
Informatica 39 (2015) 147–159 147

Heuristics for Optimization of LED Spatial Light Distribution Model

David Kaljun and Darja Rupnik Poklukar
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
E-mail: david.kaljun@fs.uni-lj.si

Janez Žerovnik
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia and
Institute of Mathematics, Physics and Mechanics, Jadranska 19, Ljubljana, Slovenia
E-mail: janez.zerovnik@fs.uni-lj.si

Keywords: local search, iterative improvement, steepest descent, genetic algorithm, Wilcoxon test, least squares approx-
imation

Received: December 1, 2014

Recent development of LED technology enabled production of lighting systems with nearly arbitrary light
distributions. A nontrivial engineering task is to design a lighting system or a combination of luminaries
for a given target light distribution. Here we use heuristics for solving a problem related to this engineering
problem, restricted to symmetrical distributions. A genetic algorithm and several versions of local search
heuristics are used. It is shown that practically useful approximations can be achieved with majority of
the algorithms. Statistical tests are performed to compare various combinations of parameters of genetic
algorithms, and the overall results of various heuristics on a realistic dataset.

Povzetek: Napredek tehnologije LED je omogočil izdelavo osvetljevalnih sistemov s skoraj poljubno po-
razdelitvijo svetlobe. Netrivialna inženirska naloga je, kako načrtovati osvetljevalni sistem ali kombinacijo
svetilk za dano ciljno porazdelitev svetlobe. V sestavku predstavljamo uporabo hevrističnih algoritmov
za reševanje te naloge, kjer predpostavljamo, da je porazdelitev svetlobe osno simetrična. Izkaže se, da
lahko dobimo praktično uporabne rešitve z algoritmi za lokalno optimizacijo, z genetskimi algoritmi in s
hibridnimi algoritmi, ki povezujejo obe ideji. Za izbiro parametrov genetskih algoritmov in za primerjavo
različnih algoritmov na izbranem vzorcu realnih podatkov so uporabljeni statistični testi.

1 Introduction
Even the most simply stated optimization problems such as
the traveling salesman problem are known to be NP-hard,
which roughly speaking means that there is no practical
optimization algorithm provided the famous P6=NP conjec-
ture is correct [26]. From practical point of view, knowing
that the problem is computationally intractable implies that
we may use heuristic approaches. It is well known that best
results are obtained when a special heuristics is designed
and tuned for each particular problem. This means that the
heuristics should be based on considerations of the partic-
ular problem and perhaps also on properties of the most
likely instances. On the other hand, it is useful to work
within a framework of some (one or more) metaheuristcs
which can be seen as a general strategies to attack an op-
timization problem. Metaheuristics in contrast to heuris-
tics often make fewer assumptions about the optimization
problem being solved, and so they may be usable for a va-
riety of problems, while heuristics are usually designed for
particular problem or even particular type of problem in-
stances. Compared to optimization algorithms, metaheuris-
tics do not guarantee that a globally optimal solution can be
found on some class of problems. We say that the heuris-

tics search for so called near optimal solutions because in
general we also have no approximation guarantee. Several
books and survey papers have been published on the sub-
ject, for example [25].

Most studies on metaheuristics are experimental, de-
scribing empirical results based on computer experiments
with the algorithms. As experiments provide only a sam-
ple that may in addition be biased for a number of reasons,
it is often hard to draw any firm conclusions from the ex-
perimental results, even when statistical analysis is applied
(see, c.f. [4] and the references there). Some theoretical
results are also available, often proving convergence of a
particular algorithm or even only showing the possibility
of finding the global optimum.

Perhaps the most natural and conceptually simple meta-
heuristics is local search. In the search space of feasible
solutions that is usually regarded as a “landscape”, the so-
lutions with extremal values of the goal functions are to be
found. In order to speak about local search on the land-
scape, a topology is introduced, usually via definition of a
neighborhood structure. It defines which feasible solutions
can be obtained in “one step” from a given feasible solu-
tion. It is essential that the operation is computationally



148 Informatica 39 (2015) 147–159 D. Kaljun et al.

cheap and that the new value of the goal function is pro-
vided. There are two basic variants of the local search, iter-
ative improvement and best neighbor (or steepest descent).
As the names indicate, starting from initial feasible solu-
tion, iterative improvement generates a random neighbor,
and moves to the new solution based on the difference in
goal function. The procedure stops when there has been no
improvement for sufficiently long time. On the other hand,
best neighbor heuristics considers all neighbors and moves
to the new solution with best value of the goal function. If
there is no better neighbor, the current solution is clearly
a local optima. Note that given a particular optimization
problem, often many different neighborhood structures can
be defined giving rise to different local search heuristics.
Recently, there has been some work on the heuristics that
use and switch among several neighborhoods [21].

In fact, most metaheuristics can be seen as variations or
improvement of the local search [1]. Examples of popular
metaheuristics that can be seen as variations of local search
include iterated local search, simulated annealing [17],
threshold accepting [7], tabu search [11], variable neigh-
borhood search [21], and GRASP (Greedy Randomized
Adaptive Search Procedure) [8]. The other type of search
strategy has a learning component added to the search, aim-
ing to improve the obvious drawback of the local search,
complete lack of memory. (An exception is the tabu search
that successfully introduces a short time memory.) Meta-
heuristics motivated by idea of learning from past searches
include ant colony optimization [6, 28, 10, 9, 19], evolu-
tionary computation [3] and its special case, genetic algo-
rithms, to name just a few. It is however a good question
in each particular case whether learning does indeed mean
an improvement [29], namely a successful heuristic search
must have both enough intensification and diversification.

Genetic algorithms (GA) are optimization and search
techniques based on the natural evolution principles. The
basic idea is to allow a population composed of many indi-
viduals to evolve under specified selection rules to a point
where some of the population individuals reach or at least
get close to the optimal solution. The method was devel-
oped by John Holland, and popularized by one of his stu-
dents, David Goldberg, who was able to solve a difficult
problem involving the control of gas-pipeline transmission
for his dissertation. Since the early days of GA, many ver-
sions of evolutionary based algorithms have been tried with
varying degrees of success. Nevertheless there are some
advantages of GA worth noticing [12, 23]. GA is able to
work with continuous or discrete variables, does not require
derivative information, it simultaneously searches from a
wide sampling of the cost surface, deals with a large num-
ber of variables, is well suited for parallel computers, opti-
mizes variables with extremely complex cost surfaces (they
can jump out of a local minimum), provides a list of opti-
mum variables not just a single solution and works well
with numerically generated data, experimental data, or an-
alytical functions.

In this paper, a comprehensive experimental study of

several heuristics on an industrial problem is carried out. It
extends and upgrades previous published work on the sub-
ject, in particular by introducing a statistically based com-
parison of the algorithms. The results of algorithms are
statistically tested in order to determine significant differ-
ences between them. Another extension of previous work
is the genetic algorithm parameter tunning, presented bel-
low. Previous related work is the following. The suitability
of the model and practical applicability have been shown
in [14]. Attempting to improve and speed up the optimiza-
tion, different metaheuristics have been implemented and
compared. The conference paper [13] reports results of a
comparison of local search with a naive genetic algorithm.
A hybrid genetic algorithm was proposed in [15].

