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In modern society, sustainability has become an increasingly important issue. By solving multi-objective 

problems, decision-makers can make more sustainable decisions. To efficiently solve multi-objective 

problems, an adaptive strategy is proposed to optimize the crossover and mutation operators of the non-

dominated sorting genetic algorithm II (NSGA-II). Moreover, the multi-objective flexible job shop 

scheduling problem is modeled by incorporating worker fatigue factors. Finally, the algorithm 

performance was tested using ZDT and DTLZ series test functions, and the multi-objective solving 

performance of the algorithm was tested based on standard examples FMk01-FMk06.The results showed 

that in the ZDT1 and ZDT2 test functions, the solution set coverage of the proposed algorithm was 0.833 

and 0.906, respectively, and the inverse generation distance was 0.006 and 0.0059, respectively, achieving 

better convergence and diversity. In the DTLZ1 test function, the inverse generation distance of the 

proposed algorithm did not exceed 2. In the FMk03 example, the inverse generation distance of the 

proposed algorithm was 0.009, which was lower than the traditional NSGA-II algorithm. In the FMk06 

example, the proposed algorithm achieved a super volume of 0.37, which was higher than the multi-

objective squirrel search algorithm and NSGA-III algorithm. The experiment has demonstrated the 

effectiveness of the improved algorithm in solving multi-objective issues. The research results contribute 

to improving the efficiency of addressing multi-objective optimization and complex problems in real life, 

enhancing the scientificity and effectiveness of decision-making. 

Povzetek: Prispevek predlaga izboljšano različico NSGA-II z adaptivnimi operaterji in normalno 

porazdelitvijo za učinkovitejše reševanje večciljnih optimizacij, vključujoč tudi modeliranje utrujenosti 

delavcev. 

 

1 Introduction 
The deepening of globalization has made the problems 

faced by modern society increasingly complex. The 

competition among enterprises is no longer a simple 

product competition, but a competition of their 

comprehensive strength. Multi-Objective Problem (MOP) 

is closely related to modern development, referring to the 

problem of simultaneously considering multiple objective 

functions in the optimization process. It can help decision-

makers balance the relationships between multiple 

objectives and achieve comprehensive optimization [1-2]. 

Sharma S et al. explored the advantages and disadvantages 

of Multi-Objective Optimization (MOO) algorithms and 

their variants, and discussed the challenges faced by 

various multi-objective algorithms in engineering 

applications. This study helped to expand the application 

scope of MOO algorithms [3]. Deng W et al. proposed a 

fast Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) based on Adaptive Crossover (AC) strategy, 

and improved the selection strategy using a special 

congestion strategy. The algorithm could find the global 

Pareto solution set [4]. Jangir P et al. designed a multiple 

objective marine predator algorithm built on Elite Non-

Dominated Sorting (NDS) and Crowding Distance  

 

Mechanism (CDM) and tested it based on Pareto front 

problems. This algorithm had good performance in  

solving MOPs [5]. Sharma S et al. constructed a Butterfly 

Optimization Algorithm based on dominance sorting and 

CDM to address the MOP. This algorithm had good 

application effects in solving various discrete, continuous, 

linear, and nonlinear characteristic problems based on the 

Pareto front, and had a fast convergence speed [6]. Liu et 

al. addressed the challenge of mapping IoT applications to 

fog units and modeled the fog service layout issue as an 

MOP, using an evolutionary algorithm based on cuckoo 

search to solve it. The method could effectively reduce 

energy consumption and service latency [7]. Ali A et al. 

put forward a single and multiple objective hybrid scheme 

that fuses parameter-free constraint techniques to find 

Pareto fronts with better convergence and uniform 

distribution for the problem of high cost and 

computational complexity in optimal power flow. This 

method could find the near global Pareto front of highly 

complex issues while meeting constraints [8]. 

The NSGA-II adopts a fast Non-Dominated Sorting 

(NDS) algorithm to reduce computational complexity and 

has significant advantages and wide applications in MOP 

solving [9]. Chen L et al. compared the relationship 

between aspect ratio and maximum temperature 
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difference based on heat transfer theory for multi-

objective structural design of quadrilateral heating 

elements, and solved for the optimal aspect ratio using 

NSGA-II. The maximum temperature difference of the 

optimal construction decreased by 5.6%, the deviation 

index of MOO was smaller than that of single objective 

optimization, and the resulting structure had better 

comprehensive thermal conductivity [10]. Lv L et al. 

proposed an NSGA-II inventory scheduling model with a 

local search for integrated production based on state 

maintenance, which helps to reduce total delays and total 

Completion Time (Ctime). This model has demonstrated 

good optimization scheduling performance in large-scale 

instances [11]. Jalili A et al. combined SVM and NSGA-

II to minimize the decline of groundwater level for the 

MOO scheduling problem of reservoirs. The mean error 

rate of the proposed method was less than 2.5%, which 

could provide the best operating strategy based on new 

data on dam inflow [12]. Singh M K et al. proposed a 

hybrid data routing protocol for optimizing the flight 

trajectory of drones in Wireless Sensor Networks (WSN) 

and utilized the NSGA-II for optimization to reduce UAV 

energy consumption. This method could improve the 

network lifetime and network throughput of WSN [13]. 

