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To develop an efficient and intelligent automated intrusion detection system for 10T, this study proposes
a malicious network traffic recognition model based on an improved autoencoder and adversarial
convolutional encoder (AECE). The model first uses mixed sampling and improved autoencoder for data
augmentation. Then, convolutional neural networks and gated recurrent units are used to extract spatial
and temporal features. AECE combines the idea of generative adversarial networks to enhance the
model's adaptability to complex attack patterns. Finally, experimental validation was conducted on the
NSL-KDD, UNSW-NB15, 10T-23, and CSE-CIC-1DS2018 datasets. The results showed that the designed
data augmentation algorithm could effectively improve the clustering and classification performance of
the dataset, with a minimum Xie Beni value of 0.259, a maximum decrease of 15.88% in Davidson Boudin
index, and a maximum improvement of 0.214 in classification accuracy. In the 10T-23 dataset, the highest
detection rate of the baseline model was 0.882, while the detection rate of the proposed intrusion detection
model was 0.949, with an increase of about 7.6%. At the same time, the model had a minimum loss
convergence value of 0.08, a response time of 368.16 ms, and the values of false alarm rate fluctuated
between 0.10 and 0.20. The comprehensive values of data traffic per second and packet capture per second
confirmed that the model had strong detection ability and efficiency for attack behavior. This study
expands the application scope of deep learning in anomaly detection, providing new ideas and methods
for improving the security and stability of Internet of Things systems.

Povzetek: Predlagan je model AECE za inteligentno zaznavanje vdorov v IoT omrezjih. Uporablja
izboljSani avtoenkoder za povecanje podatkov (reSuje neuravnotezenost) ter konvolucijske in
ponavljajoce se enote (GRU) za ekstrakcijo prostorskih in casovnih znacilnosti. Na naboru podatkov loT-

23 je AECE dosegel odlicne rezultate.

1 Introduction

The Internet of Things (loT) can realize real-time
collection, analysis and interaction of various data by
connecting various devices, sensors, systems, etc. to the
Internet. At present, 10T has been applied in smart homes,
healthcare, transportation, logistics, etc. [1]. 0T contains
numerous heterogeneous devices, protocols, and
platforms, with complex and diverse interactions between
components. 10T devices are typically distributed across a
wide geographic area, and their highly interconnected and
decentralized nature makes them a hotspot for network
attacks, threatening the confidentiality and security
privacy of loT data [2-3]. Therefore, establishing effective
loT security monitoring and response mechanisms to
promptly detect and respond to potential security threats
is crucial. Traditional security defense techniques include
deploying complex security mechanisms directly on
devices, conducting regular security updates, and patch
management. However, 10T devices are limited in
computing power, storage space, and other aspects, and
their diversity and dispersion make it difficult to identify
and defend against potential threats from malicious attacks
[4]. Intrusion Detection Systems (IDS) can detect and

report potential security threats by monitoring and
analyzing data sources like network traffic and system
logs. IDS has the advantages of real-time and proactive
defense, and can be used to achieve security defense for
10T devices. However, malicious cyber attacks continue to
emerge and develop, with increasingly diverse attack
methods and strong concealment and destructive
capabilities. This makes the current IDS relatively fragile
and unable to effectively respond to new security threats.
Ensuring loT security requires more advanced and
efficient IDS solutions [5]. In this context, how to build an
efficient and intelligent automatic detection scheme for
malicious network traffic intrusion in the 10T and improve
the accuracy and efficiency of malicious network traffic
identification, has become a key issue that urgently needs
to be addressed. Therefore, this study focuses on the
Malicious Network Traffic Identification (MNTI)
algorithm in IDS. It introduces feature fusion, Attention
Mechanism (AM), and improved Generative Adversarial
Network (GAN) to construct the MNTI model, which can
fully explore and utilize the spatiotemporal correlation of
network traffic data, thereby more accurately detecting
known and unknown network attacks. Firstly, a Data
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Augmentation Algorithm (DAA) based on Mixed
Sampling (MS) and Improved Autoencoder (I1A) is
designed to provide a higher quality data foundation for
subsequent MNTI model training. Then, a Convolutional
Neural Network (CNN), Gated Recurrent Unit (GRU),
and AM are combined to build an MNTI model. A GAN-
based Adversarial Convolutional Encoder model (AECE)
is introduced to further enhance the MNTI’s adaptability
to complex attack patterns. This study innovatively
combines oversampling and undersampling techniques for
MS, and introduces Variational Autoencoders (VAES) for
dimensionality reduction of discrete data. This can
effectively solve the problem of imbalanced number of
normal and abnormal samples in 10T datasets and enhance
the authenticity and richness of samples.

The study is structured into four main sections.
Section 1 is a review of the current research status of
network 1DS-related technologies in the industry. Section
2 elaborates on the construction process of DAA and
MNTI models. Section 3 involves performance testing and
application analysis of the designed MNTI model. Section
4 summarizes the experimental results.

