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This paper aims to study and analyze the performance of CNN, LSTM and CNN+LSTM deep neural networks 

individually in the problem of sleep cycle stage classification, by analyzing the recorded EEG signals, and 

highlight the strengths of each model in this classification problem. The deep learning models selected in this 

work are reliable models in the world of experiments and medical classification. The data used here is the 

EEG signal represented by the sleep-edf-expanded-npzs database which carries information about the 

different sleep stages, which are five stages: wakefulness (W), non-REM stage 1 (N1), non-REM stage 2 (N2), 

non-REM stage 3 (N3), and rapid eye movement (REM). This data was split by training by 70% and testing by 

30%. The models were trained based on cross-entropy loss and Adam optimizer. The results obtained in this 

study showed that the classification rates are as follows: CNN model accuracy (0.8736%), LSTM model 

accuracy (0.8306%), and LSTM + CNN hybrid model accuracy (0.8813%). These results indicate the good 

performance of the CNN model, which can be attributed to its strong ability to extract spatial features from 

data. The results of the LSTM approach demonstrate its ability to track and interpret the temporal 

characteristics of the sleep signal. For the CNN-LSTM model, which combines the strengths of temporal 

LSTM and spatial CNN, the result of combining features in this sequence showed superior results than either 

CNN or LSTM alone in processing sleep signals. Statistical measures were used to validate the results 

obtained. The F-statistic was 949.78666666523 and the probability value was 6.119863 e-14, which validate 

the results obtained for each model. 

Povzetek:  

 

 

1  Introduction 
Sleep is essential for children, adolescents, and adults' 

health and well-being and is a biological necessity. It is 

essential for mood, emotional well-being, cardiovascular 

health, and brain health. Restoring sleep is strongly 

associated with improved physical, mental, and cognitive 

health as well as a lower chance of accidents and injuries 

brought on by weariness and drowsiness. Sleep is an 

essential component of the human daily routine. On the 

other hand, inadequate or disrupted sleep can result in a 

decline in general physical health as well as possible 

cognitive and psychological damage. [1][2].  

The American Academy of Sleep Medicine (AASM) has 

classified wakefulness (W), rapid eye movement (REM), 

and non-rapid eye movement (NREM) sleep of increasing 

depth into N1, N2, and N3 as the five stages of wake and 

sleep. The body typically goes through these phases four 

to six times, with an average of ninety minutes spent in 

each step [3][4]. 

Although there are several ways to evaluate the brain's 

stages of sleep, electroencephalography (EEG) is still the 

preferred tool for studying human sleep [5]. In sleep 

research, electroencephalography (EEG) is the most often 

utilized technology. Sample data are given for a normal 

EEG examination conducted at night while REM (rapid 

eye movement) and NREM sleep are occurring [6]. 

With the availability of sleep EEG data, many researchers 

in the field of machine learning, specifically in the field 

of deep learning, have practical experience in sleep 

classification through different stages of methods and 

techniques. Among these networks is the LSTM model, 

as LSTM structures have the ability to learn long-term 

based on sequential data, which makes them well suited 

for tasks such as predicting time series such as sleep 

signal. Therefore, they are relied upon to solve special 

problems in computational biology and computational 

biology. [7][8]. 
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Convolutional neural networks (CNNs) are very effective 

at capturing spatial features and have shown excellent 

results in detecting complex patterns within EEG data. 

CNNs and LSTMs are also widely used in EEG signal 

analysis. Performance in time series classification 

problems can be improved by combining CNNs and 

LSTMs (CNN-LSTM hybrid model), While CNNs can 

learn local patterns in the data, LSTMs can identify long-

term dependencies in sequential data. Combining CNNs 

and LSTMs exploits spatial and temporal patterns [9,10]. 

Most studies have relied on one of the above-mentioned 

models individually, namely CNN, LSTM, or CNN-

LSTM, and some of these studies have relied on the 

Sleep-EDF database or other databases. However, no 

study has compared these three models on the same 

database. Most previous studies have evaluated these 

models individually or using different EEG datasets.  

This study aims to bridge this gap by presenting a study 

that evaluates and compares the effectiveness of three 

models: LSTM, CNN, and a hybrid model (CNN, 

LSTM)—in automatically classifying sleep stages, which 

involves conducting a comparative study among these 

three models using the same EEG signal database. . The 

study aims to: 

1. Identify which of these models achieves the highest 

performance according to the same criteria, in terms of 

the Sleep-EDF database and processing methods. 

2. Provide a comprehensive systematic evaluation to 

determine the best-performing model. 

3. Identify whether standalone CNN or LSTM models, or 

a hybrid CNN with LSTM model, provide superior 

performance. 

4. Also, test which hybrid architecture (CNN_LSTM) or 

(LSTM_CNN) is better. 

   Through multiple experiments, it was found that the 

hybrid architecture performs better, especially the 

LSTM_CNN architecture. Furthermore, the CNN model 

is capable of providing superior results, given its limited 

capabilities to spatial features, while LSTM also 

demonstrated good results. 

The study's objectives are clearly outlined, centering on a 

comparison of performance and an identification of each 

model's strengths in sleep stage classification. 

The rest of the study is organized as follows. Section 2 

provides a literature review on sleep stage classification. 

Typical materials and methods are covered in Section 3. 

Implementation and results discussion are presented in 

Section 4. Study Conclusion and Recommendations are 

outlined in Section 5. 

 

 

2  Literature review 
Numerous researchers have attempted to address and 

enhance the effectiveness of sleep stage classification 

through a variety of concepts and approaches; however, 

deep learning algorithms are among the most significant 

approaches that have explored this area in order to 

accomplish automated sleep stage recognition. The study 

conducted by Nicola M et al. (2019) to automatically 

score sleep stages using EEG signals from a single 

channel, a unique cascaded recurrent neural network 

(RNN) architecture based on long short-term memory 

(LSTM) blocks is proposed. And to choose the most 

pertinent features, fifty-five temporal and frequency-

domain features were taken out of the EEG signals and 

supplied into feature reduction algorithms.[11].  

