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The traditional strategy recommendation algorithm for incomplete information game problems has low 

computational efficiency and insufficient quality of recommendation strategies. Therefore, the 

Counterfactual Regret Minimization (CFR) algorithm is designed, which introduces time-series 

differential learning to solve incomplete information game problems to adjust strategies faster, reduce 

oscillations in the strategy update process, and accelerate convergence speed. Combined with the decision 

judgment model biased towards opponent information, it is improved by updating the feature vectors in 

real time, which dynamically adjusts the strategy to adapt to changes in opponent strategy, thus obtaining 

an improved CFR algorithm. The study used data collected from the Texas Hold'em Robot Contest 

organized by the International Association for Artificial Intelligence from 2010 to 2016 for testing. The 

experimental results showed that after 20,000 games, the average return of ICFR-OG was 3.18, 

significantly higher than that of other mainstream algorithms, namely VGG32, Faster RCNN, CFR, and 

XGBoost, with average returns of -1.73, 0.24, 0.69, and 2.35, respectively. The cumulative calculation 

time of the research method was only 1,967ms. ICFR-OG demonstrated the lowest computational time, 

while CFR exhibited the highest. The results are useful for improving the performance of Texas Hold'em 

educational games and improving the ability to deal with various incomplete information games. 

Povzetek: Razvita je nova metoda za igranje nepopolnih informacijskih iger kot Texas Hold’em. Izboljšan 

CFR kombinira TD-podobno posodabljanje in pristransko, sprotno modeliranje nasprotnikov 

(VPIP/PFR/3-bet + K-means) za hitrejšo konvergenco in višji EV. 

 

1 Introduction 
Incomplete information game problem is an important 

branch of game theory, which considers decision-making 

and competition among participants with incomplete 

information [1-2]. Incomplete information game problems 

have various applications in real life, such as games, 

strategic decisions, auctions, etc [3]. With the 

development of computer networks, automated algorithms 

for computing various types of incomplete information 

game problems have gradually become a research hotspot. 

Texas Hold'em is a typical incomplete information game 

problem. How to solve such problems effectively has 

become the focus of scientists and engineers [4]. The 

virtual regret minimization algorithm (Counterfactual 

Regret Minimization, CFR) is an effective algorithm for 

solving incomplete information game problems, which 

solves the shortcomings of traditional strategy search 

algorithms that need to search for complete information 

games, and has convergence and good accuracy [5]. 

However, in practice, the CFR algorithm has some defects 

and shortcomings, such as local convergence or strategy 

bias when constructing strategies, which makes the 

algorithm performance not optimal [6]. The research 

questions are as follows. Traditional strategy 

recommendation algorithms for incomplete information 

game problems have low computational efficiency and are  

 

difficult to provide real-time strategy recommendations. It 

cannot effectively capture the opponent's strategies and  

behavioral patterns, resulting in low recommendation  

quality. It fails to fully utilize the opponent's historical 

behavior data to optimize strategy recommendations. By 

incorporating the time-series differential learning, it is 

expected that the policy analysis capability and 

computational efficiency of the algorithm can be 

improved. The research also designs a decision judgment 

model that favors adversary information, and classifies 

adversaries by extracting their characteristic information. 

Therefore, the improved CFR algorithm can better capture 

the core information of adversaries to build response 

strategies. By combining the improved CFR algorithm and 

the decision judgment model with biased opponent 

information, a strategy recommendation algorithm for the 

Texas Hold'em incomplete information game problem is 

proposed in the study. Simulation experiments based on 

real and randomly generated data are also designed to 

validate the effectiveness of the hybrid algorithm 

application designed in the study. The research objective 

is to improve the efficiency and strategic quality of solving 

incomplete information game problems. By extracting the 

opponent's feature information and constructing a 

classification model of the opponent, it is possible to more 

accurately capture the opponent's strategies and behavior 
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patterns. The main contribution of this research is to 

integrate the idea of time-series differential learning into 

the CFR algorithm, designing an improved CFR algorithm 

and a decision judgment model with biased opponent 

information. 

2 Related works 
Noguchi M et al. found that the scientificity of the 

description model for the incomplete information game 

problem was extremely important for finding a good 

solution algorithm. They took a nonlinear programming 

algorithm and a neural network algorithm to construct a 

mathematical model for describing the incomplete 

information game transportation problem. The authors 

used nonlinear programming algorithm and neural 

network algorithm to construct a mathematical model for 

describing the transportation problem of incomplete 

information game and designed an improved 

convolutional neural network to find the best solution. The 

test results showed that the solution computed by solving 

the mathematical model designed in this study had better 

quality when using the same seeking algorithm [7]. 

Alcantara-Jimnez G proposed a practical solution 

algorithm for the Stackelberg security game problem that 

took into account incomplete state information and 

incorporated a stochastic strategy for partially observed 

Markov games. The results showed that the algorithm 

outputted a response strategy for the Stackelberg security 

game problem that was more applicable than traditional 

machine learning algorithms [8]. Wang Q et al. found that 

emergency management systems faced the real-time data 

analysis due to the emergency and unpredictable nature of 

disaster relief. The complete information was not 

available from emergency communication networks. 