2 Related works

Intrusion Detection (ItruD) technology is an important
guarantee in network security, playing a crucial role in
responding to network attacks and protecting systems
from malicious activities. Numerous scholars have
conducted research on it. Machine Learning (ML) and
Deep Learning (DL) have been widely applied in
information security. Qazi et al. constructed a hybrid
network IDS based on DL technology. The system used
CNN to collect local features and utilized deep Recurrent
Neural Networks (RNN) to extract features. The public
dataset has confirmed the effectiveness of this method,
with a mean accuracy of 98.90% when detect malicious
attacks [6]. Improving network security for cloud
computing and loT was crucial. Kasongo first utilized the
eXtreme Gradient Boosting (XGBoost) Feature Selection
(FS) algorithm to lower down the feature space of the data,
and then built an IDS framework based on ML. The
experiment confirmed the performance of the research
results [7]. IDS could effectively protect the security of
loT. Hazman et al. designed an integrated learning IDS
framework based on 10T intelligent environment. This
framework integrated Adaptive Boosting (AdaBoost), FS
technique Boruta, mutual information, and correlation. In
dataset validation, this method performed well in
accuracy, recall, and precision, with a Detection Rate (DR)
of approximately 99.9%, a learning computation time of
33.68 seconds, and a detection time of 0.02156 seconds
[8]. Ghanbarzadeh et al. designed an IDS method based on
the Horse Swarm Optimization Algorithm (HSOA) and K-
nearest Neighbors (KNN), which mimics the behavior of
horses and selects effective features for ItruD. This
method used a base function to update HSOA into a
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discrete algorithm and combined it with quantum
computing to implement the transformation of a quantum
inspired optimizer for improving population social
behavior. This method has improved the average size and
classification accuracy of FS by 6%, and the accuracy of
ItruD has reached 99.8% [9].

Elnakib et al. designed an enhanced anomaly-based
ItruD DL multi-class classification model based on ML.
This method outperformed other DL models in accuracy
in classifying network traffic behavior [10]. To enhance
the security of 10T, Mohy Edine M et al. constructed an
FS model using principal component analysis, univariate
statistical testing, and genetic algorithm, and integrated
KNN to build an 10T network ItruD model. This method
had high accuracy and detection time of less than one
minute [11]. In response to the increased security risks of
data transmission caused by interconnected nodes in 10T,
Alotaibi et al. constructed a binary classification model for
loT traffic using various supervised ML models and
ensemble classifiers. The classifier’s accuracy surpassed
that of a single model, and the predictive classification was
significantly reduced [12]. The current IDS still had a high
level of false positives, so Al Ghuwairi et al. developed a
method for early detection of cloud computing intrusions
using time series data. This method included FS and FS-
based prediction models, which could effectively solve the
problem of misleading connections between time series
anomalies and attacks. This method significantly reduced
the use of predictive factors and improved the prediction
error index, reducing training time, prediction time, and
cross-validation time by about 85%, 15%, and 97% [13].
The security and privacy vulnerabilities of the Internet
were very urgent. Ntizikira et al. used Federated Learning
(FL), Differential Privacy (DP), and secure multi-party
computation to enhance data confidentiality, and
integrated Deep Neural Networks (DNN) to achieve real-
time anomaly detection. This method had excellent
accuracy, precision, and recall [14]. Omer N et al. used
Firefly Algorithm (FA) to detect intrusions before
evaluating IDS, and then used Probabilistic Neural
Networks (PNN) for classification. This method
performed well with an accuracy rate of up to 98.99%
[15]. The summary table of the above related work is
shown in Table 1.

In summary, although network IDS has received a lot
of research, existing IDS models generally face problems
such as imbalanced data samples, fragmented
spatiotemporal features, and adaptability to unknown
attack patterns. In response to the above issues, this study
reconstructs the data distribution, uses CNN and GRU to
jointly mine spatiotemporal features, and enhances the
model's ability to recognize unknown attacks using
AECE. It enhances the comprehensive defense
effectiveness of the model in complex attack scenarios
from three dimensions: data layer, feature expression, and
detection mechanism.
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Table 1: Summary table of related work.

Informatica 49 (2025) 385-400 387

Literature | Model Data set Result Limitation

6] CNN +RNN CSE-CIC-IDS2018 | The average accuracy rate is 98.90% :‘s%*:m?snsumpt'o” of computing

7 RNN + XGBoost NSL-KDD The accuracy rate is 97.8% Insufficient  generalization - ability
for zero day attacks

[8] AdaBoost + Boruta UNSW-NB15 The accuracy rate is 99.9% ;/;/;a;esrobustness of adversarial

[9] HSOA + KNN CIC-1DS2017 The accuracy rate is 99.8% Parameter tuning is complex

[10] ML 10T-23 ;gisifizgfi%:wa?zgs.% % multi class Poor model interpretability

[11] KNN + genetic algorithm TON_loT The accuracy rate is 98.3% Significant information loss

[12] ML + ensemble classifier BoT-loT The binary classification accuracy is | Poor s_calablllty in multiple attack

99.2% scenarios

[13] FS @\é\;s CloudTrail 85% reduction in training time Restricted transferability

[14] FL + DP + DNN CIC-1DS2019 The accuracy rate is 96.5% Slow convergence speed

[15] FA + PNN KDD Cup 99 The accuracy rate is 98.99% Insufficient coverage of modem
attack modes
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Figure 1: Schematic diagram of the workflow of DAA.