Chen L et al. modeled the energy scheduling in steel 

manufacturing as a multiple objective vehicle routing 

issue and developed an NSGA-II grounded on the 

knowledge. The spacing indicator of this algorithm 

decreased by about 40%, and the overcapacity indicator 

increased by about 57% [14]. Wang J et al. put forth a 

novel MOO method for the design of printed circuit heat 

exchangers. It obtained three optimization design 

variables through dimensionless wing fin arrangement 

parameters and used NSGA-II to construct a Pareto 

optimal frontier. This method could meet the requirements 

of high heat transfer performance and low flow resistance 

[15]. The summary table of the above literature is shown 

in Table 1. 

In summary, although many scholars have extensively 

researched MOP in the past and affirmed the NSGA-II 

performance in addressing MOPs, traditional NSGA-II 

algorithms still suffer from the problem of easily getting 

stuck in local optima. Therefore, this paper will propose 

an improved NSGA-II algorithm on the basis of Adaptive 

strategy (ANSGA-II). The study aims to propose effective 

strategies to improve the application effectiveness of 

NSGA-II in solving MOP, thereby better adapting to the 

needs of complex problems. The innovation lies in 

utilizing adaptive strategies to optimize crossover and 

mutation operators, thereby strengthening the global 

search ability. 

The main contribution of this study is: (1) The 

ANSGA-II algorithm that can dynamically adjust 

operating parameters according to environmental changes 

is proposed, which can improve the convergence speed of 

the algorithm and the diversity of its solutions. (2) A 

crossover operator based on normal distribution is 

introduced to replace the original simulated binary 

crossover operator, which can enhance the algorithm's 

spatial search capability and avoid local optima. (3) The 

worker fatigue factors are incorporated into the modeling 

of multi-objective Flexible Job Shop Scheduling (FJSS) 

problems, which can more accurately reflect the actual 

situation and provide a more realistic optimization model 

for actual production scheduling. 

 

Table 1: Literature summary table. 

Literature Algorithm Performance index Application area Limitation 

Deng W [4] Enhanced Fast NSGA-II Global Pareto solution set Engineering field 

High computational 

complexity and sensitivity 
to parameters 

Jangir P [5] 
Multi-target ocean predator 

algorithm 
Global Pareto solution set 

Constraints and 

Engineering Design 

Slow convergence speed 

and low solution accuracy 

Sharma S [6] 
Butterfly Optimization 

Algorithm 
Convergence speed MOO 

Possible increase in 

computational complexity 

Liu C [7] Cuckoo search algorithm 
Energy consumption and 

service delay 
IoT applications Fog service layout issue 

Ali A [8] 
Single objective and multi-
objective hybrid algorithm 

Global Pareto solution set Optimal Trend Problem 
Possible increase in 
computational complexity 

Chen L [10] NSGA-II 
Maximum temperature 
difference 

Multi-objective structural 

design of quadrilateral 

heating element 

High computational 

complexity and sensitivity 

to parameters 

Lv L [11] 
NSGA-II with Local 

Search 
Total delay and total Ctime Inventory scheduling 

May exhibit instability in 

dynamic environments 

Jalili A A [12] SVM and NSGA-II Average error rate 

Multi objective 

optimization scheduling of 

reservoirs 

Possible increase in 
computational complexity 

Singh M K [13] Multi-objective NSGA-II Energy consumption WSN 
Possible increase in 

computational complexity 

Chen L [14] 
Knowledge based NSGA-

II 
Ultra Capacity Energy dispatch 

Difficulty maintaining 
diversity in high-

dimensional problems 
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Wang J [15] NSGA-II Heat transfer performance Heat Exchanger Design 

Difficulty maintaining 

diversity in high-
dimensional problems 

 

2 Methods and materials 
To better solve MOP, an ANSGA-II algorithm will be 

proposed, and a multi-objective FJSS problem will be 

modeled by combining worker fatigue factors to verify the 

effectiveness of ANSGA-II in solving MOP. 

2.1 NSGA-II algorithm based on adaptive 

strategy 

NSGA-II is a classic MOO algorithm developed on the 

basis of NSGA, which fully utilizes the relationships 

between individuals and selects the Pareto Optimal 

Solution (POS) set through NDS and crowding distance 

calculation. NSGA-II exhibits superior convergence speed 

and solutionquality [16]. The process of the traditional 

NSGA-II is displayed in Figure 1. 

