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Brain Tumor (BT) result from uncontrolled cell growth and can be fatal if not treated. Classification and 

segmentation of data remain difficult despite many large-scale initiatives and encouraging results. 

Variations in the location, shape, and size of tumors make diagnosis difficult for doctors. This report 

provides a comprehensive literature analysis on magnetic resonance imaging (MRI) to aid researchers in 

detecting brain tumors (BT). The subject matter includes topics such as the anatomy of the Brain Tumor 

(BT), publicly available datasets, methods to improve the quality of images, dividing the tumor into distinct 

parts, extracting important characteristics, categorizing the tumor, using advanced Machine Learning 

(ML) techniques like Deep Learning (DL), transferring knowledge from one task to another, and 

employing fuzzy sets for analysis. The review provides an extensive overview of ML and DL methods for 

BT classification. With its capability to analyse vast amounts of data, DL has shown outstanding 

performance across various fields, particularly in biomedicine. This assessment offers comprehensive 

information about both 2-dimensional (2D) and 3-dimensional (3D) datasets and the methodologies used. 

The use and testing of MRI scans have been utilized to identify BT, resulting in positive outcomes. The 

goal of this study is to conduct a thorough and critical review of existing research on BT detection and 

classification using MRI. 

Povzetek: Članek nudi poglobljen pregled naprednih metod strojnega in globokega učenja za MRI-

segmentacijo in klasifikacijo možganskih tumorjev, ter izpostavi izzive, podatkovne nabore in smernice 

prihodnjega razvoja. 

 

1 Introduction 
As the brain and spinal cord facilitate dispersion, the 

Central Nervous System (CNS) conveys information 

about the body's senses and motor functions. The main 

brain components include the brain stem, cerebrum, and 

cerebellum. The typical male brain weighs 1.2-1.4 K and 

is 1260 cm3 and the female brain is 1130 cm3. Motor 

control, judgment, and problem-solving are all helped by 

the frontal lobe. The parietal lobe controls posture. The 

occipital governs vision, whereas the temporal handles 

memory and hearing. Neurons form a greyish cerebral 

cortex at the cerebrum's outermost section. The brain is 

bigger than the cerebellum. In neural-system animals, 

motor control organizes voluntary movements. Due to 

their changing size, stroke area and lesioning cannot detect 

tiny lesion patches. Human cerebellums are more 

developed than others. The cerebellum has three lobes: 

anterior, posterior, and flocculonodular. Each lobe is 

joined to the one behind it by the circular vermis. The 

greyish cortex and white matter (WM) core are thinner in  

the cerebellum than in the cerebrum. The anterior and 

posterior lobes collaborate to coordinate complex motor  

 

activities. The flocculonodular lobe keeps bodily  

processes in balance. The balancing act, breathing, and 

eye movement are regulated by peripheral and central  

nervous system bundles. From the brainstem to the spinal 

cord, thalamic nerves travel. All across the body, they 

were scattered. The medulla, pons, and midbrain comprise 

the brain stem. The midbrain facilitates ocular, muscular, 

auditory, and visual movements. While the pons regulates 

respiration, intra-brain communication, and sensations, 

the medulla oblongata regulates blood flow, swallowing, 

and sneezing [1]–[3].  

The revolution in computer vision and ML has 

enabled the development of novel ideas and methods. Its 

applications in education, healthcare, and self-driving cars 

are just a few of the domains in which it has shown 

exceptional success [4]. Anomaly detection is one area 

where scientists have recently been focusing their 

attention on the biomedical applications of ML and 

Artificial Intelligence (AI) [5]. Automated, semi-

automatic, or hybrid models that can accurately and 

quickly identify and segment tumors have been developed 

by researchers using DL [6] as a subfield of ML [7]. Since 

BT may vary greatly in size, form, location, and 
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appearance, radiologists still face challenges, even though 

early identification improves long-term survival and 

offers a more favourable prognosis. Doctors, patients, and 

researchers have already benefited from extensive work in 

this area. Although several Computer-Aided Diagnostic 

(CAD) systems have been developed to automatically 

detect and classify brain anomalies [8] and [9], there are 

still significant gaps in the field.  Numerous evaluations 

have been published in this area, but none of them have 

addressed the shortcomings of the previous research or 

offered any noteworthy insights for the way forward. 

While deep models have the issue of gradient vanishing, 

hybrid models are not compatible with one another. The 

uniformity of data pre-processing is also deficient. To 

create a link across various methods, algorithms, and 

domains, DL optimization algorithms are needed. 

According to [7-9], the largest disadvantage of DL is its 

enormous annotated data need. The only way to find a 

solution to these issues is to conduct a comprehensive 

analysis of the methods already used and documented in 

the literature. 

This study included current research articles that 

investigated the use of DL in identifying and categorizing 

BT from 2019 to 2024. The most recent cutting-edge 

studies on BT detection and categorization are what we 

want to review. The primary motivation for this study is 

our interest in working on a particular DL model known 

as multi-task learning. We also want to learn more about 

the weaknesses and vulnerabilities in current DL models 

so that we may better understand how to implement our 

suggested DL strategy. 

The paper's structure is as follows: Section 1 serves as 

an introductory section of the study, while the second part 

2 offers an in-depth elucidation of BT after the 

introduction. Section 3 of the report encompasses the 

literature review undertaken between 2019 and 2024. 

Topics covered include BT classifying and segmenting 

using various ML and DL methods, datasets, and 

performance indicators. Section 4 provides a 

comprehensive analysis of this work, including its 

drawbacks. Section 5 presents the study's conclusion, 

while Part 6 provides the sources used in this work.  

Brain tumor 

BT are categorized as either aggressive or slow-

growing. A malignant tumor, characterized by its 

aggressive nature, can metastasize and spread from its 

initial place to many organs and tissues. In contrast, a 

benign tumor, which grows at a slower pace, does not 

invade or infiltrate the surrounding tissues [10]. As far as 

the World Health Organization (WHO) is concerned, BT 

falls within categories I–IV [11], [12]. Grades III and IV 

malignancies are characterized by their high 

aggressiveness and poor prognosis, while malignancies of 

grades I and II are thought to advance slower. The details 

about the grading of BT are outlined below [13], [14].  

 

Grade I: Cancers are characterized by their sluggish 

growth and low tendency to spread. These may be 

effectively removed by surgical procedures and have been 

associated with enhanced duration of survival. Grade 1 

pilocytic astrocytoma is one sort of this tumor.   

 

 

 

 

Grade II: Cancers have a sluggish growth rate, but 

possess the capability to metastasize to other tissues and 

progress into tumors of a higher grade. Despite 

undergoing surgical intervention, several types of 

malignancies have the potential to reoccur. 

Oligodendroglioma is a kind of this type of tumor. 

Grade III: Tumors can invade neighbouring tissues 

and have a faster growth rate compared to grade II tumors. 

For certain types of malignancies, surgical intervention 

alone is insufficient; postoperative chemotherapy or 

radiation treatment is offered. One particular instance of 

this kind of tumor is an anaplastic astrocytoma. 

Grade IV: Tumors are characterized by their high 

aggressiveness and ability to spread rapidly. They could 

use blood vessels to expedite their development.  

Ischemic stroke: An ischemic stroke occurs when the 

brain's blood flow is interrupted. An ischemic stroke 

occurs when the blood supply to a portion of the brain is 

cut off, depriving the tissue of enough oxygen and 

hastening the process of death. Context Globally, ischemic 

stroke is a leading cause of mortality and disability. 

Lesions related to strokes are classified as acute (0–24 

hours), sub-acute (1–2 weeks), and chronic (since more 

than 2 weeks ago). 

A BT results from the uncontrolled development of 

both living and dead brain cells. Disease size and severity 

affect BT survival. Primary and secondary BT differ in 

genesis. Secondary tumors travel to the brain from the 

outside, whereas primary brain malignancies start within 

[15]. The soft tissue composition of the three components 

and tumor exhibit varying contrasts under various physical 

conditions, rendering them crucial for the identification of 

BT in MRI imaging. T1, T2, T1-CE, and Fluid 

Attenuation Inversion Recovery (FLAIR) have frequently 

used MRI images [16], [17] as shown in Figure 1.  

