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To develop an efficient and intelligent automated intrusion detection system for IoT, this study proposes 

a malicious network traffic recognition model based on an improved autoencoder and adversarial 

convolutional encoder (AECE). The model first uses mixed sampling and improved autoencoder for data 

augmentation. Then, convolutional neural networks and gated recurrent units are used to extract spatial 

and temporal features. AECE combines the idea of generative adversarial networks to enhance the 

model's adaptability to complex attack patterns. Finally, experimental validation was conducted on the 

NSL-KDD, UNSW-NB15, IoT-23, and CSE-CIC-IDS2018 datasets. The results showed that the designed 

data augmentation algorithm could effectively improve the clustering and classification performance of 

the dataset, with a minimum Xie Beni value of 0.259, a maximum decrease of 15.88% in Davidson Boudin 

index, and a maximum improvement of 0.214 in classification accuracy. In the IoT-23 dataset, the highest 

detection rate of the baseline model was 0.882, while the detection rate of the proposed intrusion detection 

model was 0.949, with an increase of about 7.6%. At the same time, the model had a minimum loss 

convergence value of 0.08, a response time of 368.16 ms, and the values of false alarm rate fluctuated 

between 0.10 and 0.20. The comprehensive values of data traffic per second and packet capture per second 

confirmed that the model had strong detection ability and efficiency for attack behavior. This study 

expands the application scope of deep learning in anomaly detection, providing new ideas and methods 

for improving the security and stability of Internet of Things systems. 

Povzetek: Predlagan je model AECE za inteligentno zaznavanje vdorov v IoT omrežjih. Uporablja 

izboljšani avtoenkoder za povečanje podatkov (rešuje neuravnoteženost) ter konvolucijske in 

ponavljajoče se enote (GRU) za ekstrakcijo prostorskih in časovnih značilnosti. Na naboru podatkov IoT-

23 je AECE dosegel odlične rezultate. 

 

1 Introduction 
The Internet of Things (IoT) can realize real-time 

collection, analysis and interaction of various data by 

connecting various devices, sensors, systems, etc. to the 

Internet. At present, IoT has been applied in smart homes, 

healthcare, transportation, logistics, etc. [1]. IoT contains 

numerous heterogeneous devices, protocols, and 

platforms, with complex and diverse interactions between 

components. IoT devices are typically distributed across a 

wide geographic area, and their highly interconnected and 

decentralized nature makes them a hotspot for network 

attacks, threatening the confidentiality and security 

privacy of IoT data [2-3]. Therefore, establishing effective 

IoT security monitoring and response mechanisms to 

promptly detect and respond to potential security threats 

is crucial. Traditional security defense techniques include 

deploying complex security mechanisms directly on 

devices, conducting regular security updates, and patch 

management. However, IoT devices are limited in 

computing power, storage space, and other aspects, and 

their diversity and dispersion make it difficult to identify 

and defend against potential threats from malicious attacks 

[4]. Intrusion Detection Systems (IDS) can detect and  

 

report potential security threats by monitoring and 

analyzing data sources like network traffic and system 

logs. IDS has the advantages of real-time and proactive  

defense, and can be used to achieve security defense for 

IoT devices. However, malicious cyber attacks continue to 

emerge and develop, with increasingly diverse attack 

methods and strong concealment and destructive 

capabilities. This makes the current IDS relatively fragile 

and unable to effectively respond to new security threats. 

Ensuring IoT security requires more advanced and 

efficient IDS solutions [5]. In this context, how to build an 

efficient and intelligent automatic detection scheme for 

malicious network traffic intrusion in the IoT and improve 

the accuracy and efficiency of malicious network traffic 

identification, has become a key issue that urgently needs 

to be addressed. Therefore, this study focuses on the 

Malicious Network Traffic Identification (MNTI) 

algorithm in IDS. It introduces feature fusion, Attention 

Mechanism (AM), and improved Generative Adversarial 

Network (GAN) to construct the MNTI model, which can 

fully explore and utilize the spatiotemporal correlation of 

network traffic data, thereby more accurately detecting 

known and unknown network attacks. Firstly, a Data 
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Augmentation Algorithm (DAA) based on Mixed 

Sampling (MS) and Improved Autoencoder (IA) is 

designed to provide a higher quality data foundation for 

subsequent MNTI model training. Then, a Convolutional 

Neural Network (CNN), Gated Recurrent Unit (GRU), 

and AM are combined to build an MNTI model. A GAN-

based Adversarial Convolutional Encoder model (AECE) 

is introduced to further enhance the MNTI’s adaptability 

to complex attack patterns. This study innovatively 

combines oversampling and undersampling techniques for 

MS, and introduces Variational Autoencoders (VAEs) for 

dimensionality reduction of discrete data. This can 

effectively solve the problem of imbalanced number of 

normal and abnormal samples in IoT datasets and enhance 

the authenticity and richness of samples. 

The study is structured into four main sections. 

Section 1 is a review of the current research status of 

network IDS-related technologies in the industry. Section 

2 elaborates on the construction process of DAA and 

MNTI models. Section 3 involves performance testing and 

application analysis of the designed MNTI model. Section 

4 summarizes the experimental results. 

