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Facial composite construction is one of the most successful applications of interactive evolutionary com-
putation. In spite of this, previous work in the area of composite construction has not investigated the
algorithm design options in detail. We address this issue with four experiments. In the first experiment a
sorting task is used to identify the 12 most salient dimensions of a 30-dimensional search space. In the sec-
ond experiment the performances of two mutation and two recombination operators for interactive genetic
algorithms are compared. In the third experiment three search spaces are compared: a 30-dimensional
search space, a mathematically reduced 12-dimensional search space, and a 12-dimensional search space
formed from the 12 most salient dimensions. Finally, we compare the performances of an interactive
genetic algorithm to interactive differential evolution. Our results show that the facial composite construc-
tion process is remarkably robust to the choice of evolutionary operator(s), the dimensionality of the search
space, and the choice of interactive evolutionary algorithm. We attribute this to the imprecise nature of hu-
man face perception and differences between the participants in how they interact with the algorithms.

Povzetek: Kompozitna gradnja obrazov je ena izmed najbolj uspešnih aplikacij interaktivnega evoluci-
jskega računanja. Kljub temu pa do zdaj na področju kompozitne gradnje niso bile podrobno raziskane
možnosti snovanja algoritma. To vprašanje smo obravnavali s štirimi poskusi. V prvem je uporabljeno
sortiranje za identifikacijo 12 najbolj izstopajočih dimenzij 30-dimenzionalnega preiskovalnega prostora.
V drugem primerjamo učinkovitost dveh mutacij in dveh rekombinacijskih operaterjev za interaktivni
genetski algoritem. V tretjem primerjamo tri preiskovalne prostore: 30-dimenzionalni, matematično re-
ducirani 12-dimenzionalni in 12-dimenzionalni prostor sestavljen iz 12 najpomembnejših dimenzij. Na
koncu smo primerjali uspešnost interaktivnega genetskega algoritma z interaktivno diferencialno evolucijo.
Rezultati kažejo, da je proces kompozitne gradnje obrazov izredno robusten glede na izbiro evolucijskega
operatorja(-ev), dimenzionalnost preiskovalnega prostora in izbiro interaktivnega evolucijskega algoritma.
To pripisujemo nenatančni naravi percepcije in razlikam med interakcijami uporabnikov z algoritmom.

1 Introduction
Consider a situation in which a person witnesses a crime
being committed by an unknown perpetrator. In the in-
terests of identifying and subsequently locating the perpe-
trator, a facial image is often created from the witnesses’
memory of the event. The traditional method is for the
witness to select, from a database, individual facial fea-
tures which a composite system operator then combines to
form a likeness to the perpetrator called a facial compos-
ite. However, psychological research has shown that peo-
ple generally recognise faces as whole objects (holistically)
as opposed to recognising faces as collections of individual
features [24, 6]. Also, people find it difficult to recall faces
from memory and describe them whereas recognising an
individual from a photograph of their face is a relatively
easy task. Holistic methods for facial composite construc-
tion have been developed that account for these facets of
human memory. EFIT-V [26] and EvoFIT [7] are commer-
cial systems based on these principles that were developed

in the early 2000s. EFIT-V is now used by over 75% of
police constabularies in the UK and by many other law en-
forcement agencies in countries around the world.

The holistic method represents faces as points in a mul-
tidimensional search space. In our work, we refer to such
a search space as a face-space due to its conceptual simi-
larity to the notion of face-space in cognitive psychology
research [25]. The key idea is to navigate from an initial
starting point navigate to a unique region of face-space that
corresponds to a facial likeness of the perpetrator.

The dimensions of face-space are determined by the
principle components (PCs) of a training set of face images
[5]. Each PC represents a unique holistic aspect of facial
appearance and accounts for a proportion of the statistical
image variance within the training set. The PCs are ordered
by decreasing variance such that the first PC accounts for
more variation than the second PC which accounts for more
variation than the third PC etc. Faces not included in the
training set, such as a perpetrator’s face, may also be ap-
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proximated by a weighted sum of the PCs.
To produce a likeness of a perpetrator, some process for

searching the face-space is required. A simple approach is
to use a bank of sliders in which each slider corresponds to
a single PC. This method has been used in a workable com-
posite system [3] but has two drawbacks: it is unlikely that
any one slider will produce a change in facial appearance
that maps to a simple semantic description (e.g. thin face)
and the number of permutations of for the bank of sliders
becomes cognitively prohibitive even for a relatively small
number of PCs.