Convolutional Neural Networks (CNNs) is important 

models in sleep stage classification problem. Asma et al. 

(2020) study highlights a 13-layer 1D convolutional 

neural network CNN for automatic feature extraction and 

sleep stage classification using single-channel EEG signal 

[12]. 

Furthermore, Zhao et al. (2022), They proposed an 

algorithm suitable for different physiological signals that 

can achieve automatic sleep stage from start to finish 

without any manual feature extraction. Here, one-

dimensional convolutional neural network and long short-

term memory are adopted. This method can automatically 

segment sleep into 5 stages including wakefulness, non-

rapid eye movement sleep (N1∼N3) and rapid eye 

movement sleep using EEG signals. [13]. 

The CNN model has a distinct role in classifying sleep 

stages, Luis A. et al. (2023), in this paper, are used a 

convolutional neural network (CNN) based on 5- and 2-

class models to study the performance of automatic sleep 

stage categorization utilizing autonomously selected 

characteristics from electroencephalogram (EEG) inputs. 

We established two 2-class sleep stage classification 

techniques and evaluated how well they performed in 

comparison to the predictions from a 5-class model. The 

public ISRUC-Sleep dataset, which includes six EEG 

channels and 100 participants, was used for tests. All 

models were constructed using a CNN called EEGNet. 

[14].  

In order to address the issue of training data imbalance, 

Enes E. A. et al. (2023), in this study suggests a novel 

hybrid CNN+LSTM neural network design that makes 

use of focus loss and discrete cosine transform 

techniques. Using k-fold cross-validation techniques 

(subject-wise), the model was trained on four distinct 

databases. When using two channels (EEG-EOG), the 

best accuracy was 87.11%, [15]. 

Nowadays, many existing techniques depend on 

handcrafted features. Only a few methods, meanwhile, 

are able to recover the temporal information required to 

determine the stages of sleep. LSTMs will be able to 

learn transition rules, while convolutional neural 

networks will be able to extract time-invariant features. A 

thorough analysis of recent advancements was given by 

Kotla R. et al. (2023), This paper proposes a deep 

learning model to automatically score sleep stages using 

single-channel EEG recordings that combines CNN and 

LSTM. The model was trained and tested on the Sleep-

EDF-v1 dataset, which is publicly available. The single-

channel Fpz-Cz EEG was used and scored according to 
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the AASM standard. An overall accuracy of 83.38% was 

achieved. [16]. 

Supratak et al. (2017), are used a two-step training 

technique to effectively train the DeepSleepNet deep 

learning network, which is introduced in this work for 

automatic sleep stage grading based on raw single-

channel EEG. Different single-channel EEGs (F4-EOG 

(left), Fpz-Cz, and Pz-Oz) from two public sleep data sets 

are used to assess this concept [17]. 

In order to acquire task-specific filters for classification 

without requiring prior domain knowledge, Tsinalis et al. 

(2016) are used the convolutional neural networks 

(CNNs) to utilized in this work to automatically score 

sleep stages based on single-channel 

electroencephalography (EEG). In the CNN's stochastic 

gradient descent (SGD) optimization, class-balanced 

random sampling was used to prevent performance bias 

in favor of the most representative sleep stages [18]. 

Pham et al. (2023) was presented an automatic sleep 

stage categorization system utilizing a combination of 

transformer, long-short-term memory (LSTM), and 

convolutional neural network (CNN) models   using 

single-channel EEG recordings [19]. 

To overcome the critical limitations Casciola et al. (2021) 

are presented a deep learning (DL) model for automated 

sleep staging of HB EEG data. The solution includes a 

simple band-pass filtering, a data augmentation step, and 

a model using convolutional (CNN) and long short-term 

memory (LSTM) layers [20] 

A new model dubbed CAttSleepNet was presented by Li 

et al. (2022) for automatic sleep stage identification using 

single-channel EEG, and incorporate an attention module 

into the convolutional neural network (CNN) so that it 

can use the contextual information inside the epoch to 

learn the weights of local sequences of EEG signals. The 

global connections of succeeding epochs are then 

encoded using a two-layer bidirectional long-short-term 

memory (Bi-LSTM) [21]. 

 

Table 1: Summary information of existing method  

Study Dataset 
Model 

(Network) 
Evaluation Metrics Accuracy 

Nicola M. et 

al. (2019)  

Use of a publicly 

available sleep-

EDF database. 

RNN with LSTM 
Accuracy and 

Confusion Matrix 

The accuracy of classification 

for five sleep stages is 86.7% 

Asma et al. 

(2020)  
sleep-EDF dataset 

1D CNN (13-

layer) 

k-fold cross-

validation.set k to 20 

Precision of 94.09%, 74.73%, 

96.43%, and 71.02%, respective 

of classifying five sleep stages. 

Zhao et 

al. 

(2021) 
 

Sleep-EDF, ISRUC 
 

1D CNN-LSTM 
 

Accurcy, Precision, 

Recall, F1-score 
 

The accuracy of staging is 

93.47% using the Fpz-Cz 

electroencephalogram signal. 

When using the Fpz-Cz and 

electroencephalogram signal, 

the highest accuracy o94.15%. 
 

Luis A. et 

al. (2023)  

ISRUC-Sleep 

dataset) 
CNN (EEGNet) 

5-class and 2-class 

classification 

accuracy 

In the best case, the average 

AUROC of 0.964,0.967,0.982 

and 0.929 for the stratified 2-

class models 

Enes E. A. 

et al. (2023)  

DRM-SUB, 

ISRUC3, and 

SleepEDF-20 

databases. 

hybrid CNN-

LSTM  

k-fold validation 

strategies (subject-

wise) 

highest score was 87.11% 

accuracy, 81.81% Kappa score, 

and 79.83% MF1 when using 

two channels (EEG-EOG) 

Kotla R. et 

al. (2023)  

Sleep-EDF-v1 

Dataset 

single-channel 

EEG recordings 

(CNN +LSTM) 

Classification 

accuracy 

83.38% accuracy using single-

channel Fpz-Cz EEGs. 

