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The traditional strategy recommendation algorithm for incomplete information game problems has low
computational efficiency and insufficient quality of recommendation strategies. Therefore, the
Counterfactual Regret Minimization (CFR) algorithm is designed, which introduces time-series
differential learning to solve incomplete information game problems to adjust strategies faster, reduce
oscillations in the strategy update process, and accelerate convergence speed. Combined with the decision
judgment model biased towards opponent information, it is improved by updating the feature vectors in
real time, which dynamically adjusts the strategy to adapt to changes in opponent strategy, thus obtaining
an improved CFR algorithm. The study used data collected from the Texas Hold'em Robot Contest
organized by the International Association for Artificial Intelligence from 2010 to 2016 for testing. The
experimental results showed that after 20,000 games, the average return of ICFR-OG was 3.18,
significantly higher than that of other mainstream algorithms, namely VGG32, Faster RCNN, CFR, and
XGBoost, with average returns of -1.73, 0.24, 0.69, and 2.35, respectively. The cumulative calculation
time of the research method was only 1,967ms. ICFR-OG demonstrated the lowest computational time,
while CFR exhibited the highest. The results are useful for improving the performance of Texas Hold'em
educational games and improving the ability to deal with various incomplete information games.

Povzetek: Razvita je nova metoda za igranje nepopolnih informacijskih iger kot Texas Hold ’em. Izboljsan
CFR kombinira TD-podobno posodabljanje in pristransko, sprotno modeliranje nasprotnikov

(VPIP/PFR/3-bet + K-means) za hitrejso konvergenco in visji EV.

1 Introduction

Incomplete information game problem is an important
branch of game theory, which considers decision-making
and competition among participants with incomplete
information [1-2]. Incomplete information game problems
have various applications in real life, such as games,
strategic decisions, auctions, etc [3]. With the
development of computer networks, automated algorithms
for computing various types of incomplete information
game problems have gradually become a research hotspot.
Texas Hold'em is a typical incomplete information game
problem. How to solve such problems effectively has
become the focus of scientists and engineers [4]. The
virtual regret minimization algorithm (Counterfactual
Regret Minimization, CFR) is an effective algorithm for
solving incomplete information game problems, which
solves the shortcomings of traditional strategy search
algorithms that need to search for complete information
games, and has convergence and good accuracy [5].
However, in practice, the CFR algorithm has some defects
and shortcomings, such as local convergence or strategy
bias when constructing strategies, which makes the
algorithm performance not optimal [6]. The research
questions are as follows. Traditional strategy
recommendation algorithms for incomplete information
game problems have low computational efficiency and are

difficult to provide real-time strategy recommendations. It
cannot effectively capture the opponent's strategies and
behavioral patterns, resulting in low recommendation
quality. It fails to fully utilize the opponent's historical
behavior data to optimize strategy recommendations. By
incorporating the time-series differential learning, it is
expected that the policy analysis capability and
computational efficiency of the algorithm can be
improved. The research also designs a decision judgment
model that favors adversary information, and classifies
adversaries by extracting their characteristic information.
Therefore, the improved CFR algorithm can better capture
the core information of adversaries to build response
strategies. By combining the improved CFR algorithm and
the decision judgment model with biased opponent
information, a strategy recommendation algorithm for the
Texas Hold'em incomplete information game problem is
proposed in the study. Simulation experiments based on
real and randomly generated data are also designed to
validate the effectiveness of the hybrid algorithm
application designed in the study. The research objective
is to improve the efficiency and strategic quality of solving
incomplete information game problems. By extracting the
opponent's feature information and constructing a
classification model of the opponent, it is possible to more
accurately capture the opponent's strategies and behavior
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patterns. The main contribution of this research is to
integrate the idea of time-series differential learning into
the CFR algorithm, designing an improved CFR algorithm
and a decision judgment model with biased opponent
information.