An alternative, less demanding, method for locating a
face in a face-space is to use an iterative process whereby
generated faces are assessed by the witness according to
their similarity to the perpetrator. This method is imple-
mented in EFIT-V and EvoFIT using interactive evolution-
ary algorithms (IEAs). In IEAs the fitness function evalua-
tion, standard in evolutionary algorithms (EAs), is replaced
by subjective human evaluation. IEAs are suitable for tasks
requiring human assessment of solutions in which input
values are difficult to optimise individually because of in-
teraction between input values and because of the noisy and
imprecise nature of human interaction. Takagi [23] pro-
vides many examples of tasks that IEAs have been applied
to, including the fitting of hearing aids, graphic art, and in-
dustrial design.

Genetic algorithms (GAs) were introduced by Holland
in 1973 [12]. GAs can be used to solve problems requiring
binary, integer, and real valued inputs and are easy to im-
plement. For these reasons, interactive genetic algorithms
(IGAs) are a popular choice of IEA. IGAs were used in the
implementation of EFIT-V and EvoFIT and have also been
applied to tasks such as image filtering [15] and product
design [4].

The use of human evaluation places limitations on an
IEA which are not usually present in an EA. Fatigue will
limit the number of individuals (faces) a user is willing to
evaluate. Fatigue also limits the granularity of the scale
upon which individuals can be rated. For example, a scale
of 1–100 is overly burdensome whereas a simple “good”
or “not good” decision is less so [28]. It is a demanding
task for users to assign absolute fitness scores to individu-
als, which limits the number of individuals that a user can
be expected to evaluate. An alternative approach that en-
ables users to evaluate more individuals, albeit generally
less thoroughly, is to allow the user to compare individuals
to each other. For example, individual “A” could be better
than, as good as, or worse than individual “B”. The latter
approach to evaluation is used in the IEAs implemented for
comparison in this work.

When using an EA to solve a problem, care is taken to
choose an appropriate algorithm, operators, and parameter
values. In most cases it is feasible to perform many runs,
comparing different algorithm design options and parame-
ter values to see which yield the best result. Such compar-
isons are prohibitively difficult when working with IEAs
because of the limitations placed by human evaluation.

In an effort to make these comparisons, mathematical

models of human evaluation, which we refer to here as vir-
tual users, have been used in place of human participants
when optimising aspects of IEAs. These virtual users are
effectively EAs implemented with limitations that model
those imposed by human evaluation. Virtual users were
used in the early development of EFIT-V and EvoFIT to
choose effective IGAs, set population sizes, mutation rates,
and selection pressures [19, 11, 8, 9].

It is difficult to judge the usefulness of the virtual user
approach as there is virtually no work evaluating design
decisions at the parameter/operator level of algorithm de-
sign that use human participants. An experiment conducted
by Breukelaar et al. [2] used a colour matching task to
compare the use of three fixed step size and one variable
step size mutation parameters in an interactive evolution
strategy. The work concluded that using variable step size
enabled colour matches to be achieved quicker than using
fixed step sizes. Oinuma et al. [18] compared four recombi-
nation operators in a face beautification task and concluded
that a novel recombination method introduced in the pa-
per performed better than existing recombination methods.
These results were not confirmed using statistical analysis
and therefore it is not known whether the observed differ-
ences were due to genuine differences between the opera-
tors or if they were due noise in the data gathered. More
robust testing of design decisions using human participants
is required to gauge whether the comparison of parameter
values and operators is useful or whether differences be-
tween users generally renders any differences between the
design options irrelevant.

EFIT-V uses a face-space model determined by 60 PCs
[21] whereas the number of PCs used in EvoFIT is harder to
discern but [9] and [10] imply that the maximum possible
number of PCs is used. The question of the optimal num-
ber of PCs to use does not appear to have been addressed
since the earliest work in the development of EFIT-V and
EvoFIT. The imperfect nature of human face recognition
implies that the number of dimensions used in holistic fa-
cial composite systems could be reduced significantly with-
out any perceived loss in image accuracy. If the number
of PCs to be used is reduced then the most obvious PCs
to retain are those which account for the most statistical
variation in the training set. These PCs may not necessar-
ily, however, be those that account for the most perceptual
variation. In this paper we ask if human evaluation should
play a role in selecting those PCs that are used to create a
face-space of reduced dimensionality.