2 Related works 
Intrusion Detection (ItruD) technology is an important 

guarantee in network security, playing a crucial role in 

responding to network attacks and protecting systems 

from malicious activities. Numerous scholars have 

conducted research on it. Machine Learning (ML) and 

Deep Learning (DL) have been widely applied in 

information security. Qazi et al. constructed a hybrid 

network IDS based on DL technology. The system used 

CNN to collect local features and utilized deep Recurrent 

Neural Networks (RNN) to extract features. The public 

dataset has confirmed the effectiveness of this method, 

with a mean accuracy of 98.90% when detect malicious 

attacks [6]. Improving network security for cloud 

computing and IoT was crucial. Kasongo first utilized the 

eXtreme Gradient Boosting (XGBoost) Feature Selection 

(FS) algorithm to lower down the feature space of the data, 

and then built an IDS framework based on ML. The 

experiment confirmed the performance of the research 

results [7]. IDS could effectively protect the security of 

IoT. Hazman et al. designed an integrated learning IDS 

framework based on IoT intelligent environment. This 

framework integrated Adaptive Boosting (AdaBoost), FS 

technique Boruta, mutual information, and correlation. In 

dataset validation, this method performed well in 

accuracy, recall, and precision, with a Detection Rate (DR) 

of approximately 99.9%, a learning computation time of 

33.68 seconds, and a detection time of 0.02156 seconds 

[8]. Ghanbarzadeh et al. designed an IDS method based on 

the Horse Swarm Optimization Algorithm (HSOA) and K-

nearest Neighbors (KNN), which mimics the behavior of 

horses and selects effective features for ItruD. This 

method used a base function to update HSOA into a 

discrete algorithm and combined it with quantum 

computing to implement the transformation of a quantum 

inspired optimizer for improving population social 

behavior. This method has improved the average size and 

classification accuracy of FS by 6%, and the accuracy of 

ItruD has reached 99.8% [9]. 

Elnakib et al. designed an enhanced anomaly-based 

ItruD DL multi-class classification model based on ML. 

This method outperformed other DL models in accuracy 

in classifying network traffic behavior [10]. To enhance 

the security of IoT, Mohy Edine M et al. constructed an 

FS model using principal component analysis, univariate 

statistical testing, and genetic algorithm, and integrated 

KNN to build an IoT network ItruD model. This method 

had high accuracy and detection time of less than one 

minute [11]. In response to the increased security risks of 

data transmission caused by interconnected nodes in IoT, 

Alotaibi et al. constructed a binary classification model for 

IoT traffic using various supervised ML models and 

ensemble classifiers. The classifier’s accuracy surpassed 

that of a single model, and the predictive classification was 

significantly reduced [12]. The current IDS still had a high 

level of false positives, so Al Ghuwairi et al. developed a 

method for early detection of cloud computing intrusions 

using time series data. This method included FS and FS-

based prediction models, which could effectively solve the 

problem of misleading connections between time series 

anomalies and attacks. This method significantly reduced 

the use of predictive factors and improved the prediction 

error index, reducing training time, prediction time, and 

cross-validation time by about 85%, 15%, and 97% [13]. 

The security and privacy vulnerabilities of the Internet 

were very urgent. Ntizikira et al. used Federated Learning 

(FL), Differential Privacy (DP), and secure multi-party 

computation to enhance data confidentiality, and 

integrated Deep Neural Networks (DNN) to achieve real-

time anomaly detection. This method had excellent 

accuracy, precision, and recall [14]. Omer N et al. used 

Firefly Algorithm (FA) to detect intrusions before 

evaluating IDS, and then used Probabilistic Neural 

Networks (PNN) for classification. This method 

performed well with an accuracy rate of up to 98.99% 

[15]. The summary table of the above related work is 

shown in Table 1. 

In summary, although network IDS has received a lot 

of research, existing IDS models generally face problems 

such as imbalanced data samples, fragmented 

spatiotemporal features, and adaptability to unknown 

attack patterns. In response to the above issues, this study 

reconstructs the data distribution, uses CNN and GRU to 

jointly mine spatiotemporal features, and enhances the 

model's ability to recognize unknown attacks using 

AECE. It enhances the comprehensive defense 

effectiveness of the model in complex attack scenarios 

from three dimensions: data layer, feature expression, and 

detection mechanism. 
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Table 1: Summary table of related work. 

Literature Model Data set Result Limitation 

[6] CNN + RNN CSE-CIC-IDS2018 The average accuracy rate is 98.90% 
High consumption of computing 
resources 

[7] RNN + XGBoost NSL-KDD The accuracy rate is 97.8% 
Insufficient generalization ability 

for zero day attacks 

[8] AdaBoost + Boruta UNSW-NB15 The accuracy rate is 99.9% 
Weak robustness of adversarial 
samples 

[9] HSOA + KNN CIC-IDS2017 The accuracy rate is 99.8% Parameter tuning is complex 

[10] ML IoT-23 
The accuracy of multi class 

classification is 98.7% 
Poor model interpretability 

[11] KNN + genetic algorithm TON_IoT The accuracy rate is 98.3% Significant information loss 

[12] ML + ensemble classifier BoT-IoT 
The binary classification accuracy is 

99.2% 

Poor scalability in multiple attack 

scenarios 

[13] FS 
AWS CloudTrail 

logs 
85% reduction in training time Restricted transferability 

[14] FL + DP + DNN CIC-IDS2019 The accuracy rate is 96.5% Slow convergence speed 

[15] FA + PNN KDD Cup 99 The accuracy rate is 98.99% 
Insufficient coverage of modern 

attack modes 
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Figure 1: Schematic diagram of the workflow of DAA. 

