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To address the challenges of high computational complexity and limited generalization ability in
traditional support vector machines (SVM) for large-scale and multiclass datasets, this study proposes an
SVM optimization model integrating an Improved Whale Optimization Algorithm (IWOA) and dual
strategies. Specifically, a nonlinearly decreasing convergence factor and adaptive inertia weight are
introduced to enhance the global and local search capabilities of IWOA. A redundant sample removal
strategy based on K-means clustering and Fisher projection is designed to filter low-value training data.
Furthermore, a distributed parallel optimization strategy with time feedback is introduced to balance node
load and improve optimization efficiency. The experimental results on several public datasets (Iris, Wine,
CIFAR-10, and Fashion-MNIST) demonstrated that the proposed model outperformed other benchmark
algorithms, achieving the highest classification accuracy of 97.8%. In addition, the model achieved a
minimum classification error of only 0.15 on the test set, significantly lower than the other three
comparison models. Therefore, by incorporating the IWOA and dual strategies, the proposed model
effectively enhances the classification accuracy and computational efficiency of SVM in large-scale
multiclass data mining tasks.

Povzetek: Za podrocdje vecrazrednega podatkovnega rudarjenja je predstavijen DS-IWOA-SVM, ki
optimira SCM z izboljsanim kitovim algoritmom: nelinearno padajoci konvergencni faktor in adaptivna
inercijska utez uravnotezita globalno iskanje in lokalno izpopolnjevanje. Redundanco odstrani K-means
+ Fisherjeva projekcija, porazdeljena paralelna optimizacija z casovnim povratkom pa uravnotezi

obremenitve.

1 Introduction

The continuous development of data mining technology
has made Support Vector Machine (SVM) one of the most
widely used algorithms in multi-class data processing due
to its powerful classification performance and efficient
processing ability for nonlinear data [1-2]. SVM can
effectively distinguish different categories of data by
finding the optimal hyperplane and has good
generalization ability. However, its performance is highly
dependent on the setting of hyperparameters [3]. In recent
years, the performance of swarm intelligence optimization
algorithms in solving complex optimization problems has
been widely recognized. Among them, the Whale
Optimization Algorithm (WOA) has gradually become the
main algorithm for SVM parameter optimization due to its
strong global search ability and fast convergence speed
[4]. However, traditional WOA has shortcomings in
balancing Global Search and Local Search (GS-LS),
which can easily lead to low optimization accuracy or
falling into local optima. In addition, redundant samples
and unevenly distributed samples in large-scale multi-

class datasets can significantly increase the training cost
of the model and reduce classification efficiency.
Accordingly, an IWOA-SVM model combining Improved
WOA and SVM is proposed. The WOA is enhanced by
incorporating a nonlinear decreasing convergence factor
and an Adaptive Inertia Weight (AIW), effectively
improving its GS-LS capabilities. Meanwhile, to address
the issue of redundant samples in large-scale datasets, this
study innovatively combines K-Means Clustering (K-
Means) and Fisher projection to propose a Redundant
Data Sample Removal Strategy Based on K-means
Clustering and Fisher Projection (KCFJ). To cope with the
computational complexity of multi-class datasets, an
innovative Distributed Parallel Optimization Strategy
Based on Time Feedback (DPOS-TF) has been introduced
to improve the efficiency of parameter optimization and
model training. This study is expected to provide a new
optimization solution for the fields of data mining and
multi-class data processing.

This study aims to address the following core issues,
including improving the parameter optimization
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efficiency and classification accuracy of SVM in multi-
class tasks, reducing the negative impact of redundant
training samples on model performance, and achieving
efficient and scalable model optimization in distributed
environments.

2 Related works

SVM is a supervised learning model, mainly used for tasks
such as classification, regression, and anomaly detection.
Currently, many scholars have utilized this model to
efficiently handle tasks such as classification and
prediction. Wang H et al. proposed a sparse and robust
SVM model aimed at reducing the computational cost of
the model by truncating and smoothing the absolute
deviation loss function. In addition, the minimum support
vector was defined based on the near stationary point, and
an alternating direction multiplier method based on the
working set was proposed. The final proposed algorithm
had higher classification accuracy, fewer support vectors,
and faster computation speed on large-scale datasets [5].
Yan X et al. proposed an SVM algorithm based on an
analytical exploratory grey wolf optimizer for
electrocardiogram emotion recognition tasks. This method
achieved average accuracies of 93.37% and 95.93% on the
iRealcare and benchmark WESAD datasets, indicating
that the algorithm exhibits higher reliability compared to
existing supervised learning methods [6]. Samantaray et
al. proposed an optimization model called phase space
reconstruction SVM firefly algorithm and applied it to
monthly traffic prediction tasks. The accuracy of the
hybrid SVM firefly algorithm model was improved by
extracting information and features from the flow time
series through phase space reconstruction. To evaluate the
performance of the model, the Nash Sutcliffe coefficient,
root mean square error, and Wilmot index were calculated.
This model performed better than other application
methods in monthly traffic forecasting, with the Wilmot
index being the best [7].