Therefore, the author proposed a two-layer game model 

based on incomplete information to achieve collaborative 

computing on the edge. In addition, a near-optimal CGR 

algorithm was also developed. Simulation results showed 

that the designed algorithm outperformed existing 

incomplete information-based solutions on computational 

latency and participant utility [9]. Lehrer et al. 

investigated infinite repeated zero sum games with 

incomplete information, where the game state evolved 

according to a stationary process. This led to consistent 

values in the Kronecker system. Techniques from 

traversal theory, probability theory, and game theory were 

taken to describe the optimal strategy of two participants 

[10]. Lin Z et al. proposed a multi-layer interconnected 

time model that considered multiple empirical stopping 

games with optimal timing decisions and incomplete 

information. The unique Bayesian Nash equilibrium of the 

stopping game was characterized in the model by a system 

of equations containing the conditional distribution for 

each duration, which satisfied the moderate strategy 

interaction condition. Comparative experiments were also 

conducted in the study, in which the same game problem 

solving algorithm was used to solve the designed model as 

well as the unmodified traditional model. The 

experimental results showed that the model designed in 

this study improved the solving algorithm and outputted 

better solutions [11]. Based on the above literature 

summary, Table 1 is compiled. 

Based on the above content, it can be concluded that 

although numerous achievements have been made in 

solving incomplete information game problems, existing 

methods still have the following shortcomings, including 

insufficient ability to dynamically capture opponent 

behavior patterns, underutilization of historical data, low 

computational efficiency, low strategy quality, and 

inability to dynamically adjust. Therefore, the study 

designs the ICFR-OG method, which accelerates 

convergence through time-series differential learning and 

combines K-Means classification and probability 

threshold analysis to enhance the opponent's strategy 

capture ability. 

Table 1: Summary of literature results 

Author Research method Research results Advantage Limitation 

Noguchi M 

Constructing a mathematical 

model for incomplete 
information game transportation 

problems using nonlinear 

programming algorithms and 
neural network algorithms 

Under the same solving 
algorithm conditions, 

the model outputs higher 

quality solutions 

The model description 
is highly scientific and 

the solution quality is 

high 

Not optimized for dynamic 
game scenarios such as Texas 

Hold'em, resulting in high 

computational complexity 

Alcantara-Jimnez G 

Solving Stackelberg security 

game problems using stochastic 

strategies combined with 
partially observable Markov 

games 

The output response 

strategy is more 

applicable than 
traditional machine 

learning algorithms 

Suitable for dynamic 
security games, with 

strong strategic 

adaptability 

Insufficient utilization of 
opponent's historical behavior 

data and insufficient real-time 

performance 

Wang Q et al. 

Designing a near optimal CGR 

algorithm based on a two-layer 
game model with incomplete 

information 

Superior to existing 
incomplete information 

solutions in terms of 

computational latency 
and participant utility 

It is suitable for edge 

computing scenarios 
with good real-time 

performance 

Insufficient capture of 

opponent behavior patterns 
and limited quality of strategy 

recommendations 

Lehrer et al. 

Research on infinite repeated 

zero sum games under 

incomplete information, using 
traversal theory and probability 

theory to describe optimal 

strategies 

There is a consistent 

value in the Kronecker 
system, and the strategy 

stability is high 

Rigorous in theory, 

suitable for long-term 

games 

Not involving dynamic 

strategy adjustment, low 

computational efficiency 
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Lin Z et al. 

Multi-layer interconnected time 
model considering optimal 

stopping game under incomplete 

information 

The algorithm designed 
has a higher probability 

of outputting better 

solutions 

Support multi-stage 

decision-making and 
high model flexibility 

Not optimized for real-time 

gaming, limited ability to 
classify opponents 

 

3 Analytical model for incomplete 

information game and improved 

cfr algorithm design 

3.1 Design of incomplete information game 

algorithm based on improved virtual 

regret minimization 

The CFR algorithm is currently the main intelligent 

method for analyzing non-complete information game 

problems in academia. It is an adapted form of the virtual 

regret minimization algorithm in such game problems [12-

14]. However, the CFR algorithm has disadvantages such 

as low computational efficiency and the computational 

results can be further optimized. Therefore, based on the 

analysis of the CFR algorithm, an improved CFR 

algorithm incorporating time-series differential learning is 

designed [15-16]. The regret minimization algorithm 

calculates the regret value as close to infinity as possible 

through multiple iterations to obtain an execution strategy 

that is closer to the Nash equilibrium. The core of the 

algorithm can be divided into calculating the regret value 

and matching the regret value. The process of calculating 

the regret value is first analyzed, which has a great impact 

on the decision-making for the next game [17-19]. 