3 IoT security intrusion detection 

based on IA and AECE 
ItruD technology can provide timely security alerts and 

response basis for network administrators. This study first 

designs DAA to improve the accuracy of traffic detection, 

and then integrates multiple DL technologies to construct 

the MNTI model. 

3.1 Design of DAA based on MS and IA 

With the popularity of IoT devices, the number of nodes 

has exploded, but normal network behavior accounts for 

the vast majority of traffic data, and there is a serious 

imbalance between the amount of abnormal samples and 

the normal samples. Unbalanced data samples can easily 

lead to a decrease in sample recognition accuracy [16]. 

Therefore, this study first designs DAA to address the 

sample imbalance, and Figure 1 shows the algorithm’s 

framework. 

In Figure 1, expansion operation is required for a few 

samples, while screening operation is required for most 

samples. Therefore, this study combines oversampling 

and undersampling techniques to construct a hybrid 

sampling system. Firstly, the category judgment threshold 

is determined, and the Synthetic Minority Oversampling 

Technique (SMOTE) is utilized to expand the imbalanced 

dataset and construct the training set for the classifier.  

 

SMOTE changes the distribution of minority classes by 

searching for their neighbors in the feature space and 

generating new synthetic samples between these samples 

[17]. In this study, SMOTE is used to expand minority 

class samples, balance the class distribution in the dataset, 

and ensure that the model can fully learn the features of 

various attack categories during training, thereby 

improving the model's generalization ability. Then, based 

on ensemble thinking, multiple classifiers are used to 

complete ensemble training. Finally, an ensemble 

classifier is used to search for important minority class 

samples and divide them into oversampling objects. 

XGBoost belongs to the category of ensemble learning 

algorithm Boosting. This algorithm improves prediction 

accuracy by integrating multiple weak learners into one 

strong learner. In IoT datasets, normal network behavior 

samples often outnumber abnormal samples. XGBoost 

can assign higher weights to minority class samples during 

the training process, thereby improving the recognition 

ability of minority classes and effectively solving the 

problem of data imbalance. Therefore, this study adopts 

XGBoost as the basic classifier. The basic learner of 

XGBoost is decision tree ( ); mh x  . x  is the input data. 

m  is the parameter. The weighting of all decision trees is 

the final prediction result. The calculation process of m  

is equation (1). 
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In equation (1), 
JR  is the leaf node region, and 

J R . 
Jc  is a constant. XGBoost generates decision 

trees in the direction of reducing residual 
tg . The 

calculation process of 
tg  is equation (2). 
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In equation (2), 
iy  represents the true value of the i -

th sample, 1ˆ t

iy −  represents the observed value of the 

sample at the 1t − -th iteration, t  represents the number of 

iterations, and N  represents the maximum number of 

iterations. The update process of the estimation function 

( )F x  is equation (3). 

( ) ( ) ( )1 ;t t tF x F x kh x −= +  (3) 

In equation (3), k  is a constant. The objective 

function of XGBoost is the superposition of the loss 

function and the penalty function, as calculated in 

equation (4). 

( ) ( ) ( )
n P

i pii p
L l y y f = − +    (4) 

In equation (4), i
y  and 

iy  are predicted values and 

true values, and ( )n

iii
l y y−  is the loss function. 

( )pf  is the regularization term, and the calculation 

process is shown in equation (5). 
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In equation (5), w  is the leaf weight.   and 
'  are 

regular penalty terms for leaves and their weights. In ML, 

models may overfit training data, leading to a decrease in 

predictive ability on new data. Regularization reduces the 

risk of overfitting by adding additional penalty terms to 

the loss function to limit the complexity of the model. 

Equation (5) limits the model’s complexity by 

comprehensively considering the number of leaf nodes 

and leaf weight sizes in the tree, which helps to improve 

the predictive performance of the model on new data. To 

improve the prediction accuracy of XGBoost, the training 

set is introduced as a new function f  for greedy 

optimization of the objective function, as expressed in 

equation (6). 
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After expanding equation (6) according to the second-

order Taylor formula, the final objective function 
( )t

L  is 

obtained through training simplification, as shown in 

equation (7). 

( )

' 2

1

1

2j j

t

J

i ij
i I i I

L

G w H w

J





=
 

=

    
+ +    

    

+

     (7) 

In equation (7), G  and H  are the first and second 

derivatives of the loss function. IoT datasets typically 

contain a large number of numerical features, and some 

density or hierarchical clustering algorithms may have 

issues with not being intuitive or having high 

computational costs when processing numerical data. The 

K-means algorithm has a simple principle and good 

clustering effect on numerical data. It can quickly divide 

the data into different clusters and select representative 

samples, thereby improving training efficiency. 

Therefore, this study adopts the K-means clustering 

algorithm for undersampling operation, and the objective 

function is shown in equation (8). 

( )
2

1

,
j

k

i j

j i

J X x m



= 

= −  (8) 

In equation (8), 
j  is class j . 

jm  is the center of a 

certain category. ix  is a data point. The MS method 

compensates for the shortcomings of traditional sampling 

techniques, but IoT datasets typically involve data with 

discrete characteristics. The SMOTE algorithm has low 

applicability to discrete data. VAE can map input data to 

latent space through an encoder, obtain representation 

vectors, output parameters of the representation vectors, 

and generate diverse new samples. This will increase the 

richness of the dataset and help improve the model's 

generalization ability. VAE has good processing ability 

for discrete data. Therefore, the study introduces VAE for 

dimensionality reduction of discrete data. VAE contains 

an encoder and a decoder. The encoder maps the input data 

x  to the latent space to gain the representation vector z , 

and outputs the parameters of the representation vector. 