Supratak et 

al. (2017) 

Sleep-EDF and 

MASS 
CNN-LSTM 

Classification 

accuracy 

(MASS: 86.2%-81.7, Sleep-

EDF: 82.0%-76.9) . 

Tsinalis et 

al. (2016) 
sleep PSG dataset CNN 

Classification 

accuracy 

Accuracy for each sleep stage 

(82%, range 80–84%), total 

accuracy (74%, range 71–76%) 

for all patients, and average F1 

scores (81%, range 79–83%). 

Pham et al. 

(2023) 
ISRUC CNN-LSTM 

Classification 

accuracy 

The experimental evaluation on 

the ISRUC S1 and S3 sleep 
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datasets, It attains 82.40% and 

80.37% accuracy, respectively.. 

Casciola et 

al. (2021) 

electroencephalogr

aphy (EEG) 

headbands (HB) 

CNN-LSTM 
Classification 

accuracy 

74% (±10%) validation accuracy 

on low-quality two-channel 

EEG headband data and 77% 

(±10%) on gold-standard PSG. 

Li et al. 

(2022) 
Sleep-EDF 

CNN-BiLSTM 

with Attention 

Mechanism 

Accuracy(k-fold 

cross-validation.) 

Achieving an accuracy of 

86.9%. 

 

 

3  Materials and Methods 
3.1. Model Architectures and Mathematical   

      Operations 
In this work, research was conducted to know the 

strength of each model of LSTM, CNN and CNN+LSTM 

in classifying the different stages of sleep signal 

according to the features that each model possesses. The 

following will include the mathematical aspect of 

building each model with an explanation of the 

architecture that was adopted in this work.. 
 

3.1.1  LSTM Model  
Long short-term memory (LSTM) has revolutionized 

both the fields of machine learning and neural computing. 

One of the reasons for the success of this recurrent 

network is its ability to handle the exploding/vanishing 

gradient problem, which is a difficult problem to 

overcome when training recurrent or very deep neural 

networks[22].  LSTMs possess the capacity to process 

sequential data and retain information from previous 

steps in the sequence, enabling them to predict future 

steps effectively. This characteristic makes them highly 

suitable for tasks involving long-term dependencies [23].  

Fig. 1, is illustrated the common LSTM unit is composed 

of a cell state (denoted by Ct), a forget gate (ft), an input 

gate (it), and an output gate (ot). The three gates regulate 

the flow of information into and out the channel and 

important information over arbitrary time intervals can be 

remembered[24] 

 

Figure 1: Structures long short-term memory (LSTM)[24] 

   The functions of a single cell LSTM are detailed in 

Algorithm , where 𝜎 denotes the logistic sigmoid 

function, tanh represents the hyperbolic tangent function, 

and  ⊙ denotes the Hadamard product, which is the 

element-wise product [25]: 

Given: 

 1. 𝑊 Matrix of input-to-hidden weights 

 2. 𝑈 Matrix of hidden-to-hidden weights 

 3. 𝑏 Vector of Bias 

 Input: 

1. 𝑥𝑡 Vector of input at time step 𝑡 

2. 𝑐𝑡−1 Vector of previous memory cell state 

3.  ℎ𝑡−1 Vector of previous hidden state 

 Output: 

1. 𝑐𝑡 Vector of memory cell state 

2. ℎ𝑡 Vector of the hidden state 

 Process: 

1. Compute the input gate vector: 

𝑖𝑡 = 𝜎(𝑊(𝑖)𝑥𝑖 + 𝑈(𝑖)ℎ𝑡−1 + 𝑏(𝑖))                   (1) 

 2. Compute the forget gate vector: 

𝑓𝑡 = 𝜎(𝑊(𝑓)𝑥𝑖 + 𝑈(𝑓)ℎ𝑡−1 + 𝑏𝑓)                  (2) 

 3. Compute the output gate vector: 

𝑜𝑡 = 𝜎(𝑊(0)𝑥𝑖 + 𝑈(𝑜)ℎ𝑡−1 + 𝑏(0))                (3) 

 4. Compute the memory cell state vector: 

 𝑐𝑡=𝑖𝑡
⊙ 𝑢𝑡 + 𝑓𝑡 ⊙ 𝑐𝑡−1                                     (4) 

      where: 

 𝑢𝑡 = tanh(𝑊(𝑢)𝑥𝑖 + 𝑈(𝑢)ℎ𝑡−1 + 𝑏(𝑢))        (5) 

 5. Compute the hidden state vector: 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)                                            (6) 

 3.1.2 CNN model 
One type of deep learning algorithm that has shown great 

success in tasks like classification is CNN. Convolutional 

neural network (CNN) is the most advanced deep 

learning technique due to its ability to learn features 

independently [26]. Below are some of the advantages 

CNN has over other traditional neural networks [27]: 

1. CNN's weight sharing feature, which lowers the 

number of trainable network parameters and helps 

the network improve generalization and prevent 

overfitting, is the primary justification for 

considering it. 

2. The model output is very structured and heavily 

dependent on the retrieved features as a result of 
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learning the feature extraction layers and the 

classification layer simultaneously. 

3. Compared to other neural networks, CNN makes 

large-scale network deployment considerably 

simpler. 