It is reasonable to expect that the difference between al-
gorithms is more significant than the difference between
operators. Differential evolution (DE) is a relatively recent
metaheuristic algorithm having been introduced by Storn
and Price in 1997 [22]. Examples of applications for inter-
active differential evolution (IDE) include forensic image
segmentation [17] and optimising optical illusions [16].

Work on comparing IEAs is as scant as that for com-
paring operators and parameter settings. Kurt et al. [13]
compared a number of biologically inspired metaheuristic
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algorithms, including IDE and IGAs, for facial composite
construction. It was found that IDE required fewer evalua-
tions create a composite but the recognition rate of the IDE
composites was lower than for the other algorithms. Lee
and Cho [14] compared an IDE algorithm to an IGA and to
a direct input manipulation method for an image enhance-
ment task and found that participants generally favoured
the IDE algorithm for usability. In neither of these experi-
ments was a statistical comparison between the algorithms
undertaken and so it is unknown whether these results are
reliable.

In this work we construct a 12-dimensional “human
reduced” face-space using human evaluation of the dif-
ferences between pairs of faces drawn from a larger 30-
dimensional face-space. We then compare two mutation
operators and two recombination operators in an IGA us-
ing a task in which participants create facial composites
from memory. In the third experiment the performance of
searches using the human-reduced face-space, developed
in the first experiment, is compared to that of the larger 30-
dimensional face-space and a “mathematically reduced”
12-dimensional face-space using the same facial compos-
ite task. In the final experiment, we compare an IGA to an
IDE algorithm.

2 Theory

2.1 Face-space model
A face-space model was constructed that captures the nat-
ural variation of shape and texture (the shading and colour)
of human faces. The training set of photographs used to
build our face-space model consists of 27 male and 63 fe-
male faces of various ages. The model building process
starts with manually placing 190 land mark points on each
photograph to delineate the key facial features at, for ex-
ample, at the corners of the eyes, the bottom of the chin,
and the outline of the eyebrows. The face shape of each
subject in the training set is hence defined by a 380 dimen-
sional vector containing the x-y coordinates of 190 land
mark points.

The face shapes are aligned, using the Procrustes
method, and the mean face shape s̄ calculated. Princi-
pal components analysis (PCA) is used to reduce the 380-
dimensional shape model to a smaller number of dimen-
sions. Any face shape s can then be approximated as ŝ by
the shape model using

ŝ = Psbs + s̄ (1)

where Ps are the PCs of the shape model ordered from
most important (the PCs which account for the most vari-
ance in the data) to least important and bs is a vector of pa-
rameters that determine how the shape PCs are combined
to make the face shape.

In order to create the texture model that encodes the
image pixel values, each photograph in the training set is

partitioned using its land mark points and Delaunay tri-
angulation. Piecewise affine transforms are used to warp
each training image to the mean face shape thereby form-
ing shape normalised texture patterns. PCA is then used
to find a texture model of much fewer dimensions than the
original pixel space of the normalised texture patterns. As
with the face shapes, any face texture g may be approxi-
mated using

ĝ = Pgbg + ḡ. (2)

where Pg are the PCs of the face texture ordered from the
most important to least important and bs are parameters
that determine how the texture PCs are combined to make
the face texture. Finally, a face-space model is created from
the combined shape and texture models using PCA to fur-
ther reduce the number of dimensions. Thus, the appear-
ance model parameters, c, of any face can be approximated
as ĉ using

ĉ = QT

[
wbs
bg

]
≡ QT

[
wPT

s (ŝ− s̄)
PT
g (ĝ − ḡ)

]
(3)

where Q are the appearance PCs of the training set or-
dered from the most important to the least important and
w scales the shape parameters such that equal significance
is assigned to shape and texture.