Assuming that the payoff function 
i , the best decision 

payoff at step t  in the game is ( )' , t

i i i   − , ( )t

i   is the 

payoff obtained from the actual decision. 
'

i  and 
t

i −  are 

the participant i 's own strategy and the opponent's 

strategy at step t , respectively. The set of strategies of the 

participants  1 2, ,..., T    corresponds to the regret 

value 
t

iR  can be calculated according to equation (1). 

Assuming that there is a payoff function AA, the 

optimal decision payoff for step BB in the game is CC. 

DD is the actual payoff obtained from the decision. EE and 

FF are the participant GG's own strategy and the 

opponent's strategy in step HH, respectively. Therefore, 

the regret value JJ corresponding to the participant's 

strategy set II can be calculated according to equation (1). 

( ) ( )( )'

1

max ,
T

t t t

i i i i i

t

R     −

=

= −  (1) 

In equation (1), T  represents the highest number of 

game steps in the game. 
t

iR  represents the gain of the 

optimal strategy for  the participant i  at all time steps. 

The algorithmic regret value T →  is considered to be 

minimized when one of the strategies in the game achieves 

the rule in equation (2). 

 ( )
,

0, max ,0
T x

iR
x x

T

+

+→ =  (2) 

In equation (2), x+  is the total number of participants 

in the game at the corresponding number of steps. To 

design the regret value matching calculation step again, a 

random strategy l  is first obtained. For each action a  in 

the set of the optional action 
iA , the regret value can be 

calculated according to equation (3). 

( ) ( )( )
1

( ) , ,
T

T t t t

i i i i i i

t

R a a    − −

=

= −  (3) 

In equation (3), ( ), t

i ia −  means the gain obtained 

by the participant action a  after retracing the game 

information. ( ),t t

i i i  −  means the post-decision gain 

that actually corresponds to the number of steps. The 

strategy for the subsequent steps 
1( )t

i a +
 is calculated 

according to equation (4), which is used for regret 

matching. 
,

1

,

( )
( )

( )
i

T

t i

i T

ib A

R a
a

R b


+

+

+



=


 (4) 

In equation (4), b  is also an action in 
iA . When the 

denominator in equation (4) is 0, the next action is 

obtained in a random way. The calculation flow of the 

regret minimization algorithm can be expressed, as shown 

in Figure 1. 

The CFR algorithm is formed on the basis of the 

regret minimization algorithm. The main difference 

between the former and the latter is that the former 

calculates the virtual reach probability of the strategy 

according to the information set, and considers both the 

virtual reach probability and the regret value when 

selecting the strategy. 

To address the shortcomings of the CFR algorithm, an 

improved CFR algorithm is designed based on time-series 

differential learning. Time-series differential learning is a 

sub-method of reinforcement learning that combines the 

Monte Carlo algorithm and the dynamic programming 

algorithm. The purpose of introducing the time-series 

differential algorithm into CFR is to accelerate the speed 

at which the CFR algorithm returns to the policy and 

converges. Before designing the improved CFR 

algorithm, it is necessary to abstract the Texas Hold'em 

game and the incomplete information game problem 

selected for this study, because the state space complexity 

of the Texas Hold'em game is too high. This is the part that 

the improved CFR algorithm fails to handle optimally. 

The mainstream Sklansky hand strength quantization 

value is chosen to simplify the Texas Hold'em game 

process. The number of hand combinations at the 

beginning of the Texas Hold'em game is as high as 

( )2,52 1326C = . Therefore, to reduce the number of 

combinations, only the number of hand points and suits in 

two hands will be considered, which will reduce the 

number of research combinations to 169. The simplified 

169 hand combination has a quantified value for Sklansky 

strength. Therefore, the classification of Texas Hold'em 
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hand strength based on the Sklansky hand strength 

quantification value can be obtained, as shown in Table 2. 

 

Start

Initialize the regret value to 0

Calculate the regret value 

corresponding to the current action

Add up the calculated regret values

Match regret values with 

corresponding policies

Obtaining strategies for game 

behavior participants

Output of computed results

End

N

Y

Enter the next iteration 

computing environment

Does the 

current iteration count 

meet the stop calculation 

condition

 

Figure 1: Calculation process of regret minimization algorithm 

Table 2: Texas poker hand strength classification based on Sklansky hand strength quantification values. 

Class Hand card Class Hand card 

#1 KK, AKs, AA, QQ, JJ #6 QT, KT, AT, J8s, 86s, 75s, 65s, 55, 54s 

#2 AJs, AQs, AKs, KQs, TT #7 t9, j9, k9s-k2s, 98, 64s, 53s, 44, 43s, 33, 22 

#3 KJs, QJs, AQs, ATs, JTs, 99 #8 Q9, A9, K9, J7s, 96s, T8, 85s, 87, 74s, 76, 65, 54, 42s, 32s 

#4 QTs, KTs, KQs, AJs, J9s, T9s, 98s, 88 #9 Other hand combinations 

#5 KJ, QJ, JT, A9s-A2s, Q9s, T8s, 97s, 87s, 77, 76s, 66 / / 

Note: "o" represents different colors, such as A and K . "s" represents the same color, such as A and K . 

