influence with 
information gains of 0.010 and 0.011, respectively, 
indicating that the geographic location and type of 
institution (private or public) have a small but measurable 
effect on research outcomes. Researcher Experience Level 
has a very low information gain (0.002), implying that the 
experience level of researchers contributes little to the 
variance in the outcome metrics in comparison to other 
factors. 

Table 4: Result analysis of control-based variables 

Control Variables Info Gain 
Gain 

Ratio 

Region 0.010 0.002 

Institution Type 0.012 0.001 

Research Experience 0.002 0.002 

5.2.3 Outcome variables 

In outcome variables, the most crucial feature research 
productivity with information gain of 0.525, indicating as 
a strong predictor of overall research impact, as shown in 
table VI. Citation impact follows with an information gain 
of 0.070, suggesting that it also plays a role in 
understanding the effectiveness of research policies, 
though to a lesser extent than productivity. Innovation 
index shows very low information gain (0.002), indicating 
that it may be less directly influenced by the factors 
analyzed, or that it captures different aspects of research 
outcomes not directly tied to the measured policy and 
control variables. Research quality score shows no 
information gained about 0.001, suggesting that it may not 



Machine Learning-Based Analysis of Research Policy Impacts… Informatica 49 (2025) 211–224 221 

be effectively captured or influenced by the policy and 
control variables. 

In summary, funding amount and research productivity 
are the top-ranking features based on information gain, 
indicating that they are the most influential variables in 
determining research success. Control variables like region 
and institution type have modest influence. These findings 
suggest that while funding and productivity are critical 
factors. The findings emphasize the importance of funding 
allocation and indicating that policies could be optimized 
by prioritizing funding support to enhance productivity, as 
well as by considering regional and institutional contexts. 

Table 4: Result analysis of outcome-based variables 

Outcome Variables Info Gain 
Gain 

Ratio 

Research Productivity 0.525 0.001 

Citation Impact 0.070 0.005 

Innovation Index 0.002 0.001 

Research Quality Score 0.001 0.001 

 

6 Discussion and comparison with 

prior work 
To classify the research findings, the features were 

further explored using machine learning models including 
LinearSVC, ExtraTreeClassifier, GaussianNB, 
KNeighborsClassifier, and RidgeClassifierCV. The 
models’ performance was assessed using accuracy and F1-
score where possible, based on three outcomes, as 
comprehensive results were displayed in table VII. This 
study clearly helped to identify which policies are most 
recommended and insightful for high quality research and 
innovation. 

Table 5: Results of all three metrics using ML Models 

Research Productivity 
Citation 

Impact 

Innovation 

Index 

Models Acc F1 Acc F1 Acc F1 

GaussianNB 0.89 0.90 0.91 0.91 0.91 0.91 

KNeighbors
Classifier 

0.87 0.85 0.80 0.78 0.84 0.84 

RidgeClassif

ierCV 
0.88 0.86 0.71 0.61 0.85 0.85 

ExtraTreeCla

ssifier 
0.90 0.93 0.94 0.94 0.82 0.82 

LinearSVC 0.97 0.96 0.94 0.93 0.95 0.95 

 

The findings also show that LinearSVC perform better 
prediction accuracies than other models in outcome 
measures. As for research productivity, LinearSVC scored 
an accuracy of 97% and an F1-score of 96%: the data 
clearly shows its efficiency in differentiating between the 
research categories. Similar improvement was equally 

observed in the innovation index where LinearSVC 
achieved at equal score with both measures, accuracy and 
F1-Score of 95%, signifying its efficiency in predicting the 
degree of adopted innovation prompted by research 
policies. Moreover, with the citation impact, using 
ExtraTreeClassifier achieved accuracy and f1-score of 
94% equally as the most efficient classifier among the four, 
although its prediction accuracy was equivalent to 
LinearSVC at about 94% and an F1-Score of 93%. For 
research productivity, the model was useful with an 
accuracy of 90%. The ExtraTreeClassifier emerges as a 
fundamentally accurate approach in implementing 
ensemble learning models for complicated datasets and 
policy implications. Furthermore, GaussianNB as a much 
simpler model also had high performances concerning all 
the outcome variables, as with citation impact overall 
accuracy and F1 score of 91%. For research productivity, 
it achieved 89%. This makes the model effective while at 
the same time, it is complex and can be readily interpreted 
in cases where interpretability of a model is a necessity. On 
the other hand, the performance of models such as 
KNeighborsClassifier and RidgeClassifierCV has shown 
to be middle level. When the KNeighborsClassifier was 
used, a score of 87% for research productivity, 80% for 
citation impact and 84% for innovation index were 
obtained, revealing the limitations in effectively 
classifying outcome variable. This model struggled the 
most, particularly for citation impact, where its accuracy 
was 71% and its F1-score dropped to 61%, suggesting that 
it may not be well-suited for datasets with complex, 
nonlinear relationships. As comparative analysis on the 
base of accuracy measure has been shown in fig 10. 