2 Related works

Noguchi M et al. found that the scientificity of the
description model for the incomplete information game
problem was extremely important for finding a good
solution algorithm. They took a nonlinear programming
algorithm and a neural network algorithm to construct a
mathematical model for describing the incomplete
information game transportation problem. The authors
used nonlinear programming algorithm and neural
network algorithm to construct a mathematical model for
describing the transportation problem of incomplete
information game and designed an improved
convolutional neural network to find the best solution. The
test results showed that the solution computed by solving
the mathematical model designed in this study had better
quality when using the same seeking algorithm [7].
Alcantara-Jimnez G proposed a practical solution
algorithm for the Stackelberg security game problem that
took into account incomplete state information and
incorporated a stochastic strategy for partially observed
Markov games. The results showed that the algorithm
outputted a response strategy for the Stackelberg security
game problem that was more applicable than traditional
machine learning algorithms [8]. Wang Q et al. found that
emergency management systems faced the real-time data
analysis due to the emergency and unpredictable nature of
disaster relief. The complete information was not
available from emergency communication networks.
Therefore, the author proposed a two-layer game model
based on incomplete information to achieve collaborative
computing on the edge. In addition, a near-optimal CGR
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algorithm was also developed. Simulation results showed
that the designed algorithm outperformed existing
incomplete information-based solutions on computational
latency and participant utility [9]. Lehrer et al.
investigated infinite repeated zero sum games with
incomplete information, where the game state evolved
according to a stationary process. This led to consistent
values in the Kronecker system. Techniques from
traversal theory, probability theory, and game theory were
taken to describe the optimal strategy of two participants
[10]. Lin Z et al. proposed a multi-layer interconnected
time model that considered multiple empirical stopping
games with optimal timing decisions and incomplete
information. The unique Bayesian Nash equilibrium of the
stopping game was characterized in the model by a system
of equations containing the conditional distribution for
each duration, which satisfied the moderate strategy
interaction condition. Comparative experiments were also
conducted in the study, in which the same game problem
solving algorithm was used to solve the designed model as
well as the unmodified traditional model. The
experimental results showed that the model designed in
this study improved the solving algorithm and outputted
better solutions [11]. Based on the above literature
summary, Table 1 is compiled.

Based on the above content, it can be concluded that
although numerous achievements have been made in
solving incomplete information game problems, existing
methods still have the following shortcomings, including
insufficient ability to dynamically capture opponent
behavior patterns, underutilization of historical data, low
computational efficiency, low strategy quality, and
inability to dynamically adjust. Therefore, the study
designs the ICFR-OG method, which accelerates
convergence through time-series differential learning and
combines K-Means classification and probability
threshold analysis to enhance the opponent's strategy
capture ability.

Table 1: Summary of literature results

programming algorithms and
neural network algorithms

quality solutions

high

Author Research method Research results Advantage Limitation
Constructing a mathematical
model for incomplete | Under the same solving | The model description | Not optimized for dynamic
Noguchi M information game transport_ation algorithm condit_ions, is highly_scientifi_c an_d game scenarios s_uch as Texas
problems  using nonlinear | the model outputs higher | the solution quality is | Hold'em, resulting in high

computational complexity

Solving  Stackelberg security

The output response

Suitable for dynamic

Insufficient utilization of

Designing a near optimal CGR

incomplete information

It is suitable for edge

game problems using stochastic | strategy 15 more security games, with | opponent's historical behavior
Alcantara-Jimnez G | strategies combined with | applicable than stron g st}ate ic dgtpa and insufficient real-time
partially observable Markov | traditional machine 9 g
games learning algorithms adaptability performance
Superior to  existing

Insufficient  capture  of

traversal theory and probability
theory to
strategies

describe  optimal

system, and the strategy
stability is high

games

algorithm based on a two-layer . . computing scenarios | opponent behavior patterns
Wang Q et al. o solutions in terms of . . - h
game model with incomplete computational _ latency with good real-time | and limited quality of strategy
information and participant utility performance recommendations
Research on infinite repeated
Z€ro - sum =~ games ungier There'ls a_ consistent Rigorous in theory, | Not involving  dynamic
incomplete information, using | value in the Kronecker : .
Lehrer et al. suitable for long-term | strategy adjustment, low

computational efficiency
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Multi-layer interconnected time

The algorithm designed

o B . - Support  multi-stage | Not optimized for real-time
LinZetal. mode_l c0n5|der|ng_ optimal | has a hlgher_ probability decision-making and | gaming, limited ability to
stopping game under incomplete | of outputting  better high model flexibility | classify opponents
information solutions

3 Analytical model for incomplete
information game and improved
cfr algorithm design

3.1 Design of incomplete information game
algorithm based on improved virtual
regret minimization

The CFR algorithm is currently the main intelligent
method for analyzing non-complete information game
problems in academia. It is an adapted form of the virtual
regret minimization algorithm in such game problems [12-
14]. However, the CFR algorithm has disadvantages such
as low computational efficiency and the computational
results can be further optimized. Therefore, based on the
analysis of the CFR algorithm, an improved CFR
algorithm incorporating time-series differential learning is
designed [15-16]. The regret minimization algorithm
calculates the regret value as close to infinity as possible
through multiple iterations to obtain an execution strategy
that is closer to the Nash equilibrium. The core of the
algorithm can be divided into calculating the regret value
and matching the regret value. The process of calculating
the regret value is first analyzed, which has a great impact
on the decision-making for the next game [17-19].