T1-weighted images: In T1-weighted imaging, 

cerebrospinal fluid (CSF) appears as a dark color, whereas 

MRI reveals adipose tissue.  

T2-weighted images: Prolonged lengths of 

Repetition Time (TR) and Time to Echo (TE) result in 

increased brightness of CSF. These images depict the 

distribution of adipose tissue and hydration levels 

throughout the body.  

T1-CE images: While the TE and TR are identical to 

those of T1 images, these images are taken after injecting 

a non-toxic gadolinium contrast agent. The agent can light 

imaging locations.  

FLAIR images: By using extended TE and TR 

values, FLAIR images are acquired. By doing this action, 

any irregularities stay visible while the normal CSF 

appears black. This sequence is prone to sickness, which 

facilitates the differentiation of CSF and abnormalities [5], 

[18]. 

 

 

 



A Critical Analysis of Brain Tumor MRI Segmentation and Classification…Enter short title in File/Properties/SummaryInformatica 

49 (2025) 1–18 3 

 
Figure 1: The imaging modalities used in this case 

are a. T1 Weighted, b. T2 Weighted, c. FLAIR, and d. 

FLAIR with contrast enhancement 

(https://bit.ly/33ab5og) 

 

Brain imaging modalities 

Medical imaging remains the most efficient approach 

for discovering, evaluating, and diagnosing gliomas and 

other medical conditions. Computerized Tomography 

(CT), positron emission tomography, MRI, functional 

magnetic resonance imaging, and Diffusion Tensor 

Imaging (DTI) are the imaging modalities most often used 

in clinical settings. While each of these methods has its 

own set of benefits, they may all be combined to create a 

more comprehensive view. Mathematical models may be 

used to predict the progression of BT over time by using 

many time points of various modalities. Growth prediction 

has special importance as it may provide valuable insights 

into the tumor's physiology, aid in measuring the tumor's 

aggressiveness, enhance treatment planning, and perhaps 

even forecast the patients' survival in the context of 

precision medicine [19]. 

The evaluation of medical data was performed by 

using ML and DL techniques, applying the following 

methods: 

MRI: To acquire electromagnetic signals, magnetic 

resonance is used. These signals are produced by human 

organs, which helps us reconstruct further details on the 

anatomy of human organs. High-resolution MRIs include 

more structural features that are necessary for identifying 

lesions and diagnosing diseases. 

CT-Scan: This technique uses digital geometry to create 

3-D images from 2-D X-ray images. 

Mammogram: Mammograms are used for early 

identification of anomalies in the body and the successful 

screening of breast cancer. Masses and calcifications are 

thought to be the most typical abnormalities that lead to 

breast cancer. 

Electrocardiogram (ECG): This device measures electrical 

heart activity and helps identify cardiac issues in people 

[20]. 

Out of all these technologies, MRI is the most 

superior technology for researching the brain due to its 

ability to accurately identify tissues with a high level of 

spatial resolution. The same tissue area may be 

represented by many images using varying contrast 

visualizations. These several imaging types may provide 

very helpful information for the same area, assisting 

researchers in accurately studying brain disease. It is 

effective in tumor identification, as it is a non-invasive 

technique without producing harmful radiation [21].  

2 Literature review 
The increasing complexity of Cyber-Physical 

Reviewing various works in the area of DL and ML 

applications for medical imaging is the main objective of 

this research. Classification, detection, and segmentation 

are critical tasks in medical image processing. To train and 

complete specific DL tasks in medical applications, deep 

neural networks need large amounts of labelled data. 

Nonetheless, the medical field is lacking of annotated data 

points. Transfer Learning (TL) is one tactic to address this 

problem. Fine-tuning a pre-trained network and fixed 

feature extractors are two popular and widely utilized TL 

approaches. The classification method divides images into 

two or more classes using DL models. In the process of 

detecting anomalies in medical imaging, DL algorithms 

identify organs. The models attempt to separate medical 

image regions of interest for processing in the 

segmentation challenge [22]. DL can also extract 

complicated features that humans cannot see, allowing 

quantified image interpretation [23]. 

Fuzzy C means feature extraction methods, neural 

networks, and mathematical morphology were introduced 

for better performance [24], [25]. Also, an evolutionary 

algorithm is important in medical image analysis. Genetic 

algorithms are employed to identify glioma grades 

noninvasively. It is used to select and optimize features 

[26], suggested by utilizing MRI [27] and spontaneous 

categorization to improve accuracy. We find the best 

features in the dataset using Swarm Intelligent 

Redundancy Relevance (SIRR) [28]. In the paper [29], the 

enormous data collection is decreased in dimension using 

the evolutionary correlated gravitational search method, 

an excellent optimization strategy.  

The research articles that discuss the segmentation 

and classification of BT MRI images using ML and DL 

approaches are thoroughly reviewed in this part and span 

the years 2018 through 2024. This section's format is as 

follows: We conduct a thorough assessment of the 

majority of articles that deal with the ML and DL 

techniques used to separate BT from MRI images, along 

with the datasets and performance metrics used in each. 

Most papers use ML and DL techniques to classify MRI 

images as BT. The classification is shown in Figure 2 and 

the table along with the datasets and performance metrics 

used in the examined research papers. 

 
Figure 2: Different methods used in BT classification 

https://bit.ly/33ab5og
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2.1 Segmentation of brain tumor using 

different methods 
Automated BT segmentation is essential for 

computer-aided glioma diagnosis. Automating these 

procedures could potentially enhance their effectiveness 

and efficiency. This study presents a hybrid method for 

segmenting BT. To segment MRI in the BRATS 2013 

dataset, the hybrid model makes use of Deep 

Convolutional Neural Networks (DCNNs) and 

multimodal MRI data. The hybrid model, which included 

two-path Convolutional Neural Networks (CNNs) and 

three-path CNNs, surpassed cutting-edge methods in 

every significant performance criterion. Using a patch 

model, the suggested network segments the brain anatomy 

by classifying the core pixels of individual patches. They 

slice the 3D MRI into 2D spatial layers. It uses local and 

global data to predict output classes, considering label 

correlations between pixels. The training technique for the 

model is two-phase to ensure precise label distribution and 

manage inconsistent data [30]. BT exhibits significant 

variation in terms of their size, shape, and overall 

appearance, posing challenges in their identification. This 

study classifies input slices as either healthy or sick 

(tumor) using a DL network. In this work, a high-pass 

filter image fused with the input slices highlights the 

inhomogeneity field impact of the magnetic resonance 

slices. The fused slices also go through the median 

filtering procedure. It is easy to enhance the output slices 

by simply smoothing and emphasizing the borders of the 

input slices. Subsequently, the 4-connected seed-

generating algorithm categorizes pixels with comparable 

intensity from the input slices. Then, refine the segmented 

slices into the Stacked Sparse Auto Encoder (SSAE) 

model using two layers of a recommended stacked sparse 

autoencoder. The author selected the model's 

hyperparameters after extensive testing. In the first layer, 

they use 200 hidden units, and in the second, 400. 

Evaluated the prediction of images with and without 

tumors on the softmax layer [31].  