Brand L et al. proposed a novel primal-dual multi-
instance SVM algorithm aimed at efficiently processing
large-scale data. This method was based on a multi-block
variant of the Alternating Direction Method of Multipliers
(ADMM), which decomposed the original optimization
problem into several sub-problems that can be solved in
parallel. Each sub-problem only dealt with local variables,
thereby avoiding repeated solving of global Quadratic
Programming (QP) during the iteration process and
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significantly  improving computational  efficiency.
Additionally, to enhance performance when handling
large feature sets and data batches, extra optimization
steps were introduced to circumvent solving least squares
problems. The experimental results demonstrated that the
method exhibited good scalability and classification
performance [8]. Singgalen Y A et al. put forth an emotion
classification method built on SVM and synthetic minority
oversampling techniques for analyzing audience
comments on YouTube travel channels. This method
adopted a cross-industry standard data mining process,
using SVM combined with synthetic minority
oversampling technique to classify sentiment in comment
data. This model performed well in sentiment
classification, with an accuracy of 84.26% and a precision
of 100%. In contrast, SVM models that did not use
synthetic minority oversampling techniques performed
weaker in distinguishing positive and negative emotions
[9]. H. Huang proposed a two-stage feature selection
algorithm based on the fusion of information gain and the
maximum correlation minimum redundancy algorithm for
the redundancy and uneven distribution of text data. They
proposed an improved SVM algorithm based on the
Fourier mixed kernel function, thereby improving the
accuracy and efficiency of text data classification. The
experimental results showed that the performance of this
improved algorithm on the IMDB dataset was superior to
other algorithms. The F1 value has increased by 1% to 3%,
and the number of correctly classified texts has increased
by 20 to 45 [10]. The summary of the existing literature is
shown in Table 1.

To sum up, although the existing SVM optimization
methods have achieved certain results in specific tasks,
there are still common problems such as low parameter
optimization efficiency, difficulty in adapting to large-
scale parallel training, and insufficient processing of
redundant samples. In contrast, the DS-IWOA-SVM
model combining Dual Strategies and IWOA-SVM
improves the parameter optimization efficiency by
introducing nonlinear decreasing convergence factors and
AlIWs. This model combines the KCFJ redundant sample
elimination strategy for data reduction and adopts the
DPOS-TF to enhance computational scalability. This
significantly enhances the robustness and adaptability of
the model and effectively breaks through the bottlenecks
of traditional SVM in terms of efficiency and
generalization ability.

Table 1: Comparative summary of existing SVM optimization methods.

Author & Ref. Method

Main Contribution

Limitation

Sparse and robust SVM (truncated smooth

Wang H et al. [5] loss + ADMM)

Improved classification accuracy and
reduced support vectors for large-
scale datasets

Complex structure and still reliant on
manual parameter tuning

EGWO-SVM (Exploratory Grey Wolf

Yan X et al. [6] Optimizer)

Achieved high accuracy in emotion
recognition  tasks  (95.93% on
WESAD)

Prone to local optima; lacks handling
of redundant samples

PSR-FA-SVM (Phase
Reconstruction + Firefly Algorithm)

Samantaray S et al. [7] Space

Enhanced time series modeling for
flow prediction

Limited to time-series applications;
lacks generalization

Singgalen Y A et al. [9] classes)

classification on imbalanced datasets

Brand L etal. [8] Primal-dual multi-instance SVM | Avoided repeated QP solving; | Inadequate feature selection for
) (blockwise ADMM) improved efficiency on big data high-dimensional redundant data
SMOTE + SVM (oversampling minority | Significantly improved sentiment | Prone to overfitting; limited

generalizability

Two-stage feature selection + Fourier

H. Huang. [10] hybrid kernel SVM

Improved classification accuracy on

text data; reduced feature subsets

Struggles  with  high-dimensional
image data




Dual-Strategy Optimization of SVM Using Improved Whale...

OType A ©TypeB

o

Original space

Informatica 49 (2025) 233-244 235

© Type A ©®Type B

High dimensional feature space

Figure 1: Schematic diagram of SVM optimal hyperplane.
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Figure 2: Diagram of whale bubble feeding process.