The decoder maps the representation vector back to the 

data space to generate new samples and ensures that the 

new samples are as similar as possible to the original input 

data [18-19]. The training objective of VAE is to optimize 

the variational lower bound ELBO , as shown in equation 

(9). 

( ) ( )[ ( )]
( ( ) ( ))

ELBO q Eq z x logp x z
DKL q z x p z

=
−

∣ ∣
∣  (9) 

In equation (9), ( )p x z∣  is the generative model 

defined by the decoder. ( )p z  is a standard Gaussian 

distribution. DKL  is the Kullback Leibler divergence. 

( )q z x∣  is the posterior distribution. The working 

principle of DAA based on MS/IA is shown in Figure 2. 

In Figure 2, data augmentation is divided into two 

stages: model training and data synthesis. Firstly, VAE is 

used to learn data features during the training phase and 

convert them into representation vectors with rich 

information. Then, the representation vector and data 

labels are input into the MS module to achieve balanced 

processing of the data. Finally, the decoder completes the 

conversion of the data format. In summary, the proposed 
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DAA based on MS and IA mainly consists of four steps. 

Step 1 inputs network traffic data and preprocesses the raw 

data. Step 2 determines the majority class and minority 

class samples, applies SMOTE to generate new composite 

samples for the minority class samples, and uses K-means 

clustering algorithm to undersample the majority class 

samples. Step 3 trains the VAE using the training set data 

and uses the trained VAE to perform dimensionality 

reduction and feature extraction on minority class samples. 

Step 4 fuses the synthesized samples generated by 

SMOTE and VAE to obtain an enhanced dataset, and 

performs weighted fusion with the majority class samples 

to obtain a balanced dataset. This study uses Xie Beni 

Index (XBI) and Davies Bouldin Index (DBI) as indicators 

to evaluate the clustering quality of DAAs. XBI evaluates 

clustering performance by measuring the distance 

between cluster centers and the closeness of data points 

within clusters. The smaller the value of XBI, the more 

tightly clustered the sample points within the cluster are, 

and the better the separation between different clusters, 

resulting in better clustering performance. DBI takes into 

account both intra-class sample similarity and inter-class 

sample difference, with smaller values indicating better 

clustering performance. 

3.2 Design of MNTI model based on 

feature fusion and AECE 

IDS is usually segmented into two types of signature 

detection and two main technologies. Anomaly detection 

is a detection technique that identifies abnormal activity 

by analyzing the normal behavior patterns of network 

traffic. When network traffic deviates from normal 

behavior patterns, the system considers it a potential 

malicious activity and triggers an alert [20]. Network 

traffic data typically contain a mixture of multiple types of 

information, which are correlated in both temporal and 

spatial dimensions. Network traffic data have obvious 

temporal characteristics. For example, network attack 

behavior usually shows sudden growth of traffic in a short 

period. At the same time, network traffic data also have 

spatial correlations. In the same IoT network, data 

transmission between servers and multiple clients may 

exhibit synchronous or correlated trends, and devices in 

the same network often share certain common network 

configurations and security policies. Therefore, to capture 

information at different levels, this study constructs the 

basic framework of the MNTI model based on the concept 

of feature fusion, as shown in Figure 3. 
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Figure 2: Schematic diagram of DAA based on MS/IA. 
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Figure 3: Basic framework structure of MNTI model based on feature fusion. 
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Figure 4: Schematic diagram of feature extraction encoder structure. 

As shown in Figure 3, after data augmentation, the 

MNTI model mainly includes two modules: feature fusion 

and malicious traffic detection. Among them, the feature 

fusion module extracts spatial and temporal features of the 

balanced dataset, and disease fusion presents a 

spatiotemporal feature set. The malicious traffic detection 

module first determines whether it is a known attack. If it 

is a known attack, it directly initiates security warning 

measures. If not, further unknown attack detection will be 

conducted. If the traffic detection is abnormal, timely 

security warning measures should be taken and the 

network attack database should be updated. In the context 

of network traffic, spatial features reflect the combination 

relationship between different features in network traffic 

data, such as a combination pattern of features such as 

different IP addresses and different ports. Spatial features 

can also represent communication relationships between 

different devices or nodes. The temporal characteristics 

mainly describe the dynamic changes and patterns of 

network traffic data in the time dimension, reflecting the 

changing trends and periodic patterns of network traffic 

data in time, such as the peak and off peak periods of 

network traffic, periodic fluctuations in traffic, etc. This 

study uses CNN structure for spatial feature extraction and 

RNN suitable for sequence data processing for temporal 

feature extraction. The structure of the feature extraction 

encoder designed for the feature fusion module is shown 

in Figure 4. 