Due to the high labour and time requirements of 

manual segmentation, automatic segmentation is the 

superior method. When it comes to medical picture 

segmentation, the UNet is a popular and versatile 

architecture. For 2D and 3D medical picture segmentation, 

this paper suggests and applies 2DGA-UNet and 3DGA-

UNet, respectively. The initial version uses TL and UNet 

architecture to improve the 2DGA-UNet framework's 

performance. Visual Geometry Group 16 (VGG-16), a 

collection of basic CNN, encodes the 2DGA-UNet 

network. In 3DGA-UNet, up-sampling operators replace 

pooling operators, adding layers to a large contractual 

network. Consequently, these layers can learn from a 

limited number of images and surpass current best 

practices with output resolution. These models evaluate 

their performance on five benchmark datasets as 

mentioned in Table 1. The findings demonstrate excellent 

performance across 14 medical image segmentation 

assessment factors. From the comparison of performance 

metrics given in Table 3, the GA-UNet performs better 

than conventional approaches [32]. This paper introduces 

a novel cloud-based 3D U-Net method for BT 

segmentation, which makes use of the BRATS dataset. In 

this research, we look into how the 3-D U-Net network 

deviates when max pooling layers and convolutional layer 

initial sequences are combined. Cloud computing has 

several benefits. This network's worldwide accessibility 

reduces computational expenses. It effectively trained the 

system using the many hyperparameters of the Adam 

optimization solver. We provide the first cloud-based 

method with an average dice score of 95% that achieves 

maximal accuracy. Then the dice score is calculated using 

the Sorensen similarity coefficient [33]. In another article, 

the author proposes a fully automated approach utilizing 

the BraTS2020 dataset and 2D U-net design for tumor 

localization separation from normal tissue. Each distinct 

MRI sequence serves as training data to retrieve (Region 

of Interest) ROIs, or tumor regions in brain MRIs. To save 

computational costs, the input image graphs are reduced 

in size to a single 128 by 128 images, and then normalized. 

We evaluate the model using all MRI sequences to 

determine which yields the highest performance [34].  

An attention module named Attention Gate was 

developed and its efficacy for BT segmentation was the 

intended focus of this study. The Attention Gate Residual 

U-Net (AGResU-Net) architecture incorporates attention 

gates and residual modules into an original, simplistic U-

Net design. It augments the skip connection with several 

attention gate units to focus on relevant feature data and 

ignore irrelevant or noisy feature replies. Not only does 

AGResU-Net collect large amounts of semantic data to 

improve feature learning, but it also manages data on 

small-scale BT. We do a comprehensive evaluation of 

attention gate units using three reliable MRI BT 

benchmarks. Evidence from experiments shows that 

AGResU-Net and AGU-Net perform better than their 

respective baselines, ResU-Net and U-Net [35]. A DWT 

and a Daubechies wavelet kernel are used throughout the 

fusion process to provide a more informative tumor region 

than a single, independent MRI signal. After fusion is 

complete, noise is removed using a Partial Differential 

Diffusion Filter (PDDF). A suggested CNN model is fed 

to the segmented tumor region using a global thresholding 

strategy to discriminate between tumor and non-tumor 

regions. To evaluate the suggested technique, five datasets 

that are publicly accessible are used. The results show that 

fused images perform better than isolated sequences on 

benchmark datasets [16]. Early diagnosis of BT may lead 

to patient survival. This study proposes to segment lesion 

symptoms properly using the Grab Cut technique and 

refine the TL model VGG-19 by extracting features that 

are sequentially combined with manually generated 

(shape and texture) data. Classifiers get a fused vector as 

a result of entropy's optimization of these characteristics 

for quick and precise classification. They evaluated the 

suggested method using three years' worth of multimodal 

BT segmentation BRATS challenge datasets from the top 

Medical Image Computing and Computer-Assisted 

Intervention (MICCAI) competitions. They test and train 

the suggested approach on benchmark datasets like 

BRATS 2015–17. The highest possible results on the 

BRATS 2015 exam are DSC = 0.9636 and accuracy = 
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0.9878. In 2016, we achieved a DSC of 0.9959 and an 

accuracy of 0.9963, while in 2017, we achieved a DSC of 

0.9967 and an accuracy of 0.9980 [11].  

Tumor segmentation and grading are commonly used 

for MRI and are crucial for diagnosing and formulating a 

treatment strategy. They developed a DL approach using 

CNNs built with U-net and TL, a fully connected classifier 

for grading, and a pre-trained VGG-16 convolution basis 

to meet the clinical need for tumor segmentation. We train 

and assess the segmentation and grading models using T1-

precontrast, T1-postcontrast, and FLAIR MRI data from 

110 patients diagnosed with Lower-Grade Glioma (LGG). 

The segmentation model has an average DSC of 0.84 and 

an accuracy of 0.92 in identifying tumors [36]. We talk 

about a way to use CNN to automatically tell the 

difference between BT in 3D BT Segmentation. 

Furthermore, we used whole-brain 3D imaging to 

compare predicted labelling in three dimensions with 

ground truth. The method used sagittal, coronal, and axial 

images to accurately establish the position and dimensions 

of the tumor, including its height, width, and depth. Tumor 

prediction outcomes via semantic segmentation with a DL 

network are promising. 91.718 was the average prediction 

ratio [37]. 

 

Table 1: Summary of methods and datasets used for brain lesion segmentation and classification 

Ref. Method Dataset 

[30] -CNN with two paths 

-CNN with three paths 

- Hybrid CNN 

BRATS 2013 Dataset (3D images) 

[31] - Lesion Enhancement Using High Pass Filter  

- Lesion Segmentation Using Seed Growing Method  

-Autoencoders (AE) 

-Sparse Autoencoder (SAE) 

- Stack Sparse Autoencoder 

A few examples of BRATS datasets: 2012 

(challenge and synthetic), 2013 (and 2013 

Leaderboard), 2014, and 2015 datasets 

[32] - Two variants of GA-UNet: 2DGA-UNet and 3DGA-

UNet  

- TL with VGG16 - encoder in 2DGA-UNet  

- Up sampling operators replacing pooling operators in 

3DGA-UNet 

- Brain lesion segmentation (MICCAI 2008 

Multiple Sclerosis Challenge)  

- BRATS 2018 and BRATS 2019  

- Lung segmentation 

- Segmentation of the liver (3D-IRCADb 

database) 

[33] Segmentation method: 3D U-Net BraTS 2020 3D 

[34] U-Net BraTS 2020 

[35] AGResU-Net model BRATS 2018, 2019, and BRATS 2017 

[16] CNN, PDDF, Daubechies wavelet kernel, and DWT BRATS Leader Board, BRATS 2012, 2013, 

2015, and 2018 

[11] Grab cut technique, VGG 19, and manually created 

feature extraction using HOG (Histogram of Oriented 

Gradients) and LBP (Local Binary Pattern) 

BRATS 2015, 2016, and 2017 

[36] A pre-trained VGG16, fully connected classifier for 

segmenting and U-Net 

The Cancer Imaging Archive (TCIA) 

[37] Semantic segmentation - CNN BRATS dataset 3D 

[38] 3D fully CNN BRATS 19 and 2018 datasets 

[39] 3D U-Net BT classification using MRI data from Kaggle 

[40] The Fully Resolution Convolutional Network (FrCN), 

the MSFO method, and the LBM 

BRATS 18, BRATS 19, BRATS 20 

The datasets used in the various kinds of research 

publications are shown in Table 2 below. Additionally, the 

size of the dataset, whether it was composed of 3D or 2D 

MRI images and the modalities of the datasets are 

discussed. 

