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To address the challenges of high computational complexity and limited generalization ability in 

traditional support vector machines (SVM) for large-scale and multiclass datasets, this study proposes an 

SVM optimization model integrating an Improved Whale Optimization Algorithm (IWOA) and dual 

strategies. Specifically, a nonlinearly decreasing convergence factor and adaptive inertia weight are 

introduced to enhance the global and local search capabilities of IWOA. A redundant sample removal 

strategy based on K-means clustering and Fisher projection is designed to filter low-value training data. 

Furthermore, a distributed parallel optimization strategy with time feedback is introduced to balance node 

load and improve optimization efficiency. The experimental results on several public datasets (Iris, Wine, 

CIFAR-10, and Fashion-MNIST) demonstrated that the proposed model outperformed other benchmark 

algorithms, achieving the highest classification accuracy of 97.8%. In addition, the model achieved a 

minimum classification error of only 0.15 on the test set, significantly lower than the other three 

comparison models. Therefore, by incorporating the IWOA and dual strategies, the proposed model 

effectively enhances the classification accuracy and computational efficiency of SVM in large-scale 

multiclass data mining tasks. 

Povzetek: Za področje večrazrednega podatkovnega rudarjenja je predstavljen DS-IWOA-SVM, ki 

optimira SCM z izboljšanim kitovim algoritmom: nelinearno padajoči konvergenčni faktor in adaptivna 

inercijska utež uravnotežita globalno iskanje in lokalno izpopolnjevanje. Redundanco odstrani K-means 

+ Fisherjeva projekcija, porazdeljena paralelna optimizacija z časovnim povratkom pa uravnoteži 

obremenitve. 

 

1 Introduction 
The continuous development of data mining technology 

has made Support Vector Machine (SVM) one of the most 

widely used algorithms in multi-class data processing due 

to its powerful classification performance and efficient 

processing ability for nonlinear data [1-2]. SVM can 

effectively distinguish different categories of data by 

finding the optimal hyperplane and has good 

generalization ability. However, its performance is highly 

dependent on the setting of hyperparameters [3]. In recent 

years, the performance of swarm intelligence optimization 

algorithms in solving complex optimization problems has 

been widely recognized. Among them, the Whale 

Optimization Algorithm (WOA) has gradually become the 

main algorithm for SVM parameter optimization due to its 

strong global search ability and fast convergence speed 

[4]. However, traditional WOA has shortcomings in 

balancing Global Search and Local Search (GS-LS), 

which can easily lead to low optimization accuracy or 

falling into local optima. In addition, redundant samples 

and unevenly distributed samples in large-scale multi- 

 

class datasets can significantly increase the training cost 

of the model and reduce classification efficiency. 

Accordingly, an IWOA-SVM model combining Improved 

WOA and SVM is proposed. The WOA is enhanced by  

incorporating a nonlinear decreasing convergence factor 

and an Adaptive Inertia Weight (AIW), effectively 

improving its GS-LS capabilities. Meanwhile, to address 

the issue of redundant samples in large-scale datasets, this 

study innovatively combines K-Means Clustering (K-

Means) and Fisher projection to propose a Redundant 

Data Sample Removal Strategy Based on K-means 

Clustering and Fisher Projection (KCFJ). To cope with the 

computational complexity of multi-class datasets, an 

innovative Distributed Parallel Optimization Strategy 

Based on Time Feedback (DPOS-TF) has been introduced 

to improve the efficiency of parameter optimization and 

model training. This study is expected to provide a new 

optimization solution for the fields of data mining and 

multi-class data processing. 

This study aims to address the following core issues, 

including improving the parameter optimization 
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efficiency and classification accuracy of SVM in multi-

class tasks, reducing the negative impact of redundant 

training samples on model performance, and achieving 

efficient and scalable model optimization in distributed 

environments. 

2 Related works 
SVM is a supervised learning model, mainly used for tasks 

such as classification, regression, and anomaly detection. 

Currently, many scholars have utilized this model to 

efficiently handle tasks such as classification and 

prediction. Wang H et al. proposed a sparse and robust 

SVM model aimed at reducing the computational cost of 

the model by truncating and smoothing the absolute 

deviation loss function. In addition, the minimum support 

vector was defined based on the near stationary point, and 

an alternating direction multiplier method based on the 

working set was proposed. The final proposed algorithm 

had higher classification accuracy, fewer support vectors, 

and faster computation speed on large-scale datasets [5]. 

Yan X et al. proposed an SVM algorithm based on an 

analytical exploratory grey wolf optimizer for 

electrocardiogram emotion recognition tasks. This method 

achieved average accuracies of 93.37% and 95.93% on the 

iRealcare and benchmark WESAD datasets, indicating 

that the algorithm exhibits higher reliability compared to 

existing supervised learning methods [6]. Samantaray et 

al. proposed an optimization model called phase space 

reconstruction SVM firefly algorithm and applied it to 

monthly traffic prediction tasks. The accuracy of the 

hybrid SVM firefly algorithm model was improved by 

extracting information and features from the flow time 

series through phase space reconstruction. To evaluate the 

performance of the model, the Nash Sutcliffe coefficient, 

root mean square error, and Wilmot index were calculated. 