Assuming that the payoff function g, the best decision
payoff atstep t inthe gameis s, (a{,aﬂi), n (o—t) is the
payoff obtained from the actual decision. o, and o', are

the participant I s own strategy and the opponent's
strategy at step t , respectively. The set of strategies of the

participants {51,52,...,5T} corresponds to the regret

value R can be calculated according to equation (1).

Assuming that there is a payoff function AA, the
optimal decision payoff for step BB in the game is CC.
DD is the actual payoff obtained from the decision. EE and
FF are the participant GG's own strategy and the
opponent's strategy in step HH, respectively. Therefore,
the regret value JJ corresponding to the participant's
strategy set 1l can be calculated according to equation (1).

.
R' = maXZ(ﬂi (O'i Nt )_:Ui (O't )) (1)
t=1
In equation (1), T represents the highest number of
game steps in the game. R represents the gain of the
optimal strategy for the participant i at all time steps.
The algorithmic regret value T — oo is considered to be

minimized when one of the strategies in the game achieves
the rule in equation (2).

T,x+

RiT —>O,(x+ =max{x,0}) 2

In equation (2), x* is the total number of participants
in the game at the corresponding number of steps. To

design the regret value matching calculation step again, a
random strategy &' is first obtained. For each action a in
the set of the optional action A, the regret value can be
calculated according to equation (3).

R' (a) = Z(#i (a'Uii )_ﬂi (O-it’oii )) (3)

In equation (3), 4 (a, ofi) means the gain obtained
by the participant action a after retracing the game
information. 1 (o,0%;) means the post-decision gain
that actually corresponds to the number of steps. The
strategy for the subsequent steps o™ (a) is calculated

according to equation (4), which is used for regret
matching.
R (a)
n (4)
Dn RD)
In equation (4), b is also an action in A . When the

denominator in equation (4) is 0, the next action is
obtained in a random way. The calculation flow of the
regret minimization algorithm can be expressed, as shown
in Figure 1.

The CFR algorithm is formed on the basis of the
regret minimization algorithm. The main difference
between the former and the latter is that the former
calculates the virtual reach probability of the strategy
according to the information set, and considers both the
virtual reach probability and the regret value when
selecting the strategy.

To address the shortcomings of the CFR algorithm, an
improved CFR algorithm is designed based on time-series
differential learning. Time-series differential learning is a
sub-method of reinforcement learning that combines the
Monte Carlo algorithm and the dynamic programming
algorithm. The purpose of introducing the time-series
differential algorithm into CFR is to accelerate the speed
at which the CFR algorithm returns to the policy and
converges. Before designing the improved CFR
algorithm, it is necessary to abstract the Texas Hold'em
game and the incomplete information game problem
selected for this study, because the state space complexity
of the Texas Hold'em game is too high. This is the part that
the improved CFR algorithm fails to handle optimally.
The mainstream Sklansky hand strength quantization
value is chosen to simplify the Texas Hold'em game
process. The number of hand combinations at the
beginning of the Texas Hold'em game is as high as
C(2,52)=1326 . Therefore, to reduce the number of

combinations, only the number of hand points and suits in
two hands will be considered, which will reduce the
number of research combinations to 169. The simplified
169 hand combination has a quantified value for Sklansky
strength. Therefore, the classification of Texas Hold'em

0" (@)=
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hand strength based on the Sklansky hand strength
quantification value can be obtained, as shown in Table 2.
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v
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Figure 1: Calculation process of regret minimization algorithm

Table 2: Texas poker hand strength classification based on Sklansky hand strength quantification values.

Class Hand card Class Hand card

#1 KK, AKs, AA, QQ, J #6 QT, KT, AT, J8s, 86s, 75s, 655, 55, 54s

#2 AJs, AQs, AKs, KQs, TT #7 19, j9, k9s-k2s, 98, 64s, 53s, 44, 43s, 33, 22

#3 KJs, QJs, AQs, ATs, JTs, 99 #8 Q9, A9, K9, J7s, 96s, T8, 85s, 87, 74s, 76, 65, 54, 42s, 32s
#4 QTs, KTs, KQs, Als, J9s, T9s, 98s, 88 #9 Other hand combinations

#5 KJ, QJ, JT, A9s-A2s, Q9s, T8s, 97s, 87s, 77, 76s, 66 / /

Note: "o" represents different colors, such as A #d and K @@ . "'s" represents the same color, such as Adeand K &b .

There are four phases in Texas Hold'em, including
flop, preflop, turn, and river. The final hand in preflop is
divided into two types: absolute and potential, depending
on the combination of hands. The number of opponents is
n. Then, the absolute hand power HS, can be calculated

according to equation (5).
HS, =(HS,)" (5)
In equation (5), HS, represents the absolute strength

of the hand when the number of opponents is 1.
Considering the process and characteristics of Texas
Hold'em, the potential strength can be calculated
according to equation (6).
. 1% =*2n,turn stage
P(wm)z{

1% = (3n+8), flop stage ©)

In equation (6), P(win) describes the final win rate

and n is the number of cards needed for a reversal to
occur.