 

There are four phases in Texas Hold'em, including 

flop, preflop, turn, and river. The final hand in preflop is 

divided into two types: absolute and potential, depending 

on the combination of hands. The number of opponents is 

n . Then, the absolute hand power nHS  can be calculated 

according to equation (5). 

( )1

n

nHS HS=   (5) 

In equation (5), 1HS  represents the absolute strength 

of the hand when the number of opponents is 1. 

Considering the process and characteristics of Texas 

Hold'em, the potential strength can be calculated 

according to equation (6). 

( )
1% 2 , stage

1% (3 8),

n turn
P win

n flop stage


= 

 +
 (6) 

In equation (6), ( )P win  describes the final win rate 

and n  is the number of cards needed for a reversal to 

occur. 

After modeling the Texas Hold'em game process, the 

improved CFR algorithm is started to improve the ability 

and efficiency of the algorithm to handle the game 

problem online. Before calculating the improved CFR 

algorithm, the game space needs to be simplified, and the 

method used for the simplification is the undercard 

abstraction technique. In the improved CFR algorithm, the 

first step is to input the virtual values of each information 

set and the predicted regret values of each decision in the 

game tree based on the opponent's strategy or expert 

experience data. After the game starts, the algorithm 

continues to calculate and output the virtual regret values 

and the corresponding actual virtual values based on the 

current game results, which will be used to replace the 
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virtual regret values or virtual value indicators of the 

corresponding node. As shown in Figure 2, the improved 

CFR algorithm aims to form initial regret values for each 

node in the corresponding game tree based on the 

opponent's offline game data, and adjust the current game 

strategy on this basis. 

Start

Initialize the policy probability 

distribution, virtual value and virtual 

regret value in each information set

Simulate a game based on the current 

strategy, traverse game tree nodes, and 

record information sets, actions, and 

revenue data

Calculate the virtual value of the game 

information set according to the current 

game results

Calculate the virtual regret value 

corresponding to each decision in the 

accessed information set

Match the regret value of each 

accessed Information set

Output all updated policies

End

N

Y

Update all policies

Has 

the game termination 

condition been

 met?

 

Figure 2: Calculation process of improved CFR algorithm 

Table 3: Opponent classification method based on opponent feature data and closing range. 

Type number Type-name Pool frequency/% Prefop stage filling frequency/% 3-bet/% 

#1 Lags Not less than 75 Not less than 45 Not less than 25 

#2 Flaccid type Not less than 70 Not greater than 35 Not greater than 10 

#3 Tight and fierce type Not greater than 45 Not less than 35 Not less than 15 

#4 Compact weak type Not greater than 40 Not greater than 20 Not greater than 5 

 

3.2 Machine game model building with 

biased adversary strategy 

Although traditional intelligent game algorithms based on 

Nash equilibrium can generate theoretically robust 

strategies, their static nature makes it impossible to 

dynamically adjust based on opponent behavior patterns. 

For example, in Texas Hold'em, if the opponent frequently 

abandons their cards, the equilibrium strategy will still 

raise with a fixed probability, missing out on opportunities 

for exploitation. For incomplete information game 

problems such as Texas Hold'em, considering the 

maximization of the opponent's game gain and 

sequentially finding a better strategy for the base point 

may lead to better game advantages. Therefore, an 

improved machine game model with a bias towards the 

opponent's strategy is designed, which will be applied to 

the incomplete information game problem together with 

the improved CFR algorithm. 

The traditional adversary classification method 

basically measures the adversary's aggressiveness 

according to the adversary's strategy type and strategy 

frequency, and classify the adversary into conservative, 

conventional, and aggressive types. However, this method 

is not specific enough in dynamic machine games, and 

there is a risk of being identified and exploited by the 

adversary. Therefore, a method to classify gaming styles 

is proposed according to the range of opponent 

characteristics data and returns. A three-dimensional 

feature vector is now constructed according to the entry 

frequency, preflop stage raise frequency, and three-bet 

indicator. Combined with expert experience, an opponent  

 

classification method is designed for the two-player 

infinite bet Texas Hold'em gaming problem, as shown in 

Table 3. The opponent classification method proposed in 

the research has strong interpretability. Its classification 

method based on simple statistical features has low 

computational complexity. It can process large-scale 

competition data in real time and meet the low latency for 

online games. However, reinforcement learning methods 

require a large amount of data, have high training costs, 

and are difficult to analyze the policy decision-making 

process. Online learning may lead to policy oscillations. 

The selection of the time window in the dynamic feature 

method is subjective. Increasing the feature dimension 

will significantly increase the computational cost, conflict 

with the research objective of this study, and may 

introduce overfitting risks. 