This model performed better than other application 

methods in monthly traffic forecasting, with the Wilmot 

index being the best [7]. 

Brand L et al. proposed a novel primal-dual multi-

instance SVM algorithm aimed at efficiently processing 

large-scale data. This method was based on a multi-block 

variant of the Alternating Direction Method of Multipliers 

(ADMM), which decomposed the original optimization 

problem into several sub-problems that can be solved in 

parallel. Each sub-problem only dealt with local variables, 

thereby avoiding repeated solving of global Quadratic 

Programming (QP) during the iteration process and 

significantly improving computational efficiency. 

Additionally, to enhance performance when handling 

large feature sets and data batches, extra optimization 

steps were introduced to circumvent solving least squares 

problems. The experimental results demonstrated that the 

method exhibited good scalability and classification 

performance [8]. Singgalen Y A et al. put forth an emotion 

classification method built on SVM and synthetic minority 

oversampling techniques for analyzing audience 

comments on YouTube travel channels. This method 

adopted a cross-industry standard data mining process, 

using SVM combined with synthetic minority 

oversampling technique to classify sentiment in comment 

data. This model performed well in sentiment 

classification, with an accuracy of 84.26% and a precision 

of 100%. In contrast, SVM models that did not use 

synthetic minority oversampling techniques performed 

weaker in distinguishing positive and negative emotions 

[9]. H. Huang proposed a two-stage feature selection 

algorithm based on the fusion of information gain and the 

maximum correlation minimum redundancy algorithm for 

the redundancy and uneven distribution of text data. They 

proposed an improved SVM algorithm based on the 

Fourier mixed kernel function, thereby improving the 

accuracy and efficiency of text data classification. The 

experimental results showed that the performance of this 

improved algorithm on the IMDB dataset was superior to 

other algorithms. The F1 value has increased by 1% to 3%, 

and the number of correctly classified texts has increased 

by 20 to 45 [10]. The summary of the existing literature is 

shown in Table 1. 

To sum up, although the existing SVM optimization 

methods have achieved certain results in specific tasks, 

there are still common problems such as low parameter 

optimization efficiency, difficulty in adapting to large-

scale parallel training, and insufficient processing of 

redundant samples. In contrast, the DS-IWOA-SVM 

model combining Dual Strategies and IWOA-SVM 

improves the parameter optimization efficiency by 

introducing nonlinear decreasing convergence factors and 

AIWs. This model combines the KCFJ redundant sample 

elimination strategy for data reduction and adopts the 

DPOS-TF to enhance computational scalability. This 

significantly enhances the robustness and adaptability of 

the model and effectively breaks through the bottlenecks 

of traditional SVM in terms of efficiency and 

generalization ability. 

Table 1: Comparative summary of existing SVM optimization methods. 

Author & Ref. Method Main Contribution Limitation 

Wang H et al. [5] 
Sparse and robust SVM (truncated smooth 

loss + ADMM) 

Improved classification accuracy and 

reduced support vectors for large-

scale datasets 

Complex structure and still reliant on 

manual parameter tuning 

Yan X et al. [6] 
EGWO-SVM (Exploratory Grey Wolf 

Optimizer) 

Achieved high accuracy in emotion 

recognition tasks (95.93% on 

WESAD) 

Prone to local optima; lacks handling 

of redundant samples 

Samantaray S et al. [7] 
PSR-FA-SVM (Phase Space 

Reconstruction + Firefly Algorithm) 

Enhanced time series modeling for 

flow prediction 

Limited to time-series applications; 

lacks generalization 

Brand L et al. [8] 
Primal-dual multi-instance SVM 

(blockwise ADMM) 

Avoided repeated QP solving; 

improved efficiency on big data 

Inadequate feature selection for 

high-dimensional redundant data 

Singgalen Y A et al. [9] 
SMOTE + SVM (oversampling minority 

classes) 

Significantly improved sentiment 

classification on imbalanced datasets 

Prone to overfitting; limited 

generalizability 

H. Huang. [10] 
Two-stage feature selection + Fourier 

hybrid kernel SVM 

Improved classification accuracy on 

text data; reduced feature subsets 

Struggles with high-dimensional 

image data 
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Figure 1: Schematic diagram of SVM optimal hyperplane. 
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Figure 2: Diagram of whale bubble feeding process. 

3 Multi-Class data mining and 

processing based on improved 

SVM 
To improve the classification performance of SVM in 

multi-class datasets, this study proposes three different 

strategies to optimize SVM. Firstly, improvements are 

made to WOA by proposing the IWOA-SVM algorithm. 

Secondly, by combining KCFJ and DPOS-TF, the IWOA-

SVM algorithm is further improved, and the final multi-

class data processing model is constructed. 