Here we implement and run two versions of genetic algo-
rithm, a standard genetic algorithm (SGA) and a hybrid ge-
netic algorithm (HGA) where we infuse a short local search
as an evolution rule in hope to enhance the population. As
the initial experiment was run on various computers, and
consequently the results on various computers slightly dif-
fered because of different environments and in particular
different random generators. The new experiment therefore
repeated the complete experiment, this time on the same
computer, a standard home PC with a Intel Core I7-4790K
@ 4.4 GHz processor. The experiment was run in parallel
on 6 threads. In addition, part of the code was rewritten
to make it more machine independent. Furthermore, sta-
tistical tests on the experimental results were applied thus
providing ground for tuning the parameters of genetic al-
gorithms and for comparison of various algorithms’ per-
formance on the dataset considered.

The rest of the paper is organized as follows. In the next
section we provide background of the engineering applica-
tion. Section 3 provides the analytical model and the opti-
mization problem that is addressed. In Section 4, overview
of the experimental study is given. Details of local search
heuristics and genetic algorithms used are given in Sections
5 and 6. Section 7 elaborates tuning of parameters for the
genetic algorithms. Main experiment, comparison of local
search, standard and hybrid genetic algorithms is presented
in Section 8. The paper ends with a summary of conclu-
sions and ideas for future work, Section 9.

2 Motivation – the Engineering
Problem

The mass production of high power - high efficacy white
Light Emitting Diodes (LEDs), introduced a revolution in
the world of illumination. The LEDs at the basics enable
lower energy consumption, never before seen design free-
doms and of course endless possibilities on the design of
optics systems. The latter in turn enables the optics de-
signer to build a lighting system that delivers the light to
the environment in a fully controlled fashion. The many
possible designs lead to new problems of choosing the op-
timal or at least near optimal design depending on possibly



Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 149

different goals such as optimization of energy consump-
tion, production cost, and, last but not least, the light pol-
lution of the environment. Nevertheless the primary goal
or challenge of every luminaire design process is to design
a luminaire with an efficient light engine. A light engine
consists of a source, which are LEDs, and the appropriate
secondary optics. The choice of the secondary optics is
the key in developing a good system while working with
LEDs. For designing such a system nowadays technology
provides two options. The first option is to have the know-
how and the resources to design a specific lens to accom-
plish the task. However, the cost of resources coupled with
the development and production of optical elements may
be enormous. Therefore a lot of manufactures are using
the second option, that is to use ready made of the shelf
lenses. These lenses are produced by several specialized
companies in the world that offer different types of lenses
for all of the major brands of LEDs. The trick here is to
choose the best combination of lenses to get the most ef-
ficient system. The usual current practice in development
process is a trial and error procedure, where the developer
chooses a combination of lenses, and then simulates the
system via Monte Carlo ray-tracing methods. The success
heavily depends on the engineers’ intuition and experience
but also needs sizable computation resources for checking
the proposed design by simulation. In contrast to that, we
believe that using analytical models and optimization tools
may speed up the design and also at the same time possi-
bly improve the quality of solutions. The first step towards
this ambitious goal is to investigate an analytical model and
its use for representing single ready made lenses. For this
purpose we adopt an analytical model presented by Moreno
and Sun [22] and use heuristic methods based on this model
to provide good approximations.

3 Analytical Model and Problem
Definition

With so many different LED’s that have different beam
patterns and many different secondary optics that can be
placed over these LED’s to control the light distribution,
finding the right combination of a LED - lens combo is
presumably a very complicated and challenging task. Con-
sequently, providing a general analytical model for all of
them is also likely to be a very challenging research prob-
lem. Here we therefore restrict attention to LED-lens com-
binations that have symmetrical spatial light distributions.
In other words, the cross section of the surface which repre-
sents the spatial distribution with a section plain that is co-
incident with the vertical axis of the given coordinate sys-
tem is alike at every azimuthal angle of offset. This yields
an analytical model in two dimensions, so it describes a
curve rather a surface. To produce the desired surface, we
just revolve the given curve around the central vertical axis
with the full azimuthal angle of 360◦.

In [14], a normalizing parameter Imax is introduced in

Figure 1: Fitting results on the C13353 lens with the 3D
represenation.

addition to the parameters of the original model [22] as this
simplifies (unifies) the range intervals of the other three pa-
rameters: a = [0, 1], b = [0, 90] and c = [0, 100], for all
test lenses. The model used is based on the expression

I (Φ; a,b, c) = Imax

K∑
k=1

ak ∗ cos(Φ− bk)ck (1)

Assume that we have measured values Im(Φi) at angles
Φi, i = 1, 2, . . . , N . The goodness of fit is, as usual, de-
fined to be minimizing the root mean square error (RMS),
or, formally [22, 24]:

RMS (a,b, c) =

√√√√ 1

N

N∑
i=1

[Im(Φi)− I(Φi, a,b, c)]
2 (2)

For a sufficiently accurate fit, the RMS value must be
less than 5% [22, 24]. On the other hand, current standards
and technology allow up to 2% noise in the measured data.
Therefore, the target results of the fitting algorithms are at
less than 5% RMS error, but at the same time there is no
practical need for a solution with less than 1% or 2% RMS
error.

We will assume that all data is written in form of vec-
tors v= (polar angle [Φ], intensity [I]). In reality, measured



150 Informatica 39 (2015) 147–159 D. Kaljun et al.

photometric data from the lens manufacturers is available
in one of the two standard coded formats. These are the
IESNA photometric digital format *.ies [27] used primar-
ily in the USA and the European format EULUMDAT *.ldt
[2]. The data in the two standard formats can easily be
converted into a list of vectors. In addition, due to the pa-
rameter Imax each dataset will be normalized during the
preprocessing so that in each instance the maximal inten-
sity of the vectors will be 1, and the normalizing value Imax
is given as additional input value to the algorithms.

The problem can formally be written as:

INPUT: Imax and a list of vectors v= (polar angle [Φ], in-
tensity [I])
TASK: Find parameters (a1, b1, c1, a2, b2, c2, a3, b3, c3)
that minimize the RMS error (2).

4 Overview of the Experimental
Study

Although the minimization problem defined above is con-
ceptually simple, it is on the other hand likely to be com-
putational hard. In other words, it is a min square error
approximation of a function for which no analytical solu-
tion is known.

The experiment was set-up to test the algorithms perfor-
mance on different real life LED-lens combinations.

We have chosen a set of real available lenses to be ap-
proximated. The set was taken from the online catalogue
of one of the biggest and most present manufacturer in
the world Ledil Oy Finland [18]. The selection from the
broad spectrum of lenses in the catalogue was based on
the decision that the used LED is of the XP-E product line
from the manufacturer Cree [5]. And the demand that the
lenses have a symmetric spatial light distribution. We have
preserved the lens product codes from the catalog, so the
reader can find the lens by searching the catalog for the
code from the first column in tables below, c.f. Table 1.

All of the chosen lenses were approximated with all al-
gorithms. To ensure that algorithms’ results could be com-
pared the target error was set to 0% and the runtime was de-
fined in terms of basic steps that is defined as a generation
of a feasible solutions in the local search and an adequate
operation for genetic algorithms. This implies that the wall
clock runtime was also roughly the same for all algorithms.
Details are given below.