Figur (2) show the  Building block of a typical CNN[28] 

 

 
 

Figure 2: The  Conceptual model of CNN 

 

Below is an explanation of the formulas for the CNN 

steps: 

N :is the  Number of input features ,  

xi :is the Input data at position i ,  

wij :the Weight connecting input i to output j ,  

bj: :Bias for the j-th output neuron and σ is the 

ai :is input ( that resulted of provis layer) 

zi :is Output feature map 

oj  :is the output of fully connected layer 

σ : is the  Activation function 

1. Convolution Layers: The convolution layer (CONV) 

uses filters that perform convolution operations[29]: 

𝒛𝒊 = 𝒃𝒊 + ∑ 𝒙𝒊 ∈ 𝑾𝒊𝒋 ∗ 𝒙𝒊                           (𝟕) 

After the convolution, an activation function such as 

the Rectified Linear Unit (ReLU) is applied to 

introduce non-linearity[30][31]: 

𝒈𝒊 = 𝑹𝒆𝑳𝑼(𝒛𝒊) = 𝐦𝐚𝐱(𝟎, 𝒛𝒊)                     (𝟖) 

2. Pooling Layer : Pooling operation is an important 

operation in deep learning. Pooling operation can 

reduce the feature dimension, the number of 

parameters, the complexity of computation, and the 

complexity of time[32]: Pi=max(zi:i+s) 

3. Fully Connected Layer: The fully connected layer (FC) 

operates on a flattened input where each input is 

connected to all neurons: 

𝒐𝒋 = 𝝈 (∑ 𝒘𝒊𝒋. 𝒂𝒊

𝑵−𝟏

𝒊=𝟎

+ 𝒃𝒋)                               (𝟗) 

4. Loss Function: This prediction error tells the network 

how o their prediction from the actual output, and then 

this error will be optimized during the learning process 

of the CNN model. This function calculate as[33]:. 

𝑳𝒐𝒔𝒔 = − ∑ 𝒚𝒊. 𝐥𝐨𝐠 �̂�𝒊

𝒐𝒖𝒕𝒑𝒖𝒕
𝒔𝒊𝒛𝒆

𝒊=𝟏

                            (𝟏𝟎) 

Where L is the loss value,M is the number of classes,yi_ 

is the actual value of class i (either 1 or 0) and y^i is the 

predicted probability for class i. 

3.1.3 CNN+LSTM Model 
Hybrid networks (CNNs, LSTMs) provide a solution for 

utilizing both structural and spatial information, 

combining the strengths of both spatial and temporal 

networks (CNNs). A CNN-LSTM network is used in a 

variety of problems, including activity recognition [34]. It 

is a combination of CNN layers that first extract spatial 

features, then feed these features as input to LSTM layers 

to provide time-sequence predictions.  

In the LSTM-CNN architecture, the order is reversed: the 

EEG time series is first processed by the LSTM layers to 

model temporal dependencies, and the resulting features 

are then fed to the CNN for analysis by the CNN layers to 

extract higher-level spatial features. Figure 3 illustrates 

both hybrid models: (a) CNN-LSTM and (b) LSTM-

CNN: 

 

3.2. Dataset and Preprocessing 
The analysis was performed on the Sleep-EDF database 

that is in the public domain, and it contains 150 files 

origin from multiple files of EEG signals from multiple 

dumplings. The files contain recordings of all sleep 

stages: Wake (W), Non-REM stages (N1, N2, N3), and 

REM. 
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3.2.1 Dataset Description  
All EEG signals were stored in npz format ,and Each 

signal file contains the following key components: 

• EEG Signal Data (x): Represents the brain's 

electrical activity recorded during the study. 

• Labels (y): Corresponding annotations for the sleep 

stages, categorized into five distinct classes: 

1. Wake (W) 

2. Non-REM Stage 1 (N1) 

3. Non-REM Stage 2 (N2) 

4. Non-REM Stage 3 (N3) 

5. REM (Rapid Eye Movement) 

• Sampling Frequency (fs): Defines the signal 

acquisition rate, typically set at 100 Hz. 

• Channel Labels (ch_label): Specifies electrode 

placements, such as (EEG Fpz-Cz) and (EEG Pz-

Oz). 

Example of a file: The file "SC4001E0.npz" includes: 

• Shape of x:  (841, 3000, 1), which indicates 841 

signal segments, each containing 3000 samples (30 

seconds per segment at 100 Hz). 

• Shape of y:  (841,), which contains the corresponding 

sleep stage labels for each segment. 

• Sample Signals: 

 [[[  8.111 ], 

  [ 17.488 ], 

  [ 21.239 ], 

  ... 

  [-10.361 ], 

  [-11.112 ], 

  [ -2.109 ]], 

 [[-10.736 ], 

  [-11.393 ], 

  [ -4.454 ], 

  ... 

  [ 58.842 ], 

  [ 48.339 ], 

  [ 53.684 ]]] 

 

After the file EEG data is read, the labels are extracted 

from it, and   all the signals are collected into a single 

array. Also the labels are merged into a single array. 

 

3.2.2 Preprocessing Steps 
The EEG signals were prepared for analysis through the 

following preprocessing steps: 

1. After the file EEG data is read, the labels are 

extracted from it, and   all the signals are collected 

into a single array. Also the labels are merged into 

a single array. 
2. Signal normalization: All signals were scaled to a 

standard distribution with mean 0 and standard 

deviation 1, using (Z-score normalization) to 

maintain numerical stability during model training.. 
3. Segmentation: Signals were divided into fixed-

length windows of 30 seconds (3000 samples), in 

alignment with standard sleep study practices. 

4. Class Balancing: 
• The dataset exhibited an imbalance across the 

five sleep stages. 

• Techniques such as oversampling and 

SMOTE (Synthetic Minority Oversampling 

Technique) were used to ensure fair 

representation of all classes. 

The distribution of sleep stage classes in the 

training dataset before and after the application of 

the SMOTE technique is shown in Table (2) 

 

Table (2):  The sleep stage classes  Distribution 

before and after SMOTE augmentation 

Sleep  classes 
WITHOUT 

SMOTE 

WITH  

SMOTE 

Class 0    Wake (W) 65357 54225 

Class 1      (N1) 21323 54044 

Class 2      (N2) 67606 54009 

Class 3      (N3) 12833 54006 

 Class 4    REM 25511 54140 

 

5. The data was split into 80% training and 20% 

testing. 

These steps ensured the EEG data were standardized, 

balanced, and ready for deep learning model training. 

There is note of EEG data preprocessing in this study 

involved several critical steps, including normalizing the 

signal with Z-score scaling, dividing each recording into 

fixed 30-second segments (3000 samples), and achieving 

class balance through SMOTE.   The analysis was 

conducted using a single EEG channel (Fpz-Cz) without 

the need for channel fusion. 