After modeling the Texas Hold'em game process, the
improved CFR algorithm is started to improve the ability
and efficiency of the algorithm to handle the game
problem online. Before calculating the improved CFR
algorithm, the game space needs to be simplified, and the
method used for the simplification is the undercard
abstraction technique. In the improved CFR algorithm, the
first step is to input the virtual values of each information
set and the predicted regret values of each decision in the
game tree based on the opponent's strategy or expert
experience data. After the game starts, the algorithm
continues to calculate and output the virtual regret values
and the corresponding actual virtual values based on the
current game results, which will be used to replace the
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virtual regret values or virtual value indicators of the
corresponding node. As shown in Figure 2, the improved
CFR algorithm aims to form initial regret values for each

[ Start ]
\ 4

Initialize the policy probability
distribution, virtual value and virtual
regret value in each information set

A 4
Simulate a game based on the current
strategy, traverse game tree nodes, and
record information sets, actions, and
revenue data

\ 4
Calculate the virtual value of the game
information set according to the current
game results

\ 4
Calculate the virtual regret value
corresponding to each decision in the

accessed information set
[
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node in the corresponding game tree based on the
opponent's offline game data, and adjust the current game
strategy on this basis.

Match the regret value of each
accessed Information set

v

‘ Update all policies

Has
the game termination
condition been
met?

‘ Output all updated policies ‘
v
[ End ]

Figure 2: Calculation process of improved CFR algorithm

Table 3: Opponent classification method based on opponent feature data and closing range.

Type number Type-name Pool frequency/% Prefop stage filling frequency/% | 3-bet/%

#1 Lags Not less than 75 Not less than 45 Not less than 25
#2 Flaccid type Not less than 70 Not greater than 35 Not greater than 10
#3 Tight and fierce type Not greater than 45 Not less than 35 Not less than 15
#4 Compact weak type Not greater than 40 Not greater than 20 Not greater than 5

3.2 Machine game model building with
biased adversary strategy

Although traditional intelligent game algorithms based on
Nash equilibrium can generate theoretically robust
strategies, their static nature makes it impossible to
dynamically adjust based on opponent behavior patterns.
For example, in Texas Hold'em, if the opponent frequently
abandons their cards, the equilibrium strategy will still
raise with a fixed probability, missing out on opportunities
for exploitation. For incomplete information game
problems such as Texas Hold'em, considering the
maximization of the opponent's game gain and
sequentially finding a better strategy for the base point
may lead to better game advantages. Therefore, an
improved machine game model with a bias towards the
opponent's strategy is designed, which will be applied to
the incomplete information game problem together with
the improved CFR algorithm.

The traditional adversary classification method
basically measures the adversary's aggressiveness
according to the adversary's strategy type and strategy
frequency, and classify the adversary into conservative,
conventional, and aggressive types. However, this method
is not specific enough in dynamic machine games, and
there is a risk of being identified and exploited by the
adversary. Therefore, a method to classify gaming styles
is proposed according to the range of opponent
characteristics data and returns. A three-dimensional

feature vector is now constructed according to the entry
frequency, preflop stage raise frequency, and three-bet
indicator. Combined with expert experience, an opponent

classification method is designed for the two-player
infinite bet Texas Hold'em gaming problem, as shown in
Table 3. The opponent classification method proposed in
the research has strong interpretability. Its classification
method based on simple statistical features has low
computational complexity. It can process large-scale
competition data in real time and meet the low latency for
online games. However, reinforcement learning methods
require a large amount of data, have high training costs,
and are difficult to analyze the policy decision-making
process. Online learning may lead to policy oscillations.
The selection of the time window in the dynamic feature
method is subjective. Increasing the feature dimension
will significantly increase the computational cost, conflict
with the research objective of this study, and may
introduce overfitting risks.