In Figure 4, the feature extraction spatial encoder 

structure consists of an Asymmetric Spatial Encoder 

(ASE) and a Bidirectional Temporal Encoder (BTE). ASE 

is used to extract spatial features from raw data. BTE is 

used to extract temporal features from the extracted spatial 

features, achieving the effect of fusing features from 

different dimensions. Finally, spatial and temporal 

features are fused to form a comprehensive feature 

representation. ASE is based on traditional CNN 

architecture, consisting of four blocks that integrate two 

different types of AMs and convolutional kernels of 

different scales. Four blocks use two types of multi-scale 

convolutional layers. Both Multichannel 1 and 

Multichannel 2 contain three convolutional path 

calculations and use three various sizes of convolution 

kernels, namely 3×3, 5×5, and 7×7, to enhance the 

receptive field of the network. In addition, Block also 

introduces Global Attention Mechanism (GAM) and 

Residual Attention Mechanism (RAM). Firstly, RAM is 

used to fuse multi-scale inputs with the original image, and 

residual connections can be introduced to enhance the 

model's generalization ability. Then GAM is used to fuse 

the output of RAM with the original image. GAM can 

correlate and weight all positions in the input sequence, 

enhancing the model's overall understanding and 

processing ability of the input sequence. The selected 

basic RNN unit is GRU. GRU refers to a variant structure 

of RNN that can reduce gradient vanishing while 

preserving long-term sequence information. The BTE 

structure is shown in Figure 5. 

In Figure 5, the BTE structure has undergone 

bidirectional improvement on the basis of traditional RNN 

and introduced multi head self AM. Bidirectional GRU 

(BiGRU) can extract forward and backward data and 

determine whether there is abnormal information in the 

current traffic data [21]. The merging strategy is used to 

fuse the forward and backward hidden states of BiGRU to 

generate the final sequence representation. To provide 

more comprehensive sequence feature information and 

improve the detection performance of the model, this 
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study adopts a concatenation strategy, directly 

concatenating the forward and backward hidden states into 

a vector. The update process of the forward update gate 
tz  

and reset gate 
tr  in BiGRU is equation (10). 

( )
( )

1

1

t n t n t

t m t m t

r w x u h

z w x u h




−

−

= +
 = +

 (10) 

In equation (10),   represents the Sigmoid activation 

function, with an output value between 0 and 1. The larger 

the value, the more information from the previous time 

step is retained. 
nw  and 

mw  represent the weight 

parameters of the update gate and reset gate, respectively. 

nu  and 
mu  represent weight matrices. 

1th −
 represents the 

previous state. h  is the hidden layer state. 
tx  is the input 

information at the current time. The calculation of output 

layer th  is equation (11). 

( ) 11t t t t th z h z h−= − +  (11) 

In equation (11), th  represents the updated value of 

the reset gate. The reverse calculation formula for BiGRU 

is equation (12). 
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t m t m t
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t n t n t

z w x u h

r w x u h




+

+

 = +

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In equation (12), a  is the reverse GRU. a

mw  and a

nw  

represent weight parameters. a

mu  and a

nu  represent 

weight matrices. 
1th +

 represents the state at the next 

moment. Finally, the hidden layer states of the forward 

and reverse GRUs are weighted and summed to obtain the 

final prediction result, as shown in equation (13). 

( )t t yy h w=    (13) 

In equation (13), 
yw  is the weight between the hidden 

and output layers. Finally, the predicted temporal results 

are input into the multi head self-AM to achieve weighted 

summation of encoding. The detection objects of the 

traffic detection module include known and unknown 

network attacks. The known detector for network attacks 

is SoftMax. The SoftMax expression is equation (14). 

( ) ( ) ( )( )exp / expSoftMax x x sum x=  (14) 

In equation (14), exp  is an exponential function. In 

the feature fusion module, this study achieves the 

extraction of spatial and temporal features through CNN 

and GRU, while reducing the impact of redundant 

features. The convolutional layer automatically filters 

local features through convolutional kernels of different 

scales, while the gating mechanism of GRU filters out 

irrelevant temporal information. In addition, to further 

improve the model’s performance, this study also ranks 

the importance of features. In the data augmentation stage, 

XGBoost is used to rank features and select the top-ranked 

features for subsequent model training. Meanwhile, in the 

feature extraction encoder, Genetic Algorithm (GA) and 

RA are introduced to automatically focus on the more 

important features for ItruD by learning the weights of 

features, thus achieving feature importance ranking. The 

detection model for unknown network attacks is shown in 

Figure 6. 
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Figure 5: Schematic diagram of BBTE structure. 
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Figure 6: Unknown network attack detection model structure. 
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In Figure 6, the model is designed based on the 

concept of GAN and consists of two parts: the generative 

network and the judgment network. Generate models that 

produce fake data similar to real samples. The 

discriminative model is responsible for distinguishing and 

judging between real data and generated data [22]. In the 

early stages of training, the weights of the discriminator 

are randomly initialized. As training progresses, the GAN 

continuously learns how to generate more realistic data, 

while the discriminator also updates its parameters based 

on the feature differences between real and fake data. At 

the end of the training phase, the generator and 

discriminator reach Nash equilibrium, and the 

discriminator's loss tends to stabilize. The anomaly 

detection threshold is based on a dynamic adjustment 

strategy. In practical applications, if the False Alarm Rate 

(FAR) is too high, the threshold should be appropriately 

increased to reduce misjudgments of normal behavior. If 

the false alarm rate is too high, the threshold can be 

appropriately lowered to improve the detection ability of 

attack behavior. The training game process of GAN is 

equation (15). 