3.1 Design of improved SVM algorithm 

based on WOA 

In practical multi-class classification scenarios, SVM has 

shown strong adaptability to complex data characteristics 

such as high feature dimensionality, sparse distributions, 

and limited labeled samples [11]. Unlike traditional linear 

classifiers, SVM leverages kernel functions to map data 

into higher-dimensional spaces, enabling accurate 

decision boundaries even under nonlinearly separable 

conditions [12]. The basic principle of SVM is to 

effectively distinguish different categories of data in the 

feature space by finding an optimal hyperplane. The 

optimal hyperplane classification process of SVM is 

shown in Figure 1.  

In Figure 1, SVM will determine an optimal 

hyperplane through training data. The core goal of this 

hyperplane is to maximize the classification interval, even 

if the distance between the hyperplane and the nearest data 

point is maximized, thereby enhancing the robustness and 

generalization ability. However, the performance of SVM 

is highly dependent on the setting of hyperparameters, and 

how to effectively optimize these parameters is a key issue 

in improving SVM performance. Intelligent optimization 

algorithms have been widely used to address parameter 

optimization issues due to their efficient global search 

capabilities. Among them, WOA, as a new type of swarm 

intelligence algorithm, has received widespread attention 

for its search efficiency and global convergence [13]. The 

operation process of traditional WOA mainly simulates 

the bubble hunting behavior of whales, as shown in Figure 

2. 

In Figure 2, the whale forms a bubble network by 

spiraling upwards and rotating around its prey to limit its 

range of activity. Subsequently, by controlling the shape 

and density of the bubbles, it gradually approaches the 

optimal solution. Finally, the whale narrows down the 

bubble range, focuses on the local area for an in-depth 

search, and finds a more accurate optimal solution. The 

entire predation process of WOA is divided into three 

strategies: trapping prey, spiral updating position, and 

random search. The calculation for surrounding prey is 

given by equation (1) [14-15]. 

( )

*

*1

D C X X

X t X A D

 =  −


+ = − 

 (1) 

In equation (1), *X  and X  denote the position 

vectors of the prey and the current position vector of the 

whale. D  is the current distance from the whale to its 

prey. A  is the linear convergence factor that controls the 
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search range, with a range of  ,a a− . t  is time. C  is a 

random weight vector used to enhance the randomness of 

the search direction, as shown in equation (2). 

12C r=    (2) 

In equation (2), 1r  is a random number ranging from 

[0,1]. The formula for spiral updating position is given by 

equation (3). 

( ) ( ) *1 cos 2b lX t D e l X+ =   +  (3) 

In equation (3), ( )1X t +  represents the updated 

value of the whale's current position in generation 1t + . 

b  is the helix shape constant used to control the helix 

shape. l  means a random number of [-1,1] used to 

generate a random spiral path. b le   is the exponential 

decay factor that controls the trend of spiral contraction. 

When the whale cannot obtain effective information about 

the current optimal solution, WOA will conduct random 

search to simulate the whale's exploration behavior in 

unknown areas, as shown in equation (4). 

( )1 randX t X A D+ = −   (4) 

In equation (4), randX  is a randomly selected whale 

position. Although WOA can dynamically switch between 

GS-LSes, its linear convergence factor A  may lead to 

insufficient global search capability and lower accuracy in 

later local searches. In addition, traditional WOA has poor 

ability to balance GS-LS and may fall into local optima in 

the later stage. Therefore, this study introduces a non-

linear decreasing convergence factor and AIW value for 

improvement, that is IWOA. In IWOA, A  adopts a non-

linear decreasing method to enhance the dynamic 

adjustment ability of the algorithm's GS-LS, as shown in 

equation (5). 

( ) max

'
' 1

n
t

a t a
T

 
=  − 

 
 (5) 

In equation (5), 't  and T  are the current and 

maximum iteration counts. ( )'a t  and maxa  are the 

convergence factor and maximum convergence factor at 

't  iterations. n  is a nonlinear decreasing control 

parameter, and when 1n  , the convergence factor 

decreases exponentially. After introducing the 

convergence factor of nonlinear descent, the trapping 

formula at this time is given by equation (6). 

( )

( ) ( )

*

1

1 '

' 2 ' '

X t X A D

A a t r a t

 + = − 


=  −

 (6) 

In equation (6), 'A  represents the scalar value of the 

nonlinearly decreasing convergence factor, which is used 

to adjust the step size between the current position and the 

optimal solution. To further balance GS-LS, IWOA also 

introduces the AIW value  , whose weight update 

formula is given by equation (7). 

( ) ( )max max min

'
'

t
t

T
   = −  −  (7) 

In equation (7), min  and max  are the minimum and 

maximum of inertia weights, and the search strategy of 

IWOA is expressed as equation (8). 