3 loT security intrusion detection
based on IA and AECE

ItruD technology can provide timely security alerts and
response basis for network administrators. This study first
designs DAA to improve the accuracy of traffic detection,
and then integrates multiple DL technologies to construct
the MNTI model.

3.1 Design of DAA based on MS and 1A

With the popularity of 10T devices, the number of nodes
has exploded, but normal network behavior accounts for
the vast majority of traffic data, and there is a serious
imbalance between the amount of abnormal samples and
the normal samples. Unbalanced data samples can easily
lead to a decrease in sample recognition accuracy [16].
Therefore, this study first designs DAA to address the
sample imbalance, and Figure 1 shows the algorithm’s
framework.

In Figure 1, expansion operation is required for a few
samples, while screening operation is required for most
samples. Therefore, this study combines oversampling
and undersampling techniques to construct a hybrid
sampling system. Firstly, the category judgment threshold
is determined, and the Synthetic Minority Oversampling
Technique (SMOTE) is utilized to expand the imbalanced
dataset and construct the training set for the classifier.

SMOTE changes the distribution of minority classes by
searching for their neighbors in the feature space and
generating new synthetic samples between these samples
[17]. In this study, SMOTE is used to expand minority
class samples, balance the class distribution in the dataset,
and ensure that the model can fully learn the features of
various attack categories during training, thereby
improving the model's generalization ability. Then, based
on ensemble thinking, multiple classifiers are used to
complete ensemble training. Finally, an ensemble
classifier is used to search for important minority class
samples and divide them into oversampling objects.
XGBoost belongs to the category of ensemble learning
algorithm Boosting. This algorithm improves prediction
accuracy by integrating multiple weak learners into one
strong learner. In 10T datasets, normal network behavior
samples often outnumber abnormal samples. XGBoost
can assign higher weights to minority class samples during
the training process, thereby improving the recognition
ability of minority classes and effectively solving the
problem of data imbalance. Therefore, this study adopts
XGBoost as the basic classifier. The basic learner of

XGBoost is decision tree h(x;6,). x is the input data.
0

m

is the parameter. The weighting of all decision trees is
the final prediction result. The calculation process of 6,
is equation (1).
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O, = {(RJ Gy )}J:l (1)

In equation (1), R, is the leaf node region, and
JeR . ¢, is a constant. XGBoost generates decision
trees in the direction of reducing residual g, . The
calculation process of g, is equation (2).

oL(y., 9t
9
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In equation (2), Y, represents the true value of the i -
represents the observed value of the

g, ={1,2,...,N} )

yt-=1

th sample, ¥,

sample at the t—1-th iteration, t represents the number of
iterations, and N represents the maximum number of
iterations. The update process of the estimation function
F(x) is equation (3).

Fo(¥)=Fa(x)+kh(x4) (3)

In equation (3), k is a constant. The objective
function of XGBoost is the superposition of the loss

function and the penalty function, as calculated in
equation (4).

L(¢):Zin|(yi _yi)+ZZQ<fp) Q)
In equation (4), y; and Y, are predicted values and

true values, and zi"l(yi—yi) is the loss function.

Q(f,) is the regularization term, and the calculation
process is shown in equation (5).

1 1
Qf)=pd+ Al =222 W ©)

In equation (5), w is the leaf weight. » and A are

regular penalty terms for leaves and their weights. In ML,
models may overfit training data, leading to a decrease in
predictive ability on new data. Regularization reduces the
risk of overfitting by adding additional penalty terms to
the loss function to limit the complexity of the model.
Equation (5) limits the model’s complexity by
comprehensively considering the number of leaf nodes
and leaf weight sizes in the tree, which helps to improve
the predictive performance of the model on new data. To
improve the prediction accuracy of XGBoost, the training
set is introduced as a new function f for greedy

optimization of the objective function, as expressed in
equation (6).
L® =

Z?(' (yi(H) - yi)+ f(x ))+Q( f,) ©)

After expanding equation (6) according to the second-

order Taylor formula, the final objective function LY is
obtained through training simplification, as shown in
equation (7).
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In equation (7), G and H are the first and second
derivatives of the loss function. loT datasets typically
contain a large number of numerical features, and some
density or hierarchical clustering algorithms may have
issues with not being intuitive or having high
computational costs when processing numerical data. The
K-means algorithm has a simple principle and good
clustering effect on numerical data. It can quickly divide
the data into different clusters and select representative
samples, thereby improving training efficiency.
Therefore, this study adopts the K-means clustering
algorithm for undersampling operation, and the objective
function is shown in equation (8).

100, =3 Y -m)| ®

j=lien;

In equation (8), =; is class j. m, is the center of a

]
certain category. X is a data point. The MS method
compensates for the shortcomings of traditional sampling
techniques, but 10T datasets typically involve data with
discrete characteristics. The SMOTE algorithm has low
applicability to discrete data. VAE can map input data to
latent space through an encoder, obtain representation
vectors, output parameters of the representation vectors,
and generate diverse new samples. This will increase the
richness of the dataset and help improve the model's
generalization ability. VAE has good processing ability
for discrete data. Therefore, the study introduces VVAE for
dimensionality reduction of discrete data. VAE contains
an encoder and a decoder. The encoder maps the input data
x to the latent space to gain the representation vector z ,
and outputs the parameters of the representation vector.
The decoder maps the representation vector back to the
data space to generate new samples and ensures that the
new samples are as similar as possible to the original input
data [18-19]. The training objective of VAE is to optimize
the variational lower bound ELBO, as shown in equation
(9).