In Figure 1, the basic steps of NSGA-II include 

initializing the population, calculating fitness values, 

NDS, calculation of crowding distance, selection 

operation, crossover operation, and mutation operation, as 

well as the introduction of fast NDS, crowding distance, 

and Elite Retention Strategy (ERS). Fast NDS is mainly 

used to classify a solution set according to non-dominated 

relationships. NDS is taken to evaluate the pros and cons 

of different solutions in MOO. If a solution outperforms 

another solution on all objectives, it is said to dominate the 

other solution [17]. If there is no solution that dominates 

the other solution, then these two solutions are called non-

dominated solutions. The NSGA-II’s crowding distance is 

an indicator for evaluating the distribution density of 

individuals in a population. The larger the crowding 

distance, the more dispersed the distribution of 

individuals, which is used to keep population diversity in 

MOO problems. The formula of crowding distance 
id  is 

shown in equation (1). 

 ( )1 1

1

, 1,2,...,
a

l l

i o o

o

d f f o a+ −

=

= − =  (1) 

In equation (1), a  is the amount of objective 

functions. 1l

of
+  and 1l

of
−  are the function values of 

individual 1l +  and 1l −  on the o -th objective. The ERS 

of NSGA-II refers to the selection of individuals through 

Pareto non-dominated levels and crowding distances after 

merging parent and offspring populations. This is done to 

ensure that excellent individuals are not eliminated, 

thereby maintaining population diversity and optimizing 

the accuracy of results [18]. Figure 2 shows the ERS 

process. 
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Figure 1: The flowchart of NSGA-II. 
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Figure 2: Schematic diagram of elite retention strategy. 

In Figure 2, all individuals of the parent and child 

generations form population 
tR , with a scale of 2N . In 

tR , selecting N  from individuals based on NDS and 

crowding order can form a new next-generation 

population 
1tp +

. In NSGA-II, the crossover probability 

determines the probability of the parent individual being 

selected in the crossover operation. A low crossover 

probability may lead to insufficient population diversity, 

while a high crossover probability may result in premature 

convergence of the population to a local optimum. The 
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probability of mutation is utilized to lift the population 

diversity. A low mutation rate may lead to insufficient 

diversity in the population, making the algorithm prone to 

jumping into local optima, while a high mutation rate may 

cause the population to be too dispersed and hard to 

converge to the global optimum [19]. The crossover 

probability and mutation probability of the traditional 

NSGA-II algorithm are fixed and cannot adapt to different 

optimization problems. This fixity limits the global search 

capability of the algorithm, especially when facing 

complex MOPs, which may lead to the algorithm getting 

stuck in local optima and unable to effectively explore the 

solution space. Therefore, this study proposes to use 

adaptive strategies to optimize crossover and mutation 

operators to perfect the optimization performance. In the 

early stages of evolution, a higher probability of crossover 

and mutation helps to expand the search range and avoid 

premature convergence. In the later stages of evolution, 

smaller crossover and mutation probabilities help with 

fine search, improving the quality and accuracy of 

solutions. By introducing adaptive parameters, the 

crossover probability and mutation probability can be 

dynamically adjusted according to the evolutionary state 

of the population, thereby improving the global search 

capability of the algorithm [20]. The improved crossover 

probability C  is given by equation (2). 

 
( )

( )

2

1

n T

n T

e
C c

e


−

−
= −

+
 (2) 

In equation (2),   is the adaptive parameter. c  is the 

fixed crossover probability. n  is the quantity of iterations. 

T  means the maximum n . The improved mutation 

probability V  is shown in equation (3). 
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1
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In equation (3), v  is the given mutation probability. 

In addition, the traditional NSGA-II crosses the parental 

chromosomes by simulating the single point crossing 

method in binary encoding. The expression for simulating 

binary crossover method is shown in equation (4). 
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In equation (4), 
1c  and 

2c  are the offspring 

chromosomes,   is a random variable, and 
1p  and 

2p  

are the parent chromosomes. The calculation of   is 

shown in equation (5). 
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+
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 (5) 

In equation (5),   is a constant and rand  is a random 

number within [0, 1]. After integration, the simulated 

binary crossover method can be expressed as equation (6). 

 
( ) ( )1, 2, 1, 2,

1 2
2 2

i i i ip p p p
c 

+ −
=   (6) 

However, the global search capability of this 

simulated binary crossover method is poor, especially in 

multi-modal MOPs, which may not effectively explore the 

decision space. Therefore, this study proposes a crossover 

operator based on normal distribution. The introduced 

evolutionary strategy is given by equation (7). 

