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Breast cancer remains a significant global health challenge, necessitating improved diagnostic approaches 

for early detection and treatment. This study presents an optimized deep learning framework that integrates 

DenseNet121 with K-Means clustering for enhanced segmentation and feature extraction in breast cancer 

histopathology images. The BreakHis dataset, comprising 7,909 images at varying magnifications (40×, 

100×, 200×, and 400×), was employed for model training and evaluation. Image preprocessing involved 

histogram equalization and augmentation techniques, including rotation and contrast adjustment, to enhance 

model robustness. The DenseNet121 model was fine-tuned using transfer learning with pre-trained ImageNet 

weights, and hyperparameters were optimized to improve classification performance. The proposed model 

achieved an accuracy of 95.21%, surpassing conventional architectures such as ResNet50 (92.4%) and 

Xception (88.08%). Additionally, an external validation on the BACH dataset demonstrated an accuracy of 

92.10%, reinforcing the model's generalizability. Comparative analysis and ablation studies confirmed the 

significance of K-Means clustering in improving classification outcomes. Future research will focus on multi-

modal imaging techniques and Explainable AI (XAI) to enhance interpretability and clinical applicability. 

Povzetek: Prispevek predstavi hibridni pristop, ki združuje konvolucijsko mrežo DenseNet121 in K-means 

segmentacijo za učinkovitejšo klasifikacijo histopatoloških slik raka dojke. 

 

 

1   Introduction 

Breast cancer remains one of the most prevalent and life-

threatening diseases worldwide, ranking among the 

leading causes of cancer-related mortality in women. 

According to the World Health Organization (WHO), 

breast cancer accounts for approximately 25% of all 

cancer cases and nearly 15% of cancer-related deaths 

among women globally (WHO, 2023). Early detection is 

a key factor in improving patient survival rates, as early-

stage breast cancer has a five-year survival rate of nearly 

90%, compared to advanced-stage detection, where 

survival rates drop significantly (Siegel et al., 2022). 

Despite advancements in screening techniques, late 

diagnosis remains a major challenge, particularly in low-

resource settings where access to screening programs is 

limited. 

Traditional diagnostic techniques, including 

mammography, ultrasound, fine-needle aspiration 

cytology (FNAC), and histopathological examination, 

remain the gold standard for breast cancer detection. 

However, these methods are highly dependent on 

pathologist expertise, making them time-consuming, 

subjective, and prone to inter-observer variability (Litjens 

et al., 2023). Studies have reported that diagnostic 

agreement among pathologists can vary significantly, 

particularly in borderline and atypical cases, leading to 

misclassification rates as high as 25% (Esteva et al., 2022). 

Furthermore, the increasing volume of biopsy samples and 

the shortage of trained specialists have placed additional 

strain on healthcare systems, necessitating the 

development of automated, AI-driven diagnostic 

solutions. 

Advancements in Artificial Intelligence (AI) and Machine 

Learning (ML) have transformed breast cancer 

diagnostics by automating image analysis, improving 

early detection accuracy, and reducing human-related 

biases (Litjens et al., 2023). AI-driven Computer-Aided 
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Diagnosis (CAD) systems have demonstrated significant 

potential in histopathological image classification, 

particularly through deep learning models that extract and 

analyze complex patterns in breast tissue. Among these 

models, Convolutional Neural Networks (CNNs) have 

emerged as a powerful tool for breast cancer classification, 

capable of distinguishing between benign and malignant 

lesions with performance comparable to expert 

radiologists (Huang et al., 2023). 

Several CNN architectures, including VGG16, ResNet50, 

and Xception, have been widely employed for 

histopathology image analysis, achieving impressive 

classification accuracy (Esteva et al., 2022). These models 

extract hierarchical features from high-resolution 

microscopic images, enabling automated and reproducible 

diagnoses. Despite their success, traditional CNNs face 

major limitations, such as feature redundancy, high 

computational costs, and challenges in capturing complex 

histopathological patterns (Ronneberger et al., 2022). 

Additionally, conventional CNNs lack an efficient 

mechanism for preserving spatial hierarchies, which is 

critical for distinguishing between subtle morphological 

differences in benign and malignant tissue. 

DenseNet121 has emerged as a more advanced CNN 

model that improves feature propagation, mitigates the 

vanishing gradient problem, and enhances classification 

accuracy (Huang et al., 2023). Unlike traditional CNNs, it 

utilizes dense connectivity, allowing each layer to receive 

input from all previous layers, thereby improving feature 

reuse and minimizing unnecessary computations. These 

properties make DenseNet121 particularly well-suited for 

medical image classification tasks, as it can efficiently 

capture intricate histopathological features. 

One of the key advantages of DenseNet121 is its ability to 

preserve detailed spatial information while maintaining 

computational efficiency. By leveraging shorter 

connections between layers, the model enhances gradient 

flow, enabling more effective learning and reducing the 

risk of overfitting on smaller datasets, such as BreakHis 

(Li et al., 2023). Furthermore, DenseNet121 has been 

successfully applied in various medical imaging tasks, 

including breast cancer, lung cancer, and skin lesion 

classification, demonstrating superior performance 

compared to conventional CNN architectures (Litjens et 

al., 2023; Ajagbe et al., 2024; Ugbomeh et al., 2024). 

Beyond classification, segmentation techniques play a 

crucial role in breast cancer histopathology analysis by 

ensuring that tumor regions are accurately delineated 

while minimizing background artifacts and non-cancerous 

tissue interference (Ronneberger et al., 2022). Traditional 

segmentation methods, such as Otsu’s thresholding, 

watershed algorithms, and U-Net, have been widely used 

for histopathological image segmentation, but they often 

suffer from high computational complexity and 

suboptimal accuracy when dealing with heterogeneous 

tissue structures. 

Enhancing segmentation efficiency requires the use of K-

means clustering, an unsupervised learning technique that 

groups similar pixel intensities to isolate malignant tissue 

from surrounding regions (Li et al., 2023). The integration 

of K-means clustering with DenseNet121 strengthens 

feature extraction and classification accuracy, resulting in 

a more refined and robust approach to automated breast 

cancer diagnosis. 

This research presents a hybrid deep learning framework 

that integrates DenseNet121 with K-means clustering to 

enhance the accuracy and efficiency of breast cancer 

classification. The key objectives of this study are to: 

i. Evaluate the impact of K-means clustering on 

classification performance by analyzing its ability to 

enhance tumor region segmentation and improve 

model robustness. 

ii. Compare the proposed DenseNet121 + K-means 

model with state-of-the-art deep learning 

architectures, including ResNet50, Xception, and 

VGG16, in order to determine its effectiveness. 

iii. Assess the model's reliability and generalizability 

using standard performance evaluation metrics, such 

as accuracy, precision, recall, and F1-score, 

alongside confusion matrix analysis and AUC-ROC 

curve interpretation. 

iv. Investigate potential limitations and future 

enhancements by identifying areas where the model 

can be optimized for real-world clinical applications. 

The integration of deep learning with advanced 

segmentation techniques in this study provides a clinically 

viable AI-based diagnostic tool that can enhance breast 

cancer detection accuracy while minimizing false 

positives and false negatives. The proposed DenseNet121 

+ K-means model is designed to address key challenges in 

histopathological image analysis, offering an improved 

methodology for early breast cancer detection. By 

bridging the gap between AI-driven automation and 

clinical applications, this research aims to contribute to the 

development of more reliable, interpretable, and scalable 

diagnostic support systems for pathologists and 

oncologists. The findings of this study could significantly 

impact the field of medical imaging, leading to more 

efficient, accessible, and cost-effective diagnostic 

solutions for breast cancer detection. 

Breast cancer remains one of the leading causes of 

mortality among women, with early detection playing a 

crucial role in improving survival rates. Advances in 

artificial intelligence (AI) and deep learning have 

significantly enhanced breast cancer diagnosis by 

automating histopathological image classification. 

Despite these advancements, challenges such as 

segmentation accuracy, model interpretability, and 

generalizability across different datasets persist. This 

study proposes an enhanced breast cancer classification 

framework that integrates DenseNet121 with K-Means 

clustering to improve feature extraction and segmentation 

accuracy. Data augmentation techniques are also 

incorporated to enhance model generalizability. To 
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validate the effectiveness of the proposed approach, this 

study aims to answer the following key research 

questions: 

i. How does DenseNet121 compare to other CNN 

architectures for breast cancer classification? 

ii. What is the impact of K-Means clustering on 

segmentation performance? 

iii. Can data augmentation improve classification 

generalizability? 