( )

( ) ( )( )

( ) ( )( )( )
mod

~

~

min max ,

log

log 1

data

el

G D

x P x

z P z

V D G

E D x

E D G z

=

 
 

 + −
 

 (15) 

In equation (15), z  represents noise. x  is the real 

sample data. ( )dataP x  is the probability distribution 

function of x . 
( )( )mod ;
i

elP x   is the probability 

distribution function for judging the network, and   is the 

parameter. G  and D  are generative networks and 

discriminative networks. The detection model is defined 

as AECE. The generative network part includes encoders 

and decoders. The encoder and decoder both contain 3 

convolutional layers and two pooling layers. The training 

process needs to make the reconstructed data of the 

decoder closest to the original data, and use the maximum 

reconstruction loss of normal traffic behavior as the 

threshold for detecting unknown attacks. The training 

process needs to maximize the probability of generating 

samples as real samples, consisting of convolutional, 

pooling, and fully connected layers. This study uses Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), 

and Mean Absolute Percentage Error (MAPE) as 

evaluation metrics. MAE, RMSE, and MAPE are 

commonly used indicators to evaluate the difference 

between predicted and true values in regression models. In 

ItruD, they can be used to measure the accuracy of 

predicting network traffic characteristics, indirectly 

reflecting the model's ability to distinguish between 

normal and abnormal traffic. MAE represents the average 

absolute error between predicted values and true values. 

RMSE emphasizes the impact of larger errors. MAPE 

displays model accuracy in the form of relative errors. The 

calculation of MAE, RMSE, and MAPE is shown in 

equation (16). 
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In equation (16), n  represents the number of samples, 

iy  represents the true value, and ˆ
iy  represents the 

predicted value. 

4 Performance testing and 

application effect analysis of IoT 

security ItruD model 
To verify the effectiveness of the designed DAA and 

MNTI models, this study conducts performance testing 

and application effect analysis, and discusses the results. 

4.1 Performance testing of IoT intrusion 

detection model 

The experiment is conducted using the CentOS 7 

operating system and the DL framework is Pytorch 1.7. 

The central processing unit is Intel (R) Xeon (R) Silver 

4214 2.20 GHz, with 128 GB of memory. The image 

processor is Ge Force RTX 2080Ti. The programming 

language is Python 3.8. The experiment selects Non-

Intrinsic FS for KDD (NSL-KDD), UNSW-NB15, IoT-

23, and CSE-CIC-IDS2018 datasets for performance 

testing. NSL-KDD includes normal connections and 

various types of attacks, covering multiple characteristics 

such as connection duration, source/destination ports, 

service type, protocol type, etc. UNSW-NB15 simulates 

network traffic in a real network environment, containing 

175,341 network connection records, covering common 

network attacks and normal traffic. IoT-23 contains a large 

amount of device interaction data, sensor readings, and 

network communication records. CSE-CIC-IDS2018 

contains network traffic data captured from multiple real 

network environments, covering various types of attacks 

and normal traffic. The eigenvalues are scaled to the range 

of 0-1 and divided into training, testing, and validation sets 

in an 8:1:1 ratio to standardize the data. The learning rate 

is set to 0.001, Epoch is 60, Batchsize is 32, hidden layer 

is 2, and Adam optimizer is used. Firstly, the performance 

of DAA is analyzed, and the clustering and comparison 

effects before and after data balancing are compared, as 

shown in Figure 7. 
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Figure 7: Analysis of the effect of data enhancement algorithm. 

Table 2: Results of ablation experiment. 

Models Detection rate Precision Recall MAE 

Without feature fusion module 0.856 0.865 0.846 0.214 

Without DAA 0.824 0.834 0.813 0.245 

Without AECE 0.879 0.887 0.871 0.198 

Complete model 0.919 0.925 0.912 0.179 

 

In Figure 7 (a), there is a significant difference in the 

clustering performance evaluation indicators of the dataset 

before and after data balancing. The XBI and the DBI both 

achieve better results on the balanced dataset, with a 

minimum XBI of 0.259 and a minimum DBI of 0.194, 

with a decrease of 5.78% and 15.88%, respectively. After 

DAA processing, the intra cluster compactness and inter 

class separation of the dataset are improved, and the 

clustering effect is improved. In Figure 7 (b), four 

different baseline classification models achieve better 

classification accuracy on the balanced dataset after data 

augmentation, with a maximum accuracy improvement of 

0.214. To demonstrate the contribution of each component 

of the model to overall performance, ablation experiments 

are designed and studied. The ablation experiment uses the 

NSL-KDD dataset to compare the DR and error metrics of 

the complete model with models without feature fusion 

modules, DAA, and AECE. The results of the ablation 

experiment are shown in Table 2. 

From Table 2, the DR, precision, and recall rate of the 

complete model are the highest, while the MAE is the 

lowest, indicating that the proposed improvement 
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strategies can effectively improve the ItruD performance. 

Among them, the model without DAA performs the worst 

in terms of metrics, indicating that DAA contributes the 

most to model performance and can significantly improve 

the model's ability to identify attack samples by solving 

the problem of data imbalance. The MNTI model is 

compared with the Enhanced Anomaly-based ItruD DL 

Multi-class Classification (EIDM) proposed in reference 

[10], the KNN classifier and FS-based ItruD model (K-

NN-FS) in reference [11], and the Firefly Optimization 

(FFO) detection model in reference [15]. Wilcoxon signed 

rank test is used to evaluate the performance difference 

between the proposed model and the baseline model, with 

a p<0.05 indicating statistical significance of the 

difference. To ensure the reliability and stability of the 

results, each model is independently run 5 times on each 

dataset. The performance indicators reported are the 

average of these 5 runs, presented in the form of mean ± 

standard deviation. The classification performance of 

different ItruD models is shown in Table 3. 