New faces can be generated by setting the values of an n-
dimensional parameter vector c and performing the above
process in reverse. Starting with the extraction of b

b =

n∑
i=1

qici (4)

where qi is the i-th column of matrix Q in Equation 3.
The shape and texture parameters bs and bg are extracted
from b and are used in Equations 1 and 2 to find the shape
parameters s and texture parameters g. The pixel intensi-
ties in g are rearranged into a two-dimensional (or three-
dimensional for colour images) array of pixels which then
form an intermediate face image with mean face shape. As-
pects of the edge of the face image which are due to the
land marking process have a dominant unwarranted effect
on the perception of the face. To counter this effect the gen-
erated face texture is inserted and blended into a softened
background. The resulting image is subsequently warped
according to the shape parameters, s, to form the final face
image.

It is important to note that there are many features which
cannot be reproduced using this method. Apart from obvi-
ous highly distinctive features such as birthmarks and scars,
more mundane high frequency features such as beards and
hair cannot be effectively rendered. In commercial soft-
ware these features are added separately using overlays and
drawing packages.

2.2 The interactive algorithms used
The IEAs used in this work both used the same representa-
tion for the genotypes: n-dimensional real valued vectors
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where n is the number of dimensions of the face-space be-
ing used.

A larger population requires more processing time to
generate the composites and imposes a greater cognitive
burden on the user whereas a smaller population size means
that a greater number of generations is required to achieve
a satisfactory composite. EvoFIT uses a population size of
18, EFIT-V uses uses a population size of 9. We used a
population size of 9 for both the IGA and IDE because this
number of images could be displayed at a reasonable scale
and also limits the cognitive demands placed on the user
when comparing faces.

The IGA used in this work is very similar to that devel-
oped by Frowd [8]. Only three levels of fitness evaluation
are allowed: preferred (best), selected, and not selected.
Every generation exactly one individual is chosen as the
preferred individual. This individual is carried unaltered
into the following generation. Eight new individuals are
needed to populate each generation. Each new individual
has two parents and so a mating pool of sixteen individuals
is required.

Stochastic universal sampling (SUS) [1] is used to select
the parents to go into the mating pool. In SUS a “wheel”
bearing a superficial similarity to a roulette wheel, is con-
structed based on the fitness values of individuals in the
previous generation. In the IGA used in this work, each
selected individual is assigned an equal sized section of the
wheel except for the preferred individual which is assigned
a double sized wedge. To select the parents, a “spinner”
comprising sixteen equally spaced arms is spun and for ev-
ery arm that “comes to rest” on a particular section the in-
dividual corresponding to that section is added once to the
parent pool.

Once the parent pool is filled, individuals are drawn from
the pool in pairs to undergo recombination to form new in-
dividuals. Uniform crossover and arithmetic crossover re-
combination operators are used in our experiments. In our
implementation of uniform crossover there is equal chance
that the offspring will inherit each gene from either parent.
In our implementation of arithmetic crossover the value of
each gene in an offspring is the mean of the values for that
gene in the parents.

After a new individual is created using recombination it
undergoes mutation. We used Gaussian addition and Gaus-
sian replacement mutation operators in our experiments. In
Gaussian addition, the mutated gene value c′i is given by

c′i = ci + σi ·m · ri (5)

where σi is the standard deviation (SD) of the data on the
i-th PC, m is the mutation factor set by the user on the
interface, and ri is a random number from the Gaussian
distribution N(0, 1). Gaussian replacement is the name
given in this paper to an analogous method to the uniform
mutation operator. In uniform mutation, each gene ci in
an offspring’s genotype will be replaced, with probability
pm, by a uniformly distributed random value c′i such that
c′i ∈ [Lower limit,Upper limit]. The Gaussian replacement
operator is similar except that c′i is a random number taken

from N(0, 1) and multiplied by the SD of the data on the i-
th PC. c′i has the further restriction that it is bounded by
a hyperrectangle which designates the edge of the face-
space, that is c′i ∈ [−2.5, 2.5] SDs. This was done to re-
duce the likelihood of implausible faces or faces exhibiting
image artefacts. The mutation probability is set by the mu-
tation slider and is restricted to the range [0, pmax] where
pmax = 5/ (the dimensionality of the face-space).

The IDE algorithm used is an adaptation of basic DE as
presented by Price et al. [20]. In DE each member of the
population is the main parent of exactly one offspring. This
main parent is the target vector and the offspring is known
as the trial vector. Three other parents are used to gen-
erate each trial vector; the base vector and two difference
vectors. Once the trial vectors have been generated each is
compared to its target vector. If the trial vector is found to
be fitter than its target vector then the trial vector takes the
place of target vector in the population.