3 Multi-Class data mining and
processing based on improved
SVM

To improve the classification performance of SVM in
multi-class datasets, this study proposes three different
strategies to optimize SVM. Firstly, improvements are
made to WOA by proposing the IWOA-SVM algorithm.
Secondly, by combining KCFJ and DPOS-TF, the IWOA-
SVM algorithm is further improved, and the final multi-
class data processing model is constructed.

3.1 Design of improved SVM algorithm
based on WOA

In practical multi-class classification scenarios, SVM has
shown strong adaptability to complex data characteristics
such as high feature dimensionality, sparse distributions,
and limited labeled samples [11]. Unlike traditional linear
classifiers, SVM leverages kernel functions to map data
into higher-dimensional spaces, enabling accurate
decision boundaries even under nonlinearly separable
conditions [12]. The basic principle of SVM is to
effectively distinguish different categories of data in the
feature space by finding an optimal hyperplane. The
optimal hyperplane classification process of SVM is
shown in Figure 1.

In Figure 1, SVM will determine an optimal
hyperplane through training data. The core goal of this
hyperplane is to maximize the classification interval, even
if the distance between the hyperplane and the nearest data

point is maximized, thereby enhancing the robustness and
generalization ability. However, the performance of SVM
is highly dependent on the setting of hyperparameters, and
how to effectively optimize these parameters is a key issue
in improving SVM performance. Intelligent optimization
algorithms have been widely used to address parameter
optimization issues due to their efficient global search
capabilities. Among them, WOA, as a new type of swarm
intelligence algorithm, has received widespread attention
for its search efficiency and global convergence [13]. The
operation process of traditional WOA mainly simulates
the bubble hunting behavior of whales, as shown in Figure
2.

In Figure 2, the whale forms a bubble network by
spiraling upwards and rotating around its prey to limit its
range of activity. Subsequently, by controlling the shape
and density of the bubbles, it gradually approaches the
optimal solution. Finally, the whale narrows down the
bubble range, focuses on the local area for an in-depth
search, and finds a more accurate optimal solution. The
entire predation process of WOA is divided into three
strategies: trapping prey, spiral updating position, and
random search. The calculation for surrounding prey is
given by equation (1) [14-15].

D=[c-X"-X|
. 1
X(t+1)=X"-A-D

In equation (1), X™ and X denote the position
vectors of the prey and the current position vector of the
whale. D is the current distance from the whale to its
prey. A is the linear convergence factor that controls the
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search range, with a range of [-a,a]. t is time. C is a
random weight vector used to enhance the randomness of
the search direction, as shown in equation (2).

C=2-1, @

In equation (2), 1, is a random number ranging from
[0,1]. The formula for spiral updating position is given by
equation (3).

X (t+1)=D-e" -cos(2zl)+ X" (3)

In equation (3), X (t+1) represents the updated

value of the whale's current position in generation t+1.
b is the helix shape constant used to control the helix
shape. | means a random number of [-1,1] used to
generate a random spiral path. e"' is the exponential
decay factor that controls the trend of spiral contraction.
When the whale cannot obtain effective information about
the current optimal solution, WOA will conduct random
search to simulate the whale's exploration behavior in
unknown areas, as shown in equation (4).
X (t+1)= X 4y —A-D @)

In equation (4), X4 is a randomly selected whale

position. Although WOA can dynamically switch between
GS-LSes, its linear convergence factor A may lead to
insufficient global search capability and lower accuracy in
later local searches. In addition, traditional WOA has poor
ability to balance GS-LS and may fall into local optima in
the later stage. Therefore, this study introduces a non-
linear decreasing convergence factor and AIW value for
improvement, that is IWOA. In IWOA, A adopts a non-
linear decreasing method to enhance the dynamic
adjustment ability of the algorithm's GS-LS, as shown in
equation (5).

vea [1-L)
a(t)_amax (1 T] (5)

rand

In equation (5), t' and T are the current and
maximum iteration counts. a(t') and a,, are the
convergence factor and maximum convergence factor at
t' iterations. N is a nonlinear decreasing control
parameter, and when n>1, the convergence factor
decreases  exponentially.  After introducing the

Initialize the population
and set parameters
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convergence factor of nonlinear descent, the trapping
formula at this time is given by equation (6).

X(t+1)=X"-AD
A'=2a(t")-r,—a(t’)

In equation (6), A' represents the scalar value of the
nonlinearly decreasing convergence factor, which is used
to adjust the step size between the current position and the
optimal solution. To further balance GS-LS, IWOA also

introduces the AIW value @ , whose weight update
formula is given by equation (7).

min ) (7)

(6)

o(t') = @ —_tF-(aomax

— o,

In equation (7), @,;, and @, are the minimum and

maximum of inertia weights, and the search strategy of
IWOA is expressed as equation (8).