ELBO(q) = Eq(zl x)logp(xI z)] ©)

—DKL(q(zl x) U p(z))

In equation (9), p(xl| z) is the generative model
defined by the decoder. p(z) is a standard Gaussian

distribution. DKL is the Kullback Leibler divergence.
g(zl x) is the posterior distribution. The working

principle of DAA based on MS/IA is shown in Figure 2.
In Figure 2, data augmentation is divided into two
stages: model training and data synthesis. Firstly, VAE is
used to learn data features during the training phase and
convert them into representation vectors with rich
information. Then, the representation vector and data
labels are input into the MS module to achieve balanced
processing of the data. Finally, the decoder completes the
conversion of the data format. In summary, the proposed
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DAA based on MS and IA mainly consists of four steps.
Step 1 inputs network traffic data and preprocesses the raw
data. Step 2 determines the majority class and minority
class samples, applies SMOTE to generate new composite
samples for the minority class samples, and uses K-means
clustering algorithm to undersample the majority class
samples. Step 3 trains the VAE using the training set data
and uses the trained VAE to perform dimensionality
reduction and feature extraction on minority class samples.
Step 4 fuses the synthesized samples generated by
SMOTE and VAE to obtain an enhanced dataset, and
performs weighted fusion with the majority class samples
to obtain a balanced dataset. This study uses Xie Beni
Index (XBI) and Davies Bouldin Index (DBI) as indicators
to evaluate the clustering quality of DAAs. XBI evaluates
clustering performance by measuring the distance
between cluster centers and the closeness of data points
within clusters. The smaller the value of XBI, the more
tightly clustered the sample points within the cluster are,
and the better the separation between different clusters,
resulting in better clustering performance. DBI takes into
account both intra-class sample similarity and inter-class
sample difference, with smaller values indicating better

Informatica 49 (2025) 385-400 389

3.2 Design of MNTI model based on
feature fusion and AECE

IDS is usually segmented into two types of signature
detection and two main technologies. Anomaly detection
is a detection technique that identifies abnormal activity
by analyzing the normal behavior patterns of network
traffic. When network traffic deviates from normal
behavior patterns, the system considers it a potential
malicious activity and triggers an alert [20]. Network
traffic data typically contain a mixture of multiple types of
information, which are correlated in both temporal and
spatial dimensions. Network traffic data have obvious
temporal characteristics. For example, network attack
behavior usually shows sudden growth of traffic in a short
period. At the same time, network traffic data also have
spatial correlations. In the same loT network, data
transmission between servers and multiple clients may
exhibit synchronous or correlated trends, and devices in
the same network often share certain common network
configurations and security policies. Therefore, to capture
information at different levels, this study constructs the
basic framework of the MNTI model based on the concept
of feature fusion, as shown in Figure 3.
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Figure 2: Schematic diagram of DAA based on MS/IA.
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Figure 3: Basic framework structure of MNTI model based on feature fusion.
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As shown in Figure 3, after data augmentation, the
MNTI model mainly includes two modules: feature fusion
and malicious traffic detection. Among them, the feature
fusion module extracts spatial and temporal features of the
balanced dataset, and disease fusion presents a
spatiotemporal feature set. The malicious traffic detection
module first determines whether it is a known attack. If it
is a known attack, it directly initiates security warning
measures. If not, further unknown attack detection will be
conducted. If the traffic detection is abnormal, timely
security warning measures should be taken and the
network attack database should be updated. In the context
of network traffic, spatial features reflect the combination
relationship between different features in network traffic
data, such as a combination pattern of features such as
different IP addresses and different ports. Spatial features
can also represent communication relationships between
different devices or nodes. The temporal characteristics
mainly describe the dynamic changes and patterns of
network traffic data in the time dimension, reflecting the
changing trends and periodic patterns of network traffic
data in time, such as the peak and off peak periods of
network traffic, periodic fluctuations in traffic, etc. This
study uses CNN structure for spatial feature extraction and
RNN suitable for sequence data processing for temporal
feature extraction. The structure of the feature extraction
encoder designed for the feature fusion module is shown
in Figure 4.