The first step in creating a trial vector is to create a mu-
tant vector according to

xmutant = xbase + F (xdiff1 − xdiff2) (6)

where xbase is the base vector, xdiff1 and xdiff2 are the dif-
ference vectors, and F is the mutation scale factor which is
usually constrained to the range (0, 1). The second step is
to cross the mutant vector with the target vector to create
the trial vector according to

xi,trial =

{
xi,mutant if ri < Cr
xi,target otherwise (7)

where Cr is the crossover probability and ri is a random
number drawn from a uniform distribution in the range
(0, 1). To ensure that xtrial 6= xtarget, if xtrial = xtarget

one random position i in xtrial would be set such that
xi,trial = xi,mutant. A virtual user was used to find optimal
values of F and Cr for the IDE implemented in this work,
as some values of F and Cr can lead to, for example, pre-
mature convergence. The optimal values were found to be
F = 0.6 and Cr = 0.5. Preliminary testing with human
evaluation confirmed that these values were suitable.

The target, base, and difference vectors were chosen to
be different members of the population. Each vector was
used as the base vector exactly once per generation. The
order for the base vectors was determined using the ran-
dom permutation method. The difference vectors for each
trial vector were chosen at random from the population ex-
cluding the trial vector’s target and base vectors.

3 Software for Experiments 2, 3,
and 4

We developed software using Matlab that generates faces
from our face-space model using input values determined
using IEAs. The IEAs were designed and built specifically
for this work.
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Figure 1: Screenshot of the interface for the IGA

A screenshot of the interface developed for the IGA is
given in Figure 1. For every generation the participant
would choose, using the left mouse button, exactly one pre-
ferred composite face that best resembled the target face
they were trying to recreate. Additionally, if the partici-
pant thought that any of the other faces were a good like-
ness, they had the option of selecting these using the right
mouse button. Anywhere from zero to eight faces could
be selected in this way. A green border was placed around
the face the participant preferred, a yellow border for those
faces the participant thought were also good, and a black
border for those faces that were not selected. Once they
were satisfied that they had selected the best match, and
any other matches they considered to be good, the par-
ticipant would go to the next generation by pressing the
‘Next’ button. The participant would repeat the process
until they thought no further improvement was possible, at
which point they would click on the ‘Finish’ button.

A mutation slider was included so that participants could
adjust the value of the mutation parameter. For the experi-
ments reported in this paper, the mutation slider was decre-
mented by 0.03 per generation by the software (the slider’s
range was [0, 1]). A ‘Back’ button was included which
enabled the participant to go back to the previous gener-

ation and make alternative selections or adjust the muta-
tion slider if they were not satisfied with the current gener-
ation. This design decision was based on comments from
participants in earlier experiments who expressed a desire
for such functionality when the population as a whole was
worse than that of the previous generation.

Screenshots of the interface developed for the IDE algo-
rithm are given in Figures 2 and 3. In every generation the
participant would look for a satisfactory match to the target
face within the population. If a satisfactory face was ap-
parent the participant could select it and click the ‘Finish’
button. If no such face was apparent they would click the
‘Next’ button to generate the trial vectors and their corre-
sponding faces (Figure 2). The faces generated from the
trial vectors would be compared to those generated from
their target vectors on a pairwise basis (Figure 3). From
each pair of faces, the participant was asked to click on the
face which most closely resembled the target and then click
on the ‘OK’ button. Once the participant had completed the
nine pairwise comparisons the new population of individ-
uals was presented to them. At this stage the participant
could continue or finish. The participant also had the op-
tion of redoing the pairwise comparisons if they thought
that the current population was generally worse than that
of the previous generation by pressing the ‘Redo’ button.
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Figure 2: Screenshot of the main interface for the IDE algorithm

Figure 3: Screenshot of the pairwise selection interface for
the IDE algorithm
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(a) Faces generated at ±3 SDs on the 1-st PC (b) Faces generated at ±3 SDs on the 30-th PC