( )

( ) ( ) ( )( )*

1

' ' 1 ' rand

X t

t X A D t X 

+ =

 −  + − 
 (8) 

In equation (8), the introduction of inertia weight can 

dynamically adjust the degree of dependence on the 

current optimal solution and random solution, thereby 

providing better adaptability in different search stages. 

IWOA is used to optimize SVM penalty parameters and 

kernel function parameters. The running process of 

IWOA-SVM algorithm is shown in Figure 3. 

In Figure 3, IWOA-SVM first initializes a population 

consisting of penalty parameters and kernel function 

parameters and sets other input parameters. Secondly, 

cross-validation is conducted on the training set to 

calculate fitness values. The next step is to find the 

individual with the lowest fitness value in the current 

population as the prey position and execute three 

strategies: hunting prey, spiral updating position, and 

random search to update the population position. Then, the 

adaptive weight dynamic adjustment algorithm is 

introduced to enhance the GS-LS capabilities, and the 

fitness values of each individual are recalculated. Finally, 

the above steps are repeated until the termination 

condition for the maximum iterations is met, and then the 

optimal penalty parameters and kernel function 

parameters are input to train the SVM model. 

Enter parameters 
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Calculate fitness
Find the current 
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Y

Output optimal 
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Figure 3: IWOA-SVM flow chart. 
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Figure 4: KCFJ policy steps. 

3.2 Construction of multi-class data 

processing model based on improved 

IWOA-SVM 

In practical data mining and multi-classification tasks, 

large-scale training datasets typically contain a large 

number of redundant samples. Although these samples 

contribute relatively little to the construction of 

classification boundaries, they significantly increase the 

computational complexity and training time of the model 

[16-17]. Therefore, to improve the training efficiency of 

IWOA-SVM, this study further proposes the KCFJ 

strategy and its implementation steps are shown in Figure 

4. 

In Figure 4, firstly, K-Means is performed on the 

training dataset. The data are divided into several category 

centers to preliminarily partition the distribution structure 

of the data, and the importance of each data point is 

measured by calculating the distance between each data 

point and its category center. Secondly, the data are 

projected using Fisher's linear discriminant analysis. 

While maximizing the inter-class interval, the intra-class 

interval is minimized to reduce data dimensionality and 

enhance sample discriminability, thereby more clearly 

identifying key samples that are close to the classification 

boundary in the projection space. Then, based on the 

projection results and the distance from the sample to the 

center of the category, the samples are sorted. Firstly, 

samples that are far from the category center and have high 

discriminability in the projection space are retained, while 

redundant samples that are closer to the category center 

and have low discriminability in the projection space are 

removed. This process helps optimize the training dataset 

and retains only the samples that contribute significantly 

to the classification boundaries. Finally, the processed 

simplified dataset is used as the training data input for 

SVM to reduce computational complexity, improve 

training efficiency, and ensure that classification 

performance is not significantly affected. In KCFJ, K-

means is first used to cluster the data. The data are divided 

into K  clusters, and the objective function is the 

minimum sum of the squared distances from each sample 

to the cluster center, as shown in equation (9) [18-20]. 

2

1 'i k

K

i k

k x C

J x u
= 

= −   (9) 

In equation (9), ix  is the i -th sample point, 'kC  is 

the sample set of the k -th cluster, and ku  is the centroid 

of the k -th cluster, i.e., the cluster center. 'i kx C  

indicates that sample point ix  belongs to 'kC    By 

iteratively updating the cluster allocation relationship 

between cluster centers and sample points, it is possible to 

gradually converge to the local optimal partition. Based on 

the Euclidean distance from the sample to the center of its 

cluster, its impact on the classification boundary can be 

determined. The larger the distance, the higher the 

importance of the sample. Next, the data are mapped from 

high to low dimensional space, maximizing inter-class 

differences while minimizing intra-class differences. The 

expression for the projection target is shown in equation 

(10). 

arg max
T

B

Tw
W

w S w
w

w S w
=  (10) 

In equation (10), w  is the Fisher projection direction 

vector. BS  and WS  are the inter-class divergence matrix 

and intra-class divergence matrix, and their specific 

expressions are shown in equation (11). 

( )( )

( )( )

1

1 '

'

i k

K
T

B k k k

k

K
T

W i k i k

k x C

S C u u u u

S x u x u

=

= 


= − −



 = − −




 
 (11) 

By using equations (10) and (11), the value of w  can 

be calculated, and then the sample can be projected into 

1D space to obtain the projected sample coordinates, as 

shown in equation (12). 
T

i iz w x=   (12) 

In equation (12), iz  is the projection value of sample 

ix  in the Fisher projection direction. After KCFJ, the 

comprehensive importance score of the samples is defined 

as shown in equation (13). 
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( )
max

max

i k

i

j j k

i mean

j j mean

x u
S x

x u

z z

z z





−
= 

−

−
+ 

−

 (13) 

In equation (13), ( )iS x  is the importance score 

value.   and   are weight factors used to balance the 

impact of K-means and Fisher projections on importance 

assessment. meanz  is the mean of all samples after Fisher 

projection. j  is the index set of all sample points. After 

calculating the importance scores of all samples, samples 

with lower scores are more likely to be redundant data. 