In the experiment and in the study, we address the opti-
mization problem as a discrete optimization problem. Nat-
ural questions that may be asked here is why use heuris-
tics and why discrete optimization heuristics on a continu-
ous optimization problem. First, application of an approx-
imation method is justified because there is no analytical
solution for best approximation of this type of functions.
Moreover, in order to apply continuous optimization meth-
ods such as the Newton method, usually we would need a

good approximation in order to assure convergence. There-
fore a method for finding good starting solution before run-
ning fine approximation based on continuous optimization
methods is needed. However, in view of the at least 2%
noise in the data, these starting solutions may in many cases
already be of sufficient quality! Nevertheless, it may be of
interest to compare the two approaches and their combina-
tion in future work, although it is not of practical interest
for the engineering problem regarded here.

When considering the optimization problem as a dis-
crete problem, the values of parameters to be esti-
mated will be a? ∈ [0, 0.001, 0.002, . . . , 1], b? ∈
[−90,−89.9,−89.8, . . . , 90], and c? ∈ [0, 1, 2, . . . , 100].
Hence, the discrete search space here consists of Nt =
1000i ∗ 1800i ∗ 100i ∼ 5, 83 ∗ 1024 tuples t =
(a1, a2, a3, b1, b2, b3, c1, c2, c3).

In the experiments, all the heuristics were tested on all
instances of the dataset, a long run and a short run. The
long run is defined to be 4 million steps that are defined to
be equivalent of one iteration of a basic local search heuris-
tics, in other words it is the number of feasible solutions
generated by the iterative improvement. The time for other
heuristics is estimated to be comparable, and will be ex-
plained in detail later. Short runs are one million and two
hundred thousand steps long and the long runs have four
million steps. The long run CPU time per algorithm and
lens was measured to be 16 minutes on the processor Intel
Core I7-4790K @ 4.4 GHz and 16 GB of RAM. The code
is not fully optimized. The overall runtime of the exper-
iment was substantially lowered by use of parallelization.
We ran the experiment on 6 of the 8 available CPU threads.

5 Local Search Heuristics

First we discuss the specific local search type heuristics. As
the original problem is a continuous optimization problem,
compared to discrete optimization, there are even more
possibilities to define a neighborhood for the local search
based heuristics. In fact, the neighborhoods we use can be
seen as variable neighborhoods though they are all simi-
lar. Below we define two neighborhoods that were imple-
mented.

We have started our experiments with two basic local
search algorithms, steepest descent (SD) and iterative im-
provement (IF), where in both cases the neighborhoods
were defined in the same way. We call this neighborhood
fixed step size neighborhood. The third local search al-
gorithm (IR) is iterative improvement using a second type
of neighborhood with random step size. Roughly speak-
ing, given a step size and direction as before, we randomly
make a step in the direction chosen and the step is at most
as long as in the fixed size neighborhood search. Of course,
there may be other neighborhoods that would be worth con-
sideration. The main reason for not extending the selection
of neighborhoods is simply the fact that they already gave
us results of sufficient quality. The local search type heuris-



Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 151

tics used here are explained in more detail below.

5.1 Steepest Descent (SD)
The steepest descent (SD) algorithm begins with the ini-
tialization of the initial function parameter values that are
a1 = a2 = a3 = 0.5, b1 = b2 = b3 = 0, and
c1 = c2 = c3 = 1. Next it initializes the search step
values which are for da = 0.01, for db = 1 and for
dc = Imax

10 giving the 512 neighbors of the initial solu-
tion: (a1 ± da, b1 ± db, c1 ± dc, a2 ± da, b2 ± db, c2 ± dc,
a3 ± da, b3 ± db, c3 ± dc). If there are several neighbors
with better RMS value, the search moves to the neighbor
with minimal RMS value (if there are more minimal neigh-
bors, one of them is chosen, all with the same probability).
If none of the 512 is better than the current solution, a new
set of neighboring solutions is generated, this time with a
step size of dn+1 = dn+d0. This is repeated until n = 10.
If there still is no better solution the search stops, the ini-
tial step value is multiplied by 0.9 and the search resumes
from the current solution with a smaller initial step. The
algorithm stops when the number of generated solutions
reaches Tmax.

5.2 Iterative Improvement – Fixed
Neighborhood (IF)

The iterative improvement with fixed neighborhood (IF) al-
gorithm initializes the same neighborhood as SD. Instead
of considering all 512 neighbors, the algorithm generates a
neighbor randomly, and immediately moves to that neigh-
bor if its RMS value is better than the current RMS value.
If no better neighbor is found after 1000 trials, it is as-
sumed that no better neighbor exists. As above, the al-
gorithm changes the size of the step value and continues
the search in the same manner as SD algorithm does. The
algorithm stops when the number of generated solutions
reaches Tmax.

5.3 Iterative Improvement – Variable
Neighborhood (IR)

The iterative improvement with a variable neighborhood
(IR) algorithm begins as the previous two algorithms. It ini-
tializes the same initial function parameter values but a dif-
ferent neighborhood which has the search step value within
a range, rather than a static fixed value. The ranges are for
da1 = da2 = da3 = {−0.1,−0.099,−0.098, . . . , 0.1},
for db1 = db2 = db3 = {−9,−8.9,−8.8, . . . , 9} and dc1
= dc2 = dc3= {−10,−9,−8, . . . , 10} It begins generating
solutions, using the step range around the initial solution
and calculating their RMS error. As soon as it generates
a better solution, it stops, shifts the focus on that solution,
resets the step range to the initial value, and continues the
search in the neighborhood of the new best solution. If after
four hundred thousand generated solutions no better solu-
tion is found, the step range gets doubled, and the search

Table 1: RMS error (best values) after 4 · 106 calculating
operations

Lens/Alg. SD IF RAN IR

C13353 9.7572 4.9422 5.3896 9.2435
CA11265 4.154 2.5374 3.722 4.9367
CA11268 2.6058 2.4788 2.4984 4.0278
CA11483 3.2673 3.3951 3.1944 3.5698
CA11525 3.5799 1.0365 1.4805 2.8385
CA11934 2.1729 1.4969 2.6169 3.5317
CA12392 1.639 1.5905 1.9988 3.3103
CA13013 1.7555 0.9042 1.2872 1.7656
CP12632 4.576 4.3207 4.9078 6.7152
CP12633 7.1202 2.936 2.7363 3.8963
CP12634 5.7641 5.6363 6.1473 6.4242
CP12636 3.1178 3.0801 3.9602 4.3642

Median 3.4236 2.7367 2.9654 3.9621

continues in the current neighborhood with a larger neigh-
borhood. The stopping condition is the same as before.