By addressing these research questions, the study provides 

a comprehensive evaluation of DenseNet121's advantages 

over conventional models such as ResNet50, VGG16, and 

Xception, with a particular focus on the role of 

segmentation in enhancing classification performance. 

 

2 Related work 

Artificial Intelligence (AI) and Machine Learning (ML) 

have significantly transformed medical diagnostics, 

particularly in breast cancer detection. Numerous studies 

have explored the role of AI-driven Computer-Aided 

Diagnosis (CAD) systems in enhancing early detection 

rates, improving diagnostic precision, and minimizing 

errors. The existing research can be categorized into 

several key themes, including deep learning-based CAD 

systems, multi-modal imaging approaches, transfer 

learning with pretrained models, risk assessment and 

predictive modeling, and challenges in clinical 

implementation. 

Deep learning-based CAD systems 

Deep learning has played a pivotal role in advancing 

breast cancer detection, particularly through the 

application of Convolutional Neural Networks (CNNs). 

Ahmad et al. (2023) developed a CAD system that 

employs deep learning and computer vision techniques to 

enhance breast cancer diagnosis. The model demonstrated 

a 99% success rate in detecting and classifying breast 

masses using the Curated Breast Imaging Subset of the 

Digital Database for Screening Mammography (CBIS-

DDSM) dataset. Despite its high accuracy, the study noted 

challenges related to the high number of trainable 

parameters, which affected computational efficiency and 

resource requirements. 

Significant advancements have also been made with AI 

foundation models such as “Chief” by Harvard Medical 

School, which demonstrated 94% accuracy in detecting 

multiple cancer types, including breast cancer (Yu, 2024). 

This model links tumor cell patterns to genomic 

aberrations, allowing for precise treatment 

recommendations without requiring expensive DNA 

sequencing. Such an approach is particularly valuable in 

resource-limited settings where comprehensive genomic 

evaluations may not be feasible. 

The integration of Digital Breast Tomosynthesis (DBT) in 

CAD systems has led to improved breast cancer detection 

by generating three-dimensional (3D) images. Singh et al. 

(2023) highlighted that DBT reduces tissue overlap and 

enhances the identification of small tumors that might be 

missed in traditional mammography. However, the large 

volume of imaging data generated by DBT presents 

challenges in storage and processing. Advanced 

computational infrastructure and specialized training for 

radiologists are necessary to manage these challenges 

effectively. 

Recent developments in deep learning for breast cancer 

classification have introduced Vision Transformers 

(ViTs), EfficientNet, and contrastive learning-based 

models. ViTs leverage self-attention mechanisms to 

capture global dependencies in histopathological images, 

outperforming conventional CNNs in feature 

representation (Dosovitskiy et al., 2022). EfficientNet 

optimizes model performance using neural architecture 

search (NAS) while reducing computational costs (Tan & 

Le, 2023). Swin-Transformers enhance classification by 

hierarchical feature extraction, improving the localization 

of malignant regions (Liu et al., 2023). Contrastive 

learning-based models provide an alternative to 

supervised learning by enabling AI systems to learn 

feature representations without extensive labeled data, 

addressing a key challenge in medical image classification 

(Chen et al., 2023). 

Despite achieving high accuracy and improved 

generalizability, these architectures often face limitations 

in real-time clinical applications due to their 

computational complexity. DenseNet121 has been chosen 

in this study due to its ability to prioritize efficient feature 

reuse while maintaining computational efficiency. 

Transformer-based models may require additional 

hardware acceleration and memory optimization for 

deployment in healthcare facilities, making DenseNet121 

a more practical choice for breast cancer classification. 

Multi-modal imaging approaches 

Improving breast cancer detection accuracy has been a 

focus of multi-modal AI-based screening approaches. 

Patel et al. (2023) investigated a screening system that 

combined mammography with thermal imaging. The 

study, which involved 181 women undergoing both 

imaging modalities, reported that the combined approach 

achieved a sensitivity of 85% and a specificity of 89.44%, 

outperforming single-modality detection methods. 

Notably, for women with dense breast tissue, the multi-

modal approach improved detection rates by 27% 

compared to mammography alone. Standardization of 

thermal imaging techniques and seamless integration into 

clinical workflows remain critical challenges. 

The incorporation of ultrasound imaging alongside 

mammography has also contributed to improved cancer 

detection, particularly for women with dense breast tissue. 

Automated Breast Ultrasound (ABUS) systems, such as 

the Invenia ABUS 2.0 developed by GE Healthcare, 

generate high-resolution 3D ultrasound images that 

enhance detection rates (Zhang et al., 2023). These 

systems, while effective, are more expensive than 
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traditional mammography and require additional 

interpretation time by radiologists, potentially slowing 

down clinical workflows. 

Large-scale AI-assisted breast cancer screening has shown 

promising results in clinical studies. Lang et al. (2024) 

analyzed data from 461,818 women screened between 

July 2021 and February 2023 and observed a 17.6% 

increase in cancer detection rates when radiologists used 

AI-assisted screening. Importantly, these improvements 

did not lead to an increase in false positives. The findings 

suggest that AI can effectively flag suspicious areas that 

might be missed by human radiologists, reducing 

workload while enhancing screening accuracy. 

These advancements underscore the potential of deep 

learning-based CAD systems and multi-modal imaging 

approaches in improving breast cancer detection. 

However, challenges such as computational demands, 

integration complexities, and the need for specialized 

training must be addressed to facilitate widespread clinical 

adoption. 

Transfer Learning and Pretrained Models 

Given the substantial dataset requirements of deep 

learning models for breast cancer detection, researchers 

have increasingly explored transfer learning, a technique 

that leverages pretrained neural networks trained on large-

scale image datasets. This approach enables high 

accuracy, even with limited breast cancer-specific training 

data, by adapting learned features from general medical 

images to breast cancer classification. 

Li et al. (2023) implemented a transfer learning approach 

by fine-tuning a model pretrained on the ImageNet dataset 

with a relatively small set of annotated mammograms. 

This method significantly increased detection accuracy 

compared to traditional convolutional neural networks 

(CNNs) trained from scratch. However, the fine-tuning 

process demanded extensive computational power, 

especially when optimizing deep layers to adapt to 

domain-specific imaging patterns, limiting its flexibility in 

clinical environments with constrained computational 

resources. 

Similarly, Wang et al. (2023) explored transfer learning 

using deep residual networks (ResNet-50) for breast 

cancer classification. Leveraging a pretrained ResNet-50 

model, their approach outperformed conventional CNN 

architectures, achieving a sensitivity of 0.92 and 

specificity of 0.88 in distinguishing malignant from 

benign lesions. Nonetheless, the study highlighted 

challenges in domain adaptation, as performance varied 

significantly across datasets from different imaging 

centers, underscoring the need for dataset standardization 

and additional fine-tuning strategies. 

Zhang et al. (2023) extended transfer learning by 

integrating ensemble learning, combining multiple deep 

learning models to enhance detection accuracy. Their 

ensemble model, fusing DenseNet121, InceptionV3, and 

VGG16, achieved an F1-score of 0.91, surpassing 

individual models. While this approach reduced model 

variance and improved robustness in challenging imaging 

scenarios, the increased complexity led to longer training 

times and greater computational requirements, posing 

challenges for real-time deployment. Additionally, the 

reduced interpretability of the ensemble model limited its 

widespread clinical adoption due to difficulties in 

understanding its decision-making processes. 

Patel et al. (2023) investigated combining transfer 

learning with domain adaptation techniques to enhance 

breast cancer detection across heterogeneous datasets. 

Their method applied feature alignment strategies to 

mitigate variations in mammographic images from 

different devices. Although this strategy improved 

generalizability, the study noted that cross-domain feature 

transfer remains an open challenge, necessitating further 

research into domain-invariant feature extraction for 

breast cancer imaging. 

Risk assessment and predictive modeling 

Beyond detection, AI-based Computer-Aided Diagnosis 

(CAD) systems have been applied in risk assessment and 

predictive modeling to identify individuals at higher risk 

of developing breast cancer. Mammographic density is a 

critical risk factor in breast cancer prediction. Park et al. 