In Figure 4, the feature extraction spatial encoder
structure consists of an Asymmetric Spatial Encoder
(ASE) and a Bidirectional Temporal Encoder (BTE). ASE
is used to extract spatial features from raw data. BTE is
used to extract temporal features from the extracted spatial
features, achieving the effect of fusing features from

different dimensions. Finally, spatial and temporal
features are fused to form a comprehensive feature
representation. ASE is based on traditional CNN
architecture, consisting of four blocks that integrate two
different types of AMs and convolutional kernels of
different scales. Four blocks use two types of multi-scale
convolutional layers. Both Multichannel 1 and
Multichannel 2 contain three convolutional path
calculations and use three various sizes of convolution
kernels, namely 3x3, 5x5, and 7x7, to enhance the
receptive field of the network. In addition, Block also
introduces Global Attention Mechanism (GAM) and
Residual Attention Mechanism (RAM). Firstly, RAM is
used to fuse multi-scale inputs with the original image, and
residual connections can be introduced to enhance the
model's generalization ability. Then GAM is used to fuse
the output of RAM with the original image. GAM can
correlate and weight all positions in the input sequence,
enhancing the model's overall understanding and
processing ability of the input sequence. The selected
basic RNN unit is GRU. GRU refers to a variant structure
of RNN that can reduce gradient vanishing while
preserving long-term sequence information. The BTE
structure is shown in Figure 5.

In Figure 5, the BTE structure has undergone
bidirectional improvement on the basis of traditional RNN
and introduced multi head self AM. Bidirectional GRU
(BiGRU) can extract forward and backward data and
determine whether there is abnormal information in the
current traffic data [21]. The merging strategy is used to
fuse the forward and backward hidden states of BiGRU to
generate the final sequence representation. To provide
more comprehensive sequence feature information and
improve the detection performance of the model, this
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study adopts a concatenation strategy, directly
concatenating the forward and backward hidden states into

a vector. The update process of the forward update gate z,
and reset gate r, in BiGRU is equation (10).

{n = o (WX +u,h, )

2, =0 (Wy X +Uh ;)

Inequation (10), o represents the Sigmoid activation

function, with an output value between 0 and 1. The larger
the value, the more information from the previous time

step is retained. W, and W, represent the weight

parameters of the update gate and reset gate, respectively.
u, and u,, represent weight matrices. h_, represents the

previous state. h is the hidden layer state. X, is the input
information at the current time. The calculation of output
layer h is equation (11).

hl :(1_ Zt)hl—1+zthl (11)

In equation (11), h, represents the updated value of

the reset gate. The reverse calculation formula for BIGRU
is equation (12).

7’ = o'(WmaXt +umaht+1)

rta = O.(Wnaxt +unaht+1)

In equation (12), a isthe reverse GRU. w2 and w,?
represent weight parameters. u,® and u,® represent

(10)

(12)

weight matrices. h,, represents the state at the next
moment. Finally, the hidden layer states of the forward
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and reverse GRUs are weighted and summed to obtain the
final prediction result, as shown in equation (13).

Y =o(hxw,) (13)
Inequation (13), w, isthe weight between the hidden

and output layers. Finally, the predicted temporal results
are input into the multi head self-AM to achieve weighted
summation of encoding. The detection objects of the
traffic detection module include known and unknown
network attacks. The known detector for network attacks
is SoftMax. The SoftMax expression is equation (14).

SoftMax (x) = exp(x)/ sum(exp(x)) (14)
In equation (14), exp is an exponential function. In

the feature fusion module, this study achieves the
extraction of spatial and temporal features through CNN
and GRU, while reducing the impact of redundant
features. The convolutional layer automatically filters
local features through convolutional kernels of different
scales, while the gating mechanism of GRU filters out
irrelevant temporal information. In addition, to further
improve the model’s performance, this study also ranks
the importance of features. In the data augmentation stage,
XGBoost is used to rank features and select the top-ranked
features for subsequent model training. Meanwhile, in the
feature extraction encoder, Genetic Algorithm (GA) and
RA are introduced to automatically focus on the more
important features for ItruD by learning the weights of
features, thus achieving feature importance ranking. The
detection model for unknown network attacks is shown in
Figure 6.
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In Figure 6, the model is designed based on the
concept of GAN and consists of two parts: the generative
network and the judgment network. Generate models that
produce fake data similar to real samples. The
discriminative model is responsible for distinguishing and
judging between real data and generated data [22]. In the
early stages of training, the weights of the discriminator
are randomly initialized. As training progresses, the GAN
continuously learns how to generate more realistic data,
while the discriminator also updates its parameters based
on the feature differences between real and fake data. At
the end of the training phase, the generator and
discriminator reach Nash equilibrium, and the
discriminator's loss tends to stabilize. The anomaly
detection threshold is based on a dynamic adjustment
strategy. In practical applications, if the False Alarm Rate
(FAR) is too high, the threshold should be appropriately
increased to reduce misjudgments of normal behavior. If
the false alarm rate is too high, the threshold can be
appropriately lowered to improve the detection ability of
attack behavior. The training game process of GAN is
equation (15).

minmaxV (D,G) =

G D

Ecp i 109(D(x))]
o [log (1-D(G (z)))]

In equation (15), z represents noise. x is the real
sample data. P, (x) is the probability distribution