5.4 Comparison of Local Search Heuristics
To reduce the performance influence of the initial solution
we fixed it on all of the local search heuristics which be-
gan from the same initial solution that had the parameters
set to a1 = a2 = a3 = 0.5, b1 = b2 = b3 = 0, and
c1 = c2 = c3 = 1. As the number of steps the local
search heuristics need to find a local optima can vary heav-
ily, it is natural to run a multi start version. As the local
search runs sometimes improve the solutions in later it-
erations and because some preliminary experiments with
multi start versions of the local search algorithms did not
show any obvious advantage, we do not consider the mul-
tistart version here. However, the trivial random search al-
gorithm (RAN) is included in the comparison of the local
search algorithms. RAN algorithm is essentially a random
solution generator that has only one simple rule. The rule is
the boundary definition of the search space, so that the so-
lutions generated stay inside the search space limits, hence
RAN resembles a pure guessing exercise and any meaning-
ful algorithm has to outperform RAN.

Table 1 and Table 2 provide best found solutions for dif-
ferent local search algorithms. Best two solutions are writ-
ten in bold.

We can observe that most of the algorithms find a good
(RMS<5%) solution on almost all instances on both the
long and short runs. Obviously, the majority of IF results
are among the best, but also SD and RAN perform very
good on some instances. Therefore we further compare the
algorithms using a statistical test. We test the null hypoth-
esis H0: The median of differences between results of algo-
rithms equals 0. The test used is a non-parametric related
samples Wilcoxon signed rank test, see [30], and the sig-
nificance level is 0.05. This means that if asymptotic sig-
nificance is less or equal to 0.05, the H0 is rejected (there
is a significant difference between algorithms). Note that



152 Informatica 39 (2015) 147–159 D. Kaljun et al.

Table 2: RMS error (best values) after 1.2 · 106 calculating
operations

Lens/Alg. SD IF RAN IR

C13353 9.7572 5.0976 5.3896 10.137
CA11265 4.154 2.5389 3.9455 6.4726
CA11268 2.6058 2.4797 2.4984 4.0278
CA11483 3.2673 3.4077 3.6977 4.3763
CA11525 3.5799 1.0381 1.4805 4.4415
CA11934 2.1729 1.5547 2.6169 3.5317
CA12392 1.639 1.5924 1.9988 3.3103
CA13013 1.7555 0.9043 1.2872 2.7156
CP12632 4.576 4.3292 4.9078 6.7152
CP12633 7.1202 2.9366 2.7363 4.2827
CP12634 5.7641 5.638 6.1473 6.4713
CP12636 3.1178 3.0801 3.9602 5.2287

Median 3.4236 2.7377 3.217 4.4089

Table 3: Asymptotic significances of Wilcoxon signed rank
test for results of local search heuristics at 4·106 calculating
operations

SD IF RAN IR

SD 0.007 0.388 0.136
IF 0.008 0.002
RAN 0.002

the same test will be repeated on the other versions of al-
gorithms further down the text.

Tables 3 and 4 confirm that IF significantly outperforms
the other algorithms on the dataset. Also we can observe
that the null hypothesis could not be rejected between RAN
and SD. However we can see a significant deviation in the
result of the IR algorithm which is the worst of the algo-
rithms having the median value of Md = 3, 9621.

We conclude that in both the long and short runs algo-
rithm IF prevails. Therefore IF will be our choice when
infusing local search in the hybrid genetic algorithm.

6 Genetic Algorithms
The search for a more advanced heuristic method resulted
in a very large pool of promising alternatives such as parti-
cle swarm optimization [19], firefly algorithm [28, 10], bat
algorithm [9] and of course the well known genetic algo-
rithms to name just a few of them. In this experimental

Table 4: Asymptotic significances of Wilcoxon signed rank
test for results of local search heuristics at 1.2 · 106 calcu-
lating operations

SD IF RAN IR

SD 0.008 0.695 0.034
IF 0.004 0.002
RAN 0.002

study we use a standard genetic algorithm (SGA) [23] and
a hybrid genetic algorithm (HGA) [15] that in fact mimics
the evolutionary behavior [12, 20, 23], but is enhanced at
every generation with the use of a local search algorithm.
Encouraging preliminary results with HGA are reported in
[15]. We wish to note that in the conference paper [13] lo-
cal search based heuristics were compared to another ver-
sion of genetic algorithm. As the algorithm in [13] used
nonstandard genetic operators, it has been argued that the
results are not very useful, and hence we decided to do an-
other comparison including SGA. We wish to note that the
experimental results given in this paper may slightly dif-
fer to preliminary reports [13, 15] because the preliminary
results were performed on various computers, and the new
experiment reported here is completely rerun on the same
machine. Also, parts of the code were rewritten in order to
be more computer and system independent.

6.1 Standard Genetic Algorithm (SGA)

In our genetic algorithms we use three genetic operators:
selection, cross-breading and mutation. The selection [12]
operator works as a kind of a filter where more fitter in-
dividuals in a population get to have higher weights as the
less fitter. This is then transmitted to the cross-breading op-
erator in the way that the individuals with higher weights
are more likely to be chosen as parents.

The cross-breading or crossover operator [12, 20, 23] is
where a population is created by generating new solutions.
These are created by randomly combining and crossing pa-
rameters from two randomly chosen parent solutions from
the current population. The crossing is done via cross point
so that every parent pair produces a pair of children. The
cross point is chosen randomly and the children are gener-
ated in the following sequence C1 = [P bCP1 , CP, P aCP2 ]
and C2 = [P bCP2 , CP, P aCP1 ], where Cn is the child being
generated, CP is the cross point parameter, P aCPn are all
of the parents parameters that are after the CP and P bCPn

are all of the parents parameters that are before the CP .
The last operator in every generation is the self adapt-

ing mutation[23] operator which finalizes the individuals
in the new population. The mutation operates in the fol-
lowing manner: in the randomly chosen individual, a ran-
dom number of parameters are chosen to be changed (mu-
tated) which is done by adding a randomly chosen value for
da1 = da2 = da3 = {−0.01,−0.009,−0.008, . . . , 0.01},
for db1 = db2 = db3 = {−0.25,−0.24,−0.23, . . . , 0.25}
and dc1 = dc2 = dc3 = {−2.5,−2.4,−2.3, . . . , 2.5} to
the current parameter value.

The whole algorithm then begins with the generation and
calculation of the initial population (the zero population).
Next it sorts the population entities from the fittest to the
least fit and applies weights to them. After the sorting pro-
cess the algorithm generates with the crossover operator
the next generation, which is then submitted to mutation
with the adaptive mutation operator. When the new gener-
ation is fully formed the algorithm begins the process from



Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 153

the point of selection. It continues to do so until the last
generation is finalized. In order to assure comparable run-
ning times, the number of generations to be generated is
calculated as the quotient of the maximal number of iter-
ations minus the population size and the population size
NG = (Tmax − NP )/NP . Where NG stands for number
of generations, Tmax for the total number of iterations and
NP for the number of individuals in each generation (pop-
ulation size).