Finally, samples are removed according to the set 

threshold, as shown in equation (14). 

( ) 'reduced i iD x D S x =    (14) 

In equation (14), 
reducedD  and 'D  are the simplified 

dataset and initial training dataset obtained through 

redundant sample removal strategy processing.   is the 

threshold for removing importance scores. To better meet 

the parallel processing and efficient scheduling 

requirements of multi-classification tasks, and reduce the 

load imbalance during training, this study also introduces 

the DPOS-TF strategy to perfect the computational 

efficiency and resource utilization of the algorithm. The 

main operational steps of the DPOS-TF strategy are 

shown in Figure 5. 

In Figure 5, the first step is to divide the multi-class 

dataset into multiple subsets. Each subset is allocated to 

different Map nodes for processing based on data volume 

and category ratio. Secondly, each Map node 

independently processes the assigned subset of data. Then 

it enters the Reduce stage, which requires weighting the 

local fitness based on the sample ratio and calculating the 

global fitness value to generate the global optimal 

individual as the basis for population update. Next, the 

Reduce stage monitors the task processing time of each 

node, calculates the average task time, and adjusts the task 

allocation weights based on the time feedback mechanism 

to balance the load on the Reduce nodes. Finally, the 

IWOA population is updated based on the global fitness 

results, and the updated population is reassigned to the 

Map node for the next round of optimization. The structure 

of the DS-IWOA-SVM model is depicted in Figure 6. 
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Figure 5: DPOS-TF policy steps. 
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Figure 6: DS-IWOA-SVM structure diagram. 
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In Figure 6, the DS-IWOA-SVM model has three 

main modules: data preprocessing (M1), distributed 

parallel optimization (M2), and multi-classification model 

construction (M3). In M1, the KCFJ strategy filters and 

simplifies the original dataset to remove redundant 

samples and irrelevant features. This strategy combines 

KCFJ discriminant analysis. By maximizing inter-class 

spacing and minimizing intra-class spacing, the 

dimensionality of the dataset can be effectively reduced 

while retaining samples that significantly contribute to 

classification performance. In M2, the DPOS-TF strategy 

will complete the global optimization of the IWOA 

population in a distributed framework. At M3, the globally 

optimal parameter combinations outputted after M2 will 

be used to construct a multi-classification SVM model 

through the one-to-many strategy. Eventually, DS-IWOA-

SVM will complete the efficient training of multi-

classification data in the training set and verify the model 

performance through the test set. 

4 Results 
To verify the performance of DS-IWOA-SVM in multi-

class data mining tasks, multiple experimental evaluations 

were designed. Firstly, ablation tests were conducted on 

each module of the algorithm. Secondly, benchmark 

performance comparisons were conducted between DS-

IWOA-SVM and various mainstream-optimized SVM 

models. Finally, the algorithm was applied to actual multi-

class datasets to verify its effectiveness in large-scale data 

mining tasks. 

4.1 Ablation testing and algorithm 

performance testing 

This study establishes a high-performance experimental 

platform for benchmark testing of the DS-IWOA-SVM 

algorithm. The operating system is Ubuntu 20.04, 

equipped with Nvidia GeForce RTX 3090 GPU, and runs 

on Python 3.9 and PyTorch 1.11 frameworks. The publicly 

available multi-class dataset used is the Cora dataset. All 

datasets have been standardized and segmented into 

training and testing sets in an 8:2 ratio. To ensure the 

fairness and reliability of the results, all experiments are 

performed under the same environment and parameter 

settings. Table 2 shows the specific equipment parameters. 

In Table 2, the population size of IWOA is 50, the 

maximum iterations are 500, the initial learning rate is 

0.01, and the weight decay coefficient is 0.001. The study 

first conducts a hyperparameter sensitivity analysis. 

Different population sizes (30, 50, 70, 100) and 

convergence factors (0.3, 0.5, 0.7) are set for the 

experiments. The results are shown in Table 3. 

Table 3 shows that when the population size is 50 and 

the convergence factor is 0.5, the convergence accuracy is 

the highest, reaching 96.2%. This configuration performs 

better than other population sizes. A smaller population 

size (such as 30) leads to poor model performance due to 

the smaller search space. However, for larger population 

sizes (such as 100), although the convergence accuracy is 

improved, the computational complexity increases, and 

the improvement in convergence accuracy is not 

significant. Therefore, the population size is set at 50 and 

the convergence factor is 0.5. 

Table 2: Experimental setup and model parameters. 

Category Parameter/Equipment Description 

Experimental setup 

Operating System Ubuntu 20.04 

GPU NVIDIA GeForce RTX 3090 

CPU Intel Core i9-10900K 

Memory 64GB DDR4 

Deep Learning Framework PyTorch 1.11 

Programming Language Python 3.9 

Model parameters 

IWOA Population Size 50 

Maximum Iterations 500 

Initial Learning Rate 0.01 

Weight Decay 0.001 

SVM Kernel Type Radial Basis Function (Gaussian Kernel) 

 

Table 3: Results of hyperparameter sensitivity analysis. 