(15)

function of x . Pmode,(x(i);e) is the probability

distribution function for judging the network, and & isthe
parameter. G and D are generative networks and
discriminative networks. The detection model is defined
as AECE. The generative network part includes encoders
and decoders. The encoder and decoder both contain 3
convolutional layers and two pooling layers. The training
process needs to make the reconstructed data of the
decoder closest to the original data, and use the maximum
reconstruction loss of normal traffic behavior as the
threshold for detecting unknown attacks. The training
process needs to maximize the probability of generating
samples as real samples, consisting of convolutional,
pooling, and fully connected layers. This study uses Mean
Absolute Error (MAE), Root Mean Square Error (RMSE),
and Mean Absolute Percentage Error (MAPE) as
evaluation metrics. MAE, RMSE, and MAPE are
commonly used indicators to evaluate the difference
between predicted and true values in regression models. In
ItruD, they can be used to measure the accuracy of
predicting network traffic characteristics, indirectly
reflecting the model's ability to distinguish between
normal and abnormal traffic. MAE represents the average
absolute error between predicted values and true values.
RMSE emphasizes the impact of larger errors. MAPE
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displays model accuracy in the form of relative errors. The
calculation of MAE, RMSE, and MAPE is shown in
equation (16).

1 )
MAE ==y, - ¥;
N

RMSE =4/%i(yi S5 ()

A

Yi
In equation (16), n represents the number of samples,
y. represents the true value, and Y. represents the
predicted value.

MAPE = MAE = lz x100%

N

4  Performance testing and
application effect analysis of loT
security ItruD model

To verify the effectiveness of the designed DAA and
MNTI models, this study conducts performance testing
and application effect analysis, and discusses the results.

4.1 Performance testing of 10T intrusion
detection model

The experiment is conducted using the CentOS 7
operating system and the DL framework is Pytorch 1.7.
The central processing unit is Intel (R) Xeon (R) Silver
4214 2.20 GHz, with 128 GB of memory. The image
processor is Ge Force RTX 2080Ti. The programming
language is Python 3.8. The experiment selects Non-
Intrinsic FS for KDD (NSL-KDD), UNSW-NB15, 1oT-
23, and CSE-CIC-IDS2018 datasets for performance
testing. NSL-KDD includes normal connections and
various types of attacks, covering multiple characteristics
such as connection duration, source/destination ports,
service type, protocol type, etc. UNSW-NB15 simulates
network traffic in a real network environment, containing
175,341 network connection records, covering common
network attacks and normal traffic. 10T-23 contains a large
amount of device interaction data, sensor readings, and
network communication records. CSE-CIC-1DS2018
contains network traffic data captured from multiple real
network environments, covering various types of attacks
and normal traffic. The eigenvalues are scaled to the range
of 0-1 and divided into training, testing, and validation sets
in an 8:1:1 ratio to standardize the data. The learning rate
is set to 0.001, Epoch is 60, Batchsize is 32, hidden layer
is 2, and Adam optimizer is used. Firstly, the performance
of DAA is analyzed, and the clustering and comparison
effects before and after data balancing are compared, as
shown in Figure 7.
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Figure 7: Analysis of the effect of data enhancement algorithm.
Table 2: Results of ablation experiment.
Models Detection rate Precision Recall MAE
Without feature fusion module 0.856 0.865 0.846 0.214
Without DAA 0.824 0.834 0.813 0.245
Without AECE 0.879 0.887 0.871 0.198
Complete model 0.919 0.925 0.912 0.179

In Figure 7 (), there is a significant difference in the
clustering performance evaluation indicators of the dataset
before and after data balancing. The XBI and the DBI both
achieve better results on the balanced dataset, with a
minimum XBI of 0.259 and a minimum DBI of 0.194,
with a decrease of 5.78% and 15.88%, respectively. After
DAA processing, the intra cluster compactness and inter
class separation of the dataset are improved, and the
clustering effect is improved. In Figure 7 (b), four
different baseline classification models achieve better
classification accuracy on the balanced dataset after data

augmentation, with a maximum accuracy improvement of
0.214. To demonstrate the contribution of each component
of the model to overall performance, ablation experiments
are designed and studied. The ablation experiment uses the
NSL-KDD dataset to compare the DR and error metrics of
the complete model with models without feature fusion
modules, DAA, and AECE. The results of the ablation
experiment are shown in Table 2.

From Table 2, the DR, precision, and recall rate of the
complete model are the highest, while the MAE is the
lowest, indicating that the proposed improvement
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strategies can effectively improve the ItruD performance.
Among them, the model without DAA performs the worst
in terms of metrics, indicating that DAA contributes the
most to model performance and can significantly improve
the model's ability to identify attack samples by solving
the problem of data imbalance. The MNTI model is
compared with the Enhanced Anomaly-based ItruD DL
Multi-class Classification (EIDM) proposed in reference
[10], the KNN classifier and FS-based ItruD model (K-
NN-FS) in reference [11], and the Firefly Optimization
(FFO) detection model in reference [15]. Wilcoxon signed
rank test is used to evaluate the performance difference
between the proposed model and the baseline model, with
a p<0.05 indicating statistical significance of the
difference. To ensure the reliability and stability of the
results, each model is independently run 5 times on each
dataset. The performance indicators reported are the
average of these 5 runs, presented in the form of mean +
standard deviation. The classification performance of
different ItruD models is shown in Table 3.