 ' (0,1)x x N= +   (7) 
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Figure 3: Process diagram for improved NSGA-II algorithm. 
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In equation (7), 'x  is a new individual,   is the 

search step size, x  is an old individual, and (0,1)N  

means a random variable that follows a normal 

distribution. To apply the normal distribution in the 

crossover operator, this study takes 
( )1, 2,

2

i ip p−
 as the 

search step size, and the improved crossover operator is 

shown in equation (8). 

( ) ( )1, 2, 1, 2,

1 2 1.481 (0,1)
2 2

i i i ip p p p
c N

+ −
=    (8) 

The process of the ANSGA-II algorithm is displayed 

in Figure 3. 

In Figure 3, ANSGA-II introduces AC probability and 

mutation probability, combined with normal distribution 

crossover operator, helping improve the optimization 

performance and avoid falling into local optima. 

2.2 MOP solution based on ANSGA-II 

After proposing the ANSGA-II algorithm, to further 

verify its performance in MOP solving, this study models 

a classic MOP, namely FJSS. Taking FJSS as an example, 

the performance of ANSGA-II in MOP solving is verified. 

The FJSS issue involves processing n  workpiece on m  

devices [21]. Each workpiece has 1 or 1+ processes. The 

sequence is fixed, and each process is able to be processed 

on multiple various processing equipment. The processing 

period of each process changes with the different 

processing machines. The scheduling objective is to 

choose the best equipment for each process, decide the 

superior processing sequence and beginning time on each 

equipment, and perform the best indicators such as Ctime, 

total load, etc. for the entire system [22]. The structure of 

the FJSS problem is shown in Figure 4. 

The traditional FJSS problem model only considers 

equipment constraints and ignores worker participation in 

workshop production [23]. Therefore, the multi-objective 

FJSS problem model established further considers the 

worker factor on the basis of common optimization 

objectives, with the optimization objectives of minimizing 

error costs, maximum Ctime, Total Energy Consumption 

(TEC), and overall equipment load. Assuming there are 

m  devices with a set of  1 2, ,..., MM M M M= , w  

workers with a set of  1 2, ,..., wW W W W= , and n  

workpieces with a  1 2, ,..., nJ J J J= . Each workpiece 
iJ  

needs toundergo r  processing steps, and the set of 

processes is  1 2, ,...,i i irO O O O= . There is a constraint on 

the order of processes for the same workpiece. Through 

problem analysis, this study decomposes the solution of 

FJSS problem into three sub problems: equipment 

selection, worker allocation, and process sequencing. 

Before modeling, this study also makes the following 

assumptions: all processes can only be stopped once they 

are completed; All workpieces can be processed at the 

beginning; All processes require the participation of 

equipment and workers; Neglecting the time spent 

transferring workpieces across different devices; The 

same equipment cannot process multiple processes 

simultaneously (applicable to single core equipment or 

equipment with limited resources); The same worker 

Workpiece 1

Workpiece 2

Workpiece n

Production 

processes 1

Production 

processes 2

Production 

processes  j

Device 1

Device 2

Device  j

 

Figure 4: Schematic diagram of flexible workshop scheduling problem. 

cannot operate multiple devices simultaneously; Workers 

can rest during their free time. The maximum Ctime 
maxC  

is the length of time from the first process of processing 

the first workpiece to the completion of the last process of 

processing the last workpiece. By minimizing the 

maximum Ctime, waiting time and resource idle can be 

reduced, thereby improving overall production efficiency. 

The objective function 
1f  for minimizing the maximum 

Ctime is shown in equation (9). 

  1 maxmin min ,if C C i n= =   (9) 

In equation (9), 
iC  is the final Ctime of workpiece 

iJ

. The total load of equipment refers to the total workload 

that the equipment bears during operation. By minimizing 

the total load of the equipment, the service life of the 

equipment can be extended. The function 
2f  that 

minimizes the total load of the equipment is shown in 

equation (10). 
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 ( )2 1 1 1
min

in r m

ijk ijki j k
f T x

= = =
=     (10) 

In equation (10), 
ijkT  is the time required for 

equipment 
kM  to process process 

ijO . If equipment 
kM  

processes process 
ijO , the value of 

ijkx  is 1, otherwise it 

is 0. TEC is the gross of energy consumed by all 

workpieces in all processes during the production process. 

The TEC E  in FJSS is mainly composed of the energy 

consumption p

kE  during equipment operation, the energy 

consumption n

kE  when the equipment is unloaded, and the 

fixed energy consumption 
fE  in the workshop. Its 

calculation is shown in equation (11). 
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1 1
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 =
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 
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 (11) 
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Figure 5: Changes in workers' fatigue levels. 