Population Size Convergence Factor Convergence Accuracy (%) 

30 

0.3 92.4 

0.5 93.1 

0.7 91.8 

50 

0.3 94.5 

0.5 96.2 

0.7 94.1 

70 

0.3 95.0 

0.5 95.9 

0.7 95.2 

100 

0.3 95.6 

0.5 96.0 

0.7 95.5 
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Due to the fact that the DS-IWOA-SVM model is 

composed of multiple modules, this study tests the 

classification accuracy of different combinations in DS-

IWOA-SVM using mean Average Precision (mAP) as the 

metric, as shown in Figure 7. 

Figure 7 shows the mPA values for different ablation 

combinations in the training and testing sets. The ablation 

combinations include the IWOA-SVM model, IWOA-

SVM+KCFJ, IWOA-SVM+DPOS-TF, and DS-IWOA-

SVM. In Figure 7 (a), IWOA-SVM, as the base model, has 

the lowest mAP value in the training set, only 83.5%. 

When combining KCFJ and DPOS-TF strategies 

simultaneously, the mAP value of DS-IWOA-SVM on the 

training set reaches as high as 96.1%. In Figure 7 (b), when 

IWOA-SVM, IWOA-SVM+KCFJ, IWOA-SVM+DPOS-

TF, and DS-IWOA-SVM are iterated to a stable state, the 

mPA values of the four combinations in the test set are 

87.4%, 92.5%, 95.8%, and 97.6%. In the ablation test, 

KCFJ and DPOS-TF can significantly lift the 

classification accuracy and convergence velocity of the 

DS-IWOA-SVM, and demonstrate collaborative 

optimization ability in DS-IWOA-SVM. 

This study further selects IWOA-SVM, SVM based 

on Exploratory Grey Wolf Optimizer (EGWO-SVM), and 

SVM based on Phase Space Reconstruction and Firefly 

Algorithm (PSR-FA-SVM) as comparative algorithms. To 

ensure the fairness of the experimental comparison, the 

three benchmark models are experimented under the same 

data division, hardware platform, and evaluation metrics, 

and fixed hyperparameter values are set. The specific 

hyperparameter settings are as follows: The population 

size is 50, the maximum number of iterations is 400, the 

SVM penalty factor C is 1, and the width of the RBF 

kernel function γ is 0 01  Among the specific parameters 

of other algorithms, the exploration factor α of EGWO is 

set to 0 5, the attraction degree β of PSR-FA is 0.3, and the 

randomness factor α is 0 5  In addition, the standard SVM 

is introduced as a baseline for comparison. The iterative 

curves of the five algorithms on the training and test sets 

are shown in Figure 8. 
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Figure 7: The mPA values for the different ablation combinations. 
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Figure 8: Iterative curves of the four algorithms. 
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Figure 9: Classification error of the four algorithms. 

Table 4: Classification accuracy of the different models. 

Data set Dataset Size (samples) IWOA-SVM EGWO-SVM PSR-FA-SVM DS-IWOA-SVM 

Iris 150 92.3% 94.1% 95.4% 97.8% 

Wine 178 85.6% 89.7% 91.2% 94.5% 

Digits 1797 88.9% 91.3% 92.7% 96.2% 

Fashion-MNIST 60000 78.5% 81.9% 84.3% 88.6% 

CIFAR-10 60000 70.2% 74.6% 76.9% 82.1% 

20 Newsgroups 18000 83.7% 86.4% 89.1% 92.3% 

HAR 6000 88.5% 90.7% 92.5% 95.8% 

Glass Identification 214 71.3% 74.9% 77.2% 80.6% 

Yeast 1484 64.5% 69.8% 72.4% 78.3% 

Emotion 2000 86.2% 89.5% 91.3% 94.7% 

 

As shown in Figure 8(a), DS-IWOA-SVM 

demonstrates faster convergence compared to the other 

four algorithms. After 51 iterations, it reaches a stable 

fitness value of 0.052. In contrast, IWOA-SVM exhibits a 

slower decline in fitness and only stabilizes after 124 

iterations, with a final fitness value of 0.079. The fitness 

curves of EGWO-SVM and PSR-FA-SVM fall between 

those of IWOA-SVM and DS-IWOA-SVM. Their 

convergence speed and final optimization performance are 

better than IWOA-SVM but inferior to DS-IWOA-SVM. 

The standard SVM performs the worst, showing the 

slowest convergence and the highest fitness value. 

Similarly, in Figure 8(b), DS-IWOA-SVM again reaches 

a stable state the fastest. Ultimately, the best fitness values 

achieved by IWOA-SVM, EGWO-SVM, PSR-FA-SVM, 

and DS-IWOA-SVM in the stable state are 0.081, 0.069, 

0.075, and 0.058, respectively. The standard SVM reaches 

a fitness value of 0.126. Figure 9 compares the 

classification errors of four algorithms in two datasets. 