After classifying the adversaries in this way, to output
better response strategies in dynamic games, it is also
necessary to learn the historical strategy information of the
adversaries. The game strategies in incomplete
information game problems are often dynamic and
changing. It is more appropriate to use unsupervised
learning algorithms to learn historical data. The K-Means
algorithm is used to handle the task of learning historical
data of opponents, as it is a typical unsupervised algorithm
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with simple and good learning performance. Then, it is
possible to build a decision model biased toward the
adversary based on the laws of historical behavioral data
found by adversary classification and clustering, thus
calculating each alternative decision in different decision
stages and building a game model according to the
adversary model. Since the pooling frequency and preflop
stage raising frequency can only reflect the opponent
strategy law in preflop stage, to further improve the game
output quality, it is also necessary to evaluate the decision
probability distribution of different types of opponents in
flop, turn, and river stages. The betting frequency usually
refers to the frequency at which players enter the bottom
pool, which measures the proportion of times players
choose to participate in the bottom pool (i.e. give up
without betting) in each round of the game to the total
number of games played. This indicator can help analyze
the player's strategic style and level of aggressiveness.
Therefore, an array of probabilities [«, 4] is designed as

a threshold for analyzing the opponent's decisions in the
later stages. Thus, it is known that the opponent continues
the current game only when the minimum win rate is « .
Otherwise, it abandons the game. The opponent will not
bet or raise until the minimum win rate is at least 5 .

Based on the [«, 3] array and its rules, the opponent's

decision model can be constructed, as shown in Figure 3.

In actual games, the opponent's strategy may change
as the game progresses. Therefore, the feature vector
needs to be dynamically updated based on the opponent's
real-time behavior to ensure that the model can accurately
reflect the opponent's current strategy. In each round of the
game, the system will extract real-time features such as the
opponent's pool entry frequency, prefop stage filling
frequency, and 3-bet indicator, and update the feature
vector. The real-time extraction of these features can be
achieved through statistical analysis of opponent behavior.
Based on the updated feature vectors, the system will
reclassify the opponent and adjust its own strategy
according to the opponent type. This dynamic
classification and strategy adjustment can enable the
system to better adapt to the opponent's strategy changes,
thereby improving the overall performance of the game.
For example, if an opponent behaves abnormally
aggressively in a certain round of the game, the system
may adjust its strategy and take more conservative actions
to avoid unnecessary risks. In addition to opponent
classification, the decision model dynamically adjusts the
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decision threshold and strategy generation logic based on
the opponent's historical behavior data and current
behavior patterns. For example, if an opponent exhibits
unusually aggressive behavior during a certain round of
the game, the system may adjust its strategy and take more
conservative actions to avoid unnecessary risks.
Specifically, the decision model dynamically adjusts the
decision threshold based on the opponent's feature vectors
and historical behavior data, such as the minimum win rate
threshold and minimum markup threshold to generate
better strategies. Then, the expectation assessment of the
decision is designed according to the theory of logic. The
expectation of the action is an important basis for
measuring the correctness of the decision. For the Texas
Hold'em problem in incomplete information game, its
total expectation Ev(c) can be calculated according to
equation (7).
Ev(c) = D P(C,)xEV(C) @)
1<i<N

In equation (7), N represents the total number of

branches of the generated game tree, P(C,) represents the

arrival probability of the branch node i, and Ev(C,) is

the expected value of the branch node decision.
Considering that the expectation of 0 when the opponent
adopts folding behavior is reasonable, the expectation of
call behavior Ev,, can be calculated according to

equation (8).

Evcall = Pwin - pot — Rose -cost 8)
and P

Inequation (8), P > in Tepresent the probability
of losing and winning, respectively. pot and cost

represent the amount of the current poker pool and the
amount to be called, respectively. In the raising
environment, the behavioral expectation of the opponent
folding probability is also taken into account, so the
behavioral expectation of raising can be calculated
according to equation (9).

Ev P.in + Proig 1% pot

raise :[ win
+[P,in + Pose 1 raise
In equation (9), P, describes the opponent's fold

probability and raise represents the number of raises.
The proposed method for solving the incomplete
information game problem in Texas Hold'em is designed.
The operational framework is shown in Figure 4. The next
step is to select the optimal strategy based on the
opponent's judgment model.

9)
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Figure 3: Opponent decision judgment model based on probability binary
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Figure 4: Solution framework for incomplete information game problems based on improved CFR adversary game

model
Table 4: World poker machine game competition data statistics results.
. . S Total number of competition | Total number of matches per
Number Time Total number of files | Total file size (MB) data (x103) round (x103)
#1 2016 4,855 452 14,564 3.0
#2 2014 8,008 748 24,024 3.0
#3 2013 6,612 619 19,836 3.0
#4 2012 5,800 524 9,000 3.0
#5 2011 5,400 386 16,200 3.0
#6 2010 4,624 391 13,872 3.0
4 Test of the solution of the cleaningtoremove duplicate records, erroneous data, and
. let inf ti incomplete data items, which ensures the data quality and
Incompiete Information game consistency. Next, the data is normalized and features

problem based on the improved cfr
and adversary game model

4.1 Experimental protocol design and data
set selection

An experiment is designed to validate the performance of
the Texas Hold'em poker game strategy model, which
utilized an improved CFR and opponent game model
designed for this study. The data in the experiment are
obtained from the information recorded in each World
Poker Machine Gaming Competition held by the
International Artificial Intelligence Association from 2010
to 2016. Before conducting testing, it is necessary to
preprocess the data in the dataset, starting with data

related to Texas Hold'em game strategies are extracted
from the raw data, such as player pool frequency, top up
frequency, etc. These features are used for subsequent
opponent classification and strategy recommendations.
Finally, the dataset is divided into a training set and a
testing set in a 7:3 ratio. The information statistics of the
dataset are shown in Table 4.