6.2 Hybrid Genetic Algorithm (HGA)
To test our theory of an advanced genetic algorithm we al-
tered the standard genetic algorithm in a way that we in-
fused a local optimization as an operator in every genera-
tion. We call the modified algorithm hybrid genetic algo-
rithm (HGA). The hybrid genetic algorithm works in the
same way as the standard one but with an extra operator
before the crossover. It starts with generating the initial so-
lution and sorts the entities in the current solution from the
fittest to least fit. Then instead of directly cross breading
the new generation it first runs the iterative improvement
with fixed neighborhood algorithm on 10 best entities of the
current generation which in turn get locally optimized (en-
hanced) for a number of iterations. After that the HGA fol-
lows the same path as the standard genetic algorithm does.
For the number of generations to be executed on HGA algo-
rithm, the formula is a bit more complicated, because it has
to include the iterations of the local search. The formula
can be written as NG = (Tmax −NP )/(NP + 10 ∗Nlo).
Where the additional parameter Nlo stands for number of
local search iterations. The result has to be rounded, be-
cause the algorithm cannot stop in the middle of a gener-
ation evaluation. For example if you would calculate the
number of generations for the HGA13 with the above for-
mula you would get 9.972 which gets rounded to 10. This
is the reason for the minor deviation (divmax = 2, 5%) of
the overall Tmax on the HGA algorithms.

7 Parameters of the Genetic
Algorithms

In order to enable fair comparison among various heuris-
tics, the same runtime was given to all competitors. As
the wallclock runtime can depend heavily on particular im-
plementation, we measure runtime in so called basic time
steps. One step of local search algorithm is naturally de-
fined as a generation (and handling) of one feasible solu-
tion. For the genetic algorithms, time needed for the basic
operations is estimated in terms of local search basic steps.
This is explained in detail in the first subsection. Genetic
algorithms are divided into four groups depending on the
time allowed for local search improvement of the members
of population.

We fix the length of the local search runs and then look
for most suitable parameters of the particular HGA version.

Table 5: Parameter combinations for SGA*

Algorithm # pop. # gen. # LS iter.

SGA 1 1000 3999 NA
SGA 2 5000 799 NA
SGA 3 10000 399 NA
SGA 4 50000 79 NA
SGA 5 100000 39 NA

Table 6: Parameter combinations for HGA*1

Algorithm # pop. # gen. # LS iter.

HGA 1 1 1000 40 10000
HGA 2 1 5000 38 10000
HGA 3 1 10000 36 10000
HGA 4 1 50000 26 10000
HGA 5 1 100000 20 10000

This gives rise to four groups of algorithms: SGA, HGA*1,
HGA*2, and HGA*3. Tables 5, 6, 7, and 8 give different
parameter combinations for the genetic algorithms.

Tuning of other parameters of genetic algorithms is ex-
plained in detail below.

7.1 Runtime
To be able to compare the genetic algorithm performance
to the local search algorithms we locked the total amount
of computation iterations (one computation iteration in our
case is the evaluation of the RMS error at the given coef-
ficient values) on the genetic algorithms to four million on
the long run and 1.2 million on the short runs, as it was in
the local search algorithms. We then chose different pop-
ulation sizes and calculated the number of generation and
local search iterations needed to achieve the desired four
million calculation iterations as close as possible (minor
deviations can occur due to the restriction that we are al-
ways evaluating a whole generation).

7.2 Parameter Tuning
In order to perform the final experiment we first have to
choose the algorithms that would be competing in the ex-
periment. As it would be unfeasible to compare all of the
possible variations of the multi start genetic algorithms, we
formed four groups, as presented in the previous section.
We applied the statistical test on these groups and accord-

Table 7: Parameter combinations for HGA*2

Algorithm # pop. # gen. # LS iter.

HGA 1 2 1000 20 20000
HGA 2 2 5000 19 20000
HGA 3 2 10000 19 20000
HGA 4 2 50000 16 20000
HGA 5 2 100000 13 20000



154 Informatica 39 (2015) 147–159 D. Kaljun et al.

Table 8: Parameter combinations for HGA*3

Algorithm # pop. # gen. # LS iter.

HGA 1 3 1000 10 40000
HGA 2 3 5000 10 40000
HGA 3 3 10000 10 40000
HGA 4 3 50000 9 40000
HGA 5 3 100000 8 40000

Table 9: RMS error (best values) after 4 · 106 calculating
operations for SGA*

Lens/Alg. SGA1 SGA2 SGA3 SGA4 SGA5

C13353 9.3526 8.0242 9.3895 4.8163 4.848
CA11265 5.2983 5.2999 3.8483 3.0568 2.8673
CA11268 4.5748 3.3628 2.7874 2.7845 2.5248
CA11483 3.8848 3.8262 3.8775 3.6547 3.5613
CA11525 4.0658 1.6667 2.2655 2.0129 1.2501
CA11934 2.5642 3.3076 3.3842 1.8616 2.1933
CA12392 3.493 2.5458 2.376 2.3139 2.4982
CA13013 2.9739 1.1658 1.4496 1.2332 1.128
CP12632 4.3657 4.5959 5.9514 4.4332 4.4827
CP12633 4.447 3.3542 2.855 2.5418 2.5485
CP12634 5.7747 5.7038 5.6663 5.7493 5.6712
CP12636 4.2818 4.1577 3.8485 3.5941 3.491
Median 4.3238 3.5945 3.6163 2.9207 2.7079

ing to the results chose the one that would advance into the
final experiment.

7.3 SGA* Test

When observing the test results presented in Table 11 and
Table 12 we see that SGA1 in both the long and short runs
statistically differs from the other four algorithms. It also
has the worst median where Md = 4.3238. We could not
reject the null hypothesis in the case of SGA2 and SGA3 on
the long run and on the short run between SGA2, SGA3 and
SGA5. The long run shows us shared leadership between
SGA4 and SGA5, but in the long run the SGA5 prevailes
with the overall best median of Md = 2.7079. This leads
us to ultimately choose the SGA5 as the representative of
the standard genetic algorithms in the final experiment.

7.4 HGA*1 Test

The statistical results show that there in no significant sta-
tistical difference between the HGA*1 algorithms (the null
hypothesis could not be rejected). Because of that we have
to take a look at the median values. In both runs HGA41
had the best median value which was a bit lower on the long
run Md = 2.5840. Hence we chose the HGA41 algorithm
from this group to advance in the final experiment.

Table 10: RMS error (best values) after 1.2·106 calculating
operations for SGA*

Lens/Alg. SGA1 SGA2 SGA3 SGA4 SGA5

C13353 9.3526 8.0242 9.3895 6.3401 5.7489
CA11265 5.2983 5.2999 3.8483 3.3367 3.933
CA11268 4.5748 3.3628 2.7874 2.7845 2.8694
CA11483 3.8848 3.8262 3.8775 3.6547 3.6344
CA11525 4.0658 1.6667 2.2655 2.0129 2.0875
CA11934 2.5642 3.3076 3.3842 2.4779 2.8535
CA12392 3.493 2.5458 2.376 2.3139 2.5325
CA13013 2.9739 1.1658 1.4496 1.2493 1.4786
CP12632 4.3657 4.5959 5.9514 4.4332 4.807
CP12633 4.447 3.3542 2.855 2.6167 2.5485
CP12634 5.7747 5.7038 5.6663 5,7493 5.7481
CP12636 4.2818 4.1577 3.8485 3,5941 3.8838

Median 4.3238 3.5945 3.6163 3.0606 3.2519

Table 11: Asymptotic significances of Wilcoxon signed
rank test for results of SGA* at 4 · 106 calculating oper-
ations

SGA* 1 2 3 4 5

1 0.034 0.071 0.004 0.004
2 0.937 0.019 0.002
3 0.005 0.005
4 0.272

7.5 HGA*2 Test

In the HGA*2 group the HGA12 significantly differs from
the rest of the group in both runs, with the worst median of
Md = 3.1785. The rest of the algorithms perform pretty
much the same, so there is no visible difference between
them in the long run and a slight inconclusive difference in
the short run. Therefore we once again chose the algorithm
to be advanced to the final experiment based on the minimal
median value. The HGA42 algorithm has the best overall
median value of Md = 2.7805 and consequently is the one
which represents this group in the final experiment.