The contribution of this study is in how ML techniques 
can be used in the evaluation of research policies using 
policy, outcome, and control variables. Compared to other 
classifiers, LinearSVC has performed well due to its 
robustness of dealing with high dimensional categorical 
and numerical data, its ability to efficiently discover the 
important factors that affect research productivity, citation 
impact, and innovation index. For linear decision 
boundaries adapted well in high dimensional spaces, and a 
probabilistic approach to generalize categorical and 
continuous data were given by GNB, while LinearSVC 
was chosen due to its effectiveness. To enable 
interpretability and interpret feature importance 
estimation, ETC was selected as an ensemble method. 
Ensemble techniques such as Random Forest and Gradient 
Boosting Machines were considered to further enhance the 
model diversity and nonlinear pattern. Finally, it is widely 
known that these methods are robust with regards to 
complex, heterogeneous datasets and aggregate multiple 
weak learners to prevent overfitting. Further work may be 
possible with these advanced models to provide better 
predictive performance and generalizability. 

The ML approach is more accurate and powerful than 
prior studies which used traditional statistical models in 
relating research policies to their different outcomes. An 
underperformance of some models may be explained by 
the characteristics of the used dataset, such as the 
irregularity of the funding success rates and the varying 
policy effectiveness across regions. Furthermore, biases in 
data collection such as differences in research priorities, 
institutional funding structures, and the way policy is 
implemented across regions may affect generalizability of 
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the model. A relatively lower AUC-ROC (research 
productivity 0.62) indicates that factors beyond calculating 
the dataset may not be captured entirely, for instance, 
external factors like researcher motivation and institutional 
support may not be captured. Future research concerning 
the first two problems mentioned should focus on 
ensemble learning approaches and domain adaptation 
techniques, since these will mitigate biases, enhance model 
reliability and improve predictive performance in research 
policy evaluation.  

To ensure contextual relevance, the results of this study 
should be interpreted within the broader framework of 
research policy optimization. It is demonstrated that 
funding amount is highly correlated with research 
productivity, which suggests that the intended financial 
support indeed plays qualitatively critical roles in 
improving publication rates. This is consistent with the 
existing literature on policy that pays close attention to 
funding in stimulating high impact research. The research 
suggests that policy duration and priority areas shape the 
impact of citation, so long-term and strategically targeted 
formulation of policy is the way to impactfully study the 
research. This stands as support for previous studies that 
show that investment in targeted funding initiatives is 
associated with sustained impacts in academics. The 
results indicate the impact of institutional type and 
researcher experience in determining research quality and 
collaboration. In accordance with previous studies on the 
institutional research culture and its effect on product 
quality, public institutions and senior researchers have 
higher innovation indices. 

Building on the ML based ranking of influential 
factors, the study contributes with an empirical basis of 
improving policies for research. LinearSVC is predictive 
(97% in the case of research productivity, 94% for the 
citation impact, and 95% for the innovation index) and 
thus, supports that it is fair to use AI-driven policy 
evaluations. Correlation analysis as shown in fig 3, 
supports what is expected from policy literature, namely 
equitable funding distribution, long term planning and 
supportive institutional environment, which lead to success 
of research. Although, some surprising result shown, such 
as the moderate AUC ROC scores in fig 11,12, and 13 for 
some variable indicate that data driven policy assessment 
still needs be further refined. Such insights from future 
research may also include other socio-economic and 
interdisciplinary factors. This study utilizes AI for 
developing a framework for data-based decision making 
for evaluation of research policy and contributes to guide 
institutions and funding agencies to maximize the research 
benefits for society by maximizing available resources. 

 

Figure 10: Analysis of results in term of accuracies 

 
In conclusion, the findings show that there is 95% 

average accuracy for predicting the research outcomes 
from the policy variables using LinearSVC and 
ExtraTreeClassifier models, and overall, with single model 
accuracy among three categories LinearSVC achieves the 
highest accuracy of 97%. Other relatively basic models that 
have showed usefulness include GaussianNB, but these are 
progressively being dominated by more complex models in 
cases where complex data are needed, in this case to predict 
the effect of research policies, more complex models 
demonstrated better performance. The Receiver Operating 
Characteristic (ROC) curves for the three outcome 
variables demonstrate the effectiveness models in 
classifying these key research metrics. For Research 
Productivity as shown in Fig 11, the ROC curve shows that 
LinearSVC outperforms all other models, achieving the 
highest AUC of 0.62, indicating its robustness in capturing 
productivity patterns. GaussianNB follows closely with an 
AUC of 0.83, showcasing its simplicity yet effective 
classification capabilities. However, models like 
KNeighborsClassifier and ExtraTreeClassifier show lower 
AUC scores of 0.50 and 0.65, respectively, highlighting 
potential challenges in handling this outcome's complexity. 