 

 

Table 2: Segmentation of BT MRI different datasets 

Ref. Dataset Dataset Size Modalities and 

Dimension 

[30] BRATS 2013 

Dataset (3D images) 

3D images: HGG - 20, LGG - 10; 2D slices - 

155 

MRI Modalities: T1, T2, 

T1c, T2FLAIR 

[31] BRATS Challenge and 

Leaderboard (2012-

2015) 

Each case has 155 slices; Cases:  

• 2012: LGG - 25, HGG – 25 

• 2012 Synthetic: LGG - 25, HGG – 25 

• 2013: LGG - 10, HGG - 20  

• 2013 Leaderboard: LGG - 4, HGG – 21 

--- 
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• 2014: LGG & HGG – 200 

• 2015: LGG - 54, HGG - 220 

[32] Brats’18 & Brats’19, 

Lung Segmentation, 

3D-IRCADb-01 

Brats’18: 285 cases (HGG - 210, LGG - 75)  

Brats’19: 285 cases (HGG - 210, LGG - 75)  

Lung Segmentation: Shenzhen dataset (336 

normal, 326 abnormal CXR of TB), Chest X-ray 

(112,120 Frontal CXR), RSNA pneumonia 

detection challenge (30,000 exams)  

3D-IRCADb-01: 3D CT scan (20 patients, 15 

hepatic tumors) 

Brats’18: Volumes from 

structural MRI (T1, T1Gd, 

T2, T2-FLAIR) 

[33] Brats 2020 (3D) 7 GB, 750 MRI scans of brain tumors 

Training: 484 labeled voxels 

Test: 266 label-free volumes 

240 × 240 × 155 × 4  

Modalities: FLAIR, T1w, 

T1gd, T2w 

[34] BraTS 2020 473 subjects, 5 images per subject Dimension: 224 × 224 × 

150  

Modalities: FLAIR, T1, 

T1ce, T2, Seg 

[35] BraTS 2017, 2018, 

2019 

Brats 2017: Training - 285 cases (HGG - 210, 

LGG - 75), Validation - 46 cases 

Brats 2018: Training - 285 cases (HGG - 210, 

LGG - 75), Validation - 66 unlabeled cases 

Brats 2019: Training - 335 cases (HGG - 259, 

LGG - 76), Validation - 125 cases 

MRI Modalities: T1, T2, 

T1c, T2FLAIR 

[16] BRATS Leaderboard 

(2012-2018) 

Brats 2012: HGG - 10, LGG – 5 

Brats 2013: HGG - 20, LGG – 10 

Brats 2013 Leaderboard: HGG - 21, LGG – 4 

Brats 2015: 384 cases (Training: HGG - 220, 

LGG - 54; Testing: 110 cases) 

Brats 2018: HGG - 191, LGG - 75 

Flair, T1, (Flair + T1) MRI 

sequences 

[11] BRATS 2015, 2016, 

2017 

BRATS 2015: Training - (HGG - 220, LGG –  

54), Testing - 110 cases 

BRATS 2016: Training - (HGG - 220, LGG - 

54)  

BRATS 2017: Training - (HGG - 210, LGG - 

72)  

High & Low-grade images: HGG - 130,200, 

LGG - 46,500  

Normal & Glioma images: Glioma - 15,272, 

Non-glioma - 19,032 

BRATS 2015 Challenge: 

240 x 240 x 155 x 4 (155 

slices in each scenario)  

Modalities: Flair, T1, T1c, 

T2 

[36] The Cancer Imaging 

Archive (TCIA) 

3,929 images (Tumor: 1,373, Tumor-free: 

2,556) 

MRI sequences: T1 pre-

contrast, FLAIR, T1 post-

contrast  

Includes patient data (tumor 

grade, subtype, gender, age) 

[37] BraTS dataset Training: 257 labeled images  

Testing: 5 distinct images 

Dimensions: 240 × 240, 155 

slices  

Modalities: T1, T1C, T2, 

FLAIR 

[38] BraTS 2019 & 2018 

datasets 

BraTS 2019: 462 MRI scans 

Training: HGG - 259, LGG – 76 

Validation: 127 cases 

BraTS 2018: Validation - 67 MRI scans 

Modalities: FLAIR, T1, 

T1c, T2 

[39] Kaggle dataset for BT 

classification 

3,264 files (Training & Research set) Classification: Pituitary, 

Meningioma, Glioma, 

Absence of tumor 

[40] Brats’18, Brats’19, 

Brats’20 

Brats’18: HGG - 191, LGG - 75  

Brats’19: 335 cases (HGG - 259, LGG - 76)  

Brats’20: 494 cases (Training - 369, Testing - 

125) 

--- 
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The performance metrics for evaluating the MRI BT 

include the Dice score, sensitivity (SE), specificity (SP), 

accuracy (ACC), Jaccard Similarity Index (JSI), False 

Negative Rate (FNR), False Positive Rate (FPR), Area 

Under the Curve (AUC), Positive Predictive Value (PPV), 

Highest Density Intervals (Hdis), Variable Speed Drives 

(VSds), Lesion True Positive Rate (LTPR), Lesion False 

Positive Rate (LFPR), True Positive (TP), True Negative 

(TN), False Positive (FP), False Negative (FN), and 

Precision (PREC). These metrics are presented in Table 3. 

 

Table 3: Segmentation performance metrics in BT magnetic resonance imaging (BT MRI) 

Ref Modality Dice SE SP ACC JSI FNR AUC PPV FPR 

[30] Complete 0.86 0.86 0.91 - - - - - -  
Core 0.86 0.87 0.93 - - - - - -  
Enhancing 0.88 0.90 0.94 - - - - - - 

[31] 2012 1.00 1.00 1.00 100 1.00 0.00 1.00 1.00 0.00  
2012 Synthetic 0.94 0.88 1.00 90 0.89 0.12 1.00 1.00 0.00  
2013 0.96 1.00 0.90 95 0.93 0.00 0.97 0.93 0.10  
2013 Leaderboard 1.00 1.00 1.00 100 1.00 0.00 1.00 1.00 0.00  
2014 0.98 0.98 0.96 97 0.97 0.02 0.99 0.98 0.04  
2015 0.96 0.93 1.00 95 0.93 0.07 0.96 1.00 0.00 

[32] BraTS'18 92.1 95.5 92.1 - - - - - -  
BraTS'19 90.29 93.27 92.0 - - - - - -  
MICCAI 2008 99.4 99.6 64.0 - - - - - -  
Lung 98.35 97.7 95.1 98.4 - - - - -  
Liver 81.2 81.3 99.1 90.2 - - - - - 

[33] BraTS'22 0.95 - - - - - - - - 

[34] FLAIR 91.23 98.53 99.14 98.95 93.9 - - - -  
T1 93.86 98.97 99.68 99.41 - - - - -  
T1ce 85.67 98.72 98.52 98.68 - - - - -  
T2 79.32 98.49 98.37 98.25 - - - - - 

[35] BraTS'17 0.749 - - - - - - - -  
BraTS'18 0.772 - - - - - - - -  
BraTS'19 0.709 - - - - - - - - 

[16] BraTS'18 (Flair) 0.96 - - - - - - - -  
BraTS'15 (T1) 0.82 - - - - - - - -  
BraTS'18 (T1C) 0.20 - - - - - - - -  
BraTS'18 (T2) 1.00 - - - - - - - -  
BraTS'18 

(T1C+T2) 

0.95 - - - - - - - - 

 

2.2 Deep learning 
To efficiently integrate both local and global 

contextual information, the suggested design makes use of 

a deep neural network and a 3D convolutional layer, 

giving lower weights to each. This is achieved by the use 

of minuscule kernels. To overcome the data's intrinsic 

unpredictability, the author suggested a preprocessing 

method for MRI that makes use of adaptive contrast 

augmentation and intensity normalization. In addition, a 

data augmentation strategy was used to ensure that the 

robust 3D network was trained effectively [43]. To 

classify the medical images, we use a CNN feature 

combination with SVM. The Figshare public dataset, 

including MRI images of three distinct types of BT, is 

used to evaluate the fully automated methodology. CNN 

is designed to extract features from brain MRI scans. CNN 

characteristics are combined with a multiclass SVM for 

improved performance. The integrated system underwent 

testing and evaluation using a five-fold cross-validation 

procedure. With an accuracy rate for classification of 

95.82%, the suggested model outperformed the most  

 

advanced method. The proposed approach is tested 

extensively on other brain MRI datasets to determine its 

efficacy [44]. An efficient DL method for multiclass brain 

cancer categorization is presented in this study. The 

Densenet201 Pre-Trained DL Model is adjusted and 

refined utilizing unbalanced data via deep transfer. Each 

tumor type is covered by the average pooling layer, which 

extracts the trained model's properties. Two feature 

selection methods are used since this layer's properties are 

unsuitable for exact categorization. Two methods are 

discussed: Entropy-Kurtosis-based High Feature Values 

(EKbHFV) and Metaheuristic-based Modified Genetic 

Algorithms (MGAs). Our threshold function improves 

Genetic Algorithm (GA) properties. Finally, a non-

redundant serial-based technique combines and classifies 

EKbHFV and MGA characteristics by using a multiclass 

SVM cubic classifier. This method employed BRATS 

2018 and BRATS 2019 without augmentation and 

obtained over 95% accuracy [45]. 