Y. Peng et al.

In Table 3, the performance of the proposed model on
all four datasets is significantly better than the other three
baseline models (p<0.001). The research model has the
smallest value in the ItruD classification error index, with
the minimum values of MAE, RMSE, and MAPE being
0.179, 0.236, and 0.197. The model detection errors of the
other three literature are all greater than 0.3. This means
that the designed model has the smallest classification
error in ItruD and accurately distinguishes traffic between
attack behavior and normal behavior. In addition, the DR
of the proposed model is the highest, reaching 0.949. The
maximum DR values for EIDM, K-NN-FS, and FFO
models are 0.885, 0.882, and 0.853. High detection
precision means that the model can effectively identify
malicious traffic from a large amount of network traffic
data, which is crucial for timely detection and response to
network attacks. The F1 index is the harmonic mean of
precision and recall, used to comprehensively evaluate the
performance of a model. Figure 8 compares the scalability
of different models.

Table 3: Classification performance of diverse ItruD models.

Model Index NSL-KDD UNSW-NB15 10T-23 CSE-CIC-IDS2018 p-value (vs research model)
MAE 0.179+0.015 0.198+0.018 0.269+0.022 | 0.199+0.017 -
Research model RMSE 0.236+0.020 0.273+0.024 0.286+0.023 0.284+0.026 -
MAPE 0.199+0.019 0.197+0.019 0.200+0.021 | 0.261+0.023 -
DR 0.919+0.013 0.921+0.011 0.949+0.008 0.900£0.015 -
MAE 0.337+0.033 0.424+0.038 0.325+0.032 0.304+0.029 <0.001
Reference [10] RMSE 0.430+0.039 0.394+0.037 0.400+0.037 0.392+0.036 <0.001
MAPE 0.338+0.035 0.442+0.042 0.349+0.033 0.404+0.033 <0.001
DR 0.729+0.026 0.885+0.018 0.796+0.023 0.823+£0.017 <0.001
MAE 0.419+0.042 0.419+0.040 0.426+0.042 0.325+0.035 <0.001
Reference [11] RMSE 0.338+0.033 0.437+0.041 0.362+0.035 0.31940.031 <0.001
MAPE 0.465£0.045 0.497+0.048 0.359+0.034 0.450£0.043 <0.001
DR 0.827+0.020 0.842+0.021 0.882+0.018 0.820£0.023 <0.001
MAE 0.345+0.034 0.490+0.045 0.339+0.036 | 0.461+0.042 <0.001
Reference [15] RMSE 0.478+0.047 0.411+0.038 0.416+0.041 | 0.451+0.043 <0.001
MAPE 0.351+0.036 0.400+0.039 0.447+0.042 | 0.379+0.036 <0.001
DR 0.841+0.023 0.853+0.022 0.828+0.020 0.833+0.022 <0.001
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Figure 8: Scalability comparison of different ItruD models.
Table 4: The training time of the model on different datasets (s).
Model NSL-KDD UNSW-NB15 10T-23 CSE-CIC-1DS2018
EIDM 158.25 183.49 204.96 198.42
K-NN-FS 92.33 105.56 120.71 112.98
FFO 143.75 165.42 192.04 178.64
Research model 182.43 210.76 244.67 226.28
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Figure 9: Comparison of loss function curves and response time for different ItruD models.

In Figure 8, the research model has significant
advantages in detection accuracy and F1 index values, and
performs well on four different datasets. The maximum
precision values on each dataset are 0.981, 0.988, 0.983,
and 0.989. The maximum values of F1 index are 0.978,
0.977,0.977, and 0.985. The difference in values between
the test and training sets of the research model is small,
and the data fluctuation is not significant. The results
indicate that the proposed model can maintain high
detection precision and F1 index on different datasets, and
has good generalization ability, balance, and stability.
This is mainly due to the introduction of data
augmentation, feature fusion and extraction, and
adversarial training techniques in the model, which
significantly improve the performance and scalability of
IDS. The training time of the above model on different
datasets is shown in Table 4.

From Table 4, compared to the comparison model, the
proposed model has a longer training time on all four
datasets, with the longest being 244.67 seconds. This is
because the architecture of the proposed model is more
complex, including feature fusion, 1A, AECE, and other
components, which increases the complexity of the model
and leads to an increase in training time. The baseline
model architecture is relatively simple, so the training time
is relatively short.

4.2 Performance testing and application
effect analysis of 10T ItruD model

It continues to compare the application effects of different
ItruD models in practice. The loss function curve and
response time of the model are shown in Figure 9.
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Figure 10: FNR and FAR of various models.

In Figure 9 (a), the research model has the fastest
convergence speed on the loss function curve, can
converge early in the iteration, and has a minimum
convergence value of 0.08, which has a significant
convergence advantage over other models. The fast
convergence loss function curve indicates that the model
can learn features and patterns in the data faster, and does
not overfit the training data during the training process,
but learns the general features of the data well. In addition,
rapid convergence also indicates that the optimization
process of the model is more efficient and can achieve the
expected performance level in fewer iterations. In Figure
9 (b), the response time of the research model is 368.16ms.
The response times of EIDM, K-NN-FS, and FFO models
are 684.1 ms, 589.3 ms, and 598.4 ms. A shorter response
time means that the model can detect and respond to
network traffic faster in practical applications, which is
crucial for loT security IDSs with high real-time
requirements. The False Negative Rate (FNR) and FAR of
different models in application are displayed in Figure 10.