X(t+1)=

o(t')-(X"=A-D)+(1-o(t") X

In equation (8), the introduction of inertia weight can
dynamically adjust the degree of dependence on the
current optimal solution and random solution, thereby
providing better adaptability in different search stages.
IWOA is used to optimize SVM penalty parameters and
kernel function parameters. The running process of
IWOA-SVM algorithm is shown in Figure 3.

In Figure 3, IWOA-SVM first initializes a population
consisting of penalty parameters and kernel function
parameters and sets other input parameters. Secondly,
cross-validation is conducted on the training set to
calculate fitness values. The next step is to find the
individual with the lowest fitness value in the current
population as the prey position and execute three
strategies: hunting prey, spiral updating position, and
random search to update the population position. Then, the
adaptive weight dynamic adjustment algorithm is
introduced to enhance the GS-LS capabilities, and the
fitness values of each individual are recalculated. Finally,
the above steps are repeated until the termination
condition for the maximum iterations is met, and then the
optimal penalty parameters and kernel function
parameters are input to train the SVM model.
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Figure 3: IWOA-SVM flow chart.
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3.2 Construction of multi-class data
processing model based on improved
IWOA-SVM

In practical data mining and multi-classification tasks,
large-scale training datasets typically contain a large
number of redundant samples. Although these samples
contribute relatively little to the construction of
classification boundaries, they significantly increase the
computational complexity and training time of the model
[16-17]. Therefore, to improve the training efficiency of
IWOA-SVM, this study further proposes the KCFJ
strategy and its implementation steps are shown in Figure
4.

In Figure 4, firstly, K-Means is performed on the
training dataset. The data are divided into several category
centers to preliminarily partition the distribution structure
of the data, and the importance of each data point is
measured by calculating the distance between each data
point and its category center. Secondly, the data are
projected using Fisher's linear discriminant analysis.
While maximizing the inter-class interval, the intra-class
interval is minimized to reduce data dimensionality and
enhance sample discriminability, thereby more clearly
identifying key samples that are close to the classification
boundary in the projection space. Then, based on the
projection results and the distance from the sample to the
center of the category, the samples are sorted. Firstly,
samples that are far from the category center and have high
discriminability in the projection space are retained, while
redundant samples that are closer to the category center
and have low discriminability in the projection space are
removed. This process helps optimize the training dataset
and retains only the samples that contribute significantly
to the classification boundaries. Finally, the processed
simplified dataset is used as the training data input for
SVM to reduce computational complexity, improve
training efficiency, and ensure that classification
performance is not significantly affected. In KCFJ, K-
means is first used to cluster the data. The data are divided
into K clusters, and the objective function is the
minimum sum of the squared distances from each sample
to the cluster center, as shown in equation (9) [18-20].

2

=> 2 Ix-ufl )

k=1 xeC'y

In equation (9), X is the i -th sample point, C', is
the sample set of the k -th cluster, and u, is the centroid
of the k -th cluster, i.e., X €C',

indicates that sample point X belongs to C' . By

iteratively updating the cluster allocation relationship
between cluster centers and sample points, it is possible to
gradually converge to the local optimal partition. Based on
the Euclidean distance from the sample to the center of its
cluster, its impact on the classification boundary can be
determined. The larger the distance, the higher the
importance of the sample. Next, the data are mapped from
high to low dimensional space, maximizing inter-class
differences while minimizing intra-class differences. The
expression for the projection target is shown in equation
(10).

the cluster center.

W = arg max W Sew (10)
wow'S,w

In equation (10), W is the Fisher projection direction
vector. S; and S, are the inter-class divergence matrix

and intra-class divergence matrix, and their specific
expressions are shown in equation (11).

S = 2[C (8 -u)(u, )
3 S (x

k=1 xeC'

By using equations (10) and (11), the value of W can

be calculated, and then the sample can be projected into

1D space to obtain the projected sample coordinates, as

shown in equation (12).
Z, =W'x

(1)
(% -u,)

(12)
In equation (12), z; is the projection value of sample

X in the Fisher projection direction. After KCFJ, the

comprehensive importance score of the samples is defined
as shown in equation (13).
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S(x)=a-—
(x) max [x; - u, | .
|Z| Zmean| ( )
+p-

max . |z

mean

In equation (13), S(Xi) is the importance score

value. @ and B are weight factors used to balance the
impact of K-means and Fisher projections on importance
assessment. Z..., is the mean of all samples after Fisher
projection. ] is the index set of all sample points. After

calculating the importance scores of all samples, samples
with lower scores are more likely to be redundant data.
Finally, samples are removed according to the set
threshold, as shown in equation (14).