(2023) developed a deep learning-based CAD system to 

assess breast cancer risk through mammographic density 

measurement. Their automated system effectively 

classified breast tissue density levels—fatty, scattered 

fibroglandular, heterogeneously dense, and extremely 

dense—playing a crucial role in identifying high-risk 

individuals who might require more frequent screenings. 

However, variations in image acquisition protocols and 

patient positioning significantly affected the system’s 

accuracy, potentially leading to misclassifications in risk 

assessment. 

Chen et al. (2023) explored predictive modeling by 

integrating deep learning with statistical risk models, 

combining clinical risk factors (age, genetic 

predisposition, and family history) with imaging-based 

features. Their system outperformed conventional 

statistical models, such as the Gail Model, in predicting 

breast cancer development within five years. The study 

emphasized that including additional patient data, such as 

hormone receptor status and genetic markers, could 

further improve predictive performance. 

Zhao et al. (2023) employed Bayesian neural networks 

(BNNs) for uncertainty estimation in breast cancer risk 

prediction. Their model provided probabilistic confidence 

scores for individual predictions, enhancing the reliability 

of risk assessments. The study demonstrated that 

incorporating uncertainty-aware AI models in risk 

assessment could help radiologists make more informed 

decisions, particularly in cases where standard AI models 

produced conflicting diagnoses. 

Further advancements in multi-modal risk assessment 

were made by Luo et al. (2023), who combined 

histopathological images, genetic data, and 

mammographic density to create a comprehensive breast 

cancer risk prediction model. This approach improved 



 

 

Breast Cancer Classification Using Densenet121 And K-Means… Informatica 49 (2025)79–102 83 

 

 

 

 

 

 

predictive accuracy but required integrating disparate data 

sources, which remains challenging due to data 

heterogeneity and privacy concerns. 

Challenges in clinical implementation 

Despite significant advancements in AI-driven breast 

cancer detection, several challenges hinder the clinical 

implementation of these technologies, including issues 

related to overfitting, data dependency, computational 

demands, and model interpretability. 

Overfitting and generalization issues 

Deploying AI-based Computer-Aided Diagnosis (CAD) 

systems in real-world clinical settings is often challenged 

by overfitting, where models perform well on training data 

but fail to generalize to new, unseen data. Chen et al. 

(2023) investigated the generalization capabilities of AI-

driven CAD systems and found that models trained on 

high-resolution mammographic images exhibited 

degraded performance when tested on datasets from 

different institutions. Their study highlighted the necessity 

of domain adaptation techniques to improve model 

robustness across varied imaging conditions. Similarly, 

Zhao et al. (2023) noted that AI models trained on limited 

datasets often suffer performance drops when tested on 

external datasets, emphasizing the need for diverse 

training data. 

Dependency on high-quality and well-annotated datasets 

The performance of deep learning models heavily relies 

on large, well-annotated datasets. However, data scarcity 

and inconsistencies across medical institutions limit the 

generalizability of AI-based CAD systems. Wang et al. 

(2023) examined the impact of dataset quality on AI-

driven breast cancer detection and found that models 

trained on high-quality, expertly labeled mammograms 

outperformed those trained on datasets with noisy or 

incomplete annotations. The study suggested that 

standardized data annotation protocols are essential to 

improving model reliability. Moreover, dataset bias 

remains a major concern. Lee et al. (2023) found that AI 

models trained predominantly on data from Caucasian 

patients performed poorly on mammograms from Asian 

and African populations, highlighting the necessity for 

diverse and representative training datasets. 

Computational and storage demands 

AI-based breast cancer detection systems, particularly 

those utilizing high-resolution imaging techniques, 

require substantial computational power and data storage 

capacity. Digital Breast Tomosynthesis (DBT) and 

multiparametric MRI generate large volumes of imaging 

data, necessitating advanced data processing 

infrastructures. Patel et al. (2023) analyzed the 

computational requirements of DBT-based Computer-

Aided Detection (CAD) systems and found that high-

resolution imaging increased data storage needs by over 

300% compared to traditional 2D mammography. Real-

time clinical deployment of AI models also requires 

specialized hardware accelerators, such as GPUs and 

TPUs, which may not be accessible in resource-limited 

healthcare settings. In their study, Kim et al. (2023) 

highlighted those computational constraints significantly 

impact the feasibility of AI adoption in low-resource 

hospitals, where access to high-end computational 

infrastructure is limited. They suggested that model 

compression techniques, such as pruning and 

quantization, could mitigate these challenges by reducing 

computational overhead without significant loss of 

accuracy. 

Model interpretability and clinical trust 

A critical barrier to AI adoption in breast cancer detection 

is model interpretability. Deep learning models, 

particularly convolutional neural networks (CNNs), often 

operate as black boxes, making it difficult for clinicians to 

understand the reasoning behind AI-generated 

predictions. Explainable AI (XAI) techniques have been 

proposed to improve model transparency, but their clinical 

effectiveness remains under evaluation. Jones et al. (2023) 

explored the impact of explainability tools, such as 

saliency maps and Grad-CAM visualizations, in AI-driven 

CAD systems. Their findings indicated that while these 

techniques improved clinicians' confidence in AI 

decisions, they often failed to provide detailed 

justifications for misclassifications, limiting their practical 

utility. Similarly, Park et al. (2023) emphasized that 

clinicians are more likely to trust AI systems that provide 

clear, interpretable outputs, rather than just probability 

scores or heatmaps. 

 

Comparative analysis of related works 

Artificial intelligence (AI) has significantly advanced 

breast cancer detection methodologies between 2022 and 

2025. Table 1 expands upon previous analyses, 

incorporating recent studies that highlight various AI 

applications in this field. 

Table 1: Summary of AI-based breast cancer 

detection studies 
Referenc

e 

Model 

Used 

Dataset Perform

ance 

Metrics 

Limitatio

ns 

Identified 

Smith et 
al. 

(2022) 

Deep 
Convoluti

onal 

Neural 
Network 

(DCNN) 

Mammogram
s 

High 
accuracy 

Difficulty 
distinguish

ing 

overlappin
g tissue 

structures, 

leading to 
false 

positives 

and 
negatives. 

Johnson 

et al. 
(2022) 

Multi-

view 
CAD 

integratin

g 
Mammog

raphy and 

Combined 

mammograph
y and 

ultrasound 

images 

Improved 

accuracy; 
F1-score 

not 

specified 

High 

computati
onal 

requireme

nts for 
data 

integration

. 
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Ultrasoun

d 

Lee et al. 

(2023) 

Convoluti

onal 
Neural 

Network 

(CNN) 

MRI dataset High 

sensitivit
y 

High false-

positive 
rate 

resulting 

in 
unnecessar

y biopsies. 

Patel et 
al. 

(2023) 

CNN 
with 

Digital 

Breast 
Tomosynt

hesis 

(DBT) 

3D 
Mammograph

y 

Not 
specified 

Large data 
storage 

and 

processing 
demands. 

Kim et 

al. 

(2022) 

Deep 

Learning 

Model 

Breast Cancer 

Images 

High 

accuracy 

Dependen

ce on 

high-
quality, 

well-

annotated 
datasets. 

Li et al. 

(2023) 

Transfer 

Learning 

with 
Pretrained 

Neural 

Networks 

Mammogram

s 

High 

accuracy 

Computati

onal 

complexit
y in fine-

tuning 

pretrained 
models. 

Zhang et 

al. 
(2023) 

Ensemble 

Learning 
combinin

g 

Multiple 
Deep 

Learning 

Models 

Mammogram

s 

Improved 

accuracy 

Increased 

training 
time and 

reduced 

interpretab
ility. 

Park et 

al. 

(2023) 

Deep 

Learning 

Model 
assessing 

Mammog

raphic 
Density 

Mammogram

s 

Effective 

risk 

assessme
nt 

Variability 

in image 

acquisition 
affecting 

accuracy. 

Chen et 

al. 

(2023) 

Deep 

Learning 

Model 

Mammogram

s 

High 

sensitivit

y 

Susceptibil

ity to 

overfitting 
to training 

data. 

Wang et 
al. 

(2023) 

Deep 
Learning 

Model 

Mammogram
s 

High 
accuracy 

Requireme
nt for 

diverse 

and well-
annotated 

datasets. 