In Table 3, the performance of the proposed model on 

all four datasets is significantly better than the other three 

baseline models (p<0.001). The research model has the 

smallest value in the ItruD classification error index, with 

the minimum values of MAE, RMSE, and MAPE being 

0.179, 0.236, and 0.197. The model detection errors of the 

other three literature are all greater than 0.3. This means 

that the designed model has the smallest classification 

error in ItruD and accurately distinguishes traffic between 

attack behavior and normal behavior. In addition, the DR 

of the proposed model is the highest, reaching 0.949. The 

maximum DR values for EIDM, K-NN-FS, and FFO 

models are 0.885, 0.882, and 0.853. High detection 

precision means that the model can effectively identify 

malicious traffic from a large amount of network traffic 

data, which is crucial for timely detection and response to 

network attacks. The F1 index is the harmonic mean of 

precision and recall, used to comprehensively evaluate the 

performance of a model. Figure 8 compares the scalability 

of different models. 

Table 3: Classification performance of diverse ItruD models. 

Model Index NSL-KDD UNSW-NB15 IoT-23 CSE-CIC-IDS2018 p-value (vs research model） 

Research model 

MAE 0.179±0.015 0.198±0.018 0.269±0.022 0.199±0.017 - 

RMSE 0.236±0.020 0.273±0.024 0.286±0.023 0.284±0.026 - 

MAPE 0.199±0.019 0.197±0.019 0.200±0.021 0.261±0.023 - 

DR 0.919±0.013 0.921±0.011 0.949±0.008 0.900±0.015 - 

Reference [10] 

MAE 0.337±0.033 0.424±0.038 0.325±0.032 0.304±0.029 <0.001 

RMSE 0.430±0.039 0.394±0.037 0.400±0.037 0.392±0.036 <0.001 

MAPE 0.338±0.035 0.442±0.042 0.349±0.033 0.404±0.033 <0.001 

DR 0.729±0.026 0.885±0.018 0.796±0.023 0.823±0.017 <0.001 

Reference [11] 

MAE 0.419±0.042 0.419±0.040 0.426±0.042 0.325±0.035 <0.001 

RMSE 0.338±0.033 0.437±0.041 0.362±0.035 0.319±0.031 <0.001 

MAPE 0.465±0.045 0.497±0.048 0.359±0.034 0.450±0.043 <0.001 

DR 0.827±0.020 0.842±0.021 0.882±0.018 0.820±0.023 <0.001 

Reference [15] 

MAE 0.345±0.034 0.490±0.045 0.339±0.036 0.461±0.042 <0.001 

RMSE 0.478±0.047 0.411±0.038 0.416±0.041 0.451±0.043 <0.001 

MAPE 0.351±0.036 0.400±0.039 0.447±0.042 0.379±0.036 <0.001 

DR 0.841±0.023 0.853±0.022 0.828±0.020 0.833±0.022 <0.001 
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Figure 8: Scalability comparison of different ItruD models. 

Table 4: The training time of the model on different datasets (s). 

Model NSL-KDD UNSW-NB15 IoT-23 CSE-CIC-IDS2018 

EIDM 158.25 183.49 204.96 198.42 

K-NN-FS 92.33 105.56 120.71 112.98 

FFO 143.75 165.42 192.04 178.64 

Research model 182.43 210.76 244.67 226.28 
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Figure 9: Comparison of loss function curves and response time for different ItruD models. 

In Figure 8, the research model has significant 

advantages in detection accuracy and F1 index values, and 

performs well on four different datasets. The maximum 

precision values on each dataset are 0.981, 0.988, 0.983, 

and 0.989. The maximum values of F1 index are 0.978, 

0.977, 0.977, and 0.985. The difference in values between 

the test and training sets of the research model is small, 

and the data fluctuation is not significant. The results 

indicate that the proposed model can maintain high 

detection precision and F1 index on different datasets, and 

has good generalization ability, balance, and stability. 

This is mainly due to the introduction of data 

augmentation, feature fusion and extraction, and 

adversarial training techniques in the model, which 

significantly improve the performance and scalability of 

IDS. The training time of the above model on different 

datasets is shown in Table 4. 

From Table 4, compared to the comparison model, the 

proposed model has a longer training time on all four 

datasets, with the longest being 244.67 seconds. This is 

because the architecture of the proposed model is more 

complex, including feature fusion, IA, AECE, and other 

components, which increases the complexity of the model 

and leads to an increase in training time. The baseline 

model architecture is relatively simple, so the training time 

is relatively short. 

4.2 Performance testing and application 

effect analysis of IoT ItruD model 

It continues to compare the application effects of different 

ItruD models in practice. The loss function curve and 

response time of the model are shown in Figure 9. 
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Figure 10: FNR and FAR of various models. 

In Figure 9 (a), the research model has the fastest 

convergence speed on the loss function curve, can 

converge early in the iteration, and has a minimum 

convergence value of 0.08, which has a significant 

convergence advantage over other models. The fast 

convergence loss function curve indicates that the model 

can learn features and patterns in the data faster, and does 

not overfit the training data during the training process, 

but learns the general features of the data well. In addition, 

rapid convergence also indicates that the optimization 

process of the model is more efficient and can achieve the 

expected performance level in fewer iterations. In Figure 

9 (b), the response time of the research model is 368.16ms. 

The response times of EIDM, K-NN-FS, and FFO models 

are 684.1 ms, 589.3 ms, and 598.4 ms. A shorter response 

time means that the model can detect and respond to 

network traffic faster in practical applications, which is 

crucial for IoT security IDSs with high real-time 

requirements. The False Negative Rate (FNR) and FAR of 

different models in application are displayed in Figure 10. 