In equation (11), 
p

ijkp  is the processing power of 

process 
ijO  on equipment 

kM . 
kTM  is the Ctime of the 

last process on device 
kM . n

kp  is the no-load power of 

device 
kM . 

fp  is the fixed power of the workshop unit. 

Minimizing TEC refers to optimizing energy usage and 

management strategies under specific conditions to 

minimize the TEC of a system or equipment. The function 

3f  that minimizes the TEC is shown in equation (12). 

 ( )3 1
min

m p n

k k fk
f E E E

=
 = + +
   (12) 

Error cost refers to the decrease in operational 

accuracy of workers due to fatigue when operating 

equipment, which in turn affects the quality of the product. 

In practical situations, as working hours increase, the 

fatigue level of workers will gradually increase, and the 

fatigue level during rest will gradually decrease. The 

changes in workers' fatigue levels are shown in Figure 5. 

In Figure 5, S  is the area enclosed by the fatigue 

curve. The fatigue level of workers will increase with the 

increase of working hours and decrease with the increase 

of rest time [24]. The impact of worker fatigue level on 

error rate is shown in equation (13). 

10 10

( )
log ( ) 6log ,0 1l

lt

mac

FW t
HEP

F
 

 
=   

 
 (13) 

In equation (13), 
ltHEP  is the error rate of worker l  

at time t . ( )lFW t  is the fatigue level of l  at t . 
maxF  is 

the maximum level of fatigue for workers.   is a 

constant. Among them, 
maxF is determined through 

experiments and data analysis. Fatigue tests are conducted 

on workers to find the upper limit of fatigue, while their 

fatigue levels under different working and resting 

conditions are recorded. The calculation of ( )lFW t  is 

shown in equation (14). 
1( )

1 1( ) ( ) ,0 , 0
t t

l lFW t FW t e t t − −
=      (14) 

In equation (14),   represents the fatigue recovery 

coefficient, which is determined by the characteristic 

coefficient of the worker, and its calculation is shown in 

equation (15). 

 ( )lrw  = −  (15) 

In equation (15),  and   represent normal numbers. 

lrw  represents the characteristic coefficient of worker l , 

mainly determined by factors such as age, physical 

function, and skill level. Considering that the operation of 

equipment by workers is a continuous process, this study 

uses the mean fatigue level of workers in a certain process 

to represent the fatigue level of that process. The 

expression of fatigue level and error rate is shown in 

equation (16). 
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In equation (16), 
ijklSO  is the S  when worker l  

operates equipment 
kM  to process 

ijO . 
0t  is the starting 

time of the process processing. 
ijklT  is the time required for 

worker l  to process 
ijO . 

ijklFO  and 
ijklHEP  are the 

fatigue levels and error rates of worker l  when operating 

equipment 
kM  and processing process 

ijO . The function 

4f  that minimizes the cost of errors is shown in equation 

(17). 

4 1 1 1 1
min

in r m w

ijkl ijkli j k l
f x MC

= = = =
 =
     (17) 

In equation (17), 
ijklMC  is the error cost incurred by 

worker l  when operating equipment 
kM  to process 

process 
ijO . To solve the FJSS problem, this study adopts 

a Dual Layer Encoding (DLE) method built on process 

and equipment, as shown in Figure 6. 

In Figure 6, the i -th occurrence of the workpiece 

number in the process-based coding indicates the i -th 

machining process corresponding to the workpiece. The 

number in the device-based encoding represents the 

process being processed on the selectable k -th machine. 

The corresponding DLE can be obtained by corresponding 

up and down. This study adopts a greedy decoding 

algorithm with simple implementation and fast execution 

speed to transform chromosomes into solutions in 

scheduling problems. The greedy decoding algorithm first 

considers each process in the order encoded in the 

chromosome and then searches for the earliest available 

machine to minimize waiting time and maximize machine 

utilization until all processes are scheduled for processing. 
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Figure 6: The schematic diagram of double-layer encoding. 

3 Results 
In the previous text, the study proposed an ANSGA-II 

algorithm and modeled the multi-objective FJSS problem 

by combining worker fatigue factors. However, its 

effectiveness has not been verified yet. Therefore, further 

analysis of the performance of the proposed ANSGA-II 

algorithm will be conducted to evaluate its effectiveness 

in solving MOPs. 

3.1 Performance analysis of improving 

NSGA-II 

To test the ANSGA-II performance, this study performs 

experiments on the Windows 10 operating system with a 

central processing unit of i7-9800X, 16GB of memory, 

and MATLAB R2016a software. The experiment is 

conducted using ZDT and DTLZ series test functions. The 

crossover and mutation probabilities of the ANSGA-II 

algorithm are adaptively adjusted based on the number of 

iterations. In ZDT1-3, the population size is set to 100 and 

the number of iterations is set to 200. The population size 

is set to 300 and the iteration count is set to 250 in ZDT6. 