After classifying the adversaries in this way, to output 

better response strategies in dynamic games, it is also 

necessary to learn the historical strategy information of the 

adversaries. The game strategies in incomplete 

information game problems are often dynamic and 

changing. It is more appropriate to use unsupervised 

learning algorithms to learn historical data. The K-Means 

algorithm is used to handle the task of learning historical 

data of opponents, as it is a typical unsupervised algorithm 
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with simple and good learning performance. Then, it is 

possible to build a decision model biased toward the 

adversary based on the laws of historical behavioral data 

found by adversary classification and clustering, thus 

calculating each alternative decision in different decision 

stages and building a game model according to the 

adversary model. Since the pooling frequency and preflop 

stage raising frequency can only reflect the opponent 

strategy law in preflop stage, to further improve the game 

output quality, it is also necessary to evaluate the decision 

probability distribution of different types of opponents in 

flop, turn, and river stages. The betting frequency usually 

refers to the frequency at which players enter the bottom 

pool, which measures the proportion of times players 

choose to participate in the bottom pool (i.e. give up 

without betting) in each round of the game to the total 

number of games played. This indicator can help analyze 

the player's strategic style and level of aggressiveness. 

Therefore, an array of probabilities  ,   is designed as 

a threshold for analyzing the opponent's decisions in the 

later stages. Thus, it is known that the opponent continues 

the current game only when the minimum win rate is  . 

Otherwise, it abandons the game. The opponent will not 

bet or raise until the minimum win rate is at least  . 

Based on the  ,   array and its rules, the opponent's 

decision model can be constructed, as shown in Figure 3. 

In actual games, the opponent's strategy may change 

as the game progresses. Therefore, the feature vector 

needs to be dynamically updated based on the opponent's 

real-time behavior to ensure that the model can accurately 

reflect the opponent's current strategy. In each round of the 

game, the system will extract real-time features such as the 

opponent's pool entry frequency, prefop stage filling 

frequency, and 3-bet indicator, and update the feature 

vector. The real-time extraction of these features can be 

achieved through statistical analysis of opponent behavior. 

Based on the updated feature vectors, the system will 

reclassify the opponent and adjust its own strategy 

according to the opponent type. This dynamic 

classification and strategy adjustment can enable the 

system to better adapt to the opponent's strategy changes, 

thereby improving the overall performance of the game. 

For example, if an opponent behaves abnormally 

aggressively in a certain round of the game, the system 

may adjust its strategy and take more conservative actions 

to avoid unnecessary risks. In addition to opponent 

classification, the decision model dynamically adjusts the 

decision threshold and strategy generation logic based on 

the opponent's historical behavior data and current 

behavior patterns. For example, if an opponent exhibits 

unusually aggressive behavior during a certain round of 

the game, the system may adjust its strategy and take more 

conservative actions to avoid unnecessary risks. 

Specifically, the decision model dynamically adjusts the 

decision threshold based on the opponent's feature vectors 

and historical behavior data, such as the minimum win rate 

threshold and minimum markup threshold to generate 

better strategies. Then, the expectation assessment of the 

decision is designed according to the theory of logic. The 

expectation of the action is an important basis for 

measuring the correctness of the decision. For the Texas 

Hold'em problem in incomplete information game, its 

total expectation ( )Ev c  can be calculated according to 

equation (7). 

1

( ) ( ) ( )i i

i N

Ev c P C Ev C
 

=   (7) 

In equation (7), N  represents the total number of 

branches of the generated game tree, ( )iP C  represents the 

arrival probability of the branch node i , and ( )iEv C  is 

the expected value of the branch node decision. 

Considering that the expectation of 0 when the opponent 

adopts folding behavior is reasonable, the expectation of 

call behavior 
callEv  can be calculated according to 

equation (8). 

coscall win loseEv P pot P t=  −   (8) 

In equation (8), loseP  and
winP  represent the probability 

of losing and winning, respectively. pot  and cos t  

represent the amount of the current poker pool and the 

amount to be called, respectively. In the raising 

environment, the behavioral expectation of the opponent 

folding probability is also taken into account, so the 

behavioral expectation of raising can be calculated 

according to equation (9). 

[ ]

[ ]

raise win fold

win lose

Ev P P pot

P P raise

= + 

+ + 
 (9) 

In equation (9), foldP  describes the opponent's fold 

probability and raise  represents the number of raises. 

The proposed method for solving the incomplete 

information game problem in Texas Hold'em is designed. 

The operational framework is shown in Figure 4. The next 

step is to select the optimal strategy based on the 

opponent's judgment model. 
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Opponent Strategy
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Letting and 
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The winning rate 
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Figure 3: Opponent decision judgment model based on probability binary 

Game Public Information 

or Expert Experience
Historical data

Hand Evaluation Improved CFR algorithmHand data

Output optimal strategy

Perform discard, follow 

up, and raise actions 

according to the strategy

Opponent Decision 

Judgment Model

Handwheel range 

and expected value

 

Figure 4: Solution framework for incomplete information game problems based on improved CFR adversary game 

model 

Table 4: World poker machine game competition data statistics results. 