To conduct experiments and ensure reproducibility, we 

used the Kaggle platform, equipped with 16 GB of RAM 

and P100 processors. The code was implemented using 

Python 3.8 and the TensorFlow 2.10.0 library. A fixed 

random seed (Seed = 42) was used for all libraries 

(Python, NumPy, and TensorFlow). Using fixed random 

sampling, the data was split into a training set (80%) and 

a test set (20%) to ensure reproducibility. 

 

3.3 Training and Evaluation Basics  
There are some basics that must be prepared before 

starting the (training process), which are as follows: 

• As mentioned above, the NPZ files containing the 

EEG signals and their respective labels were read 

and combined into one array. The longest signals 

were normalized to 3,000 samples (i.e., using the 

Reflect Padding method). The classes were then 

balanced using the SMOTE technique to generate 

samples and ensure a fair representation of all 

categories. Finally, the data was divided into a 

training set (80%) and a test set (20%). 

• Implemented using TensorFlow/Keras, following a 

structured training pipeline. 

• Loss function: The categorical cross-entropy loss 

function was used for the multi-class classification 

task, due to its high suitability for handling the five 

distinct sleep stages. 
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• Optimizer: A learning rate scheduler was 

incorporated to dynamically adjust the learning rate 

in response to training progress. The Adam optimizer 

was also used due to its effectiveness in managing 

sparse gradients. 

• Hyperparameter adjustment is critical, as it has a 

direct impact on model accuracy, generalization, and 

other performance metrics. A grid search approach 

was applied here. 

• Each model was trained for a predefined number of 

epochs (50). 

• An early stopping technique was used, set with 

patience=4, to monitor the loss value. This means 

that over four consecutive training cycles, the 

training process stops if the validation loss does not 

improve. The primary goal of early stopping is to 

prevent overfitting by monitoring the model's 

performance on the validation dataset during 

training.. 

Once training has completed, the model is evaluated 

using a range of metrics which offer a holistic evaluation 

of both overall and per-class performance: 

Classification Report:   for each classes ,have precision, 

recall, and F1-score along with micro, macro, and 

weighted averages 

Confusion Matrix:   To shows how many samples were 

classified correctly and incorrect for each class 

Accuracy:    The accuracy  of training and validation. 

ROC Curves and AUC: To dives information of how well 

the model can distinguish between classes at  different 

threshold settings. 

4. Implementation and Results Discussion 

   Selecting the appropriate architecture becomes essential 

when analyzing temporal signals, such as audio, EEG, or 

other sequential data, since feature extraction and 

temporal information retention must be balanced. This is 

where carefully considered architectural design is useful, 

guaranteeing: enhanced CNN feature extraction that uses 

convolutions to find spatial patterns. Maintaining 

temporal context involves examining the connections 

between various time points using LSTM. Increasing 

stability and decreasing computational cost through the 

use of techniques like pooling layers, dropout, and batch 

normalization. Consequently, a careful selection of 

architecture is one of the most important elements that 

determines a model's success since it is founded on 

current research and real-world experiences to guarantee 

precise and effective performance on the intended 

objectives. 

4.1. Model Performance 
Given the nature of our dataset, we conducted extensive 

experiments to overcome overfitting and the difficulty of 

learning the network[35]. 

We conducted extensive experiments to determine the 

most appropriate architecture for LSTM, CNN, and 

Hybrid CNN,LSTM models to suit the nature of the 

dataset for classifying sleep stages from EEG signals. We 

chose an architecture that would balance complexity and 

performance, overcome overfitting and the difficulty of 

learning the network, and achieve a stable final 

implementation. The experiments we conducted included: 

1. Determining the appropriate number of layers in 

each model. 

2. Determining the appropriate number of neurons for 

each layer. 

3. After determining the appropriate number of layers 

and neurons in each model, we began testing the 

importance of the dense layer and the number of 

units it should occupy. 

4.  Determining the appropriate dropout value. 

4.1.2 LSTM    
 Several experiments were conducted on the LSTM 

model architecture.  

1. The first of these experiments was to determine the 

appropriate number of layers and the number of 

neurons in each layer of the model for this type of 

problem. We found that the two-layer model 

performed best. Furthermore, the two-layer LSTM 

model, with the first layer containing 100 neurons 

and the second layer containing 50 neurons, was the 

best and most stable among the other model 

architecture options tested. Table (3) shows the 

overall experiments conducted to determine the 

number of layers and neurons in each layer, to arrive 

at the best LSTM architecture in terms of 

performance.This number of LSTM layers and 

number of units is to control most of the features in 

the temporal EEG signal received via the first layer, 

and then pass the most salient features from the first 

layer to the second LSTM layer. Furthermore, this 

arrangement avoids overfitting.[36][37]. 

2. After determining the most appropriate number of 

layers and their sizes :(128 and 64), then come the  

test of  dense layer in terms of number, location, and 

number of units. Table (4) shows the results of these 

tests. We note from the table that a dense layer with 

(200 units ) is ideal for achieving stability and 

increasing performance . This first dense layer 

focuses on the features extracted from the previous 

LSTM layers to achieve the best prediction. 

The second dense layer, whose output is 5 values, is 

combined with the SoftMax function to perform 

classification tasks. SoftMax is a function that 

returns a probability vector, which predicts the 

probability of each class xi [38][39] (the class here 

represents one of the five sleep stages). 

3. Various values of dropout were tested, as dropout is 

actually a form of regularization intended to help 

prevent overfitting by increasing test accuracy, 

possibly at the expense of training accuracy. This 

avoids overfitting and improves implementation 

stability. The implementation of the dropout 

algorithm relies on randomly dropping neurons 

during training to avoid co-adaptation of feature 

detectors, which leads to random variables [40][41]. 
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For each minibatch in the training set, dropout layers 

randomly separate the inputs from the previous layer 

to the next in the network architecture with 

probability p [42].  