Figures 9 (a) and (b) show the classification errors of 

four algorithms in two datasets, with DS-IWOA-SVM 

having the lowest classification error across all sample 

sizes. In Figure 9 (a), DS-IWOA-SVM exhibits strong 

learning and generalization abilities. When the sample 

size reaches 200, the classification error of DS-IWOA-

SVM increases to 0.20, but it is still significantly better 

than the classification error of the IWOA-SVM model at 

0.41. In Figure 9 (b), as the sample size rises to 200, the 

classification error of DS-IWOA-SVM increases to 0.15, 

while the classification errors of IWOA-SVM, EGWO-

SVM, and PSR-FA-SVM are as high as 0.38, 0.35, and 

0.32. 

4.2 Application effect analysis 

To validate the classification performance of the DS-

IWOA-SVM in practical multi-classification tasks, 10 

different types of publicly available multi-classification 

datasets are selected as the research objects. These 

datasets cover a variety of data types such as images, text, 

sensor signals, etc., with categories ranging from 3 to 10 

and data scales ranging from thousands to hundreds of 

thousands, making them widely representative. Table 4 

compares the classification accuracy of IWOA-SVM, 

EGWO-SVM, PSR-FA-SVM, and DS-IWOA-SVM on 

10 datasets. 

In Table 4, DS-IWOA-SVM achieves the highest 

classification accuracy of 97.8% on all datasets. The 

classification performance of PSR-FA-SVM is inferior to 

DS-IWOA-SVM, with a classification accuracy of up to 

95.4%. The accuracy of this model is similar on most 

datasets, but there is a certain gap on high-complexity 

datasets such as CIFAR-10 and Yeast. The classification 

ability of EGWS-SVM and IWOA-SVM is poor, with the 

highest classification accuracies of 94.1% and 92.3%. It is 

worth noting that CIFAR-10, as a typical high-

dimensional image dataset, has a complex spatial structure 

and strong feature redundancy. SVM models have 

difficulty giving full play to their advantages on such data. 

However, datasets such as Wine and Fashion-MNIST 

have lower feature dimensions and clear category 

boundaries, which can better reflect the performance 

improvement of DS-IWOA-SVM in sample compression 

and parameter optimization. This indicates that the 

characteristics of different datasets affect the 
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improvement extent of the model to a certain extent. To 

further verify whether the performance improvement of 

DS-IWOA-SVM on multiple datasets is statistically 

significant, paired t-test and Wilcoxon signed-rank test are 

conducted on its classification accuracy results with 

IWOA-SVM, EGWO-SVM and PCR-FA-SVM. The 

results show that on 10 datasets, the accuracy 

improvement of DS-IWOA-SVM compared with other 

models is significant at the 95% confidence level (p<0.05), 

indicating that the performance improvement of this 

model is not accidental.  

The classification performance of four models on ten 

datasets is demonstrated using clustering in the 

dimensional space, as shown in Figure 10. 

In Figure 10 (a), the classification results of IWOA-

SVM are quite chaotic, with many overlapping areas 

between sample points of different categories. This 

indicates that IWOA-SVM has insufficient boundary 

learning ability in complex multi-classification tasks. In 

Figures 10 (b) and (c), compared to IWOA-SVM, EGWS-

SVM, and PSR-FA-SVM have improved classification 

results, with some boundaries between categories 

becoming clearer. However, there is still a certain degree 

of confusion in the classification of a few samples, 

indicating that the two models still have shortcomings in 

dealing with highly similar categories. In Figure 10 (d), 

the classification results of DS-IWOA-SVM are the most 

ideal, with a clear distribution and good separation of 

sample points in the dimensional space for each category. 

This indicates that DS-IWOA-SVM has the best boundary 

capture ability and robustness in complex multi-

classification tasks. To further verify the computational 

efficiency and scalability of the DS-IWOA-SVM model in 

practical applications, a training time and complexity 

comparison experiment is conducted across multiple 

datasets. Four representative datasets (Cora, Wine, 

Fashion-MNIST, and CIFAR-10) are selected for training 

time evaluation. Each experiment is independently run 

five times, and the total training time is recorded and 

averaged as the final result. The results are shown in Table 

5. 
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Figure 10: Classification results of the four models in the dimensional space. 

Table 5: Average training time of each model on different datasets. 