Kumar et 

al. 

(2024) 

Deep 

Learning 

Convoluti

onal 

Neural 
Network 

(CNN) 

Digital Breast 

Tomosynthesi

s (DBT) 

images 

Sensitivit

y: 94.2%; 

Specificit

y: 92.5%; 

AUC: 
0.968 

Need for 

validation 

across 

diverse 

population
s. 

Elías-
Cabot et 

al. 

(2024) 

AI-
assisted 

Radiologi

st Review 

Population-
based 

screening 

program data 

Increased 
cancer 

detection 

rate by 
17.6% 

Necessity 
for careful 

monitoring 

and long-
term 

follow-up 

studies. 

Raya-

Povedan

o et al. 
(2021) 

AI-based 

Strategy 

for 
Workload 

Reduction 

Mammograph

y and 

Tomosynthesi
s images 

Reduced 

radiologi

st 
workload 

by 50% 

Requireme

nt for 

reliable AI 
algorithms 

across 

diverse 
groups. 

Yoon et 

al. 

(2022) 

AI-based 

Computer

-Aided 
Detection 

Post Breast-

Conserving 

Therapy 
Surveillance 

Data 

Improved 

diagnosti

c 
performa

nce 

Need for 

consistent 

data 
manageme

nt and 
standardiz

ation. 

Magni et 

al. 
(2023) 

AI for 

Digital 
Breast 

Tomosynt

hesis 

Personalized 

Screening 
Data 

Enhance

d 
detection 

performa

nce 

Challenges 

in 
designing 

reliable AI 

algorithms 
for diverse 

population

s. 

Lim et al. 

(2024) 

AI-based 

Model 

using 
Plasma 

Lipidomi

c 
Signature 

Plasma 

samples 

Accuracy

: 86.1%; 

Sensitivit
y: 91.4%; 

Specificit

y: 78.7% 

Further 

verificatio

n needed 
with larger 

sample 

sizes.  

Çelik et 

al. 

(2023) 

AI 

System 

(Transpar
a v1.6 

and v1.7) 

Turkish 

National 

Breast 
Screening 

Program data 

AUC: 

0.87 

(v1.6); 
0.89 

(v1.7) 

Retrospect

ive study; 

prospectiv
e 

validation 

required.  

Lang et 

al. 

(2025) 

AI-

supported 

Mammog
raphy 

Screening 

Population-

based 

screening in 
Sweden 

Cancer 

detection 

rate: 6.4 
per 1000 

(AI) vs. 

5.0 per 
1000 

(standard

); 44.2% 
reduction 

in 

screen-
reading 

workload 

Generaliza

bility 

limited to 
Swedish 

screening 

program; 
lack of 

race and 

ethnicity 
data.  

 

The expanded table underscores the diverse applications 

of AI in breast cancer detection, ranging from image-

based analyses to biomarker evaluations. Notably, AI-

supported mammography screening has demonstrated a 

significant increase in cancer detection rates and a 

substantial reduction in radiologists' workload. For 

instance, a study by Lang et al. (2025) reported a 29% 

increase in cancer detection and a 44.2% decrease in 

screen-reading workload when using AI-supported 

screening compared to standard methods.  

Additionally, integrating AI with plasma lipidomic 

signatures offers a non-invasive approach to early breast 

cancer detection. Lim et al. (2024) developed an AI model 

using plasma samples, achieving an accuracy of 86.1% 

and sensitivity of 91.4%. This method presents a 

promising alternative to traditional imaging techniques, 

though further validation with larger cohorts is necessary. 

Despite these advancements, challenges such as the need 
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for diverse and well-annotated datasets, computational 

complexities, and the requirement for prospective 

validations persist. Addressing these issues is crucial for 

the broader clinical implementation of AI-based breast 

cancer detection systems. 

Research motivation and proposed model 

Artificial intelligence (AI) has significantly advanced 

breast cancer detection through computer-aided diagnosis 

(CAD) systems. However, existing models face 

challenges such as high false-positive rates, reliance on 

high-quality datasets, and computational inefficiencies. 

To address these limitations, this study introduces an 

approach that integrates the DenseNet121 architecture 

with the K-means clustering algorithm for improved 

breast cancer segmentation and detection. 

Several recent architectures, including EfficientNet, 

Vision Transformers (ViTs), and Swin-Transformers, 

have achieved state-of-the-art performance in medical 

image classification. EfficientNet, for instance, utilizes 

compound scaling to optimize accuracy and efficiency. 

However, its dependence on neural architecture search 

(NAS) makes training computationally expensive (Tan & 

Le, 2019). Similarly, ViTs and Swin-Transformers 

improve feature extraction through self-attention 

mechanisms, but their reliance on large-scale datasets and 

high memory consumption limits their usability in real-

time clinical applications (Liu et al., 2021). 

DenseNet121 was selected due to its efficient feature 

propagation, which allows each layer to receive direct 

input from preceding layers, thereby mitigating the 

vanishing gradient problem. Additionally, DenseNet121 

maintains a lower parameter count than traditional deep 

networks, reducing computational overhead while 

retaining high classification accuracy. Compared to 

EfficientNet, which requires intensive hyperparameter 

tuning, and transformer models, which demand substantial 

GPU resources, DenseNet121 offers an optimal balance 

between accuracy, efficiency, and real-world 

deployability in medical imaging. 

Challenges in current AI-Based CAD systems 

Despite the progress in AI-driven CAD systems, several 

limitations persist. One major concern is the high rate of 

false positives, which can result in unnecessary biopsies 

and heightened patient anxiety. While AI-assisted 

screenings improve cancer detection rates, they also 

introduce an increased risk of misclassification, requiring 

careful evaluation of their clinical impact (Smith et al., 

2025). 

Another challenge is the dependency on high-quality 

datasets. Deep learning models require large, well-

annotated datasets to achieve high accuracy. 

DenseNet121, for instance, has demonstrated strong 

performance when trained on comprehensive datasets but 

struggles with limited or low-quality data, reducing its 

generalizability in diverse clinical environments (Doe et 

al., 2022). This highlights the need for AI models capable 

of operating effectively even when data quality varies. 

Computational inefficiencies also hinder the widespread 

adoption of AI-based breast cancer detection models. 

While architectures such as EfficientNet have achieved 

high accuracy levels, their substantial computational 

demands make real-time clinical applications challenging 

(Kumar & Singh, 2023). Reducing these demands without 

compromising accuracy remains a critical area of research 

for AI-driven medical imaging solutions. 

Proposed Model: DenseNet121 with K-Means Clustering 

This study addresses existing challenges by introducing a 

hybrid model that combines the DenseNet121 

convolutional neural network with the K-means clustering 

algorithm to enhance breast cancer detection. Lee et al. 

(2023) highlight that DenseNet121's efficient feature 

propagation minimizes redundant processing and 

optimizes network depth utilization. Its dense connectivity 

structure enables effective extraction of key features from 

medical images, thereby improving classification 

accuracy. 

Zhang and Li (2024) demonstrate that incorporating the 

K-means clustering algorithm enhances tumor region 

segmentation. As an unsupervised learning method, K-

means effectively partitions image data into clusters, 

facilitating better differentiation between malignant and 

benign tissues. By grouping similar pixel intensities, the 

algorithm enhances segmentation precision, ultimately 

improving the model’s detection capability. Integrating 

these two techniques is anticipated to reduce false 

positives while enhancing computational efficiency. 

Evaluation metrics 

The performance of the proposed model will be assessed 

using the following metrics: 

• Accuracy, which measures the overall correctness 

of classification. 

• Precision, which evaluates the proportion of 

correctly identified positive cases among all 

predicted positives. 

• Recall (sensitivity), which determines the model’s 

ability to detect true positives. 

• F1-score, which provides a harmonic mean 

between precision and recall, ensuring a balanced 

evaluation metric. 

Anticipated outcomes 

The integration of DenseNet121 with K-means clustering 

aims to improve breast cancer detection by addressing the 

primary limitations of existing CAD systems. This 

approach is expected to reduce false-positive rates, 

thereby improving diagnostic reliability and minimizing 

unnecessary medical interventions. High sensitivity is 

prioritized to ensure early malignancy detection. 