CNN multi-classifies BT for early detection. Three 

CNN models for classification tasks are shown. Grid 
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search optimization finds all CNN model hyperparameters 

automatically. This CNN multi-classification of BT MRI 

images tunes most hyper-parameters using the grid search 

optimizer [46]. A powerful DL strategy for BT 

classification utilizing many data sources is presented in 

this research. To begin, a nine-layer CNN model is trained 

to enhance contrast using a combination of hybrid division 

histogram equalization and ant colony optimization. Moth 

flame and differential evolution optimize characteristics 

from the second completely connected layer. Both 

algorithms' results are blended using matrix length and 

delivered to MC-SVM. In experiments, the recommended 

strategy obtained 99.06, 98.76, 98.18, and 94.6% accuracy 

on BRATS 2013, 2015, 2017, and 2018. Results indicate 

that greater tumor visualization before CNN model 

training leads to improved feature generation. Feature 

optimization affects processing time, whereas fusion 

results in increased accuracy and time [47]. To get three-

dimensional brain lesions, this research expands 2D-

CNNs to multimodal 3D-CNNs. It can resolve the wide 

neighbourhood of errors that the 2D-CNNs raw input 

demands while also extracting the modalities of the 

information differences more effectively. Next, to 

accelerate the network's convergence and reduce over-

tipping, the true normalization layer is inserted in between 

the pooling and convolution layers. Finally, by using the 

weighted loss function, we were able to adjust the loss 

function and improve the feature learning in the lesion 

region [48]. 

This research divides BT into two categories using 

three BraTS datasets, with four 3D MRI sequences per 

subject in each dataset and uses two methods. As a service, 

they provide a hybrid model that combines 3D CNNs with 

long short-term memory (LSTM): TD-CNN-LSTM. On 

every tier of this paradigm, Time Distributed functions are 

embedded. The goal is to combine all four MRI scans of 

every patient into one input dataset since they all provide 

important information about the tumor. Hence, the model 

is fine-tuned for layer design and hyper-parameter 

selection via ablation studies. In the second part, they use 

each MRI sequence to build a 3D CNN model, which we 

then use to evaluate performance. Additionally, datasets 

undergo preprocessing for optimal performance. In tests, 

the TD-CNN-LSTM network achieved the best accuracy 

of 98.90%, surpassing 3D CNN [49]. The researchers 

introduced an innovative BT classification technique 

using DL, which operates across many grades. The 

methodology we employ consists of three main steps. 

Firstly, they utilized a CNN model to separate the tumor 

areas from the dataset. The second step is to improve the 

segmented data by adding more parameters to increase the 

sample size. Lastly, BT is divided into several categories 

by refining a pre-trained VGG-19 CNN model. By using 

DL and data augmentation, they enhanced the precision of 

the proposed technique. The findings of the trial 

demonstrate how well the suggested CNN-based CAD 

system works to support radiologists in making accurate 

decisions while grading multi-grade BT into four 

categories [50]. In this article the author uses a 3D-CNN 

to categorize brain MRI images into two predetermined 

categories. Furthermore, they suggest visualizing the 3D-

CNN's behaviour using a Genetic Algorithm-based Brain 

Masking (GABM) method to get a new understanding of 

its operation. Two separate steps to the GABM method 

have been suggested. Firstly, the 3D-CNN is trained using 

brain MRI data. The second step is using a GA to identify 

brain regions in MRI data. The 3D-CNN primarily 

extracts crucial and discriminative characteristics from the 

knowing areas of the brain [51]. 

The research introduces a more advanced 

methodology for classifying brain tumors using MRI data. 

The suggested technique employed a Residual Network 

(ResNet), a DL architecture, to build the model. To expand 

the dataset and improve accuracy, we used rotating, 

shifting, zooming, vertical and horizontal flips, brightness, 

shearing, and ZCA whitening change [52]. The author 

introduced A CNN architecture, which then used a U-Net-

based model to separate brain pictures and classify them 

into four distinct groups. The author used six standardized 

datasets to test and train the classification and 

segmentation models to determine how segmentation 

affects brain MRI tumor categorization. While testing on 

all six datasets, our one-of-a-kind deep-learning BT 

segmentation and classification model outperformed pre-

trained methods [53]. By including adjacent tissues in the 

tumor area (ROI expansion), characteristics may become 

more apparent. This study utilizes pre-trained AlexNet 

(Alexnet, a previous deep CNN approach, significantly 

improves ImageNet classification [54]), ResNet-18, 

GoogLeNet, and ShuffleNet to extract deep characteristics 

from tumors and surrounding tissues. Deep features are 

crucial to tumor classification, but as the network gets 

more complicated, it may forfeit low-level information. 

Shallow neural networks handle fundamental data. After 

that, deep and superficial traits are blended to compensate 

for information loss [55]. 

They present an automated brain illness diagnosis 

model utilizing computer vision based on exemplars. The 

model produces profound characteristics by using 

exemplars. Choose a pre-trained DL model for generating 

features. The selected feature extractor is MobilNetV2. 

The automated brain sickness detection model consists of 

four stages: preprocessing, production of example deep 

features, Iterative Neighbourhood Component Analysis 

(INCA) feature selection, and SVM classification. During 

the processing phase, the original brain scans are scaled 

down to dimensions of 512 × 512 and then divided into 

two sets of exemplars, one with dimensions of 128 × 128 

and the other with dimensions of 256 × 256. MobileNetV2 

generates 1000 features from each example and scaled 

image. The INCA feature selector takes all of the extracted 

features that were created and chooses the best one. The 

SVM classifier uses the chosen feature as input [56]. This 

article presents a novel approach using a CNN, together 

with conventional classifiers and DL approaches, to 

accurately differentiate brain cancers from 2D MRI. To 

train the model efficiently, they have obtained a diverse 

collection of MRI scans that include several tumors with 

varying sizes, forms, locations, and levels of picture 

intensity. To verify the accuracy of this work, we have 

used the SVM classifier as well as different activation 

algorithms including sigmoid, softmax, and RMSProp. 
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We use the Python programming language, using 

"TensorFlow" and "Keras", to develop our recommended 

solution due to its efficiency and effectiveness. CNN 

achieved 99.74% accuracy in our work [57]. 

This study suggests automated categorization for fast, 

accurate diagnosis. This is believed to be the first two-

stage deep CNN model capable of accurately classifying 

three distinct tumor kinds as well as typical brain cell. The 

best CNN models and classifiers were evaluated using a 

two-stage ensemble and classification method to ensure 

the model's correctness. The model's functionality is 

enhanced by a two-stage ensemble that incorporates 

Principal Component Analysis (PCA) and data 

augmentation. The two-stage ensemble boosts accuracy 

4.31%. PCA reduces execution time by 6.71 and features 

by 18.71 [58]. For real-world use, models are inadequate 

as they rely on the most precise tumor model derived from 

slices. This research introduces a new 3 (Attention-

Convolutional-LSTM) DL model for classifying BT using 

MRI data. All three ACL models integrate attention, 

convolutional, and Long Short-Term Memory (LSTM) 

structures into a single learning framework, using an end-

to-end learning technique. Because of this, the ability to 

mirror the attributes was improved. Due of the three-

dimensional nature of the model, the 3ACL model made 

direct use of three-dimensional MRIs without first 

converting them to two-dimensional data. Deep, very 

representative features are generated by the 3ACL model's 

fully linked layer. A set of features is sent into the SVM. 

The classification accuracy was further enhanced by 

including expected outcomes from all SVM slices into the 

weighted majority vote technique [59]. 