7.6 HGA*3 Test

The last group’s results are similar to the previous two. On
the long run the HGA13 algorithm shows no significant dif-
ference from the others. There is also no significant statis-

Table 12: Asymptotic significances of Wilcoxon signed
rank test for results of SGA* at 1.2 · 106 calculating op-
erations

SGA* 1 2 3 4 5

1 0.034 0.071 0.004 0.015
2 0.937 0.019 0.117
3 0.005 0.158
4 0.084



Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 155

Table 13: RMS error (best values) after 4 · 106 calculating
operations for HGA*1

Lens/Alg. HGA11 HGA21 HGA31 HGA41 HGA51

C13353 5.9871 3.8263 3.8339 3.5616 5.4869
CA11265 2.9985 2.8531 3.025 2.824 2.8131
CA11268 2.5578 2.3826 2.5418 2.5907 2.3417
CA11483 3.1709 3.1571 3.2288 3.2077 3.6024
CA11525 1.4021 1.3965 1.5203 1.5096 1.4318
CA11934 3.0945 2.1895 2.5715 1.8058 1.9126
CA12392 2.3158 2.365 2.3345 2.038 2.0077
CA13013 1.3588 1.0952 1.2681 0.9672 1.1257
CP12632 4.38 4.3803 4.3495 4.3852 4.402
CP12633 3.1962 2.5102 2.8362 2.5773 2.6248
CP12634 5.7581 5.6829 5.6919 5.7342 5.7757
CP12636 2.288 3.0882 2.3877 2.5551 2.8276

Median 3.0465 2.6816 2.7038 2.5840 2.7189

Table 14: RMS error (best values) after 1.2·106 calculating
operations for HGA*1

Lens/Alg. HGA11 HGA21 HGA31 HGA41 HGA51

C13353 6.1767 4.3002 4.3135 3.8082 5.4869
CA11265 3.2252 3.3075 3.4191 3.1401 2.8131
CA11268 2.5578 2.3826 2.5418 2.6582 2.3417
CA11483 3.2573 3.4174 3.3694 3.2284 3.6024
CA11525 1.4021 1.4084 1.5203 1.5822 1.4318
CA11934 3.0945 2.4831 3.0026 1.8058 1.9126
CA12392 2.4432 2.365 2.3345 2.038 2.0077
CA13013 1.5113 1.3467 1.4484 1.1819 1.1989
CP12632 4.5072 4.5397 4.3849 4.3852 4.5023
CP12633 3.2601 2.6138 3.0894 2.5944 2.8204
CP12634 5.8198 5.7005 5.6919 5.9876 5.7757
CP12636 2.288 3.0882 2.9039 2.5551 2.8276

Median 3.1599 2.8509 3.0459 2.6262 2.8167

Table 15: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*1 at 4 · 106 calculating op-
erations

HGA*1 1 2 3 4 5

1 0.060 0.347 0.136 0.239
2 0.117 0.347 0.814
3 0.099 0.695
4 0.117

Table 16: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*1 at 1.2 · 106 calculating op-
erations

HGA*1 1 2 3 4 5

1 0.239 0.583 0.158 0.099
2 0.308 0.136 0.48
3 0.041 0.239
4 0.583

tical difference between HGA23 and HAGA53. The best
two on the long run are HGA33 and HGA43, comparing
the medians. The short run results confirm the picture we
get from the long run. The HGA13 and HGA23 do not sig-
nificantly differ, and are the worst in the group. Also there
is no significant difference between HGA33, HGA43 and
HGA53. As above we choose the winner based on the me-
dian values. The best median value result was obtained by
the HGA43 algorithm Md = 2.6589.

8 Final Experiment
Based on statistical tests on four groups of genetic algo-
rithms we acquired four winning algorithms, with seem-
ingly best tuned parameters inside each group. The final
experiment will compare those four algorithms with the
best local search algorithm IF. Table 25 show the lowest

Table 17: RMS error (best values) after 4 · 106 calculating
operations for HGA*2

Lens/Alg. HGA12 HGA22 HGA32 HGA42 HGA52

C13353 4.7054 4.2986 4.1253 3.3723 3.4518
CA11265 3.796 2.9932 2.9978 3.0308 3.0097
CA11268 2.5909 2.5584 2.4421 2.6774 2.5356
CA11483 3.2911 3.2074 3.1022 3.3761 3.1906
CA11525 1.6185 1.4497 1.5384 1.356 1.5003
CA11934 3.0659 2.7858 2.9067 2.5005 2.2335
CA12392 2.3725 2.0664 2.3302 2.2183 2.4562
CA13013 1.1562 1.2387 0.9072 1.0672 1.1936
CP12632 4.4391 4.5954 5.1023 4.4996 4.3441
CP12633 2.7446 2.5122 2.6415 2.5266 2.576
CP12634 5.7346 5.7481 5.7068 5.7009 5.8207
CP12636 4.2152 3.1483 3.2091 2.8835 4.1649

Median 3.1784 2.8895 2.9522 2.7804 2.7929



156 Informatica 39 (2015) 147–159 D. Kaljun et al.

Table 18: RMS error (best values) after 1.2·106 calculating
operations for HGA*2

Lens/Alg. HGA12 HGA22 HGA32 HGA42 HGA52

C13353 5.3734 4.4111 4.1253 3.3723 3.7201
CA11265 4.061 2.9932 3.3168 3.1738 3.2775
CA11268 2.7644 2.5751 2.4421 2.7098 2.5356
CA11483 3.7451 3.2304 3.7034 3.3761 3.2599
CA11525 1.6185 1.5703 1.5384 1.356 1.5177
CA11934 3.3468 2.7858 3.0841 3.0173 3.1701
CA12392 2.4229 2.1467 2.4255 2.2183 2.4562
CA13013 1.1562 1.2387 1.1321 1.1125 1.1936
CP12632 4.4624 4.5954 5.3015 4.6303 4.356
CP12633 2.7446 2.5122 2.8733 2.5266 2.588
CP12634 5.7346 5.7481 5.7068 5.7586 5.8207
CP12636 4.2152 3.4343 3.2091 2.8969 4.2121

Median 3.5459 2.8895 3.1466 2.9571 3.2149

Table 19: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*2 at 4 · 106 calculating op-
erations

HGA*2 1 2 3 4 5

1 0.019 0.023 0.019 0.023
2 0.638 0.239 0.937
3 0.182 0.754
4 0.754

RMS errors at four million calculating iterations for ev-
ery competing algorithm. Table 26 show the lowest RMS
errors at bout one million calculating iterations for every
competing algorithm. The asymptotic significances of re-
lated samples Wilcoxon signed rank test for results are
shown in Table 27 and Table 28.