D :{Xi € D'|S(X >r} (14)

In equation (14), D,y and D" are the simplified

dataset and initial training dataset obtained through
redundant sample removal strategy processing. 7 is the
threshold for removing importance scores. To better meet

reduced
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requirements of multi-classification tasks, and reduce the
load imbalance during training, this study also introduces
the DPOS-TF strategy to perfect the computational
efficiency and resource utilization of the algorithm. The
main operational steps of the DPOS-TF strategy are
shown in Figure 5.

In Figure 5, the first step is to divide the multi-class
dataset into multiple subsets. Each subset is allocated to
different Map nodes for processing based on data volume
and category ratio. Secondly, each Map node
independently processes the assigned subset of data. Then
it enters the Reduce stage, which requires weighting the
local fitness based on the sample ratio and calculating the
global fitness value to generate the global optimal
individual as the basis for population update. Next, the
Reduce stage monitors the task processing time of each
node, calculates the average task time, and adjusts the task
allocation weights based on the time feedback mechanism
to balance the load on the Reduce nodes. Finally, the
IWOA population is updated based on the global fitness
results, and the updated population is reassigned to the
Map node for the next round of optimization. The structure
of the DS-IWOA-SVM model is depicted in Figure 6.

Summarlze
Iocal fitness

the parallel processing and efficient scheduling
D|V|de into
—>
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‘ Itis aIIocated to
Data partitioning \_2a%h Map node
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Summarize local

’ fitness
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7
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Figure 5: DPOS-TF policy steps.
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In Figure 6, the DS-IWOA-SVM model has three
main modules: data preprocessing (M1), distributed
parallel optimization (M2), and multi-classification model
construction (M3). In M1, the KCFJ strategy filters and
simplifies the original dataset to remove redundant
samples and irrelevant features. This strategy combines
KCFJ discriminant analysis. By maximizing inter-class
spacing and minimizing intra-class spacing, the
dimensionality of the dataset can be effectively reduced
while retaining samples that significantly contribute to
classification performance. In M2, the DPOS-TF strategy
will complete the global optimization of the IWOA
population in a distributed framework. At M3, the globally
optimal parameter combinations outputted after M2 will
be used to construct a multi-classification SVM model
through the one-to-many strategy. Eventually, DS-IWOA-
SVM will complete the efficient training of multi-
classification data in the training set and verify the model
performance through the test set.

4 Results

To verify the performance of DS-IWOA-SVM in multi-
class data mining tasks, multiple experimental evaluations
were designed. Firstly, ablation tests were conducted on
each module of the algorithm. Secondly, benchmark
performance comparisons were conducted between DS-
IWOA-SVM and various mainstream-optimized SVM
models. Finally, the algorithm was applied to actual multi-
class datasets to verify its effectiveness in large-scale data
mining tasks.
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4.1 Ablation testing and algorithm
performance testing

This study establishes a high-performance experimental
platform for benchmark testing of the DS-IWOA-SVM
algorithm. The operating system is Ubuntu 20.04,
equipped with Nvidia GeForce RTX 3090 GPU, and runs
on Python 3.9 and PyTorch 1.11 frameworks. The publicly
available multi-class dataset used is the Cora dataset. All
datasets have been standardized and segmented into
training and testing sets in an 8:2 ratio. To ensure the
fairness and reliability of the results, all experiments are
performed under the same environment and parameter
settings. Table 2 shows the specific equipment parameters.

In Table 2, the population size of IWOA is 50, the
maximum iterations are 500, the initial learning rate is
0.01, and the weight decay coefficient is 0.001. The study
first conducts a hyperparameter sensitivity analysis.
Different population sizes (30, 50, 70, 100) and
convergence factors (0.3, 0.5, 0.7) are set for the
experiments. The results are shown in Table 3.

Table 3 shows that when the population size is 50 and
the convergence factor is 0.5, the convergence accuracy is
the highest, reaching 96.2%. This configuration performs
better than other population sizes. A smaller population
size (such as 30) leads to poor model performance due to
the smaller search space. However, for larger population
sizes (such as 100), although the convergence accuracy is
improved, the computational complexity increases, and
the improvement in convergence accuracy is not
significant. Therefore, the population size is set at 50 and
the convergence factor is 0.5.

Table 2: Experimental setup and model parameters.

Category Parameter/Equipment Description
Operating System Ubuntu 20.04
GPU NVIDIA GeForce RTX 3090
Experimental setup CPU Intel Core i9-10900K
Memory 64GB DDR4
Deep Learning Framework PyTorch 1.11
Programming Language Python 3.9
IWOA Population Size 50
Maximum Iterations 500
Model parameters Initial Learning Rate 0.01
Weight Decay 0.001

SVM Kernel Type

Radial Basis Function (Gaussian Kernel)

Table 3: Results of hyperparameter sensitivity analysis.