 

2.3 Machine learning 
The approach proposed for BT detection produces 

efficient and improved results. To make the overall system 

more efficient, each of the various activities, such as pre-

processing, segmentation, and feature extraction, among 

others, collaborate. The use of these pre-processing 

approaches allows for the achievement of favourable 

outcomes in segmentation, which in turn assists in the 

extraction of certain characteristics that are correct for 

classification. Attained a 95.85% accuracy rate with the 

use of a watershed technique combined with SVM 

classification [42]. The next article describes MRI brain 

cancer detection ML. Optimization selects traits to reduce 

duplication and boost relevance. Pre-processing NMF 

lowers brain MRI noise; Segmentation enhances tumor 

identification. GLCM and spatial Gray level dependence 

matrix (SGLDM) extract key attributes from MRI-

smoothed images. Select meta-heuristic Harris Hawks 

Optimization (HHO) properties alone. The Knowledge-

based Support Vector Machine (KSVM) classifier, which 

is based on ML, categorizes MRI images as either benign 

or malignant depending on certain factors [24].    

ML-Based Back Propagation Neural Networks 

(MLBPNN) improve pathologists' danger location 

accuracy and reduce entomb onlooker variability in BT 

categorization. Acquisition, upgrading, division, 

extraction, image portrayal, characterization, and 

leadership are needed to prepare biopsy images for disease 

localization. This study analyses MLBPNN using infrared 

sensors. Subsystem reduction simplifies the neural 

distinguishing proof calculation. Fractal dimension 

technique uses multi-fractal detection to find the most 

relevant characteristics to simplify the process. The 

wireless infrared imaging sensor delivers tumor warming 

data to a specialist doctor for general health monitoring 

and ultrasound measurement management, particularly for 

elderly faraway patients [60]. 

 

2.4 Transfer learning 
This paper [61] proposes a new approach for 

categorizing images of BT using a strategy that combines 

fine-tuning with TL. Utilizing a pre-trained CNN as a 

readily available tool for extracting features, without the 

need for additional training, to train a separate 

classification method (such as KNN, SVM, Boosted 

Trees, DTs, and Random Forest) is distinct from the 

suggested approach of TL with block-wise fine-tuning. 

We suggest using a TL method that makes use of a deep 

CNN model that has already been trained and then fine-

tuning it block-wise. Using the T1-weighted contrast-

enhanced MRI (CE-MRI) benchmark dataset, the 

suggested method is assessed. This study [62] introduces 

a novel tumor detection approach. The suggested 

approach consists of four steps: normalization, 

segmentation, classification, and fusion of the scores 

obtained from the Alex/Google DL model using MRI/CT 

modalities. With its score-based fusion method, the whole 

tumor area may be precisely segmented and classified. 

 

2.5 Fuzzy 
This study seeks to construct a brain cancer classifier 

using smart segmentation and classification. The 

recommended method incorporates data collection, 

preprocessing, tumor segmentation, and classification. 

Benchmark BT datasets are pre-processed. Here, median 

filtering and contrast enhancement are used. The Adaptive 

Fuzzy Deformable Fusion (AFDF) method integrates 

Fuzzy C-Means Clustering (FCM) with snake deformable 

approaches for segmentation. This scenario utilizes the 

updated Deer Hunting Optimization Algorithm (DHOA), 

commonly referred to as Adaptive Coefficient Vector-

based DHOA, to improve crucial AFDF parameters. An 

ensemble classifier consisting of an autoencoder, SVM, 

and Deep Neural Network is suggested as a replacement 

for the fully connected layer in DL classification. ACV-

DHOA optimizes CNN's hidden and convolutional layers 

[63].  This paper suggests a Neutrosophy-CNN hybrid 

approach. It classifies brain-image-segmented tumor 

regions as benign or malignant. They started by 

segmenting the MRI images using the Neutrosophic Set-

Expert Maximum Fuzzy-Sure Entropy (NS-EMFSE) 

method. Segmented brain pictures were classified using 

CNN features using SVM and KNN classifiers. The 

experimental evaluation included doing a 5-fold cross-

validation on a dataset consisting of 80 noncancerous 

tumors and 80 cancerous tumors. The research shows that 

CNN features surpassed many classifiers in the task of 
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classification [64]. As shown in Figure 3, the image that 

was chosen is used for the various classifications of the 

procedure. The procedure for classifying BT is further 

upon in Table 4, which includes several different 

approaches.  

 
Figure 3: a) The Original Picture, b) Refined Picture c) Picture with Removed Skull, d) Image with Segmented 

Regions, e) Region of Tumor, f) Extracted Tumor Region [65] 

 

Table 4: Classification of BT MRI Using Different Methods 

 

S. No Method Dataset 

[43] 3D CNN BraTS 2018 

[44] CNN features with SVM Dataset 1 (2018) - Figshare, Dataset 2 

(2019) - Radiopaedia, Dataset 3 (2019) - Harvard 

University 

[45] Densenet201, EKbHFV, MGA BRATS 2018, BRATS 2019 

[46] CNN with Fully Optimized Framework RIDER, REMBRANDT, TCGA-LGG 

[47] DL Network BraTS 2013, 2015, 2017, 2018 

[48] 3D-CNN with multi-modal input MICCAI BraTS 2018 

[49] Time Distributed-CNN-LSTM BraTS 2018, 2019, 2020 (3D images) 

[50] Deep CNN with VGG-19 and data augmentation Radiopaedia dataset, BT dataset 

[51] 3D-CNN and GABM ADNI (Alzheimer’s Disease), ABIDE 

(Autism Brain Imaging Data Exchange) 

[52] ResNet 3,064 BT MRI images (2005–2010) from 

Nanfang Hospital (Guangzhou) & General 

Hospital (Tianjing Medical University) 

[53] VGG16, VGG19, EfficientNet B0, EfficientNet 

B7, ResNet152V2 

Sets A, B, C, D 

[55] AlexNet, ResNet-18, GoogLeNet, ShuffleNet; 

SVM, k-NN classifiers 

BT dataset, LGG-1p19q Deletion Dataset 

[56] MobileNetV2, Exemplar deep feature generator, 

INCA, SVM 

Firat University Hospital Radiology 

Department dataset 

[57] CNN BraTS 2020 

[58] Feature Extractors: Modified VGG-19, 

EfficientNet-B0, Inception-V3, ResNet-50, Xception; 

Classifiers: SVM, RF, KNN, AdaBoost, PCA 

Sets 1, 2, 3, combined datasets 

[59] 3ACL (Attention-Convolutional-LSTM) DL 

model 

BraTS 2015 & 2018 benchmark datasets 
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[42] SVM, KNN, Tree, Ensemble, Logistic Regression Private dataset (512 images, Nishtar 

Hospital, Multan, Pakistan), Slice-based dataset 

(940 images) 

[24] Binomial Thresholding, GLCM, SGLDM, HHO, 

Kernel SVM 

BraTS 2018, 2019, 2020 

[60] MLBPNN (Machine Learning-Based Back 

Propagation Neural Networks) 

Database - Class I and Class II 

[61] Transfer Learning (TL) and Fine-Tuning 

(VGG19) 

CE-MRI dataset 

[63] Optimized CNN with Ensemble Classification 

(OCNN-EC) 

Kaggle dataset 

[64] NS-EMFSE-CNN, SVM, KNN TCGA-GBM (Cancer Imaging Archive - 

TCIA) 

3 Brain tumour MRI classification 

using diverse datasets  
Magnetic Resonance Imaging (MRI) plays a pivotal 

role in the detection, classification, and analysis of brain 

tumors. Over the years, various datasets have been 

compiled to aid in the development of automated 

diagnostic systems. These datasets provide diverse 

imaging modalities, tumor classifications, and annotations 

that are crucial for training deep learning models. With the 

growing advancements in medical imaging and artificial 

intelligence, the availability of high-quality, labeled 

datasets has significantly improved brain tumor 

classification accuracy. 