We can see a significant deviation in the result of the
SGA5 algorithm which is the worst of the algorithms hav-
ing the median value of Md = 3.2519 on the short run.
In short runs SGA5 significantly differs to all other algo-
rithms, hence is clearly the worst among the competitors.
However, there is no significant difference between algo-
rithms HGA41, HGA42, HGA43 and IF. Simply counting
the number of emphasized results (best two on particular
instance) favourizes IF (8 + 8 = 16), followed by HGA41
(6 + 7 = 13). The other two only have eight emphasized
results: HGA42 (3 + 5 = 8) and HGA43 (4 + 4 = 8).
So we conclude that on the dataset used here the best are

Table 20: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*2 at 1.2 · 106 calculating op-
erations

HGA*2 1 2 3 4 5

1 0.015 0.084 0.008 0.019
2 0.182 0.875 0.347
3 0.019 0.814
4 0.209

Table 21: RMS error (best values) after 4 · 106 calculating
operations for HGA*3

Lens/Alg. HGA13 HGA23 HGA33 HGA43 HGA53

C13353 4.7929 7.4605 4.1179 3.673 3.3926
CA11265 3.5219 2.8982 3.2986 3.3426 3.4874
CA11268 2.4712 2.6368 2.6012 2.4733 2.5077
CA11483 3.1692 3.9305 3.3611 3.5551 3.3291
CA11525 1.924 1.7202 1.3482 1.6992 1.8313
CA11934 2.7798 3.1422 2.9557 2.1928 3.1123
CA12392 2.4091 2.379 2.3175 1.9166 2.3143
CA13013 1.4897 1.2844 1.1117 1.031 1.7124
CP12632 4.5923 4.8078 4.4902 4.424 4.5191
CP12633 2.7836 2.6338 2.5233 2.4582 2.7832
CP12634 5.806 5.7097 5.8002 5.8213 5.9054
CP12636 2.617 4.2187 3.3837 2.8446 3.2144

Median 2.7817 3.0202 3.1271 2.6589 3.1633

Table 22: RMS error (best values) after 1.2·106 calculating
operations for HGA*3

Lens/Alg. HGA13 HGA23 HGA33 HGA43 HGA53

C13353 5.6511 7.8509 5.0076 4.6041 3.3926
CA11265 3.5219 3.4391 3.3527 3.5108 3.4874
CA11268 2.7614 2.761 2.6012 2.4733 2.5077
CA11483 3.48 3.9305 3.4179 3.8551 3.3291
CA11525 2.1053 1.773 1.6147 1.6992 1.8313
CA11934 3.0145 3.4084 2.9764 2.4433 3.1123
CA12392 2.5199 2.4228 2.6216 1.9166 2.3143
CA13013 1.7247 1.5402 1.1117 1.031 1.7124
CP12632 4.7738 4.8078 4.4902 4.7755 4.5191
CP12633 3.5175 2.6338 2.5233 2.4582 2.7832
CP12634 5.9669 5.7097 5.8002 5.8213 5.9054
CP12636 2.6872 4.2187 3.4892 3.2777 3.2144
Median 3.2472 3.4237 3.1646 2.8755 3.1634

the algorithms HGA41 and IF which share the leadership.
Finally, as the HGA41 has a slightly lower median value
Md = 2, 6263 than the IF, the overall winner of the exper-
iment is the HGA41 algorithm. (Note however that the last
conclusion is not confirmed with statistical test.) Conver-
gence of the best two algorithms on an instance is shown
on Figure 2.

9 Conclusions
An experimental comparison of several heuristics on an en-
gineering problem has been carried out. Among several
local search heuristics, a version of iterative improvement
on a suitably defined neighborhood was chosen, based on
statistical test. A standard genetic algorithm, and three ver-
sions of hybrid genetic algorithms, in which members of
population were improved by short runs of local search
were considered. Parameters of the algorithms were tuned
by running the algorithms on the dataset with several ver-
sions of parameters and the best combination of parame-



Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 157

Figure 2: The convergence curves of the winning algorithms approximating the C13353 lens.

Table 23: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*3 at 4 · 106 calculating op-
erations

HGA*3 1 2 3 4 5

1 0.308 0.347 0.084 0.48
2 0.034 0.023 0.53
3 0.099 0.347
4 0.041

Table 24: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*3 at 1.2 · 106 calculating op-
erations

HGA*3 1 2 3 4 5

1 0.814 0.05 0.05 0.05
2 0.015 0.012 0.099
3 0.433 0.814
4 0.53

ters was selected. It may be interesting to observe that in
hybrid genetic algorithms, versions with the shortest lo-
cal searches were selected in all cases, meaning there is
substantial number of generations possible within the run-
time limit. Similarly, the standard genetic algorithm per-
formed best when many generations were allowed and con-
sequently, the population was smaller.

Table 25: RMS error (best values) of the final experiment
after 4 · 106 calculating operations

Lens/Alg. SGA5 HGA41 HGA42 HGA43 IF

C13353 4.848 3.5616 3.3723 3.673 4.9422
CA11265 2.8673 2.824 3.0308 3.3426 2.5374
CA11268 2.5248 2.5907 2.6774 2.4733 2.4788
CA11483 3.5613 3.2077 3.3761 3.5551 3.3951
CA11525 1.2501 1.5096 1.356 1.6992 1.0365
CA11934 2.1933 1.8058 2.5005 2.1928 1.4969
CA12392 2.4982 2.038 2.2183 1.9166 1.5905
CA13013 1.128 0.9672 1.0672 1.031 0.9042
CP12632 4.4827 4.3852 4.4996 4.424 4.3207
CP12633 2.5485 2.5773 2.5266 2.4582 2.936
CP12634 5.6712 5.7342 5.7009 5.8213 5.6363
CP12636 3.491 2.5551 2.8835 2.8446 3.08

Median 2.7078 2.5840 2.7804 2.6589 2.7367

In the final experiment, the best local search and the ver-
sions of genetic algorithms selected after tuning the main
parameters were compared. Interesting enough, all three
versions of the hybrid genetic algorithm performed better
than the standard genetic algorithm, and that conclusion is
supported by statistical tests. On the other hand, there is no
statistically significant differences among the versions of
the hybrid algorithm and the local search IF. Looking at the
results closer, we conclude that a version of hybrid genetic



158 Informatica 39 (2015) 147–159 D. Kaljun et al.

Table 26: RMS error (best values) of the final experiment
after 1.2 · 106 calculating operations

Lens/Alg. SGA5 HGA41 HGA42 HGA43 IF

C13353 5.7489 3.8082 3.3723 4.6041 5.0976
CA11265 3.933 3.1401 3.1738 3.5108 2.5389
CA11268 2.8694 2.6582 2.7098 2.4733 2.4797
CA11483 3.6344 3.2284 3.3761 3.8551 3.4077
CA11525 2.0875 1.5822 1.356 1.6992 1.0381
CA11934 2.8535 1.8058 3.0173 2.4433 1.5547
CA12392 2.5325 2.038 2.2183 1.9166 1.5924
CA13013 1.4786 1.1819 1.1125 1.031 0.9043
CP12632 4.807 4.3852 4.6303 4.7755 4.3292
CP12633 2.5485 2.5944 2.5266 2.4582 2.9366
CP12634 5.7481 5.9876 5.7586 5.8213 5.638
CP12636 3.8838 2.5551 2.8969 3.2777 3.0801

Median 3.2519 2.6263 2.9571 2.8755 2.7377

Table 27: Asymptotic significances of Wilcoxon signed
rank test for results of the final experiment at 4 · 106 calcu-
lating operations

SGA5 HGA41 HGA42 HGA43 IF

SGA5 0.060 0.583 0.239 0.034
HGA41 0.099 0.099 0.814
HGA42 0.814 0.308
HGA43 0.347

algorithm performs slightly better.