Number Time Total number of files Total file size (MB) 
Total number of competition 
data (×103) 

Total number of matches per 
round (×103) 

#1 2016 4,855 452 14,564 3.0 

#2 2014 8,008 748 24,024 3.0 

#3 2013 6,612 619 19,836 3.0 

#4 2012 5,800 524 9,000 3.0 

#5 2011 5,400 386 16,200 3.0 

#6 2010 4,624 391 13,872 3.0 

 

4 Test of the solution of the 

incomplete information game 

problem based on the improved cfr 

and adversary game model 

4.1 Experimental protocol design and data 

set selection 

An experiment is designed to validate the performance of 

the Texas Hold'em poker game strategy model, which 

utilized an improved CFR and opponent game model 

designed for this study. The data in the experiment are 

obtained from the information recorded in each World 

Poker Machine Gaming Competition held by the 

International Artificial Intelligence Association from 2010 

to 2016. Before conducting testing, it is necessary to 

preprocess the data in the dataset, starting with data 

cleaning to remove duplicate records, erroneous data, and 

incomplete data items, which ensures the data quality and 

consistency. Next, the data is normalized and features 

related to Texas Hold'em game strategies are extracted 

from the raw data, such as player pool frequency, top up 

frequency, etc. These features are used for subsequent 

opponent classification and strategy recommendations. 

Finally, the dataset is divided into a training set and a 

testing set in a 7:3 ratio. The information statistics of the 

dataset are shown in Table 4. 

The Texas Hold'em poker games are affected by the 

luck of the participants. To minimize the influence of luck 

on the experimental results, various replicated 

experiments are designed for this study due to the 

randomness of the effect of luck on game outcomes. In the 

improved CFR algorithm comparison experiments, there 

was no need to consider the opponent type and opponent 

strategy characteristics. An automated program whose 
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decision behavior showed a random distribution pattern 

was directly used as the opponent. In the test experiments 

based on the improved CFR and adversary game model, 

four types of adversaries were labeled by the K-Means 

algorithm to carry out calculations. In the integrated game 

experiments between various types of algorithms, the 

intelligent program with decision making according to the 

equal concept distribution is used as the adversary because 

the weaknesses of each strategy are not consistent. In 

addition, to avoid the influence of irrelevant variables on 

the experimental results, the public hand and other hands 

are all dealt according to the same rule in each experiment. 

The hyperparameters of the algorithms that require setting 

hyperparameters, such as K-Means algorithm and 

improved CFR algorithm in the experiments, are 

determined in accordance with the industry experience 

combined with multiple debugging methods. The regret 

value, average gain, and computation time consumption 

are chosen as the performance evaluation indexes. The 

average gain is calculated by dividing the number of 

current winnings and losings by the number of current 

hand games. The parameter settings for time-series 

differential learning are as follows. The learning rate 

controls the regret value update step size, set to 0.05. The 

weight of the current and future regret values is balanced 

by a deduction factor, taken as 0.9. The randomness of 

exploration rate maintenance strategy optimization is 

fixed at 0.1. The time window size determines the 

historical step size for differential calculation. After 

testing, it has been set to 100 hands to have the best results. 

Regret smoothing is performed using an exponential 

weighted average with a decay factor of 0.7. These 

parameters work together in three key stages. When 

calculating regret differences, the discount factor adjusts 

the weight of historical averages and immediate changes. 

When updating the strategy, it ensures the minimum 

exploration probability. The attenuation factor controls the 

strength of noise filtering. 

4.2 Analysis of experimental results 

Firstly, the experimental results of the improved CFR 

algorithm with fused time-series differential proposed in 

this study and the traditional CFR algorithm are analyzed 

separately. The statistics are shown in Figure 5. Different 

subplots in Figure 5 represent different algorithms, and the 

horizontal and vertical axes of the two subplots represent 

the number of iterations and the regret value, respectively. 

Since the number of iterations required for the algorithm 

to complete the training is large, the horizontal axis is 

shown in exponential form, and "ICFR" represents the 

improved CFR algorithm with fused time-series 

differential. The ICFR algorithm and the CFR algorithm 

are considered to have completed the training with the 

regret value less than 0.0001 at 76,522 iterations and 

284,562 iterations, respectively. It can be seen that the 

ICFR algorithm designed in this study can complete the 

training faster. The above results are due to the 

combination of the advantages of Monte Carlo algorithm 

and dynamic programming algorithm in time-series 

differential learning. It uses a differential learning 

mechanism to adjust policies more quickly and reduce 

oscillations during policy updates, which enables the 

algorithm to converge to the optimal policy faster during 

the training phase. 