Inverted Generation Distance (IGD) and Set Coverage 

Metric (C-metric) are used as evaluation metrics. IGD 

evaluates the convergence and distribution performance of 

the algorithm by calculating the minimum distance 

between each individual on the true Pareto front and the 

set of individuals obtained by the algorithm. The smaller 

the value of IGD, the better the convergence and 

distribution performance of the algorithm. The C-metric 

represents the dominance relationship between solutions. 

When the C-metric (A, B)=1, it indicates that all 

individuals in B are dominated by at least one individual 

in A. Typically, the larger the C-metric (A, B), the poorer 

the convergence of B. The proposed algorithm, traditional 

NSGA-II algorithm, and Multi-Objective Evolutionary 

Algorithm based on Decomposition (MOEA/D) algorithm 

are compared. Due to the randomness of MOO algorithms 

such as evolutionary algorithms, the results of a single run 

may not accurately reflect the true performance of the 

algorithm. Therefore, to control randomness and ensure 

the reliability of the results, each algorithm is 

independently run 20 times, and the statistical data are 

taken as the average of each algorithm. The comparison 

results of the indicators of the three algorithms are shown 

in Table 2. In the ZDT1 and ZDT2 test functions, 

ANSGA-II performs better overall than NSGA-II and 

MOEA/D about IGD and C-metric. In the ZDT1 and 

ZDT2 test functions, the proposed algorithm achieves 

better convergence and diversity with C-metric metrics of 

0.833 and 0.906, and IGD metrics of 0.006 and 0.0059, 

respectively. This indicates that the designed algorithm 

has good performance in IGD and C-metric, with certain 

feasibility. 
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To demonstrate the performance of the designed 

method more intuitively, the POSs gained by the three 

algorithms on the ZDT2 test function are compared, as 

shown in Figure 7. Comparing Figures 7 (a), (b), and (c), 

the proposed algorithm obtains a high-quality Pareto 

optimal frontier on the ZDT2 function, which can 

effectively approximate the true Pareto frontier. There is a 

significant gap between the POS obtained by MOEA/D 

and the optimal solution of the ZDT2 function. This 

indicates that ANSGA-II has high accuracy in solving 

MOPs. 

To verify the computational complexity of the 

proposed ANSGA-II, the running times of the three 

algorithms are compared, and the results are shown in 

Table 3. From Table 3, the running time of ANSGA-II 

algorithm is higher than MOEA/D but lower than NSGA-

II. This indicates that the proposed ANSGA-II algorithm 

not only improves performance but also reduces 

computational complexity to a certain extent and improves 

computational efficiency. 

To verify the effectiveness of the improvement 

strategy, ablation tests are carried out. The NSGA-II, 

ANSGA-II without AC probability (A), ANSGA-II 

without improved mutation probability (B), ANSGA-II 

without adaptive crossover operator (C), and ANSGA-II 

algorithm without AC and mutation probabilities (D) are 

compared with the complete ANSGA-II. Figure8 shows 

the experimental results. In Figure8 (a), in the DTLZ1, as 

the targets increase, the IGD metrics of all four algorithms 

show a gradually increasing trend. Among them, the IGD 

index of the complete ANSGA-II is always the smallest, 

not exceeding 2. The IGD index of the traditional NSGA-

II algorithm is always the highest, followed by the 

ANSGA-II algorithm without AC and mutation 

probabilities. In Figure 8 (b), in DTLZ 2, the IGD index 

of the complete ANSGA-II is still the smallest, not 

exceeding 1. Therefore, the proposed improvement 

strategies can well lift the NSGA-II’s performance and 

have certain effectiveness. 

 

Table 2: Comparison results of indicators for three algorithms. 

Test function Index 
Algorithm 

MOEA/D NSGA-II ANSGA-II 

ZDT1 
IGD 0.0203 0.0101 0.0060 

C-metric 1.0000 0.9775 0.8330 

ZDT2 
IGD 0.6786 0.0111 0.0059 

C-metric 1.0000 1.0000 0.9060 

ZDT3 
IGD 0.2060 0.0086 0.0088 

C-metric 1.0000 0.9085 0.8885 

ZDT6 
IGD 0.0138 0.0172 0.0137 

C-metric 1.0000 1.0000 0.0000 

 

Table 3: Comparison of running time of three algorithms. 

Test function 
Algorithm 

MOEA/D NSGA-II ANSGA-II 

ZDT1 3.12 9.30 5.31 

ZDT2 3.22 12.31 7.90 

ZDT3 3.18 15.96 8.44 

ZDT6 132.13 2495.22 1488.07 
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Figure 7: The POS obtained by the algorithm on the ZDT2 test function. 
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Figure 8: Results of ablation experiment. 
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Figure 9: Comparison of HV and IGD indicators between two algorithms. 