In Figure 10 (a), the FAR values of the proposed 

model fluctuate in the range of 0.10-0.20 under different 

sample sizes. The FAR of other models fluctuates within 

the range of 0.20-0.35. FAR reflects the tendency of the 

model to misjudge normal traffic as attack traffic. The 

proposed model has good recognition performance for 

normal behavior, with fewer false alarms. In Figure 10 (b), 

the research model achieves excellent FNR performance, 

with values fluctuating between 0.10-0.20. The proportion 

of actual attack samples that can be detected is relatively 

high compared to all actual attack samples. The results of 

data traffic per second and packet capture per second for 

different models are shown in Figure 11. 

Figures 11 (a) and (b) show that the research model 

has the highest values in both data traffic per second and 

packet capture per second. Overall, the model is capable 

of processing a large number of data packets per second 

and has strong packet processing capabilities, reflecting 

the strong detection ability and efficiency of the research 

design for attack behavior. Based on Figure 10, this 

method has a low rate of missed attacks. In Figure 11, 

there is no packet loss phenomenon for all methods. 
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Figure 11: Comparison of data traffic per second and packet capture per second for different models. 

5 Discussion 
To cope with malicious attacks on IoT devices, this study 

conducted data augmentation based on hybrid sampling 

and auto-encoder, and constructed an MNTI model using 

feature fusion on this basis. The experiment showed that 

after balancing the DAA dataset, the minimum XBI value 

was 0.259, the minimum DBI value was 0.194, and the 

decrease was 5.78% and 15.88%, respectively. The 

classification accuracy of different classification base 

models has been improved. The minimum values of MAE, 

RMSE, and MAPE for the research model were 0.179, 

0.236, and 0.197, and the maximum DR value was 0.949. 

The maximum accuracy of this model on four datasets was 

0.981, 0.988, 0.983, 0.989, and the maximum F1 index 

was 0.978, 0.977, 0.977, 0.985. In the application process, 

the convergence speed on the loss function curve was the 

fastest, the convergence value was the smallest, and the 

response time was 368.16 ms. In addition, compared with 

the baseline models EIDM, K-NN-FS, and FFO, the 

proposed MNTI model also showed significant 

advantages in false positives and false negatives. The FAR  

 

and FNR values of the proposed MNTI model fluctuated 

within the range of 0.10-0.20, which could more 

accurately distinguish between normal and abnormal 

traffic, thereby reducing the false positive rate. In contrast, 

the FAR values of the baseline model fluctuated within the 

range of 0.20-0.35, indicating a relatively high false 

positive rate. 

The DR of EIDM proposed in reference [10] on the 

NSL-KDD dataset was 0.729, while the MNTI model 

proposed in the study reached 0.919. On the UNSW-NB15 

dataset, the DR of EIDM was 0.885, while the proposed 

MNTI model was 0.921. The DR of the proposed MNTI 

model was superior to that of the EIDM model on various 

datasets. Similarly, the DRs of the ItruD models proposed 

in references [11] and [15] were also lower than those of 

the proposed MNTI model. This was mainly attributed to 

the integration of various advanced DL techniques and 

ideas in this study, including feature fusion, AMs, and 

improved GANs. Combining CNN and GRU to extract 

spatiotemporal features and introducing VAE for 

dimensionality reduction and feature extraction of data 

can effectively capture spatial correlations and local 
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features, and better process sequence data. It can also 

enrich feature information, enabling the model to more 

accurately capture key features in network traffic data. 

The AM can automatically learn the importance of 

different features, making the model more focused on key 

features related to ItruD, thereby improving the model's 

discriminative ability. In addition, the AECE introduces 

the idea of GAN and utilizes adversarial training between 

the generative network and the judgment network to 

further enhance the model's ability to detect unknown 

attacks. 

In practical applications, the proposed MNTI model 

demonstrates good scalability through its flexible design 

and modular structure. The feature extraction module can 

be adjusted according to the type of input data, such as 

replacing CNN with a network structure suitable for 

processing specific data types, or adding new feature 

extraction components to adapt to new data sources. The 

feature fusion mechanism can effectively integrate feature 

information from different modules, thereby enhancing 

the model's ability to process multi-source data. In 

addition, the depth and breadth of the model can be 

expanded according to actual needs to further improve its 

performance and application scope. For example, 

increasing the number of network layers to capture more 

complex feature patterns, or adopting multi task learning 

strategies to simultaneously process multiple related tasks. 

6 Conclusion 
This study aims to improve the accuracy of identifying 

malicious network traffic in the IoT environment to cope 

with malicious attacks on IoT devices. By using MS and 

VAE for data augmentation, the problem of data 

imbalance has been effectively solved, providing a high-

quality data foundation for model training. On this basis, 

multiple technologies such as CNN, RNN, AM, and GAN 

are integrated to construct the MNTI model, which can 

comprehensively capture the characteristics of network 

traffic data. Experimental studies have shown that the 

proposed model has good detection performance and 

stability, can accurately distinguish between attack 

behavior and normal behavior of traffic, and has high 

security protection efficiency and real-time performance. 

However, the computational complexity of the proposed 

model is relatively high, and deployment on resource 

constrained IoT devices may pose certain difficulties. 

Therefore, in future research, the model structure should 

be further optimized by using techniques such as model 

compression and quantization to reduce the computational 

complexity of the model, making it more suitable for 

resource constrained IoT environments. 
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