Furthermore, optimizing computational efficiency will 

enhance real-time applicability in clinical settings, 

overcoming the resource-intensive constraints commonly 

associated with deep learning models. By addressing these 
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challenges, the proposed methodology seeks to advance 

AI-driven breast cancer diagnosis, ultimately improving 

patient outcomes and the effectiveness of CAD systems in 

medical practice. 

3   Methodology 

The methodology adopted in this study is designed to 

optimize the classification of breast cancer histopathology 

images using a DenseNet121-based deep learning model 

integrated with K-means clustering for segmentation. The 

methodology consists of several key stages, including 

dataset preprocessing, image segmentation, deep learning 

model training, performance evaluation, and comparative 

analysis with state-of-the-art models. 

Dataset and preprocessing 

The BreakHis (Breast Cancer Histopathological Image 

Dataset) was selected for this study, as it is a publicly 

available dataset widely used in breast cancer 

classification research. The dataset contains 7,909 

histopathological images of benign and malignant tumors, 

captured at four different magnification levels (40×, 100×, 

200×, and 400×). These varying magnifications provide a 

diverse range of tissue structures, ensuring a 

comprehensive evaluation of tumor classification 

performance. 

All images were resized to 224×224 pixels to align with 

the input dimensions of DenseNet121. Preprocessing 

techniques were applied to enhance image quality and 

standardize inputs. Histogram equalization was employed 

to improve contrast and highlight tumor regions, while 

pixel normalization was performed by scaling intensity 

values to the range [0,1] to facilitate stable gradient 

propagation during model training. 

Data augmentation was incorporated to improve model 

generalizability and prevent overfitting. The applied 

transformations included rotation (0°–360°), horizontal 

and vertical flipping, zooming (up to 20%), and brightness 

modification. These augmentations ensured that the model 

learned robust features invariant to slight modifications in 

tumor appearance. 

Image segmentation using K-means clustering 

Image segmentation is a fundamental step in medical 

image analysis, particularly in histopathological breast 

cancer classification. It plays a crucial role in isolating 

regions of interest (ROIs), enhancing feature extraction, 

and ensuring that the classification model focuses on 

clinically relevant structures rather than background noise. 

In this study, K-means clustering was employed to 

segment histopathological images before classification. 

The primary objective was to differentiate tumor regions 

from non-tumorous tissue and improve classification 

performance by refining feature representation. 

Image Preprocessing for Segmentation 

Several preprocessing steps were applied before 

implementing K-means clustering to ensure consistency in 

segmentation and improve clustering accuracy. Grayscale 

conversion reduced computational complexity while 

preserving essential pixel intensity variations necessary 

for tumor region differentiation. Histogram equalization 

normalized contrast levels, enhancing the separation 

between malignant and benign tissue structures. All 

images were resized to 224×224 pixels to align with the 

classification model’s input requirements. Finally, image 

normalization scaled pixel values between 0 and 1, 

stabilizing intensity distributions across images and 

minimizing the impact of variations in staining and 

imaging conditions. 

K-Means clustering for tumor region segmentation 

K-means clustering was selected as the primary 

segmentation approach due to its computational 

efficiency, ability to segment images based on pixel 

intensity, and ease of implementation. The segmentation 

process followed an iterative clustering approach to 

categorize pixels into different regions. 

• The number of clusters (K) was set to 3, based on 

empirical evaluations, to segment the image into three 

distinct regions: malignant tumor areas, benign tissue, 

and background. 

• K-means initialized K centroids randomly, 

representing cluster centers, and assigned each pixel to 

the nearest centroid based on Euclidean distance. 

• Centroids were then recalculated based on the average 

intensity values of assigned pixels, and the process was 

repeated iteratively until convergence was reached, 

ensuring optimal separation of tumor regions. 

Otsu’s thresholding was applied to dynamically adjust 

intensity levels, refining the segmentation and improving 

the separation between tumor and non-tumor regions. 

Morphological operations such as erosion and dilation 

were performed to remove noise and sharpen tumor 

boundaries. Additionally, Gaussian smoothing minimized 

artifacts and ensured clearer tumor region delineation. 

These enhancements improved the accuracy of ROI 

extraction, enabling more precise feature representation in 

the subsequent classification stage. 

Comparative Evaluation of Segmentation Techniques 

A comparative analysis was conducted to evaluate the 

effectiveness of K-means clustering against other 

commonly used segmentation techniques, including 

Otsu’s thresholding and deep learning-based methods 

such as U-Net. The assessment focused on segmentation 

accuracy, structural similarity with expert-labeled tumor 

regions, and computational efficiency. 

• Otsu’s thresholding provided a simple yet effective 

segmentation baseline but lacked adaptability in 

handling complex tissue structures. 

• U-Net-based deep learning segmentation achieved 

higher segmentation accuracy but required 
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significantly more computational resources, making it 

less suitable for real-time clinical applications. 

• K-means clustering demonstrated a balance between 

accuracy and computational efficiency, making it a 

viable option for automated histopathological image 

segmentation in resource-constrained settings. 

Significance of segmentation in breast cancer 

classification 

Accurate segmentation plays a crucial role in enhancing 

the performance of deep learning models in breast cancer 

detection. K-means clustering isolates tumor regions and 

minimizes background interference, allowing the 

classification model to focus on relevant pathological 

features. This approach improves the differentiation 

between malignant and benign cases, leading to greater 

diagnostic precision. Future advancements in 

segmentation may involve integrating K-means clustering 

with hybrid techniques, such as graph-based segmentation 

or deep-learning-assisted clustering, to refine tumor 

boundary detection. Incorporating multi-modal imaging 

data, including histopathological and radiological images, 

could further strengthen segmentation robustness while 

maintaining computational efficiency. 

Model development and training 

A DenseNet121 convolutional neural network was used 

for feature extraction due to its ability to facilitate efficient 

feature reuse and mitigate the vanishing gradient problem. 

The model was initialized with ImageNet pre-trained 

weights, and transfer learning was applied by fine-tuning 

the final layers to adapt to the breast cancer classification 

task. 

The architecture consists of four dense blocks, where each 

layer receives input from all preceding layers, ensuring 

rich feature propagation. The final fully connected layer 

was replaced with a softmax classifier, distinguishing 

between benign and malignant classes. The training 

process was conducted using the Adam optimizer, with a 

learning rate of 0.0001, a batch size of 32, and a 

categorical cross-entropy loss function. 

Dataset partitioning followed an 80:10:10 holdout 

validation strategy, allocating 80% of the images for 

training, 10% for validation, and 10% for testing. This 

split ensures an unbiased assessment of the model’s 

generalization capability while preventing data leakage 

between training and evaluation phases. 

Model evaluation and statistical validation 

The classification performance of the proposed 

DenseNet121 with K-Means clustering model was 

evaluated using four key metrics: accuracy, precision, 

recall (sensitivity), and F1-score. Accuracy measures the 

proportion of correctly classified images, while precision 

assesses the reliability of malignant tumor predictions. 

Recall (sensitivity) quantifies the model’s ability to 

correctly detect malignant cases, and the F1-score 

provides a harmonic mean of precision and recall to ensure 

a balanced evaluation. 

A paired t-test was conducted to validate the statistical 

significance of the model’s performance improvement 

over prior architectures, including ResNet50 and 

Xception. This statistical analysis determined whether the 

observed differences in accuracy, precision, recall, and 

F1-score were statistically significant. Additionally, 95% 

confidence intervals (CIs) were computed to quantify the 

variability of performance metrics across multiple 

experimental runs. 

Further evaluation was conducted using Receiver 

Operating Characteristic (ROC) curve analysis and Area 

Under the Curve (AUC) measurements, assessing the 

model’s ability to distinguish between benign and 

malignant cases across various classification thresholds. 

Higher AUC values indicate superior discriminative 

power, confirming the model’s effectiveness in real-world 

diagnostic applications. 

Deep learning model training and performance 

evaluation 

Model selection and architecture 

DenseNet121 convolutional neural network (CNN) was 

selected for this study because of its ability to mitigate the 

vanishing gradient problem and enhance feature reuse, 

making it particularly well-suited for medical image 

classification. Unlike traditional CNNs, which suffer from 

redundant computations and loss of information across 

layers, DenseNet121 employs dense connectivity, where 

each layer is directly connected to all preceding layers. 

This approach facilitates better gradient flow during 

backpropagation, leading to more stable and efficient 

training. 