In Figure 10 (a), the FAR values of the proposed
model fluctuate in the range of 0.10-0.20 under different

sample sizes. The FAR of other models fluctuates within
the range of 0.20-0.35. FAR reflects the tendency of the
model to misjudge normal traffic as attack traffic. The
proposed model has good recognition performance for
normal behavior, with fewer false alarms. In Figure 10 (b),
the research model achieves excellent FNR performance,
with values fluctuating between 0.10-0.20. The proportion
of actual attack samples that can be detected is relatively
high compared to all actual attack samples. The results of
data traffic per second and packet capture per second for
different models are shown in Figure 11.

Figures 11 (a) and (b) show that the research model
has the highest values in both data traffic per second and
packet capture per second. Overall, the model is capable
of processing a large number of data packets per second
and has strong packet processing capabilities, reflecting
the strong detection ability and efficiency of the research
design for attack behavior. Based on Figure 10, this
method has a low rate of missed attacks. In Figure 11,
there is no packet loss phenomenon for all methods.
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5 Discussion

To cope with malicious attacks on 10T devices, this study
conducted data augmentation based on hybrid sampling
and auto-encoder, and constructed an MNTI model using
feature fusion on this basis. The experiment showed that
after balancing the DAA dataset, the minimum XBI value
was 0.259, the minimum DBI value was 0.194, and the
decrease was 5.78% and 15.88%, respectively. The
classification accuracy of different classification base
models has been improved. The minimum values of MAE,
RMSE, and MAPE for the research model were 0.179,
0.236, and 0.197, and the maximum DR value was 0.949.
The maximum accuracy of this model on four datasets was
0.981, 0.988, 0.983, 0.989, and the maximum F1 index
was 0.978, 0.977, 0.977, 0.985. In the application process,
the convergence speed on the loss function curve was the
fastest, the convergence value was the smallest, and the
response time was 368.16 ms. In addition, compared with
the baseline models EIDM, K-NN-FS, and FFO, the
proposed MNTI model also showed significant
advantages in false positives and false negatives. The FAR

ket captures per second
d packet capture per second for different models.

and FNR values of the proposed MNTI model fluctuated
within the range of 0.10-0.20, which could more
accurately distinguish between normal and abnormal
traffic, thereby reducing the false positive rate. In contrast,
the FAR values of the baseline model fluctuated within the
range of 0.20-0.35, indicating a relatively high false
positive rate.

The DR of EIDM proposed in reference [10] on the
NSL-KDD dataset was 0.729, while the MNTI model
proposed in the study reached 0.919. On the UNSW-NB15
dataset, the DR of EIDM was 0.885, while the proposed
MNTI model was 0.921. The DR of the proposed MNTI
model was superior to that of the EIDM model on various
datasets. Similarly, the DRs of the ItruD models proposed
in references [11] and [15] were also lower than those of
the proposed MNTI model. This was mainly attributed to
the integration of various advanced DL techniques and
ideas in this study, including feature fusion, AMs, and
improved GANs. Combining CNN and GRU to extract
spatiotemporal features and introducing VAE for
dimensionality reduction and feature extraction of data
can effectively capture spatial correlations and local
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features, and better process sequence data. It can also
enrich feature information, enabling the model to more
accurately capture key features in network traffic data.
The AM can automatically learn the importance of
different features, making the model more focused on key
features related to ItruD, thereby improving the model's
discriminative ability. In addition, the AECE introduces
the idea of GAN and utilizes adversarial training between
the generative network and the judgment network to
further enhance the model's ability to detect unknown
attacks.

In practical applications, the proposed MNTI model
demonstrates good scalability through its flexible design
and modular structure. The feature extraction module can
be adjusted according to the type of input data, such as
replacing CNN with a network structure suitable for
processing specific data types, or adding new feature
extraction components to adapt to new data sources. The
feature fusion mechanism can effectively integrate feature
information from different modules, thereby enhancing
the model's ability to process multi-source data. In
addition, the depth and breadth of the model can be
expanded according to actual needs to further improve its
performance and application scope. For example,
increasing the number of network layers to capture more
complex feature patterns, or adopting multi task learning
strategies to simultaneously process multiple related tasks.

6 Conclusion

This study aims to improve the accuracy of identifying
malicious network traffic in the 0T environment to cope
with malicious attacks on 10T devices. By using MS and
VAE for data augmentation, the problem of data
imbalance has been effectively solved, providing a high-
quality data foundation for model training. On this basis,
multiple technologies such as CNN, RNN, AM, and GAN
are integrated to construct the MNTI model, which can
comprehensively capture the characteristics of network
traffic data. Experimental studies have shown that the
proposed model has good detection performance and
stability, can accurately distinguish between attack
behavior and normal behavior of traffic, and has high
security protection efficiency and real-time performance.
However, the computational complexity of the proposed
model is relatively high, and deployment on resource
constrained loT devices may pose certain difficulties.
Therefore, in future research, the model structure should
be further optimized by using techniques such as model
compression and quantization to reduce the computational
complexity of the model, making it more suitable for
resource constrained lIoT environments.
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