 

Figure 11: Analysis of ROC-AUC combined model 

outcomes using research productivity metrics 
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For Innovation Index as shown in fig 13, the ROC 
curve reveals that LinearSVC achieves an exceptional 
AUC of 0.96, making it the most effective model for this 
outcome. GaussianNB and RidgeClassifierCV also 
perform well, with AUCs of 0.92 and 0.88, respectively. In 
the case of Citation Impact as shown in fig 12, LinearSVC 
again leads with an AUC of 0.93, followed by GaussianNB 
and ExtraTreeClassifier with AUCs of 0.89 and 0.87, 
respectively. These results reflect the models' ability to 
effectively classify citation influence levels. Meanwhile, 
KNeighborsClassifier and RidgeClassifierCV, with AUCs 
of 0.67 and 0.61, show relatively weaker performance, 
indicating a need for improvement in handling this 
dataset's intricacies. However, KNeighborsClassifier and 
ExtraTreeClassifier, with AUCs of 0.84 and 0.81, exhibit 
moderate effectiveness in distinguishing innovation levels. 
These findings highlight the value of advanced predictive 
tools in improving research policy framework and 
evaluation to bridge the need to select an appropriate 
training model to get useful and reliable information. 

 

Figure 12: Analysis of ROC-AUC combined model 

outcomes using citation impact metrics 

 
In the proposed study, use of SVC reached overall 

accuracy of 97%, which is still a major leap from previous 
studies, as comparative analysis shown in table VIII. For 
example, [11], used three models LR, SVC, and DT, and 
obtained accuracy was 80%. Similarly, [13] used XGBoost 
(XGB), Random Forest (RF), SVM classifiers, with higher 
improvement of the accuracies by 85%.  

 

Figure 13: Analysis of ROC-AUC combined model 

outcomes using innovation index metrics 

Overall, AUC-ROC values show the performance of 
the different classifiers in predicting the research 
productivity, citation impact and radicalness of innovation. 
Compared to other models, models with LinearSVC 
always serve as the best performing model as evidenced by 
the best AUC scores 0.93 in citation impact and 0.96 on 
innovation index. As LinearSVC performs so well, we 
might assume that the decision boundary found by the 
model was so good for the dataset structure as it is effective 
at dealing with high dimensional feature spaces. 
Contrarily, models such as KNeighborsClassifier and 
RidgeClassifierCV achieve lower AUC values especially 
in research productivity (0.50 and 0.68, respectively), due 
to their lack of a possibility to fit the complex patterns of 
data. GaussianNB performs reasonably well on all metrics 
(AUC = 0.89 for citation impact and 0.92 for innovation 
index), probably because it handles categorical and 
continuous variable in a probabilistic manner. Model 
performance varies depending on feature engineering, 
hyperparameter tuning, dataset characteristics and this 
points to the importance of them in being able to classify. 
However, [15] obtained only 79% accuracy by applying 
DT and Naive Bayes (NB) Technique. The increased 
performance improvement for our proposed approach 
underlines the advantage of our model and feature selection 
method as a new baseline for measuring the flow-through 
effect of research policies by employing machine learning. 

Table 6: Comparison with existing studies 

Sr. No Ref Top Model Results 

1 [11] LR 80% 

2 [13] RF 85% 

3 [15] DT 79% 

4 [18] KNN 89% 

5 Proposed SVC 97% 

7 Conclusion and future work 
The evaluation of research policies and their impact on 

various outcome variables based on synthetic dataset, 
defining a critical evidence-based decision-making in field 
of academia and innovation ecosystems. By leveraging ML 
approaches and feature engineering techniques, this study 
explores various policies and contextual factors in shaping 
research success. Our findings reveal that ML model such 
as LinearSVC as the top-performing classifier across all 
research outcome variables, with the highest accuracy of 
97% for Research Productivity. This demonstrates the 
model’s robustness in handling diverse research policy 
datasets and its suitability for predictive analysis. Among 
the features, Funding Amount emerged as the most 
influential policy variable with the highest IG (0.089) and 
GR (0.134), underscoring the significant role of financial 
support for acquiring successful research outcomes. This 
study bridges the gap in understanding how policy design 
impacts research outcomes by providing a systematic, 
data-driven framework. Moving forward, additional 
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features such as technology adoption, and societal impact 
metrics could provide a comprehensive view of research 
outcomes using advanced techniques like Explainable AI 
to enhance the interpretability of models and ensure more 
transparency in policymaking, offering deeper insights into 
sustainable policy design.  
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