Figure 4: The pairs of faces at ±3 SDs on the 1-st and 30-th PCs

4 Experiment 1: Identifying the
most perceptually significant PCs

4.1 Method
In the first experiment 32 participants performed a face
sorting task to determine which 12 of the first 30 PCs, de-
rived using PCA, are perceptually most significant. Ac-
cordingly, thirty pairs of faces were generated from the first
30 PCs. Each pair of faces was constructed from points
at ±3 SDs along one of the PCs. If we form a ‘large’
30-dimensional face-space in which a face’s representation
is given by c = [c1, c2, . . . , ci, . . . , c30] then each pair of
points (c+k, c−k) representing a pair of faces has the face-
space coordinates

c±i =

{
±3 SDs if i = k
0 otherwise (8)

The pairs of faces from the 1-st and 30-th PCs are shown
in Figure 4

The faces were printed in their respective pairs on matt
photographic paper. Each pair was 5.8 cm high by 10.2 cm
wide. There are three reasons why the task was limited to
30 pairs of faces: 30 pairs of faces fit comfortably on a
desk’s surface, the differences between each pair of faces
becomes smaller for higher order PCs, and the difficulty of
the task increases with the number of pairs.

At the start of the experiment the pairs of faces were ar-
ranged randomly in a grid six pairs high by five pairs wide.
The participants were instructed to group the 12 pairs of
faces which “exhibited the most within pair dissimilarity”.
Once the participants had done this they were instructed to
sort the 12 pairs of faces from the most similar to the least
similar. In preliminary testing, it was observed that the de-
gree of dissimilarity between pairs of faces became very
hard to discern beyond the 12 most dissimilar pairs. Con-
sequently, 12 dimensions were used for the human reduced
face-space.

4.2 Results
A pair of faces was awarded 12 marks when judged to be
the most dissimilar by a participant. Similarly, the second

most dissimilar pair was awarded 11 marks, the third 10
marks and so on until the 12 most dissimilar face pairs had
been accounted for. The marks were summed over all of
the participants to obtain the aggregated rank order of face
pairs and hence the perceptual ordering of PCs. The 12
most perceptually significant PCs were found, in order, to
be 1, 2, 3, 5, 15, 7, 4, 14, 13, 6, 18, and 9. These are
the PCs that were used to build the human reduced face-
space. It can be seen that 8 of the 12 PCs in the human
reduced face-space are in the first 12 PCs of the larger 30-
dimensional face-space.

5 Experiment 2: Comparison of
recombination and mutation
operators

5.1 Method
In this experiment 15 participants were used to compare
two recombination operators (uniform crossover and arith-
metic crossover) and two mutation operators (Gaussian re-
placement and Gaussian addition).

The 12-dimensional human reduced face-space was used
in this experiment. This face-space was chosen because it
was thought that a face-space constructed using fewer di-
mensions may lead to a face match more quickly than one
constructed using many dimensions and thus induce less
fatigue in the participants. It was not thought that choice
of face-space would affect the relative performances of the
different recombination and mutation operators. Testing
each combination of recombination and mutation opera-
tor required 2 × 2 = 4 runs per participant. Each par-
ticipant also did a practice run at the start of the experi-
ment in order to gain familiarity with the task and the in-
terface. The initial population was the same for every run
of the experiment and was designed to be roughly evenly
distributed across the human reduced face-space. In an at-
tempt to achieve this, K-means clustering was used. To
generate the initial population, 1000 points were generated
using a 12-dimensional uniform distribution with the limits
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being at ±2.5 SDs on each axis. The points were grouped
into nine clusters using K-means clustering via Matlab’s
kmeans function. The centroids of the nine clusters were
used as the genotypes for the initial population of faces.

At the start of each run the participants were given 10
seconds to study the target face which they then tried to
recreate from memory using the IGA facial composite pro-
cess. The target face was not shown to the participants
again until the end of the run. The target faces were cho-
sen to be equidistant from the centre of the human re-
duced face-space. At the end of every run, participants
were shown the composite they had just created and were
asked to rate its similarity to the target on a scale from 1
to 10. Composites were then displayed side-by-side with
their corresponding target faces and in each case the partic-
ipant provided an additional similarity score. The purpose
of the without target comparison was to gauge how well
the composites matched the faces held in the minds of the
participants; in reality witnesses would not have an image
of the perpetrator to compare their composites to. The with
target comparison was included as a slightly less subjective
measure of how good the composites were.