Model Cora Wine Fashion-MNIST CIFAR-10 Average Time 

EGWO-SVM 12.5 s 7.8 s 21.3 s 34.6 s 19.1 s 

PSR-FA-SVM 13.1 s 8.8 s 23.0 s 35.4 s 19.9 s 

IWOA-SVM 14.4 s 9.0 s 24.5 s 37.2 s 21.3 s 

DS-IWOA-SVM 11.6 s 6.9 s 19.2 s 31.8 s 17.4 s 
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As shown in Table 5, DS-IWOA-SVM achieves 

lower average training time across all four datasets 

compared to the other three baseline models. In low 

dimensional small sample tasks such as Wine, the model 

only requires 6.9 seconds of training time, which is 23.3% 

less than IWOA-SVM. For mid-dimensional to high-

dimensional datasets such as Fashion-MNIST and 

CIFAR-10, the training times are 19.2 seconds and 31.8 

seconds, respectively, both shorter than those of EGWO-

SVM and PSR-FA-SVM. These results demonstrate the 

practical effectiveness of the KCFJ strategy in reducing 

the training dataset size, thereby alleviating the 

computational burden introduced by the SVM component. 

5 Discussion 
The proposed DS-IWOA-SVM model demonstrates 

superior classification performance over existing 

optimization methods across multiple public multiclass 

datasets. The experimental results show that compared 

with benchmark models such as EGWO SVM and PSR-

FA-SVM, DS-IWOA-SVM has higher accuracy on 

complex datasets such as CIFAR-10, Wine, Fashion 

MNIST, etc. This indicates that DS-IWOA-SVM has 

stronger boundary learning and generalization abilities in 

multi-class distribution and complex feature scenes. The 

improvement in classification performance is primarily 

attributed to the introduction of a nonlinearly decreasing 

convergence factor and AIW in the IWOA. In the early 

stages of optimization, these mechanisms enhance the 

population’s global exploration ability and help avoid 

local optima. In the later stages, the AIW facilitates fine-

grained local search, thereby improving the stability and 

precision of parameter optimization. In terms of 

computational cost, although the improved IWOA 

introduces additional computational overhead, the KCFJ 

strategy effectively removes redundant samples, 

significantly reducing the training set size for the SVM. 

Overall, the model achieves better performance in both 

convergence iterations and training time compared to 

IWOA-SVM without KCFJ, confirming the overall 

efficiency gain brought by sample compression. 

Nevertheless, the DS-IWOA-SVM model still has 

certain limitations. In extremely high-dimensional feature 

spaces (such as text or genomic data), the model may face 

challenges such as insufficient feature selection 

mechanisms and slower convergence in parameter 

optimization. In addition, the current DPOS-TF strategy 

relies on a predefined node partitioning scheme, which 

may limit its adaptability to imbalanced data distributions. 

Moreover, the impact of the KCFJ strategy on data 

distribution during redundant sample removal has not yet 

been visualized, restricting the intuitive understanding of 

structural adjustments to the training data. Future research 

can further enhance the model performance in the 

following ways: On the one hand, integration with other 

feature selection algorithms or deep learning models can 

be explored to improve adaptability on high-dimensional 

data; On the other hand, the DPOS-TF strategy can be 

optimized. Through adaptive node partitioning and 

dynamic load balancing techniques, the performance of 

the model on imbalanced data can be enhanced. In 

addition, clustering algorithms or incremental learning 

methods can be combined to further improve the 

algorithm’s efficiency on ultra-high dimensional datasets. 

Meanwhile, for the KCFJ strategy, future research can 

introduce a visual analysis of data distribution to evaluate 

the effect of eliminating redundant samples and optimize 

the sample selection strategy to ensure more efficient data 

processing and classification performance. 

6 Conclusion 
To improve the processing efficiency and classification 

performance of multi-class datasets, this study combined 

IWOA, KCFJ, and DPOS-TF to construct a novel dual 

strategy improved SVM model, namely DS-IWOA-SVM. 

In the ablation test, DS-IWOA-SVM achieved the highest 

mAP score of 97.6%. Compared with IWOA-SVM, 

EGWO-SVM, and PSR-FA-SVM, this model could 

iterate to a stable state faster and maintain optimal fitness 

values of 0.052 and 0.058 in both the training and testing 

sets. Additionally, the classification error of DS-IWOA-

SVM was obviously lower than that of the comparison 

model, with a minimum of only 0.15. In practical 

applications, DS-IWOA-SVM achieved the highest 

classification accuracy of 97.8% in 10 multi-class 

datasets, significantly higher than IWOA-SVM's 92.3%, 

EGWO SVM's 94.1%, and PSR-FA-SVM's 95.4%. In 

addition, through visual analysis of dimensional spatial 

clustering, DS-IWOA-SVM could better capture 

boundary features between categories and achieve a clear 

separation of samples from different categories. Overall, 

DS-IWOA-SVM effectively addresses the efficiency and 

accuracy issues of traditional SVM in large-scale datasets 

and multi-classification tasks by combining multiple 

optimization strategies. It has demonstrated excellent 

classification performance and computational efficiency 

in practical tasks. However, this model still has certain 

computational complexity limitations when dealing with 

ultra-high dimensional data. Future research can optimize 

the structure and distributed framework of algorithms, 

reduce computational costs, and explore their adaptability 

and generalization ability in more practical scenarios. 
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