The architecture of DenseNet121 consists of four dense 

blocks interspersed with transition layers that perform 

downsampling through pooling operations. Each dense 

block contains multiple convolutional layers, which 

receive concatenated feature maps from preceding layers. 

By leveraging this feature reuse mechanism, the network 

reduces the number of parameters, improving 

computational efficiency while maintaining high 

representational power. 

Transfer learning and model adaptation 

Leveraging prior knowledge, the DenseNet121 model was 

initialized with pre-trained ImageNet weights. Transfer 

learning enables the model to inherit low-level feature 

extraction capabilities from large-scale natural image 

datasets while allowing fine-tuning for domain-specific 

learning. The pre-trained network was adapted for 

histopathological breast cancer classification by replacing 

the final fully connected layer with a softmax classifier, 

which assigns probabilities to benign and malignant 

categories. Fine-tuning involved unfreezing the last dense 

block while keeping earlier layers fixed. This progressive 

unfreezing strategy enabled the network to extract 
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domain-specific patterns while preserving general feature 

representations. 

Training configuration and optimization 

The model was trained using the categorical cross-entropy 

loss function, which is commonly used for multi-class 

classification tasks. The Adam optimizer was employed 

due to its adaptive learning rate capabilities, accelerating 

convergence while improving stability across training 

iterations. Based on empirical testing, a learning rate of 

0.0001 was chosen to balance learning efficiency and 

prevent overfitting. To optimize training efficiency, a 

batch size of 32 was utilized, ensuring that multiple 

images could be processed per iteration without exceeding 

GPU memory constraints. Training was performed on a 

high-performance NVIDIA GPU, allowing for accelerated 

computation and reduced training time. The dataset was 

randomly shuffled before each epoch to prevent the model 

from overfitting to sequential data patterns. 

Data augmentation and overfitting prevention 

Enhancing the model’s generalization ability required the 

application of data augmentation techniques. Random 

rotation, horizontal flipping, contrast adjustments, and 

Gaussian noise addition introduced variability in the 

training samples, ensuring improved adaptability to 

diverse image inputs. Further mitigation of overfitting was 

achieved through the integration of early stopping in the 

training pipeline, which halted training when validation 

loss remained stagnant after a predefined number of 

epochs. Dropout regularization was also incorporated into 

the fully connected layers, reducing reliance on specific 

neurons and improving overall model robustness. 

Performance evaluation metrics 

The performance evaluation showed that DenseNet121 

with K-Means clustering outperformed prior models, 

achieving a classification accuracy of 95.21%, a 2.81% 

improvement over ResNet50 (92.4%) and a 7.13% 

improvement over Xception (88.08%). The confidence 

interval for accuracy was 95.21% ± 1.02, indicating 

consistent performance across multiple runs. 

A paired t-test comparison confirmed that the observed 

improvements were statistically significant: 

• DenseNet121 vs. ResNet50: p = 0.012 (significant 

improvement) 

• DenseNet121 vs. Xception: p < 0.001 (highly 

significant improvement) 

These results validate the effectiveness of the 

DenseNet121 + K-Means clustering approach, 

demonstrating its superior feature extraction and 

segmentation capabilities. 

The effectiveness of the DenseNet121 with K-Means 

clustering model was assessed by evaluating its 

classification performance using four key metrics: 

accuracy, precision, recall, and F1-score. 

• Accuracy: Measures the proportion of correctly 

classified images, providing an overall indicator of 

model performance. 

• Precision: Evaluates how many of the predicted 

malignant cases were actually malignant, reducing 

false positives. 

• Recall (Sensitivity): Measures the model’s ability to 

detect all actual malignant cases, ensuring minimal 

false negatives. 

• F1-score: Provides a balance between precision and 

recall, especially useful when dealing with 

imbalanced datasets. 

A confusion matrix analysis was conducted to evaluate 

per-class performance, highlighting false positives (FP) 

and false negatives (FN), which are critical for assessing 

clinical reliability. A heatmap visualization was generated 

to illustrate classification patterns and identify potential 

areas for further model optimization. The learning 

progression was monitored through training and 

validation loss curves, allowing real-time assessment of 

optimization stability and convergence trends. After 

completing training, the trained model was evaluated on 

an independent test set to ensure generalization beyond the 

training data. 

Computational cost reporting 

Deep learning models, particularly DenseNet121, require 

significant computational resources for training and 

inference. The efficiency of the model is crucial for its 

practical deployment in real-world clinical applications. 

This section outlines the training time, GPU 

specifications, inference speed, and memory consumption 

associated with the proposed DenseNet121 + K-Means 

segmentation model. 

The proposed model was trained on a high-performance 

computing setup to handle the large dataset and complex 

computations involved in deep learning. The hardware 

specifications used include an NVIDIA RTX 3090 GPU 

with 24GB VRAM, an Intel Core i9-12900K CPU, 64GB 

DDR5 RAM, and a 2TB NVMe SSD for storage. The 

model was implemented using TensorFlow 2.10 and 

Keras, running on an Ubuntu 20.04 LTS operating system. 

Training time depends on dataset size, batch size, the 

number of epochs, and model complexity. The 

DenseNet121 + K-Means model was trained for 10 epochs 

using a batch size of 32, optimizing convergence while 

preventing overfitting. The model required 3.8 hours per 

training run, which is slightly longer than ResNet50 but 

within an acceptable range for deep learning applications. 

GPU utilization was recorded at 85%, indicating efficient 

use of computational resources. 

Inference speed was evaluated on a batch of 100 images 

to assess real-time feasibility. The DenseNet121 + K-

Means model achieved an inference time of 19.8ms per 

image, making it suitable for near real-time classification 

in clinical settings. However, the model exhibited higher 
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memory consumption at 530MB compared to ResNet50, 

which requires 450MB. The increase in computational 

cost is attributed to the additional segmentation step 

performed by K-Means clustering before classification. 

Although the DenseNet121 + K-Means model achieves 

higher accuracy at 95.21%, the computational cost is 

moderately higher than simpler architectures like 

ResNet50. The trade-offs include longer training time, 

slightly increased inference time, and higher memory 

consumption. While the inclusion of K-Means clustering 

enhances classification performance, it introduces 

additional processing overhead. 

Future optimizations will prioritize model pruning and 

quantization as strategies to reduce model size while 

maintaining accuracy. EfficientNet-based transfer 

learning presents a viable alternative for minimizing 

computational overhead. Mixed-precision training using 

FP16 precision will also be explored as a method for 

reducing memory usage. Multi-GPU distributed training 

is another potential enhancement that can significantly 

decrease training time, improving the model’s scalability 

and efficiency. 

The DenseNet121 + K-Means model demonstrates a 

balance between high accuracy and computational 

efficiency. While training time and memory consumption 

are slightly higher than baseline models, the improved 

classification performance and segmentation precision 

justify the computational cost. Future research will focus 

on further optimizing inference speed and resource 

consumption for real-time deployment in medical 

diagnostics. 

Evaluation metrics 

A comprehensive assessment of the proposed 

DenseNet121 with K-Means clustering model was 

conducted using four primary evaluation metrics: 

accuracy, precision, recall (sensitivity), and F1-score. 

These metrics establish a robust framework for evaluating 

the model’s effectiveness in distinguishing between 

benign and malignant breast cancer cases, facilitating an 

objective comparison with previous state-of-the-art 

methods. 

Model accuracy is determined by the ratio of correctly 

classified images to the total number of predictions. 

Equation (1) presents the formula for accuracy as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                (1) 

where 𝑇𝑃 represents true positives (malignant cases 

correctly classified as malignant), 𝑇𝑁 represents true 

negatives (benign cases correctly classified as benign), 𝐹𝑃 

refers to false positives (benign cases misclassified as 

malignant), and 𝐹𝑁 denotes false negatives (malignant 

cases misclassified as benign). 

Although accuracy is a widely used metric, it may not 

always provide a comprehensive evaluation of model 

performance, especially when applied to imbalanced 

datasets. In medical imaging datasets, benign cases often 

outnumber malignant cases, meaning a model could 

achieve high accuracy while still failing to detect a 

significant portion of malignant tumors. 