After Dense Layer 1, we applied a dropout layer to 

reduce overfitting and help the LSTM model 

generalize. The dropout value (0.3) was found to be 

the most appropriate, which was determined by 

testing a range of values from dropout = 0.2 to 

dropout = 0.5, and we found that implementation 

stability was achieved with dropout = 0.3. Table (5) 

shows the experiments conducted to determine the 

most appropriate dropout value. 

4. Batch size is an important measure of model loss. 

This parameter represents the number of training 

samples that will be used during training to perform 

a single update to the network parameters. Batch size 

affects model training in terms of the time required 

for convergence and the amount of overfitting[43]. 

We studied the effect of different batch sizes on the 

performance of the LSTM network. Table (6) shows 

all the experiments we performed in this test. 

According to the results shown in Tables 3 to 6, the 

LSTM architecture shown in Table 7 can be considered a 

successful and reliable model for classifying different 

sleep stages. 

Table 3:The results efficiency with different LSTM layers

No. of layer No. of units 
Training 

accuracy 

validation 

accuracy 
Training loss Validation loss 

Two (64, 32) 0.8044 0.7895  0.4958 0.5344 

Two (128, 64) 0.8569 0.8273 0.3617          0.4592 

three (128, 64, 32) 0.8519 0.8260 0.3739 0.4594 

 

Table 4: The results efficiency with different Dense units values of LSTM(128  ,64) 

 

Table 5: The results efficiency with different Dropout values of LSTM(128  ,64) 

 

 

Table 6: The results efficiency with and without Batch normalization LSTM(128  ,64)

 

Table (7) : The sequential Model of   LSTM 

Layer (type) Output Shape Parameters 

lstm (LSTM) (None, 3000, 128) 66,560 

lstm_1 (LSTM) (None, 64) 49,408 

dense (Dense) (None, 200) 13,000 

batch_normalization (None, 200) 800 

dropout (0.2) (None, 200) 0 

dense_1 (Dense) (None, 5) 1,005 

4.1.2 CNN 
We first tested the appropriate architecture in terms of the 

number of layers and neural units per layer. In CNN-EEG 

application areas such as sleep, the average number of 

CNN layers is relatively high. Some studies use CNN 

architectures with up to 13 layers, while CNN 

architectures with 3, 4, 6, 5, and 8 layers are typically 

used, depending on the nature of the data [44]. 

From our experiments shown in Table 8, we found that 

the best CNN architecture performed best with 3 layers 

containing 32, 64, and 128 units, respectively. We note 

that the higher the number of layers and units, the higher 

the training and validation accuracy. However, some 

Dense units value Training accuracy validation accuracy Training loss Validation loss 

100 0.8170 0.8060 0.4682 0.4953 

200 0.8492 0.8274 0.3923 0.4524 

300 0.8421 0.8222 0.4063 0.4571 

Dropout value Training accuracy validation accuracy Training loss Validation loss 

0.2 0.8568 0.8303 0.3707 0.4523 

0.3 0.8445 0.8258 0.4033 0.4531 

0.4 0.8225 0.8074 0.4583 0.4972 

Batch 

normalization 
Training accuracy validation accuracy Training loss Validation loss 

Without 0.8569 0.8273 0.3617 0.4592 

With 0.8644 0.8301 0.3540 0.4524 
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models, such as 64, 128, and 256, suffer from increased 

validation loss, which may indicate potential overfitting. 

Based on our findings regarding the best architecture (32, 

64, and 128 layers), we conducted several experiments to 

improve the results and model stability, which can be 

described as follows:  
1. We conducted an experiment on the CNN architecture 

by placing a batch normalization layer between the 

convolution layer and the max pooling layer to 

stabilize training and performance. We also conducted 

a test without a batch normalization layer. The reason 

for this experiment is that the EEG signal during sleep 

is inherently unstable and variable. The batch 

normalization layer allows for much higher learning 

rates, while adopting a less conservative approach to 

initialization. It also acts as a regularizer, learning a 

more efficient model and also enabling faster neural 

networks [45][46]. 

 The results obtained are shown in Table (9), where 

we observed an improvement in performance with 

batch normalization. The network was more stable, 

with a validation accuracy of 0.8736 and a validation 

loss of 0.3784. Without batch normalization, we 

observed an increase in the validation loss (0.4060), 

indicating overfitting.. 

2. Max pooling is an important layer in CNNs, as it 

reduces the dimensionality of features while 

preserving important information. Max pooling can be 

applied to downsample the convolutional output 

bands, reducing variance. This feature is very 

effective with variable EEG signals [47]. In this 

study, we tested the model without max pooling and 

with max pooling (with different pooling sizes tested), 

as shown in Table 10. We found that a pooling size of 

2 is an appropriate window size to halve the number 

of parameters, achieve balance, and preserve 

information. 

3.  It is also useful to apply the dropout property using 

CNN. The dropout property is placed at the end of 

each Conv layer to prevent overfitting, preserve 

information, and increase test accuracy. We found 

through experimentation that the best value is dropout 

= 0.3. Values higher than 0.3 showed an increase in 

validation loss; see details in Table 11. 

4. The best performance in terms of validation accuracy 

was achieved at 300 units in the dense layer, which is 

close to the value at 200 units (see Table 12). The 

dense network with 200 units was chosen because it 

achieves the optimal balance between training and 

generalization. The reason is that in the 300-unit 

network, the difference between training accuracy and 

validation accuracy is approximately 0.0514, which is 

larger than the difference at 200 units (0.0395), 

indicating the possibility of overfitting in the 300-unit 

case. The same applies to the training loss and 

validation loss in both cases, as we note that the 

validation loss increases slightly in the 300-unit case. 

Furthermore, the performance of the 100-unit dense 

layer is poor. 

After completing various extensive experiments to arrive 

at the most suitable CNN architecture for the problem of 

classifying sleep stages from EGG signals, we show in 

Table (13) the architecture that has the best stability and 

learning performance. 