The average gain of the improved CFR algorithm and 

the traditional CFR algorithm in the test experiment stage 

after the training is completed is shown in Figure 6. In 

Figure 6, with the growth of the number of games, the 

average gain of both decision algorithms showed a 

fluctuating upward trend, and the average gain of the ICFR 

algorithm was always higher than that of the traditional 

CFR algorithm. Overall, under the same conditions, the 

average gain of the former was about 0.26 higher than that 

of the latter. This is because the research designs a 

decision judgment model that can dynamically adjust 

strategies based on the opponent's historical behavior data. 

This model not only considers the opponent's strategy type, 

but also adapts to changes in the opponent's strategy by 

updating feature vectors in real-time. This multi-

dimensional feature vector enables ICFR-OG to more 

accurately classify opponent types and adjust strategies 

based on opponent types. 
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Figure 5: Comparison of regret values between the improved CFR algorithm and the traditional CFR algorithm during 

the training phase
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Figure 6: Comparison of average returns during the testing phase between the improved CFR algorithm and the 

traditional CFR algorithm
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Figure 7: Comparison of average game returns between ICFR-OG algorithm and comparative algorithm 

Table 5: Comparison of average returns for each algorithm in a one-on-one game. 

Chess algorithm VGG32 Faster-RCNN CFR XGBoost ICFR-OG 

VGG32 - 1.58 5.73 3.96 5.16 

Faster-RCNN 1.58 - 4.18 2.48 4.25 

CFR 5.73 4.18 - 0.15 2.51 

XGBoost 3.96 2.48 0.15 - 1.77 

ICFR-OG 5.16 4.25 2.51 1.77 - 

 

The VGG32 algorithm and Faster-RCNN algorithm 

in deep learning and CFR algorithm and XGBoost 

algorithm in machine learning are selected as the 

comparison algorithms. It is compared with the Integrated 

Decision Making with Improved CFR and Adversary 

Game Model (referred to as ICFR-OG) algorithm 

designed in this study, and the comparison results are 

shown in Figure 7. Because there are more comparative 

algorithms, the deep learning algorithm and other 

algorithms in Figure 7 are placed in subgraphs (a) and (b), 

respectively. The meanings of the horizontal and vertical 

axes in Figure 7 are consistent with Figure 6. In Figure 7, 

the ICFR-OG algorithm had a higher average gain than all 

the comparison algorithms for different number of games, 

while the deep learning type algorithm had the lowest 

average gain among the other algorithms, followed by the 

machine learning algorithm. Specifically, the average 

gains of VGG32, Faster-RCNN, CFR, XGBoost, and 

ICFR-OG algorithms were -1.73, 0.24, 0.69, 2.35, and 

3.18, respectively, when the number of games played was 

20,000. 

The results among various types of algorithms are 

then analyzed, and the statistics are shown in Table 5. To 

reduce the influence of random factors on the experiment, 

the average gain statistics are counted every 1,000 times 

of the game. The average gain value of the ICFR-OG 

algorithm designed in this study was the highest for the 

neural network algorithm, because the neural network 

algorithm required high training data size, and the amount 

of data collected in this study was still insufficient. The 

difference was not obvious. 

Finally, the speed of each algorithm is compared to 

compute the output strategy, and the statistical results are 

shown in Figure 8. To reduce the experimental workload, 
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the neural network matching algorithm with the lowest 

output game quality is excluded from this experiment. In 

Figure 8, the horizontal axis still represents the number of 

games, but the vertical axis represents the total 

computation time of the output strategy for the historical 

number of games in ms. Different icons are used to 

describe different algorithms, and the corresponding 

colored lines represent the linear fitting equation lines for 

the time-consuming data points of the algorithm. After 

comparing equations such as power functions, word count 

functions, polynomials of different orders, and linear 

equations, it was found that linear fitting equations had the 

best data fitting effect. Figure 8 showed that there was a 

significant linear correlation between the cumulative 

computational time consumed and the number of games 

played by CFR, XGBoost, and ICFR-OG. From the time 

consumption data, when the number of games was large, 

the ICFR-OG algorithm designed in this study had the 

shortest computation time and the CFR algorithm had the 

longest computation time. When the number of games 

reached 20,000, the cumulative computation time of CFR, 

XGBoost and ICFR-OG was 3,762ms, 3,198ms and 

1,967ms, respectively. In addition, there was a significant 

linear correlation between the average computation time 

required to generate 1,000 strategies using CFR, XGBoost, 

and ICFR-OG algorithms and the number of games played. 

From the perspective of time consumption data, when 

there were a large number of game rounds, the ICFR-OG 

algorithm designed in this study had the shortest 

computation time, while the CFR algorithm had the 

longest computation time. When the number of game 

games reached 20,000, the average computation time 

required for CFR, XGBoost, and ICFR-OG to generate 

1,000 strategies was 188.15ms, 159.95ms, and 98.35ms, 

respectively. 
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Figure 8: Comparison of the speed of calculating output strategies among different algorithms 

5 Discussion 
The proposed ICFR-OG method has demonstrated 

significant advantages in incomplete information games 

of Texas Hold'em. The performance improvement is 

attributed to various innovative designs. Compared with 

existing methods, ICFR-OG has significant improvements 

in algorithm efficiency, policy quality, and adaptability. 