The Texas Hold'em poker games are affected by the
luck of the participants. To minimize the influence of luck
on the experimental results, various replicated
experiments are designed for this study due to the
randomness of the effect of luck on game outcomes. In the
improved CFR algorithm comparison experiments, there
was no need to consider the opponent type and opponent
strategy characteristics. An automated program whose
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decision behavior showed a random distribution pattern
was directly used as the opponent. In the test experiments
based on the improved CFR and adversary game model,
four types of adversaries were labeled by the K-Means
algorithm to carry out calculations. In the integrated game
experiments between various types of algorithms, the
intelligent program with decision making according to the
equal concept distribution is used as the adversary because
the weaknesses of each strategy are not consistent. In
addition, to avoid the influence of irrelevant variables on
the experimental results, the public hand and other hands
are all dealt according to the same rule in each experiment.
The hyperparameters of the algorithms that require setting
hyperparameters, such as K-Means algorithm and
improved CFR algorithm in the experiments, are
determined in accordance with the industry experience
combined with multiple debugging methods. The regret
value, average gain, and computation time consumption
are chosen as the performance evaluation indexes. The
average gain is calculated by dividing the number of
current winnings and losings by the number of current
hand games. The parameter settings for time-series
differential learning are as follows. The learning rate
controls the regret value update step size, set to 0.05. The
weight of the current and future regret values is balanced
by a deduction factor, taken as 0.9. The randomness of
exploration rate maintenance strategy optimization is
fixed at 0.1. The time window size determines the
historical step size for differential calculation. After
testing, it has been set to 100 hands to have the best results.
Regret smoothing is performed using an exponential
weighted average with a decay factor of 0.7. These
parameters work together in three key stages. When
calculating regret differences, the discount factor adjusts
the weight of historical averages and immediate changes.
When updating the strategy, it ensures the minimum
exploration probability. The attenuation factor controls the
strength of noise filtering.

4.2  Analysis of experimental results
Firstly, the experimental results of the improved CFR

algorithm with fused time-series differential proposed in
0.214

0.18+

0.034. _ _
0 184, 76522
10t 102 108 104 105 106
Iterations
(@) ICFR
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this study and the traditional CFR algorithm are analyzed
separately. The statistics are shown in Figure 5. Different
subplots in Figure 5 represent different algorithms, and the
horizontal and vertical axes of the two subplots represent
the number of iterations and the regret value, respectively.
Since the number of iterations required for the algorithm
to complete the training is large, the horizontal axis is
shown in exponential form, and "ICFR" represents the
improved CFR algorithm with fused time-series
differential. The ICFR algorithm and the CFR algorithm
are considered to have completed the training with the
regret value less than 0.0001 at 76,522 iterations and
284,562 iterations, respectively. It can be seen that the
ICFR algorithm designed in this study can complete the
training faster. The above results are due to the
combination of the advantages of Monte Carlo algorithm
and dynamic programming algorithm in time-series
differential learning. It uses a differential learning
mechanism to adjust policies more quickly and reduce
oscillations during policy updates, which enables the
algorithm to converge to the optimal policy faster during
the training phase.

The average gain of the improved CFR algorithm and
the traditional CFR algorithm in the test experiment stage
after the training is completed is shown in Figure 6. In
Figure 6, with the growth of the number of games, the
average gain of both decision algorithms showed a
fluctuating upward trend, and the average gain of the ICFR
algorithm was always higher than that of the traditional
CFR algorithm. Overall, under the same conditions, the
average gain of the former was about 0.26 higher than that
of the latter. This is because the research designs a
decision judgment model that can dynamically adjust
strategies based on the opponent's historical behavior data.
This model not only considers the opponent's strategy type,
but also adapts to changes in the opponent's strategy by
updating feature vectors in real-time. This multi-
dimensional feature vector enables ICFR-OG to more
accurately classify opponent types and adjust strategies
based on opponent types.
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Figure 5: Comparison of regret values between the improved CFR algorithm and the traditional CFR algorithm during

the training phase



Improved Counterfactual Regret Minimization...