Three sets of objective data were gathered: the time
taken to create the composites, the number of generations
it took to create the composites, and the number of times
the Back button was used. The time taken, and the num-
ber of generations, were used as indicators of how quickly
the participants were able to attain face matches. The use
of the ‘Back’ button was recorded to provide an indication
of how often the searches were producing a generation that
was worse than the proceeding one.

5.2 Results
Table 1 comprises the means and standard deviations of the
following measured variables: number of generations, time
taken, number of times the Back button was used, partici-
pant rating of their composite without reference to the tar-
get, and participant rating of the their composite with ref-
erence to the target. Each of the measured variables were
subjected to aligned rank transform (ART) with two-way
ANOVA [27]; having two mutation operators (Gaussian
addition and Gaussian replacement) and two recombina-
tion operators (uniform crossover and arithmetic crossover)
(Table 2). The differences between the mutation operators,
and the differences between the recombination operators,
were not significant for any of the measured variables. The
interaction between the operators, that is the effect of using
any particular mutation/recombination operator pair, was
not significant.

6 Experiment 3: Comparison of
Face-Spaces

6.1 Method
In this experiment 21 participants were used to compare
three face-spaces: a face-space constructed from the first

30 PCs of the PCA analysis (the large face-space), a face-
space constructed from the first 12 PCs (the mathematically
reduced face-space), and a face-space constructed form the
12 most perceptually important PCs identified in the first
experiment (the human reduced face-space).

As the results of the second experiment showed no sig-
nificant difference between the operators on any of the
recorded measures, arithmetic crossover and Gaussian ad-
dition were arbitrarily chosen as the operators for this ex-
periment.

As there were only three test conditions (large face-
space, human reduced face-space, and mathematically re-
duced face-space) each participant performed two runs for
each condition, equal to 2 × 3 = 6 runs in total. Each
participant also performed an additional practice run at the
start of the experiment.

The initial populations for each of the face-spaces were
generated using the same method as that used in Exper-
iment 2. The target faces were chosen to be equidistant
from the centre of the 30-dimensional face-space. They
were also chosen such that they could not be represented
exactly in the two 12-dimensional face-spaces. This was
done to model the error in reconstruction associated with
using a low-dimensional face-space.

6.2 Results
The measured variables were the same as those for Exper-
iment 2. The means and standard deviations of the mea-
sured variables for each of the face-spaces are presented in
Table 3.

Performing Friedman’s test on each of the measured
variables showed that the differences between the face-
spaces were not significant for any of the measured vari-
ables (number of generations: χ2(2) = 2.11, p = 0.349,
number of times the ‘Back’ button was used: χ2(2) =
0.54, p = 0.765, time taken: χ2(2) = 2.14, p = 0.343,
without comparison rating: χ2(2) = 2.37, p = 0.306, and
with comparison rating: χ2(2) = 0.71, p = 0.700).

7 Experiment 4: Comparison of
IGA and IDE

7.1 Method
In this experiment 22 participants were used to compare an
IGA to an IDE algorithm.

As the results of the second experiment showed no sig-
nificant difference between the operators on any of the
recorded measures, arithmetic crossover and Gaussian ad-
dition were arbitrarily chosen as the operators used for this
experiment. As the results of the third experiment showed
no significant difference between the face-spaces, the hu-
man reduced face-space was used in this experiment.
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Table 1: Means (standard deviations) of the dependent variables in the comparison of mutation and recombination opera-
tors in the creation of facial composites

Mutation Gauss. replacement Gauss. replacement Gauss. addition Gauss. addition
Recombination uniform arithmetic uniform arithmetic

Generations 10.6 (5.10) 12.5 (8.64) 11.5 (4.73) 9.73 (2.49)
Back count 0.73 (1.33) 0.47 (0.74) 0.87 (1.41) 0.47 (0.64)
Time taken 195s (91.5s) 222s (155s) 220s (71.1s) 188s (66.2s)

Without rating 6.27 (1.22) 5.47 (2.00) 6.07 (1.03) 6.07 (1.49)
With rating 4.40 (2.10) 5.07 (2.19) 4.60 (2.41) 4.40 (2.32)

Table 2: ART with two-way ANOVA of the dependent variables in the comparison of mutation and recombination opera-
tors in the creation of facial composites

Mutation Recombination Interaction
Variable F (1, 56) p-value F (1, 56) p-value F (1, 56) p-value