Table 4: Sensitivity analysis results. 

Parameter Makespan/h Total energy consumption/kW·h Error cost/yuan 

Fmax 

50 100 503 200 

75 104 498 180 

100 108 505 170 

γ 
0.1 100 503 200 

0.3 94 485 172 

0.5 87 476 161 

 

3.2 Analysis of the effect of MOP solution 

Sensitivity analysis is conducted to demonstrate how 

different fatigue model parameters affect scheduling 

performance. The maximum fatigue levels are set to 50, 

75, and 100, respectively. The fatigue recovery rate is set 

to 0.1, 0.3, and 0.5. The sensitivity analysis results are 

shown in Table 4. From Table 4, as the maximum fatigue 

level increases, the maximum Ctime gradually increases 

and the error cost gradually decreases. As the fatigue 

recovery rate increases, the maximum Ctime gradually 

decreases, and the TEC and error cost both gradually 

decrease. The sensitivity analysis results indicate that the 

fatigue model parameters have a significant impact on 

scheduling performance. 

To investigate the application effect of ANSGA-II in 

MOP solving, a fixed crossover probability of 0.8, a fixed 

mutation probability of 0.1, a population size of 200, and 

150 iterations are set. Based on the standard calculation 

examples FMk01-FMk06, data such as equipment energy 

consumption, raw material costs, unit time costs of 

workers, and unit time costs of equipment have been 

added. The unit time costs of workers and equipment are 

20 yuan/h and 1.2 yuan/kw·h, respectively. The proposed 

model is compared with NSGA-II using Hypervolume 

(HV) and IGD as evaluation indicators, as shown in Figure 

9. In Figure 9 (a), the HV index of the ANSGA-II is higher 

than that of NSGA-II in different examples, with the 

highest HV value of 0.098 in the FMk02 example. In 

Figure 9 (b), the IGD index of the proposed algorithm is 

lower than that of the NSGA-II, with the lowest IGD value 

of 0.009 in the FMk03 example. The ANSGA-II exhibits 

convergence and distribution, demonstrating good MOP 

solving performance. 
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Figure 10: Comparison of convergence graphs. 
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Figure 11: Pareto frontiers between two algorithms. 

To compare the convergence speed of ANSGA-II and 

NSGA-II, their convergence graphs in the FMk02 

example are compared, and the results are shown in Figure 

10. Figures 10 (a) and (b) show that the convergence speed 

of the ANSGA-II algorithm is faster than that of NSGA-

II. It tends to converge after about 50 iterations and is less 

likely to fall into local optima. 

To demonstrate the solution performance more 

intuitively, the Pareto front obtained by ANSGA-II is 

compared with NSGA-II, as exhibited in Fig.11. 

Comparing Figure11 (a) and (b), in comparison to NSGA-

II, the Pareto optimal frontier obtained by ANSGA-II has 

higher quality and can approach the real Pareto frontier 

very well. Therefore, the proposed ANSGA-II has high 

value in MOP solving. 

To further validate the superiority of the ANSGA-II, 

its HV value evolution trajectory is compared with the 

Multi-objective Squirrel Search Algorithm (MOSSA) and 

NSGA-III, as shown in Figure 12. In Figure 12 (a), in the 

FMk02 example, the HV index of the ANSGA-II is 

consistently higher than MOSSA and NSGA-III. In Figure 

12 (b), in the FMk06 example, the improved algorithm 

still has the highest HV index. The Pareto front obtained 

by ANSGA-II covers a wide range in the target space and 

has certain advantages. 

To more intuitively demonstrate the performance 

differences of different algorithms at specific time points 

or conditions, the IGD indicators of the three algorithms 

are compared, and the results are shown in Figure 13. 

Figure 13 shows that the IGD index of ANSGA-II 

algorithm is consistently lower than that of traditional 

NSGA-II and MOSSA, indicating better convergence and 

distribution performance. 
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Figure 12: Comparison results of indicators for three algorithms. 
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Figure 13: Comparison of IGD indicators for three algorithms. 

To further verify the superiority of the ANSGA-II 

algorithm, its IGD index is compared with the more 

advanced improved NSGA-II algorithm proposed by Jalili 

A A [25], Zhang F [26], and Wang J [27], and the results 

are shown in Table 5. Table 5 shows that the IGD index of 

the proposed ANSGA-II algorithm is consistently lower 

than that of the improved NSGA-II algorithm proposed by 

Jalili A A [25], Zhang F [26], and Wang J [27] in FMk01-

06. This indicates that the convergence of the ANSGA-II 

algorithm has certain superiority. 

Table 5: Comparison of IGD indicators for four algorithms. 