While the comparison here is based on extensive experi-
ments and the conclusions are supported by statistical tests,
there are obvious reasons that relativize the conclusions.
Namely, the experiment was run on a realistic dataset that is
relevant for the engineering application, and confirmed the
hypothesis that these type of problems can successfully be
solved by the heuristics used. On the other hand, the dataset
used is relatively small, and hence the observations can
be generalized only conditionally. Further work on other
datasets and related optimization problems is planned.

Nevertheless, we believe that inclusion of a carefully
chosen local search into a genetic algorithm is a good idea,
and the present experimental study proves that.

Table 28: Asymptotic significances of Wilcoxon signed
rank test for results of the final experiment at 1.2 · 106 cal-
culating operations

SGA5 HGA41 HGA42 HGA43 IF

SGA5 0.006 0.008 0.01 0.005
HGA41 0.638 0.136 0.48
HGA42 0.347 0.239
HGA43 0.099

References
[1] E. H. L. Aarts, J. K. Lenstra (1997) Local Search Al-

gorithms, John Wiley & Sons.

[2] I. Ashdown (2001) Thinking Photometrically Part
II., Proceedings of the Pre-Conference Workshop
(LIGHTFAIR).

[3] T. Bäck (1996) Evolutionary Algorithms in Theory
and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms, Oxford Univer-
sity Press.

[4] M. Coffin, M. J. Saltzman (2000) Statistical Analysis
of Computational Tests of Algorithms and Heuristics,
INFORMS Journal of Computing, vol. 12, pp. 24–44.

[5] Cree, Inc. XLamp XP-E, www.cree.
com/led-components-and-modules/
products/xlamp/
discrete-directional/xlamp-xpe

[6] M. Dorigo, M. Birattari, T. Stützle (2006) Ant colony
optimization, IEEE Computational Intelligence Mag-
azine, vol. 1, no. 4, pp. 28–39.

[7] G. Dueck, T. Scheuer (1990) Threshold Accepting: A
General Purpose Optimization Algorithm Appearing
Superior to Simulated Annealing, Journal of Compu-
tational Physics, vol. 90, pp. 161–175.

[8] P. Festa, M. G. C. Resende (2002) GRASP: An an-
notated bibliography, Essays and Surveys on Meta-
heuristics, C. C. Ribeiro, P. Hansen (eds.), Kluwer
Academic Publishers, pp. 325—367.

[9] I. Fister Jr., S. Fong, J. Brest, I. Fister (2014) A Novel
Hybrid Self-Adaptive Bat Algorithm, The Scientific
World Journal, vol. 2014, Article ID 709738.

[10] I. Fister, M. Perc, S. M. Kamal, I. Fister (2015) A re-
view of chaos-based firefly algorithms: Perspectives
and research challenges, Applied Mathematics and
Computation, vol. 252, pp. 155—165.

[11] F. Glover, M. Laguna (1997) Tabu Search In M.
Panos, Handbook of Combinatorial Optimization,
New York, Springer US, pp. 2093-2229.

[12] R. L. Haupt, S. E. Haupt (2004) Practical Genetic Al-
gorithms, 2nd Ed., John Wiley & Sons.

[13] D. Kaljun, J. Žerovnik (2014) Local Search Optimiza-
tion of a Spatial Light Distribution Model, Proceed-
ings of the Student Workshop on Bioinspired Opti-
mization Methods and their Applications (BIOMA),
pp. 81–91.

[14] D. Kaljun, J. Žerovnik (2014) Function fitting the
symmetric radiation pattern of a LED with attached
secondary optic, Optics Express, vol. 22, pp. 29587–
29593.



Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 159

[15] D. Kaljun, J. Žerovnik (2014) On local search based
heuristics for optimization problems, Croatian Oper-
ational Research Review, vol. 5, no. 2, pp. 317–327.

[16] S. Kennedy (2005) Escaping the bulb culture: the fu-
ture of leds in architectual illumination. LEDs maga-
zine, vol. 1, pp. 13–15.

[17] P. J. Laarhoven, E. H. Aarts (1987) Simulated anneal-
ing: theory and applications, Mathematics and Its Ap-
plications, M. Hazewinkel (ed.), Springer, pp. 7–15.

[18] Ledil Oy., www.ledil.com/.

[19] L. Lobachinsky, A. Bahabad (2014) Using Particle
Swarm Optimization to Design Broadband Optical
Nano-antennas for Nonlinear Optics, Frontiers in Op-
tics, Optical Society of America, paper FTh4E.3.

[20] M. Mitchell (1999) An Introduction to Genetic Algo-
rithms, 5th Ed., The MIT Press.

[21] N. Mladenović, P. Hansen, J. Brimberg (2013) Se-
quential clustering with radius and split criteria, Cen-
tral European Journal of Operations Research, vol.
21, suppl. 1, pp. 95–115.

[22] I. Moreno, C.-C. Sun (2008) Modeling the radiation
pattern of leds, Optics Express, vol. 16, pp. 1808–
1819.

[23] D. Simon (2013) Evolutionary Optimization Algo-
rithms, John Wiley & Sons.

[24] C.-C. Sun, T.-X. Lee, S.-H. Ma, Y.-L. Lee, S.-M.
Huang (2006) Precise optical modeling for led light-
ing verified by cross correlation in the midfield re-
gion, Optics Letters, vol. 31, pp. 2193–2195.

[25] E.-G. Talbi (2009) Metaheuristics: From Design to
Implementation, John Wiley & Sons.

[26] The Millennium Prize Problems are seven problems
in mathematics that were stated by the Clay Math-
ematics Institute in 2000, www.claymath.org/
millenium-problems/p-vs-np-problem.

[27] The Subcommittee on Photometry of the IESNA
Computer Committee (2002) Iesna standard file for-
mat for the electronic transfer of photometric data
and related information, Technical Report ANSI
IESNA LM-63-02, Illuminating Engineering Society
of North America.

[28] M. Tuba, N. Bacanin (2014) Improved seeker opti-
mization algorithm hybridized with firefly algorithm
for constrained optimization problems, Neurocom-
puting, vol. 143, pp. 197–207.

[29] A. Vesel, J. Žerovnik (2000) How well can ants colour
graphs?, CIT. Journal of Computing and Information
Technology, vol. 8, pp. 131–136.

[30] F. Wilcoxon (1945) Individual comparisons by rank-
ing methods, Biometrics, vol. 1, pp. 80–83.



160 Informatica 39 (2015) 147–159 D. Kaljun et al.