Generations 0.025 0.874 0.041 0.840 0.826 0.367
Back count 0.153 0.670 0.368 0.547 0.055 0.816
Time taken 0.427 0.516 0.553 0.460 0.851 0.360

Without comparison rating 0.132 0.718 0.510 0.478 0.771 0.384
With comparison rating 0.425 0.517 0.214 0.645 0.571 0.529

Table 3: Means (standard deviations) of the dependent variables in the comparison of the large, human reduced and
mathematically reduced face-spaces in the creation of facial composites

Without With
Face-space Generations Back count Time taken target rating target rating

Large 10.7 0.50 205s 5.81 4.10
(4.73) (0.55) (80.3s) (1.13) (1.25)

Human 9.38 0.36 186s 6.02 3.95
reduced (4.31) (0.42) (91.8s) (1.08) (1.33)

Mathematically 10.5 0.48 193s 5.86 4.12
reduced (4.75) (0.56) (85.6s) (1.16) (1.82)
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There were two test conditions (IGA and IDE) hence we
had each participant perform two runs using each condi-
tion, equal to 2× 2 = 4 runs in total. Each participant also
performed two practice runs at the start of the experiment,
one for each of the IEAs.

The initial populations were generated using the same
method as that used in Experiment 2. The target faces were
chosen to be equidistant from the centre of the human re-
duced face-space.

7.2 Results
The measured variables were the same as those for Ex-
periments 2 and 3 but the use of the IGA’s “Back” button
was compared to the use of the IDE’s “Redo” button. The
means and standard deviations of the measured variables
for each of the algorithms are presented in Table 4.

Performing exact calculations for Wilcoxon’s signed-
rank test on the measured variables showed that the dif-
ferences between the face-spaces were not significant for
any of the measured variables (number of generations:
p = 0.571, number of times the “Back”/“Redo” button was
used: p = 0.625, time taken: p = 0.305, without com-
parison rating: p = 0.553, and with comparison rating:
p = 0.520).

The participants were also asked which of the two IEAs
they preferred as it was possible to differentiate between
the IEAs because of the difference between the interfaces.
The IGA was preferred by 6 of the 22 participants, 14 pre-
ferred IDE and 2 stated no preference. Performing exact
calculations for the sign test showed that this difference
was not significant: p = 0.115. Those who preferred IDE
often stated that they found it easier to compare two faces
at a time than nine, which they found made the composite
process easier.

8 Conclusion
A human reduced face-space for use with an IEA in the
creation of facial composites was derived from a higher
dimensional PCA based face-space. The performances of
searches for faces in the human reduced face-space were
compared to those of a mathematically reduced face-space
and to the larger face-space. Searches performed using an
IGA with two different mutation operators and two differ-
ent recombination operators were compared. Searches per-
formed using the IGA were compared to those performed
using IDE.

The prioritisation of the PCs with regards to human eval-
uation was found to be similar to the numerical ordering
returned by PCA itself. The human reduced face-space
was found to share 8 of its 12 dimensions with the math-
ematically reduced face-space. We note that our data set
comprised images captured under conditions of controlled
pose, lighting and facial expression. If this were not the
case, one might expect greater differences between the per-

ceptual and numerical orderings of PCs. This is because
users can filter out variability due to lighting, pose, and
camera angle; something that selecting the most significant
PCs mathematically does not account for.

No significant differences in the performances of the
searches conducted using the different operators were de-
tected, nor were any significant differences found between
the performances of the IEAs. The difficulty and uncertain
nature of creating a facial composite render any difference
in the performances of the operators or the IEAs insignifi-
cant. This observation calls into question the utility of us-
ing virtual users or even testing with human users to aid in
making algorithmic design decisions; and lends strength to
the idea that it is safe to make these decisions based on the
judgement of the people implementing an IEA. Our work
also brings into doubt the validity of conclusions in prior
work based on experiments with virtual users or where sta-
tistical analysis has been omitted.

No significant differences in the performances of the
searches conducted in the different face-spaces was ob-
served. Again this is likely to be due to the imperfect na-
ture of face recall and recognition. This result implies that
it is possible to reduce the dimensionality of the face-space
without any loss of performance. It also shows that using
the mathematical ordering of the PCs is acceptable when
truncating the face-space and it is unlikely to be necessary
to make allowances for human perception.
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