Population Size Convergence Factor Convergence Accuracy (%)
0.3 924
30 05 93.1
0.7 91.8
0.3 94.5
50 05 96.2
0.7 94.1
0.3 95.0
70 05 95.9
0.7 95.2
0.3 95.6
100 05 96.0
0.7 95.5
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Due to the fact that the DS-IWOA-SVM model is
composed of multiple modules, this study tests the
classification accuracy of different combinations in DS-
IWOA-SVM using mean Average Precision (mAP) as the
metric, as shown in Figure 7.

Figure 7 shows the mPA values for different ablation
combinations in the training and testing sets. The ablation
combinations include the IWOA-SVM model, IWOA-
SVM+KCFJ, IWOA-SVM+DPOS-TF, and DS-IWOA-
SVM. In Figure 7 (a), IWOA-SVM, as the base model, has
the lowest mAP value in the training set, only 83.5%.
When combining KCFJ and DPOS-TF strategies
simultaneously, the mAP value of DS-IWOA-SVM on the
training set reaches as high as 96.1%. In Figure 7 (b), when
IWOA-SVM, IWOA-SVM+KCFJ, IWOA-SVM+DPOS-
TF, and DS-IWOA-SVM are iterated to a stable state, the
mPA values of the four combinations in the test set are
87.4%, 92.5%, 95.8%, and 97.6%. In the ablation test,
KCFJ and DPOS-TF can significantly lift the
classification accuracy and convergence velocity of the

—H - IWOA-SVM - IWOA-SVM+DPOS-TF
—@ - IWOA-SVM+KCFJ —A— DS-IWOA-SVM
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DS-IWOA-SVM, and  demonstrate
optimization ability in DS-IWOA-SVM.

This study further selects IWOA-SVM, SVM based
on Exploratory Grey Wolf Optimizer (EGWO-SVM), and
SVM based on Phase Space Reconstruction and Firefly
Algorithm (PSR-FA-SVM) as comparative algorithms. To
ensure the fairness of the experimental comparison, the
three benchmark models are experimented under the same
data division, hardware platform, and evaluation metrics,
and fixed hyperparameter values are set. The specific
hyperparameter settings are as follows: The population
size is 50, the maximum number of iterations is 400, the
SVM penalty factor C is 1, and the width of the RBF
kernel function y is 0.01. Among the specific parameters
of other algorithms, the exploration factor o of EGWO is
set to 0.5, the attraction degree  of PSR-FA is 0.3, and the
randomness factor a is 0.5. In addition, the standard SVM
is introduced as a baseline for comparison. The iterative
curves of the five algorithms on the training and test sets
are shown in Figure 8.

collaborative
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Figure 7: The mPA values for the different ablation combinations.
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Figure 8: Iterative curves

of the four algorithms.
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Figure 9: Classification error of the four algorithms.
Table 4: Classification accuracy of the different models.

Data set Dataset Size (samples) | IWOA-SVM EGWO-SVM PSR-FA-SVM DS-IWOA-SVM
Iris 150 92.3% 94.1% 95.4% 97.8%
Wine 178 85.6% 89.7% 91.2% 94.5%
Digits 1797 88.9% 91.3% 92.7% 96.2%
Fashion-MNIST 60000 78.5% 81.9% 84.3% 88.6%
CIFAR-10 60000 70.2% 74.6% 76.9% 82.1%
20 Newsgroups 18000 83.7% 86.4% 89.1% 92.3%
HAR 6000 88.5% 90.7% 92.5% 95.8%
Glass Identification 214 71.3% 74.9% 77.2% 80.6%
Yeast 1484 64.5% 69.8% 72.4% 78.3%
Emotion 2000 86.2% 89.5% 91.3% 94.7%

As shown in Figure 8(a), DS-IWOA-SVM 4.2 Application effect analysis

demonstrates faster convergence compared to the other
four algorithms. After 51 iterations, it reaches a stable
fitness value of 0.052. In contrast, IWOA-SVM exhibits a
slower decline in fitness and only stabilizes after 124
iterations, with a final fitness value of 0.079. The fitness
curves of EGWO-SVM and PSR-FA-SVM fall between
those of IWOA-SVM and DS-IWOA-SVM. Their
convergence speed and final optimization performance are
better than IWOA-SVM but inferior to DS-IWOA-SVM.
The standard SVM performs the worst, showing the
slowest convergence and the highest fitness value.
Similarly, in Figure 8(b), DS-IWOA-SVM again reaches
a stable state the fastest. Ultimately, the best fitness values
achieved by IWOA-SVM, EGWO-SVM, PSR-FA-SVM,
and DS-IWOA-SVM in the stable state are 0.081, 0.069,
0.075, and 0.058, respectively. The standard SVM reaches
a fitness value of 0.126. Figure 9 compares the
classification errors of four algorithms in two datasets.