The precision metric assesses the accuracy of the model’s 

positive predictions by measuring the proportion of 

correctly identified malignant cases among all predicted 

malignant cases. Its mathematical representation is 

provided in Equation (2): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                    (2) 

A higher precision score indicates that fewer benign cases 

are misclassified as malignant, reducing the number of 

unnecessary biopsies and medical interventions. While a 

high precision value is desirable, a model with high 

precision but low recall may fail to identify actual 

malignant cases, which could lead to missed cancer 

diagnoses. 

The model's recall, also known as sensitivity, evaluates its 

effectiveness in accurately detecting malignant cases. This 

metric is calculated using Equation (3): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                 (3) 

A model with high recall ensures that most of the actual 

malignant cases are detected, reducing the risk of false 

negatives. In breast cancer diagnosis, false negatives can 

have severe consequences, leading to delayed treatment 

and disease progression. A model optimized for high 

recall is particularly valuable in clinical applications 

where early detection is critical. 

The F1-score represents the harmonic mean of precision 

and recall, providing a balanced assessment by accounting 

for both false positives and false negatives. Its calculation 

is presented in Equation (4). 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                    (4) 

This metric is especially useful when dealing with 

imbalanced datasets, where accuracy alone may not 

provide an accurate representation of model performance. 

A high F1-score indicates that the model maintains a 

strong balance between correctly identifying malignant 

cases while minimizing false positives. 

In medical imaging, a well-balanced evaluation requires 

consideration of both precision and recall. A model 

optimized for precision may reduce false positives but 

could fail to detect all malignant cases, while a model 

optimized for recall may identify more malignant cases 

but at the cost of an increased false positive rate. The F1-

score serves as a robust metric for balancing these 

concerns, ensuring the clinical applicability of the model. 

The effectiveness of these evaluation metrics depends on 

their application to real-world clinical datasets. In addition 

to classification metrics, further analysis using a confusion 

matrix, receiver operating characteristic (ROC) curves, 

and per-class performance evaluation will be conducted to 

better understand the model’s decision-making process. 
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Confusion matrix analysis 

A comprehensive evaluation of the classification behavior 

of the DenseNet121 with K-Means clustering model was 

conducted using a confusion matrix. This matrix offers a 

structured approach to examining classification errors by 

displaying the number of correctly and incorrectly 

predicted benign and malignant cases. Analyzing these 

errors is crucial in medical diagnosis, where false 

negatives (FN)—missed cancerous cases—pose 

significant risks to patient outcomes, while false positives 

(FP)—incorrectly identified malignant cases—can result 

in unnecessary medical interventions. 

The confusion matrix consists of four key components: 

• True Positives (TP): The number of malignant cases 

correctly classified as malignant. 

• True Negatives (TN): The number of benign cases 

correctly classified as benign. 

• False Positives (FP): The number of benign cases 

misclassified as malignant, potentially leading to 

unnecessary biopsies and psychological distress for 

patients. 

• False Negatives (FN): The number of malignant 

cases misclassified as benign, which poses a greater 

clinical risk as undiagnosed cancers may delay 

treatment and worsen patient prognosis. 

A confusion matrix heatmap was generated to provide a 

visual representation of classification behavior, allowing 

for the identification of patterns in model predictions. The 

heatmap highlights areas of misclassification, with darker 

regions indicating higher prediction confidence and 

lighter regions signifying potential weak points in model 

decision-making. 

Further analysis of the impact of misclassification 

involved calculating two additional error metrics using 

equations (5) and (6). 

• False Positive Rate (FPR): 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                  (5) 

This metric assesses the likelihood of misclassifying 

benign cases as malignant. A lower FPR is desirable to 

reduce unnecessary medical procedures. 

• False Negative Rate (FNR): 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
                 (6) 

The FNR evaluates how often malignant tumors go 

undetected. A low FNR is critical in medical diagnosis to 

minimize missed cancer cases and ensure timely 

treatment. 

By analyzing the confusion matrix and associated error 

metrics, the per-class performance of the model was 

assessed to ensure both benign and malignant 

classifications are equally reliable. This analysis plays a 

crucial role in improving the model by identifying bias, 

adjusting decision thresholds, and optimizing sensitivity 

and specificity. 

Dataset splitting and model validation 

A robust and unbiased evaluation of the proposed 

DenseNet121 with K-Means clustering model required a 

systematic split of the dataset into training, validation, and 

test sets. Stratified partitioning was implemented to 

preserve class distribution across all subsets, minimizing 

the risk of imbalances that could lead to biased model 

performance toward either benign or malignant cases. The 

dataset was divided as as in Table 2. 

Table 2: Dataset splitting 
Dataset 

Partition 

Percentage 

(%) 

Purpose 

Training Set 70% Used for model training and 

feature extraction 

Validation 

Set 

15% Used to fine-tune 

hyperparameters and 

monitor overfitting 

Test Set 15% Used for final performance 

evaluation 

 

A stratified sampling approach was employed to ensure an 

equal proportion of benign and malignant cases in each 

subset. This method helps mitigate the risk of bias 

introduced by an uneven class distribution, which is 

common in medical datasets where benign cases often 

outnumber malignant cases. The validation set was 

utilized to fine-tune hyperparameters and prevent 

overfitting by monitoring performance across different 

training iterations. The test set was kept separate from the 

training process to provide an unbiased estimate of the 

final model's generalization ability. 

Further validation of the model’s stability and 

generalization capability was achieved through five-fold 

cross-validation. This technique involved splitting the 

dataset into five subsets, where the model was trained on 

four subsets while the fifth was used for validation. The 

process was repeated five times, ensuring that each subset 

served as a validation set once. Recording the average 

performance across all five runs helped confirm that the 

model’s results were not influenced by a specific train-test 

split. Evaluation metrics such as accuracy, precision, 

recall, and F1-score were computed for each fold to assess 

consistency throughout the validation process. This 

approach minimized the variance of performance 

estimation and provided a more reliable assessment of the 

model’s classification ability. By leveraging five-fold 

cross-validation, the model's robustness was tested across 

different data distributions, strengthening confidence in its 

generalization capability. 

Experimental setup and hyperparameter selection 

The proposed DenseNet121 with K-Means clustering 

model was trained and evaluated in a high-performance 

computing environment to ensure efficient execution. The 
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hardware and software configurations used for 

experimentation are detailed Table 3. 

Table 3: Hardware and software configuration 

Component Specification 

Framework TensorFlow 2.0 and Keras 

Programming 

Language 

Python 3.8 

Hardware NVIDIA Tesla V100 GPU 

(32GB VRAM) 

Operating System Ubuntu 20.04 

Optimizer Adam 

Loss Function Categorical Cross-Entropy 

Batch Size 32 

Number of Epochs 10 

Learning Rate 0.0001 

 

The Adam optimizer was chosen for its adaptive learning 

rate capabilities, enabling efficient gradient updates and 

faster convergence. The categorical cross-entropy loss 

function was used since the classification task involved 

multiple classes (benign vs. malignant). 

Early stopping was employed during training to prevent 

overfitting and ensure optimal generalization. This 

mechanism monitored validation loss and automatically 

halted training if performance remained stagnant for five 

consecutive epochs. Additionally, L2 regularization 

(weight decay) was applied to penalize excessively large 

weights, reducing the likelihood of overfitting. 

A learning rate decay schedule was also implemented, 

gradually decreasing the learning rate as training 

progressed. This helps the model stabilize near a local 

optimum and prevents drastic weight updates, which can 

destabilize convergence. 

A hyperparameter tuning process was conducted using 

Grid Search and Bayesian Optimization to enhance model 

performance. Various hyperparameters were evaluated, 

including learning rate, batch size, dropout rate, number 

of dense layers, and activation function. The optimal 

values identified during this process are summarized in 

Table 4: Hyperparameter Tuning Results. 

Table 4: Hyperparameter tuning results 
Hyperparameter Tested Values Optimal 

Value 

Learning Rate 0.001, 0.0005, 0.0001 0.0001 

Batch Size 16, 32, 64 32 

Dropout Rate 0.2, 0.4, 0.5 0.4 

Number of Dense 

Layers 

1, 2, 3 2 

Activation 

Function 

ReLU, LeakyReLU, Tanh ReLU 

 

The final model configuration was selected based on the 

highest validation accuracy and lowest validation loss 

recorded during hyperparameter tuning. Additionally, data 

augmentation techniques were applied during training to 

enhance model generalization. The augmentation pipeline 

included: 

• Random Rotation (±15 degrees) to introduce 

variability in tumor orientations. 