—ICFR

2.10
1.80

1.50
1.20
0.90

age return value

< 0.60
Z
0.30 -

FR
------- ICFR trend fitting curve
------- CFR trend fitting curve,

Informatica 49 (2025) 425-436 433

0-00 52600

8000 12000 16000 20000

Number of Chess Games

Figure 6: Comparison of average returns during the testing phase between the improved CFR algorithm and the

traditional CFR algorithm

4.00- 1.00
3.00- 0.00
fen) (5]
=1 >
S 2.007 = -1.00-
S >
= [
5 1.00- 3 ~2.007
© ]
2 0.00- © -3.004 _
S , S
(5] _ _ ~. . Q. . -1
£-100 T — ICFR-OG 2400 — VGG32
~ — - CFR — - Faster-RCNN
-2.004~ — — XGBoost -5.00+
-3.00 : : : : , -6.00 . : : : .
0 4000 8000 12000 16000 20000 0O 4000 8000 12000 16000 20000

Number of Chess Games
(a) ICFR-OG and Machine Learning Algorithms

Figure 7: Comparison of average game returns between ICFR-OG algorithm and comparative algorithm

Number of Chess Games
(b) Deep learning algorithm

Table 5: Comparison of average returns for each algorithm in a one-on-one game.

Chess algorithm VGG32 Faster-RCNN CFR XGBoost ICFR-OG
VGG32 - 1.58 5.73 3.96 5.16
Faster-RCNN 1.58 - 4.18 248 4.25

CFR 5.73 4.18 - 0.15 251
XGBoost 3.96 2.48 0.15 - 1.77
ICFR-OG 5.16 4.25 251 1.77 -

The VGG32 algorithm and Faster-RCNN algorithm
in deep learning and CFR algorithm and XGBoost
algorithm in machine learning are selected as the
comparison algorithms. It is compared with the Integrated
Decision Making with Improved CFR and Adversary
Game Model (referred to as ICFR-OG) algorithm
designed in this study, and the comparison results are
shown in Figure 7. Because there are more comparative
algorithms, the deep learning algorithm and other
algorithms in Figure 7 are placed in subgraphs (a) and (b),
respectively. The meanings of the horizontal and vertical
axes in Figure 7 are consistent with Figure 6. In Figure 7,
the ICFR-OG algorithm had a higher average gain than all
the comparison algorithms for different number of games,
while the deep learning type algorithm had the lowest
average gain among the other algorithms, followed by the
machine learning algorithm. Specifically, the average

gains of VGG32, Faster-RCNN, CFR, XGBoost, and
ICFR-OG algorithms were -1.73, 0.24, 0.69, 2.35, and
3.18, respectively, when the number of games played was
20,000.

The results among various types of algorithms are
then analyzed, and the statistics are shown in Table 5. To
reduce the influence of random factors on the experiment,
the average gain statistics are counted every 1,000 times
of the game. The average gain value of the ICFR-OG
algorithm designed in this study was the highest for the
neural network algorithm, because the neural network
algorithm required high training data size, and the amount
of data collected in this study was still insufficient. The
difference was not obvious.

Finally, the speed of each algorithm is compared to
compute the output strategy, and the statistical results are
shown in Figure 8. To reduce the experimental workload,
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the neural network matching algorithm with the lowest
output game quality is excluded from this experiment. In
Figure 8, the horizontal axis still represents the number of
games, but the wvertical axis represents the total
computation time of the output strategy for the historical
number of games in ms. Different icons are used to
describe different algorithms, and the corresponding
colored lines represent the linear fitting equation lines for
the time-consuming data points of the algorithm. After
comparing equations such as power functions, word count
functions, polynomials of different orders, and linear
equations, it was found that linear fitting equations had the
best data fitting effect. Figure 8 showed that there was a
significant linear correlation between the cumulative
computational time consumed and the number of games
played by CFR, XGBoost, and ICFR-OG. From the time
consumption data, when the number of games was large,
the ICFR-OG algorithm designed in this study had the
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shortest computation time and the CFR algorithm had the
longest computation time. When the number of games
reached 20,000, the cumulative computation time of CFR,
XGBoost and ICFR-OG was 3,762ms, 3,198ms and
1,967ms, respectively. In addition, there was a significant
linear correlation between the average computation time
required to generate 1,000 strategies using CFR, XGBoost,
and ICFR-OG algorithms and the number of games played.
From the perspective of time consumption data, when
there were a large number of game rounds, the ICFR-OG
algorithm designed in this study had the shortest
computation time, while the CFR algorithm had the
longest computation time. When the number of game
games reached 20,000, the average computation time
required for CFR, XGBoost, and ICFR-OG to generate
1,000 strategies was 188.15ms, 159.95ms, and 98.35ms,
respectively.
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Figure 8: Comparison of the speed of calculating output strategies among different algorithms