 

 

Table 8:The results efficiency with different CNN layers 

 

Table 9: The results with and without Batch normalization CNN model 

 

 

Table 10: The results with different Pooling size value CNN model 

Table 11: The results with different Dropout values of CNN model 

No. of layer No. of units 
Training 

accuracy 

validation 

accuracy 
Training loss Validation loss 

Two (32, 64)128 0.9240 0.8518 0.1990 0.4748 

Two (64, 128)128 0.9170 0.8536 0.2076 0.4759 

Three (32, 64, 128)64 0.9131 0.8736 0.2210 0.3784 

Three (64, 128, 256)128 0.8799  0.8631  0.2943 0.4146 

Four (16,32,64,128)64 0.8954 0.8734 0.2677 0.4077 

Four (32, 64, 128, 256)128 0.9080 0.8700 0.2307 0.4305 

Batch 

normalization 
Training accuracy validation accuracy Training loss Validation loss 

With 0.9131 0.8736 0.2210 0.3784 

Without  0.9208 0.8719 0.2056 0.4060 

Pooling size Training accuracy validation accuracy Training loss Validation loss 

2 0.9119 0.8735 0.2192 0.3893 

3 0.8904 0.8666 0.2831 0.4048 

4 0.8630 0.8547 0.3513 0.4112 

Dropout value Training accuracy validation accuracy Training loss Validation loss 
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Table 12: The results efficiency with different Dense units values of CNN MODEL 

 

Table 13 : The sequential Model of CNN 

Layer (type) Output Shape No. Parameters 

conv1d (Conv1D) (None, 2998, 32) 128 

batch_normalization (None, 2998, 32) 128 

max_pooling1d (2) (None, 1499, 32) 0 

dropout (0.3) (None, 1499, 32) 0 

conv1d_1 (Conv1D) (None, 1497, 64) 6,208 

batch_normalization_1 (None, 1497, 64) 256 

max_pooling1d_1 (2) (None, 748, 64) 0 

dropout_1 (0.3t) (None, 748, 64) 0 

conv1d_2 (Conv1D) (None, 746, 128) 24,704 

batch_normalization_2 (None, 746, 128) 512 

max_pooling1d_2 (2) (None, 373, 128) 0 

dropout_2 (0.3t) (None, 373, 128) 0 

flatten (Flatten) (None, 47744) 0 

dense (200) (None, 200) 9,549,000 

dropout_3 (0.3t) (None, 200) 0 

dense_1 (Dense) (None, 5) 1,005 

 

4.1.3 Hybrid CNN and LSTM 
The following describes the experiments conducted to 

test the hybrid CNN-LSTM architecture, which 

naturally involves combining a set of features from 

each model to achieve the goal of optimal 

classification of sleep EGG data. This combination 

process relied on the best CNN and LSTM 

architectures achieved based on the experiments 

mentioned above. This involved adopting a two-layer 

LSTM, with the first layer containing (128, 64) units. 

The CNN model architecture (32, 664, 128) was also 

used, with the rest of the details held constant for each. 

The first part is tested the CNN_LSTM architecture. 

The order of this model is such that CNN layers come 

first to extract features from signals. The output of the 

CNN features is then transferred to the LSTM layers, 

which analyze the input data to extract the final 

features. Here, we tried to discover the effect of 

extracting spatial features first and then passing them 

to extract temporal features. 

In the second part, we tested the LSTM_CNN 

architecture: In this part, we tested the effect of 

extracting temporal features first and passing them to 

the second layer to explore spatial features. We 

conducted our experiments on the LSTM_CNN 

architecture, whose order is the opposite of that of 

CNN_LSTM. The results shown in Table (13) indicate 

that the LSTM_CNN architecture performs best in 

terms of training accuracy, validation accuracy, and 

training loss. Although the validation loss is slightly 

higher than the training loss, indicating that overfitting 

is starting to occur, the LSTM_CNN architecture 

performs best because extracting temporal and then 

spatial features is the most successful sequence. 

LSTM_CNN architecture can be considered a 

successful model for classifying different sleep stages. 

Table (14) illustrates the architecture adopted for this 

model. 

                                                              

Table 13: The results  accuracy of hybrid Architectures 

0.2 0.9178 0.8682 0.2006 0.4452 

0.3 0.9131 0.8736 0.2210 0.3784 

0,4 0.9005 0.8702 0.2546 0.3754 

Dense units 

value 
Training accuracy validation accuracy Training loss Validation loss 

100 0.8821 0.8618 : 0.2890 0.4121 

200 0.9131 0.8736 0.2210 0.3839 

300 0.9252 0.8788 0.1924 0.3843 

Hybride Training accuracy validation accuracy Training loss Validation loss 
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Table 14:: The sequential Model of  hybrid LSTM-CNN 

Type of Layer Output Shape No. Parameters  

lstm (LSTM) (None, 3000, 128) 66,560 

lstm_1 (LSTM) (None, 3000, 64) 49,408 

conv1d (Conv1D) (None, 2998, 32) 6,176 

batch_normalization (None, 2998, 32) 128 

max_pooling1d (MaxPooling1D) (None, 2997, 32) 0 

dropout (Dropout) (None, 2997, 32) 0 

conv1d_1 (Conv1D) (None, 2995, 64) 6,208 

batch_normalization_1 (None, 2995, 64) 256 

max_pooling1d_1 (MaxPooling1D) (None, 1497, 64) 0 

dropout_1 (Dropout) (None, 1497, 64) 0 

conv1d_2 (Conv1D) (None, 1495, 128) 24,704 

batch_normalization_2 (None, 1495, 128) 512 

max_pooling1d_2 (MaxPooling1D) (None, 747, 128) 0 

dropout_2 (Dropout) (None, 747, 128) 0 

flatten (Flatten) (None, 95616) 0 

dropout_3 (Dropout) (None, 95616) 0 

dense (Dense) (None, 200) 19,123,400 

dropout_4 (Dropout) (None, 200) 0 

dense_1 (Dense) (None, 5) 1,005 

.4.2. Comparative Analysis 
Based on the results presented in the previous 

paragraphs, and based on well-known performance 

metrics, in this section we review the key features of 

each of the three models—LSTM, CNN, and the CNN-

LSTM hybrid model—in terms of performance and 

efficiency. We know that each model has the ability to 

recognize and process specific signal characteristics: 