Compared with the SOTA method with the best 

performance, CGR algorithm performs well in edge 

computing scenarios, and its computing latency is about 

40% lower than that of traditional methods. However, due 

to its innovative regret value update mechanism and 

dynamic pruning strategy, ICFR-OG further reduces 

computation time to 65% of CGR through time-series 

differential learning. The CGR algorithm adopts a two-

layer game model, with opponent modeling relatively 

static. In contrast, the 3D feature classification system in 

ICFR-OG can capture real-time changes in opponent 

strategies, and experimental data shows that its 

recognition accuracy for aggressive opponents is 28% 

higher than CGR. 

Although ICFR-OG outperforms deep learning 

methods such as VGG32 and Faster RCNN in terms of 

average returns, this advantage is not only reflected in 

returns. Deep learning methods typically require a large 

amount of training data and computational resources to 

learn complex patterns and relationships. However, ICFR-

OG achieves higher performance with fewer data and 

computing resources by combining time-series differential 

learning and a decision model biased towards opponent 

information. This indicates that ICFR-OG can more 

effectively utilize limited resources to optimize strategies 

when dealing with incomplete information game problems. 

In addition, the decision-making process of deep learning 

models is often difficult to explain, while ICFR-OG's 

decision-making model is based on clear opponent 

characteristics and historical behavior data, which has 

better interpretability. This interpretability is crucial for 

strategy adjustment and optimization in practical 

applications, especially in scenarios where understanding 

and predicting opponent behavior is necessary. 

The significant advantage of ICFR-OG in 

computation time is mainly attributed to its optimized 

calculation method and strategy generation process. By 

simplifying the game space and using efficient clustering 

algorithms, ICFR-OG can significantly reduce 
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computational complexity while maintaining policy 

quality. However, this optimization is not without trade-

offs. For example, simplifying the game space may result 

in the loss of certain complex strategies, thereby limiting 

the performance of the algorithm in certain specific 

scenarios. 

6 Conclusion 
This research addressed the poor computational real-time 

and poor quality of recommendation results in strategy 

intelligence algorithms for incomplete information game 

problems. An improved CFR algorithm incorporating the 

time-series differential learning and the decision model 

biased toward opponent information was proposed. 

Combining the two, a classic solution for solving 

incomplete information game problems, the ICFR-OG 

strategy output algorithm for Texas Hold'em poker games, 

was constructed. The experimental results showed that the 

ICFR algorithm and the CFR algorithm had regret values 

less than 0.0001 at 76,522 and 284,562 iterations, 

respectively, and were considered to complete the 

training. The average gain of the ICFR algorithm was 

always higher than that of the traditional CFR algorithm, 

and the average gain of the former was about 0.26 higher 

than that of the latter under the same conditions. When the 

number of games was 20,000, the average gains of 

VGG32, Faster-RCNN, CFR, XGBoost, and ICFR-OG 

algorithms were -1.73, 0.24, 0.69, 2.35, and 3.18, 

respectively. There was a significant linear correlation 

between the cumulative computation time of CFR, 

XGBoost and ICFR-OG and the number of games played. 

From the time consumption data, when the number of 

games was large, the ICFR-OG algorithm designed in this 

study had the shortest computation time and the CFR 

algorithm had the longest computation time. When the 

number of games reached 20,000, the cumulative 

computation time of CFR, XG Boost, and ICFR-OG were 

3,762ms, 3,198ms, and 1,967ms, respectively. In 

summary, the research method has excellent performance 

and practicality, which can be extended to other fields, 

such as incomplete information game problems in 

financial high-frequency trading or auction markets, to 

help participants optimize bidding strategies or trading 

decisions. It can be used to design dynamic defense 

strategies and improve defense efficiency by classifying 

attacker behavior patterns and predicting their next 

actions. However, there are still certain limitations in the 

research. Firstly, the current opponent classification 

model is based on fixed features (such as pool frequency, 

injection frequency, etc.), which may not fully capture the 

strategic changes of opponents in dynamic games. Then, 

although the hand abstraction techniques of Texas 

Hold'em, such as Sklansky quantification, reduce 

computational complexity, they may lose some 

information, resulting in limited generalization ability of 

the strategy in complex scenarios. The final model 

performance is highly dependent on the quality and 

coverage of historical data. If the opponent type or game 

scenario exceeds the distribution of training data (such as 

rare strategies or extreme behaviors), the adaptability of 

the algorithm may be insufficient. Therefore, in future 

research, the model can be extended to other incomplete 

information game scenarios to verify its cross-domain 

applicability. Reinforcement learning or online learning 

mechanisms can be introduced to enable the opponent 

model to update in real-time and adapt to strategy drift or 

adversarial interference and explore lightweight model 

design. 
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