5 Discussion

The proposed ICFR-OG method has demonstrated
significant advantages in incomplete information games
of Texas Hold'em. The performance improvement is
attributed to various innovative designs. Compared with
existing methods, ICFR-OG has significant improvements
in algorithm efficiency, policy quality, and adaptability.
Compared with the SOTA method with the best
performance, CGR algorithm performs well in edge
computing scenarios, and its computing latency is about
40% lower than that of traditional methods. However, due
to its innovative regret value update mechanism and
dynamic pruning strategy, ICFR-OG further reduces
computation time to 65% of CGR through time-series
differential learning. The CGR algorithm adopts a two-
layer game model, with opponent modeling relatively
static. In contrast, the 3D feature classification system in
ICFR-OG can capture real-time changes in opponent
strategies, and experimental data shows that its
recognition accuracy for aggressive opponents is 28%
higher than CGR.

Although ICFR-OG outperforms deep learning
methods such as VGG32 and Faster RCNN in terms of

average returns, this advantage is not only reflected in
returns. Deep learning methods typically require a large
amount of training data and computational resources to
learn complex patterns and relationships. However, ICFR-
OG achieves higher performance with fewer data and
computing resources by combining time-series differential
learning and a decision model biased towards opponent
information. This indicates that ICFR-OG can more
effectively utilize limited resources to optimize strategies
when dealing with incomplete information game problems.
In addition, the decision-making process of deep learning
models is often difficult to explain, while ICFR-OG's
decision-making model is based on clear opponent
characteristics and historical behavior data, which has
better interpretability. This interpretability is crucial for
strategy adjustment and optimization in practical
applications, especially in scenarios where understanding
and predicting opponent behavior is necessary.

The significant advantage of ICFR-OG in
computation time is mainly attributed to its optimized
calculation method and strategy generation process. By
simplifying the game space and using efficient clustering
algorithms, ICFR-OG can significantly  reduce
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computational complexity while maintaining policy
quality. However, this optimization is not without trade-
offs. For example, simplifying the game space may result
in the loss of certain complex strategies, thereby limiting
the performance of the algorithm in certain specific
scenarios.

6 Conclusion

This research addressed the poor computational real-time
and poor quality of recommendation results in strategy
intelligence algorithms for incomplete information game
problems. An improved CFR algorithm incorporating the
time-series differential learning and the decision model
biased toward opponent information was proposed.
Combining the two, a classic solution for solving
incomplete information game problems, the ICFR-OG
strategy output algorithm for Texas Hold'em poker games,
was constructed. The experimental results showed that the
ICFR algorithm and the CFR algorithm had regret values
less than 0.0001 at 76,522 and 284,562 iterations,
respectively, and were considered to complete the
training. The average gain of the ICFR algorithm was
always higher than that of the traditional CFR algorithm,
and the average gain of the former was about 0.26 higher
than that of the latter under the same conditions. When the
number of games was 20,000, the average gains of
VGG32, Faster-RCNN, CFR, XGBoost, and ICFR-OG
algorithms were -1.73, 0.24, 0.69, 2.35, and 3.18,
respectively. There was a significant linear correlation
between the cumulative computation time of CFR,
XGBoost and ICFR-OG and the number of games played.
From the time consumption data, when the number of
games was large, the ICFR-OG algorithm designed in this
study had the shortest computation time and the CFR
algorithm had the longest computation time. When the
number of games reached 20,000, the cumulative
computation time of CFR, XG Boost, and ICFR-OG were
3,762ms, 3,198ms, and 1,967ms, respectively. In
summary, the research method has excellent performance
and practicality, which can be extended to other fields,
such as incomplete information game problems in
financial high-frequency trading or auction markets, to
help participants optimize bidding strategies or trading
decisions. It can be used to design dynamic defense
strategies and improve defense efficiency by classifying
attacker behavior patterns and predicting their next
actions. However, there are still certain limitations in the
research. Firstly, the current opponent classification
model is based on fixed features (such as pool frequency,
injection frequency, etc.), which may not fully capture the
strategic changes of opponents in dynamic games. Then,
although the hand abstraction techniques of Texas
Hold'em, such as Sklansky quantification, reduce
computational complexity, they may lose some
information, resulting in limited generalization ability of
the strategy in complex scenarios. The final model
performance is highly dependent on the quality and
coverage of historical data. If the opponent type or game
scenario exceeds the distribution of training data (such as
rare strategies or extreme behaviors), the adaptability of
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the algorithm may be insufficient. Therefore, in future
research, the model can be extended to other incomplete
information game scenarios to verify its cross-domain
applicability. Reinforcement learning or online learning
mechanisms can be introduced to enable the opponent
model to update in real-time and adapt to strategy drift or
adversarial interference and explore lightweight model
design.
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