Numerical example 
Algorithm 

Jalili A A[25] Zhang F[26] Wang J[27] ANSGA-II 

FMk01 0.082 0.076* 0.079 0.071*@ 

FMk02 0.023 0.017* 0.021 0.014*@ 

FMk03 0.015 0.009* 0.011 0.005*@ 

FMk04 0.104 0.096* 0.102 0.092*@ 

FMk05 0.081 0.078* 0.078 0.073*@ 

FMk06 0.137 0.125* 0.134 0.122*@ 

Note: * indicates significant difference compared to the method in reference [25]; # indicates significant difference 

compared to the method in reference [26]; @ indicates significant difference compared to the method in reference [27], 

p<0.05. 

 

4 Discussion 
This study proposed an ANSGA-II algorithm. In the 

experiment, the overall performance of the ANSGA-II in 

IGD and C-metric indicators was superior to traditional 

NSGA-II and MOEA/D. In the ZDT6 function, the 

proposed algorithm had a C-metric of 0, while the other 

two algorithms had a C-metric of 1. On ZDT2, the 

proposed algorithm obtained a high-quality Pareto optimal 

frontier, which could effectively approximate the true 

Pareto frontier. In DTLZ1, as the number of targets 

increased, the IGD of the algorithm showed a gradually 

increasing trend. The IGD of ANSGA-II algorithm did not 

exceed 2, and the IGD index in DTLZ2 did not exceed 1. 

In different examples, the HV index of the proposed 

algorithm was higher than that of NSGA-II, with the 

highest HV value of 0.098 in FMk02. The IGD of the 

proposed algorithm was lower than that of NSGA-II, with 

the lowest IGD value of 0.009 in FMk03. 

In terms of convergence speed and diversity, the 

ANSGA-II algorithm can better approximate the true 

Pareto front on the ZDT series functions because the AC 

and mutation operators can dynamically adjust parameters 

according to the evolutionary state of the population, 

making the algorithm more efficient in exploring the 

solution space during the search process. In addition, 

crossover operators based on normal distribution can 

generate new individuals according to the distribution of 

the population, making the solution set more diverse. 

However, the convergence speed of the traditional NSGA-

II algorithm is relatively slow, and it maintains population 

diversity through the crowding distance operator. In some 

cases, there may be issues with uneven individual 

distribution, leading to insufficient solution diversity. 

MOEA/D improves convergence speed while maintaining 

population diversity through decomposition strategies and 

neighborhood mechanisms. However, its solution set 

distribution on certain test functions may not be as 

uniform as the proposed ANSGA-II, such as ZDT6. In 

terms of computational efficiency, due to the introduction 

of adaptive strategies and crossover operators based on 

normal distribution, the ANSGA-II algorithm can reduce 

unnecessary calculations to a certain extent and improve 

the running efficiency of the algorithm. The 
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computational complexity of NDS in traditional NSGA-II 

is relatively high. However, the ANSGA-II algorithm 

requires evaluating and analyzing the state of the 

population during each iteration to determine the 

adjustment method and magnitude of parameters, which 

will increase certain computational overhead. 

The actual industrial environment is often full of 

uncertainty, requiring real-time adjustment of strategies, 

and often requiring simultaneous optimization of multiple 

conflicting objectives. The ANSGA-II algorithm 

proposed by the research institute has good adaptability to 

dynamic environments and MOO capabilities, making it 

significantly advantageous in industrial scheduling 

problems such as logistics management and workshop 

scheduling. It can effectively solve complex MOPs and 

maintain efficient performance in dynamic environments. 

Future research can further expand its applications in other 

industrial fields, such as manufacturing, logistics, and 

energy management. 

5 Conclusion 
To effectively solve MOP, this study proposed an 

ANSGA-II algorithm and models the multi-objective 

FJSS problem by combining worker fatigue factors. 

Finally, the performance and MOO effect of the proposed 

algorithm were validated in ZDT series test functions, 

DTLZ series test functions, and FMk examples. The main 

findings of this study include: (1) Adaptive strategies can 

dynamically adjust the parameters of crossover and 

mutation operators, improving the algorithm's global and 

local search capabilities. (2) The crossover operator based 

on normal distribution can generate offspring individuals 

with more uniform distribution, enhancing the spatial 

search ability of the algorithm. In summary, the proposed 

ANSGA-II effectively solves MOPs. However, the 

running speed of the ANSGA-II algorithm in large-scale 

MOPs still needs to be further improved. Therefore, in 

future research, measures to improve the efficiency of the 

NSGA-II algorithm should be further explored. For 

example, NSGA-II algorithm components can be executed 

in parallel using multiple threads or processors, or feature 

extraction and dimensionality reduction can be achieved 

by integrating machine learning algorithms to reduce the 

complexity and computational overhead of NSGA-II 

operations. 
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