Figures 9 (a) and (b) show the classification errors of
four algorithms in two datasets, with DS-IWOA-SVM
having the lowest classification error across all sample
sizes. In Figure 9 (a), DS-IWOA-SVM exhibits strong
learning and generalization abilities. When the sample
size reaches 200, the classification error of DS-IWOA-
SVM increases to 0.20, but it is still significantly better
than the classification error of the IWOA-SVM model at
0.41. In Figure 9 (b), as the sample size rises to 200, the
classification error of DS-IWOA-SVM increases to 0.15,
while the classification errors of IWOA-SVM, EGWO-
SVM, and PSR-FA-SVM are as high as 0.38, 0.35, and
0.32.

To validate the classification performance of the DS-
IWOA-SVM in practical multi-classification tasks, 10
different types of publicly available multi-classification
datasets are selected as the research objects. These
datasets cover a variety of data types such as images, text,
sensor signals, etc., with categories ranging from 3 to 10
and data scales ranging from thousands to hundreds of
thousands, making them widely representative. Table 4
compares the classification accuracy of IWOA-SVM,
EGWO-SVM, PSR-FA-SVM, and DS-IWOA-SVM on
10 datasets.

In Table 4, DS-IWOA-SVM achieves the highest
classification accuracy of 97.8% on all datasets. The
classification performance of PSR-FA-SVM is inferior to
DS-IWOA-SVM, with a classification accuracy of up to
95.4%. The accuracy of this model is similar on most
datasets, but there is a certain gap on high-complexity
datasets such as CIFAR-10 and Yeast. The classification
ability of EGWS-SVM and IWOA-SVM is poor, with the
highest classification accuracies of 94.1% and 92.3%. It is
worth noting that CIFAR-10, as a typical high-
dimensional image dataset, has a complex spatial structure
and strong feature redundancy. SVM models have
difficulty giving full play to their advantages on such data.
However, datasets such as Wine and Fashion-MNIST
have lower feature dimensions and clear category
boundaries, which can better reflect the performance
improvement of DS-IWOA-SVM in sample compression
and parameter optimization. This indicates that the
characteristics of different datasets affect the
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improvement extent of the model to a certain extent. To
further verify whether the performance improvement of
DS-IWOA-SVM on multiple datasets is statistically
significant, paired t-test and Wilcoxon signed-rank test are
conducted on its classification accuracy results with
IWOA-SVM, EGWO-SVM and PCR-FA-SVM. The
results show that on 10 datasets, the accuracy
improvement of DS-IWOA-SVM compared with other
models is significant at the 95% confidence level (p<0.05),
indicating that the performance improvement of this
model is not accidental.

The classification performance of four models on ten
datasets is demonstrated using clustering in the
dimensional space, as shown in Figure 10.

In Figure 10 (a), the classification results of IWOA-
SVM are quite chaotic, with many overlapping areas
between sample points of different categories. This
indicates that IWOA-SVM has insufficient boundary
learning ability in complex multi-classification tasks. In
Figures 10 (b) and (c), compared to IWOA-SVM, EGWS-
SVM, and PSR-FA-SVM have improved classification
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results, with some boundaries between categories
becoming clearer. However, there is still a certain degree
of confusion in the classification of a few samples,
indicating that the two models still have shortcomings in
dealing with highly similar categories. In Figure 10 (d),
the classification results of DS-IWOA-SVM are the most
ideal, with a clear distribution and good separation of
sample points in the dimensional space for each category.
This indicates that DS-IWOA-SVM has the best boundary
capture ability and robustness in complex multi-
classification tasks. To further verify the computational
efficiency and scalability of the DS-IWOA-SVM model in
practical applications, a training time and complexity
comparison experiment is conducted across multiple
datasets. Four representative datasets (Cora, Wine,
Fashion-MNIST, and CIFAR-10) are selected for training
time evaluation. Each experiment is independently run
five times, and the total training time is recorded and
averaged as the final result. The results are shown in Table
5.
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Figure 10: Classification results of the four models in the dimensional space.

Table 5: Average training time of each model on different datasets.