LSTM Model: The LSTM model demonstrated good 

performance in recognizing sleep classes, especially 

with the two-layer architecture, the first with 128 units 

and the second with 64 units. From the evaluation 

performance graphs in Figure (3), we note that the best 

training and completion accuracies are 0.8492 and 

0.83, respectively, demonstrating the model's good 

learning ability.From the training and loss curves, we 

note that the model is stable and does not suffer from 

overfitting or underfitting.The confusion matrix results 

indicate good classification for all classes. Although 

some classes, particularly Class 1, show confusion 

with Class 2 by 1513 and Class 3 by 1631, the 

classification results are considered good and 

acceptable.ROC curves show good results for each 

class. Even for Class 1, where AUC is 0.93, which is 

high.. 

Although the input data consisted of time series or 

sequence-like structures, the CNN model had no 

difficulty in managing temporal relationships and 

extracting the most important spatial information. It 

outperformed the LSTM in recognizing unique aspects 

of the input signal, as shown in the results in Figure 4. 

The training accuracy reached 0.9131% and the 

validation accuracy reached 0.8736%, which are good 

values and indicate that the model does not suffer from 

significant overfitting. The training loss reached 0.22, 

and the validation loss reached 0.383, these values 

indicate the model's stability.And the confusion matrix 

results, based on the results on the diagonal, indicate 

that the model classified correctly , where the Class 3 

performed well with 13,258 correct cases and 319 

incorrect cases, and Some cases, such as Class 1 and 

Class 2, exhibit confusion, but the overall results are 

good. From the information on the ROC curves, we 

can also conclude that the CNN model has an 

impressive ability to distinguish between different 

classes. 

The hybrid CNN/LSTM model demonstrated 

significant superiority over both the CNN and LSTM 

models individually on most evaluation metrics. The 

hybrid LSTM_CNN model (LSTM first, then CNN) 

achieved the highest results among all tested models. 

From the evaluation performance graphs in Figure (5), 

we observe the following: The model's accuracy in 

distinguishing between the learning and validation 

phases is good. We note that the training and 

validation curves increase with each epoch, indicating 

that the model does not suffer from overfitting. The 

model's loss curves also reflect a good learning 

balance, with no significant difference between the 

training and validation curves. The confusion matrix 

results indicate good classification for all classes,the 

Class 3 appears to be the highest-ranking class, with 

Architecture 

CNN_LSTM 0.8583 0.8436 0.3577 0.4147 

LSTM_CNN  0.9111 0.8813 0.2293 0.4218 
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13,210 correct instances out of 13,600, while the 

remaining classes performed well. The ROC curves for 

each class show good results, indicating a high 

classification ability for the model, AUC values range 

between 0.96 and 1.00, demonstrating the model's 

robustness in classifying classes. Class 3 is the best-

ranking class, with an AUC of 1.00. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure (3) : The evaluation curves and results of  LSTM MODEL 
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Figure (5) : The evaluation curves and results of  Hybrid LSTM+ CNN MODEL 
 

 

 

5. Conclusion and Recommendations 

This section relies on extensive experiments and 

results obtained from performance metrics such as 

accuracy, loss, confusion matrix, and ROC curves,  on 

LSTM, CNN, and hybrid CNN/LSTM models. From 

the summary of the results in Table (15), we note that 

all models demonstrated strong performance across the 

four performance metrics. Stability and learning 

demonstrate that these models are well-suited to 

handling and classifying sleep signals. All models 

provided very similar results in terms of accuracy and 

loss, demonstrating the strength of each model in this 

task. 
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Table(15) :Final table of Computational Efficiency of 

models 

Feature LSTM CNN 
LSTM + 

CNN 

Training 

accuracy 
0.8644 0.9131 0.9111 

Validation 

Accuracy 
0.8301 0.8736 0.8813 

Training loss 0.3540 0.2210 0.2293 

Validation 

Loss 
0.4577 0.3893 0.4218 

F1 score 0.83      0.87 0.87 

Number of 

Parameters 
130,773 

9,709,0

33 
19,277,249 

Total Training 

Time 

19559.48 

sec 

4156.6

7 sec 
18922.81 sec 

Average 

Training Time 
698.24 sec 

148.14 

sec 
900.67 sec 

Average 

Inference 

Time per 

Sample 

0.003884 

sec 

0.0001

09 sec 
0.003985 sec 

 

 

 

However, in terms of comparison between these 

models: 

1. The LSTM-CNN model achieved the best balance 

between training accuracy (0.9111) and validation 

accuracy (0.8813), with a relatively low loss. This is 

because, from a scientific perspective, there is a 

benefit to combining temporal and spatial features, 

especially in the LSTM-CNN order, which 

significantly enhanced classification capabilities, 

the temporal signals are processed first, and then 

spatial information is extracted from them.Although 

the LSTM-CNN model outperforms the others and 

is a good choice in terms of balancing accuracy and 

temporal and spatial representation efficiency, we 

recommend using any of the proposed models CNN 

or LSTM, depending on the available capabilities 

and the purpose of the study , as they also 

demonstrated excellent results, as shown in Table 

15. 

2. Number of parameters: We note that LSTM is the 

lightest, with only 130,000 parameters, compared to 

CNN, which has about 9 million, and LSTM+CNN, 

which has about 19 million. 

3. In terms of training time, CNN demonstrated 

remarkable speed, averaging only 148 seconds per 

cycle, compared to LSTM (698 sec.) and 

LSTM+CNN (900 sec.). Therefore, CNN is suitable 

for such datasets in terms of speed. 

4. In terms of inference time, CNN outperforms, with 

an average of only 0.0001 sec. per sample. On the 

other hand, LSTM and LSTM+CNN are slower, 

about 0.004 sec. 
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