 

Diversity of brain tumor MRI datasets 

Brain tumor MRI datasets vary significantly in terms 

of size, modalities, and tumor classifications. Some 

datasets focus on specific tumor types, while others 

provide a comprehensive collection of images spanning 

different tumor grades and subtypes. 

 

Publicly available MRI datasets 

Several large-scale publicly available datasets have 

been utilized in brain tumor classification research. The 

BraTS (Brain Tumor Segmentation) series, including 

BraTS 2013, 2015, 2017, 2018, 2019, and 2020, remains 

one of the most widely used datasets. These datasets 

include MRI scans from patients diagnosed with gliomas, 

categorized into high-grade gliomas (HGG) and low-

grade gliomas (LGG). They contain multimodal imaging 

sequences, such as T1-weighted, T1 contrast-enhanced 

(T1ce), T2-weighted, and Fluid-Attenuated Inversion 

Recovery (FLAIR), which are essential for accurate tumor 

segmentation and classification. The dataset sizes vary 

across the years, with the latest versions containing 

hundreds of training and validation cases. 

Other publicly available datasets, such as the Figshare 

BT dataset, Radiopaedia dataset, and Harvard Medical 

dataset, provide a broader spectrum of brain tumor MRI 

images. These datasets are particularly useful for multi-

class classification tasks, where tumors such as gliomas, 

meningiomas, and pituitary tumors need to be 

distinguished. The inclusion of diverse imaging 

techniques across datasets enhances model 

generalizability. 

 

Large-Scale MRI collections for brain tumor 

classification 

Some datasets are designed for extensive 

classification tasks, containing tens of thousands of 

images. For example, certain datasets include over 

110,000 images of gliomas spanning Grade II, III, and IV. 

Additionally, classification-specific datasets offer 

thousands of images categorized into multiple tumor 

types, such as glioblastoma, gliomas, meningiomas, 

pituitary tumors, and metastatic tumors. 

Datasets with such large-scale MRI collections are 

invaluable for deep learning models, as they provide 

extensive training data that enables robust classification 

performance. The MICCAI BraTS 2018 dataset, for 

instance, contains MRI scans of 220 advanced gliomas 

and 54 LGG cases, captured across different modalities 

and resolutions. The Brats 2019 and 2020 datasets further 

expand this collection, providing 3D images that improve 

volumetric analysis and classification accuracy. 

 

Multi-Class and multi-modal imaging in MRI 

classification 

Advanced classification models benefit from datasets 

that offer multi-class labeling and multi-modal imaging. 

Some datasets, such as the Radiopaedia dataset and BT 

dataset, include detailed MRI scans categorized into 

different tumor grades and types. The Cancer Genome 

Atlas Glioblastoma Multiforme (TCGA-GBM) dataset, 

available in the TCIA repository, provides T1-Gadolinium 

(Gd) contrast-enhanced MRI sequences, further aiding in 

accurate tumor segmentation. 

Additionally, datasets with multi-planar MRI images, 

such as the CE-MRI dataset, offer imaging along axial, 

coronal, and sagittal planes. These datasets have a 512 × 

512-pixel resolution, enabling high-quality tumor 

identification. The availability of both 2D and 3D datasets 

allows researchers to experiment with different deep 

learning architectures, such as convolutional neural 

networks (CNNs) and 3D-CNN models. 
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3.1 Challenges in brain tumor MRI 

classification 
Despite the availability of high-quality datasets, brain 

tumor MRI classification presents several challenges. 

Variability in tumor shapes, sizes, and locations makes 

classification difficult, particularly for deep learning 

models that rely on spatial consistency. Some datasets 

contain limited annotated data, requiring augmentation 

techniques to improve training efficiency. 

Additionally, the presence of class imbalance in 

some datasets affects model performance. For instance, 

some datasets have significantly more glioma images than 

meningiomas or pituitary tumors, leading to biased 

predictions. Addressing these challenges requires 

techniques such as data augmentation, transfer learning, 

and advanced feature extraction. 

 

Role of data augmentation in improving 

classification accuracy 

Data augmentation is an essential technique in MRI-

based brain tumor classification. Some datasets, such as 

the BT dataset, expand their dataset size through 

augmentation methods, increasing the total number of 

MRI slices from 3,064 to 91,920. This approach improves 

the robustness of deep learning models, ensuring better 

generalization to unseen tumor cases. 

Augmentation techniques such as flipping, rotation, 

contrast adjustment, and Gaussian noise addition enhance 

dataset diversity. When applied to models trained on 

smaller datasets, these techniques significantly improve 

classification accuracy, sensitivity, and specificity. 

 

Performance benchmarks in brain tumor 

classification 

Various classification models have been evaluated 

using these MRI datasets. Deep learning architectures, 

such as CNNs, ResNet, and multi-class SVMs, have 

demonstrated high classification accuracy across different 

datasets. For instance, classification models trained on 

Brats 2018 and 2019 datasets achieved accuracy rates of 

99.7% for HGG tumors and 98.8% for LGG tumors. 

Similarly, models trained on the Figshare dataset achieved 

accuracies exceeding 95% for meningioma, glioma, and 

pituitary tumor classification. 

Other benchmark models, such as Naïve Bayes, K-

Nearest Neighbors (KNN), Decision Trees (DT), and 

Multi-Class SVM, have also been evaluated on datasets 

like Brats 2013, 2015, 2017, and 2018. The Multi-Class 

SVM consistently outperformed other models, with 

accuracy rates above 98% in most cases. 

 

Future directions in brain tumor MRI 

classification 

The future of brain tumor MRI classification lies in 

the integration of deep learning with advanced medical 

imaging techniques. The use of transformer-based 

architectures, hybrid deep learning models, and attention 

mechanisms has the potential to further enhance 

classification accuracy. Additionally, federated learning 

approaches can leverage multi-center datasets while 

preserving patient privacy, enabling large-scale medical 

AI applications. 

Further research is also needed to improve the 

interpretability of deep learning models in medical 

diagnostics. Explainable AI (XAI) techniques can help 

radiologists understand model decisions, fostering greater 

adoption of AI-assisted diagnostic tools in clinical 

settings. 

3.2 3D Dataset of brain tumor MRI images 

Early tumor detection has been greatly aided in recent 

years by 3D MRI scans. In this [34] study, The best 

method for BT segmentation using MRI data is CNN-

based 2D U-net segmentation. This method finds regions 

of interest (ROIs) and trains on all MRI sequences. 

Normalizing and rescaling input images into 128 × 128 

images reduces computing costs and maximizes 

efficiency. We use 2D layers to combine data. Using the 

BraTS 2020 brain MRI dataset, this model is trained to 

determine which of the four MRI sequences achieves the 

greatest segmentation performance based on MRI image 

ground truth. The greatest DSC score (93.9%) is achieved 

using U-Net model T1 MRI sequence training. This study 

[66] presents 3D Deep dResU-Net, a new method for 

enhancing BT segmentation accuracy using MRI data. To 

enhance learning, the U-Net model made use of identity 

mapping in the encoder, which allowed for the retention 

of local feature responses and their transmission to the 

decoder via skip connections. By addressing the issue of 

the fading gradient, the suggested technique hopes to 

enhance the training process. Using the BraTS 2020 

benchmark dataset, the proposed model was assessed. To 

ensure the design's resilience, 50 randomly chosen 

patients from the BraTS 2021 dataset were employed for 

cross-validation. These cross-validation findings show 

that the model works well with the external dataset. 