Model Cora Wine Fashion-MNIST CIFAR-10 Average Time
EGWO-SVM 125s 7.8s 21.3s 34.65s 19.1s
PSR-FA-SVM 13.1s 8.8s 23.0s 354s 19.9s
IWOA-SVM 14.4s 9.0s 2455 37.2s 21.3s
DS-IWOA-SVM 1165 6.9s 19.2s 31.8s 1745
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As shown in Table 5 DS-IWOA-SVM achieves
lower average training time across all four datasets
compared to the other three baseline models. In low
dimensional small sample tasks such as Wine, the model
only requires 6.9 seconds of training time, which is 23.3%
less than IWOA-SVM. For mid-dimensional to high-
dimensional datasets such as Fashion-MNIST and
CIFAR-10, the training times are 19.2 seconds and 31.8
seconds, respectively, both shorter than those of EGWO-
SVM and PSR-FA-SVM. These results demonstrate the
practical effectiveness of the KCFJ strategy in reducing
the training dataset size, thereby alleviating the
computational burden introduced by the SVM component.

5 Discussion

The proposed DS-IWOA-SVM model demonstrates
superior classification performance over existing
optimization methods across multiple public multiclass
datasets. The experimental results show that compared
with benchmark models such as EGWO SVM and PSR-
FA-SVM, DS-IWOA-SVM has higher accuracy on
complex datasets such as CIFAR-10, Wine, Fashion
MNIST, etc. This indicates that DS-IWOA-SVM has
stronger boundary learning and generalization abilities in
multi-class distribution and complex feature scenes. The
improvement in classification performance is primarily
attributed to the introduction of a nonlinearly decreasing
convergence factor and AIW in the IWOA. In the early
stages of optimization, these mechanisms enhance the
population’s global exploration ability and help avoid
local optima. In the later stages, the AIW facilitates fine-
grained local search, thereby improving the stability and
precision of parameter optimization. In terms of
computational cost, although the improved IWOA
introduces additional computational overhead, the KCFJ
strategy  effectively removes redundant samples,
significantly reducing the training set size for the SVM.
Overall, the model achieves better performance in both
convergence iterations and training time compared to
IWOA-SVM without KCFJ, confirming the overall
efficiency gain brought by sample compression.
Nevertheless, the DS-IWOA-SVM model still has
certain limitations. In extremely high-dimensional feature
spaces (such as text or genomic data), the model may face
challenges such as insufficient feature selection
mechanisms and slower convergence in parameter
optimization. In addition, the current DPOS-TF strategy
relies on a predefined node partitioning scheme, which
may limit its adaptability to imbalanced data distributions.
Moreover, the impact of the KCFJ strategy on data
distribution during redundant sample removal has not yet
been visualized, restricting the intuitive understanding of
structural adjustments to the training data. Future research
can further enhance the model performance in the
following ways: On the one hand, integration with other
feature selection algorithms or deep learning models can
be explored to improve adaptability on high-dimensional
data; On the other hand, the DPOS-TF strategy can be
optimized. Through adaptive node partitioning and
dynamic load balancing techniques, the performance of
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the model on imbalanced data can be enhanced. In
addition, clustering algorithms or incremental learning
methods can be combined to further improve the
algorithm’s efficiency on ultra-high dimensional datasets.
Meanwhile, for the KCFJ strategy, future research can
introduce a visual analysis of data distribution to evaluate
the effect of eliminating redundant samples and optimize
the sample selection strategy to ensure more efficient data
processing and classification performance.

6 Conclusion

To improve the processing efficiency and classification
performance of multi-class datasets, this study combined
IWOA, KCFJ, and DPOS-TF to construct a novel dual
strategy improved SVM model, namely DS-IWOA-SVM.
In the ablation test, DS-IWOA-SVM achieved the highest
mAP score of 97.6%. Compared with IWOA-SVM,
EGWO-SVM, and PSR-FA-SVM, this model could
iterate to a stable state faster and maintain optimal fitness
values of 0.052 and 0.058 in both the training and testing
sets. Additionally, the classification error of DS-IWOA-
SVM was obviously lower than that of the comparison
model, with a minimum of only 0.15. In practical
applications, DS-IWOA-SVM achieved the highest
classification accuracy of 97.8% in 10 multi-class
datasets, significantly higher than IWOA-SVM's 92.3%,
EGWO SVM's 94.1%, and PSR-FA-SVM's 95.4%. In
addition, through visual analysis of dimensional spatial
clustering, DS-IWOA-SVM could better capture
boundary features between categories and achieve a clear
separation of samples from different categories. Overall,
DS-IWOA-SVM effectively addresses the efficiency and
accuracy issues of traditional SVM in large-scale datasets
and multi-classification tasks by combining multiple
optimization strategies. It has demonstrated excellent
classification performance and computational efficiency
in practical tasks. However, this model still has certain
computational complexity limitations when dealing with
ultra-high dimensional data. Future research can optimize
the structure and distributed framework of algorithms,
reduce computational costs, and explore their adaptability
and generalization ability in more practical scenarios.
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