To automatically identify the ET, WT, and TC 

areas in 3D MRI BT images, the author presents a 

competent approach for segmentation. Positive results 

were obtained from the studies performed on the BraTS 

2020 dataset. By including VNet, the AGSE-VNet model 

is enhanced. There are total of nine blocks, with five 

serving as encoders and four as decoders. Each decoder 

has an Attention Guild Filter block, whereas every 

encoder has an extrusion and excitation block. With 

consistent input/output ratios, our model can 

accommodate such a design without changing the network 

structure's size discrepancy. The SE module evaluates the 

model and grants the network access to global data, 

allowing it to choose relevant data from the enhancement 

channel. Then, to swiftly boost the model's performance, 

it uses the Attention Guild Filter block's attention method 

to capture dependencies. Also added was a new loss 

function. Change the values of the weights for the 

unneeded masks in the Categorical_Dice function; for 

example, make the background region's weight 0.1 and the 

tumor area of interest's weight 1. Take into consideration 

the difference between voxels in the background and those 

in the front [67]. The research study [68] presents a 

computerized hardware design for segmenting 3D/2D 
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MRI images, intending to assist professionals in 

identifying variations in brain tissue for diagnostic 

purposes. To suggest several solutions to the problems 

related to the fitness function, position, and velocity, we 

used a metaheuristic approach based on Particle Swarm 

Optimization (PSO). The objective is to provide a real-

time automated system for segmenting MRI images that 

increases variables like precision, sensitivity, specificity, 

execution time, and resource consumption. It 

demonstrates an 87.97% DSC similarity and executes in a 

mere 4.57ms using BraTS 2013 brain MRI images. This 

work [69] utilizes a unique learning strategy to integrate 

three BT segmentation models that are mutually trained. 

Mutual Ensemble Learning (MEL) differs from traditional 

ensemble learning by sharing information across member 

networks using a novel loss function. Each network is 

trained using the whole training dataset to ensure 

comprehensive coverage of strong local minima. Every 

MEL member network surpasses the performance of the 

baseline single model, and the ensemble is more resilient. 

Our MEL has been validated by a thorough examination 

of two recent BT segmentation datasets. Table 7 provides 

an elaborate depiction of the 3D MRI BT dataset.  

4  Discussion 
Through the literature review of many research 

publications on BT Segmentation and Classification 

utilizing deep learning (DL) and machine learning (ML) 

approaches, we could gain a comprehensive grasp of BT 

diagnosis. The techniques used for brain tissue 

segmentation include the Hybrid approach using deep 

convolutional neural networks (DCNNs), UNet 

architecture, 2DGA-UNet, 3DGA-UNet, VGG-16, and 

multimodal MRI data. Utilising threshold segmentation, 

watershed approach, and classifiers for the extraction of 

BT. Integration of form and texture data to create a merged 

vector for categorization. The objective of the present 

research endeavours is to develop a novel architecture, 

named Attention Gate Residual U-Net (AGResU-Net), for 

the segmentation of brain tumors (BTs). The proposed 

architecture aims to improve feature learning and 

effectively process small-scale BT data by integrating 

attention gates with residual modules inside a U-Net 

framework. Achieving precise segmentation of BT 

regions necessitates the use of many techniques, such as 

CNN models with a global thresholding strategy, the 

Daubechies wavelet kernel, and the Partial Differential 

Diffusion Filter (PDDF). A deep learning approach using 

convolutional neural networks (CNNs), U-net, transfer 

learning (TL), and VGG-16 for tumor segmentation and 

grading enables us to get high accuracy in identifying 

tumors in Lower-Grade Glioma patients. 

The following methods are discussed for BT 

classification: MLBPNN, infrared sensors, fractal 

dimension technique, wireless infrared imaging sensor, 

CNN, grid search optimization, DL strategy, fine-tuning 

with Temporal Learning, MobilNetV2, INCA feature 

selection, SVM classification, and CNN with 

conventional classifiers. The papers provide deep learning 

techniques for classifying brain tumors using 

convolutional neural network (CNN) models. The primary 

objective is to enhance the effectiveness of BT detection 

via segmentation, classification, and feature extraction. 

The proposed approach integrates intelligent 

segmentation, classification, and ensemble classifiers to 

accurately identify tumors. Non-negative Matrix 

Factorization (NMF) and Gray Level Co-occurrence 

Matrix (GLCM) are mathematical methods used to 

decrease noise and extract pertinent characteristics from 

MRI images, thereby assisting in precise tumor detection. 

Furthermore, the work investigates the use of Machine 

Learning-Based Back Propagation Neural Networks 

(MLBPNN) to boost diagnostic precision and decrease 

inconsistency in BT classification, by using infrared 

sensors for improved picture analysis. The manuscript 

presents a new transfer learning (TL) technique that 

utilizes a pre-trained Convolutional Neural Network 

(CNN) with block-wise fine-tuning to efficiently extract 

features and classify brain tumours. The Adaptive Fuzzy 

Deformable Fusion (AFDF) approach achieves improved 

segmentation accuracy by integrating Fuzzy C-Means 

Clustering with snake deformable models, which are 

optimized using the Deer Hunting Optimization 

Algorithm (DHOA). A novel hybrid Neutrosophy-CNN 

method is introduced, which combines an ensemble 

classifier with autoencoder, SVM, and Deep Neural 

Network to accurately categorize segmented tumor tissues 

as either benign or malignant.  

Subsequently, this article examines the progress 

made in the early identification of cancers enabled by 3D 

MRI scans, underscoring the need for precise 

segmentation techniques for brain tumors detected from 

MRI data. A novel model, 3D Deep dResU-Net, is 

presented with the aim of improving the precision of 

segmentation. To mitigate the problem of fading gradient 

during training, the encoder utilizes identity mapping to 

preserve local feature responses. Additionally, the work 

explores a computerized hardware design for real-time 

segmentation of 3D/2D MRI images. This design 

incorporates a Particle Swarm Optimization (PSO) 

technique to improve accuracy, sensitivity, and processing 

speed. A novel learning technique named Mutual 

Ensemble Learning is presented, which combines three 

BT segmentation models that exchange information 

across different networks. This methodology guarantees 

thorough inclusion of local minima and enhances the 

overall performance.  

Some limitations exist in the prior study 

publications, including despite its success in identifying 

core and improving tumor regions, the model struggles 

with low-intensity edema. Due to the ineffective 

accounting of edema in the model, this shortcoming might 

result in reduced accuracy in total tumor segmentation. 

The research uses a two-stage training technique to tackle 

the data imbalance problem however, this problem might 

still affect the model's generalizability to new data [30]. 

The difficulty of creating a functional neural network with 

fewer computational resources is recognized in the 

research. Improving the model's segmentation outcomes 

depends on its capacity to handle more datasets or more 

complicated pictures, both of which this constraint might 
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impede [38]. One limitation is that it can't handle dark 

images, which causes the pre-processing contrast to rise 

[42]. The reliability of regional forecasts made by TC and 

ET remains inconsistent [67]. Rather than vast valleys, 

deep networks may converge into small fissures [69].  

. 

5  Conclusion 
Computer-aided approaches for tumor diagnosis 

using MRI data may be developed via three processes: BT 

detection, segmentation, and classification. These 

approaches provide superior precision, reduced levels of 

interference, and quicker processing times as compared to 

manual procedures. Consequently, much research has 

been conducted on the applications of DL and standard 

ML technologies. This study investigated several 

techniques for diagnosing brain MRI images. 

Additionally, a presentation was given on the comparison 

of datasets and performance indicators between DL and 

traditional ML. The overview includes a compilation of 

three-dimensional datasets that were acquired from a 

variety of research journals, as well as the approaches that 

were used to correlate with those datasets. The 

performance measurements that they have provided 

evidence of the best accuracy rate. Following that comes 

the discussion section, which provides a concise summary 

of the whole work and outlines the constraints of the 

research. Although significant advancements have been 

made in tumor diagnosis using MRI-based automated 

approaches, there are several areas for future research. 

One key direction is enhancing model generalization 

across diverse MRI datasets by incorporating transfer 

learning and domain adaptation techniques. Additionally, 

integrating multi-modal imaging data, such as combining 

MRI with PET or CT scans, may improve diagnostic 

accuracy and robustness. Further research could explore 

the interpretability and explainability of deep learning 

models to increase clinical trust and acceptance. The 

development of lightweight, real-time models suitable for 

deployment in low-resource clinical settings is another 

promising avenue. Finally, improving data augmentation 

and preprocessing techniques to handle class imbalance 

and noise in medical images can further refine model 

performance and reliability. 
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