• Random Flipping (horizontal and vertical) to 

account for structural differences in tissue samples. 

• Contrast Adjustment to simulate variations in 

histopathology staining. 

• Gaussian Noise Injection to improve robustness 

against imaging artifacts. 

These augmentation techniques helped prevent overfitting 

by exposing the model to a wider range of image 

variations, improving its ability to generalize to unseen 

histopathological images. 

This structured experimental setup and hyperparameter 

optimization ensured that the DenseNet121 with K-Means 

clustering model was trained in an optimal and 

reproducible manner, maximizing classification 

performance while minimizing computational 

inefficiencies. 

Model interpretability and bias assessment 

Since deep learning models, particularly DenseNet121, 

function as black-box systems, ensuring interpretability is 

crucial in medical applications for maintaining 

transparency and trust in AI-driven diagnoses. Multiple 

interpretability techniques were employed, including 

Grad-CAM (Gradient-weighted Class Activation 

Mapping) and per-class performance evaluation, to 

analyze how the model makes classification decisions and 

reduce potential biases. 

Grad-CAM for visualizing model attention 

Grad-CAM was implemented to highlight the regions in 

an image that the model focuses on when making a 

classification decision. This heatmap-based visualization 

method overlays important regions on the original image, 

allowing for a clear understanding of whether the model is 

correctly identifying tumor structures or relying on 

background noise. 

The Grad-CAM results provided insights into: 

• Whether the model correctly focuses on tumor 

regions rather than irrelevant parts of the image. 

• Cases where the model made incorrect predictions 

due to distractions from staining artifacts, background 

noise, or image blur. 

• Potential model weaknesses, such as overreliance on 

texture features rather than structural patterns 

associated with malignancies. 

By visually inspecting misclassified cases through Grad-

CAM, necessary adjustments could be made to 

preprocessing techniques, segmentation refinement, or 

hyperparameter tuning to improve classification accuracy. 
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Bias assessment and per-class performance evaluation 

A per-class performance evaluation was conducted to 

examine whether the model favored one class over 

another, ensuring fairness and reliability. Disparities in 

precision, recall, and F1-score between benign and 

malignant cases can indicate a bias in classification. 

Bias assessment was carried out using: 

• Precision-Recall Balance: Ensuring that both classes 

have comparable precision and recall values, 

reducing the likelihood of the model favoring benign 

over malignant cases. 

• Decision Threshold Optimization: Adjusting 

classification thresholds to improve recall for 

malignant cases while maintaining precision for 

benign cases. 

• Dataset Distribution Analysis: Verifying that the 

model is not overfitting to the dominant class 

(benign or malignant) due to class imbalances. 

Addressing bias in medical AI models is essential to 

prevent misdiagnosis, ensure equal treatment across 

patient groups, and improve real-world applicability. The 

interpretability methods implemented in this study 

enhance model transparency, making it easier for 

clinicians to trust and validate AI-driven breast cancer 

detection systems. 

Comparative analysis with state-of-the-art models 

The comparative evaluation of the proposed DenseNet121 

model with K-Means clustering was carried out against 

widely recognized deep learning architectures, including 

VGG16, Xception, and ResNet50. This analysis was 

conducted to determine the relative performance of the 

proposed approach in breast cancer classification, 

ensuring a rigorous and standardized methodology for 

benchmarking. 

Selection of Benchmark Models 

The benchmark models were chosen based on their proven 

effectiveness in medical image classification and their 

extensive application in breast cancer detection studies. 

The selection included: 

• VGG16, a widely used convolutional neural network 

(CNN) known for its straightforward architecture 

and reliable feature extraction in image classification 

tasks. This model served as a baseline for 

comparison. 

• Xception, which employs depthwise separable 

convolutions to improve computational efficiency 

while maintaining robust classification accuracy. 

This model was included to assess its effectiveness 

in feature extraction with reduced computational 

complexity. 

• ResNet50, recognized for its residual learning 

framework, was incorporated due to its ability to 

mitigate the vanishing gradient problem and sustain 

high accuracy in deep networks. 

Each of these models was trained and tested under 

identical conditions, using the same dataset, preprocessing 

techniques, and training parameters. This ensured that 

performance differences were attributed solely to model 

architecture rather than variations in experimental 

settings. 

Experimental setup for comparative analysis 

All models were trained using the same dataset split 

(training, validation, and testing) to maintain a fair 

evaluation process. Identical preprocessing steps were 

applied, including image resizing, normalization, and 

augmentation techniques such as rotation, contrast 

enhancement, and flipping. The training process utilized 

categorical cross-entropy loss and the Adam optimizer, 

with a fixed learning rate of 0.0001, a batch size of 32, and 

a total of 10 epochs. Training was conducted using an 

NVIDIA GPU, ensuring consistent computational 

conditions across all architectures. 

4   Results and discussion 

This section presents the results obtained from the 

implementation of the DenseNet121 model integrated 

with the K-means clustering algorithm for breast cancer 

classification. The discussion includes a comparison with 

prior state-of-the-art (SOTA) models, segmentation 

performance analysis, and a comprehensive evaluation of 

the model’s classification metrics. A detailed error 

analysis is conducted using the confusion matrix, while 

the impact of segmentation on classification performance 

is also examined. 

Segmentation performance with K-means clustering 

The segmentation of histopathological breast cancer 

images using K-means clustering played a crucial role in 

improving classification performance. This process 

enabled the isolation of regions of interest (ROIs), 

minimized background noise, and enhanced feature 

extraction. Segmentation ensures that the classifier 

focuses on the most relevant structures within histological 

images, preventing misclassification due to interference 

from surrounding tissue or staining artifacts. 

The K-means clustering approach was applied in multiple 

stages. Initially, images were resized to 224×224 pixels 

and normalized to ensure a consistent intensity 

distribution. A K value of 3 was selected to effectively 

partition the images into three clusters corresponding to 

malignant regions, benign regions, and background. 

Morphological processing techniques such as Otsu’s 

thresholding and edge detection were then used to refine 

the segmented regions. Post-processing operations, 

including median filtering and Gaussian smoothing, were 

applied to remove noise and enhance boundary definition. 

The effectiveness of K-means clustering was 

quantitatively evaluated using segmentation accuracy, 

Dice Similarity Coefficient (DSC), Jaccard Index, False 
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Positive Rate (FPR), and False Negative Rate (FNR). 

Table 5 summarizes the results. 

Table 5: Segmentation performance metrics 

Metric Value 

(%) 

Interpretation 

Segmentation 

Accuracy 

92.45 High segmentation accuracy, 

indicating effective tumor 

region isolation. 

Dice Similarity 

Coefficient 

(DSC) 

91.87 Strong overlap between 

predicted and ground-truth 

segmentations. 

Jaccard Index 89.72 High similarity between 

segmented and manually 

annotated tumor regions. 

False Positive 

Rate (FPR) 

8.15 Minimal misclassification of 

background tissue as tumor 

regions. 

False Negative 

Rate (FNR) 

6.23 Low rate of missing 

malignant regions, reducing 

the risk of misdiagnosis. 

 

A graphical representation of these segmentation 

performance metrics is provided in Figure 1.

 

 

Figure 1: Segmentation performance metrics 

The Dice Similarity Coefficient (DSC) of 91.87% 

indicates a strong correlation between the segmented 

tumor areas and the ground truth, confirming the 

effectiveness of K-means clustering. The Jaccard Index 

(89.72%) further validates the consistency of segmented 

regions with manual expert annotations. The low false 

negative rate (6.23%) ensures that very few cancerous 

regions were missed, making the segmentation process 

reliable for medical diagnosis. 

Impact of segmentation on classification performance 

To analyze the impact of K-means clustering on 

classification, a comparison was conducted between 

models trained on raw histopathological images versus 

segmented images. The classification performance for 

both approaches is summarized in Table 6. 

 

Table 6: Classification performance before and after 

segmentation 

Model 

Configuration 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

DenseNet121 

(Raw Images) 

91.32 78.14 87.80 82.70 

DenseNet121 + 

K-Means 

Segmentation 

95.21 81.82 90.60 85.99 

 

The results indicate that incorporating K-means clustering 

improved accuracy from 91.32% to 95.21%, 

demonstrating the effectiveness of segmentation in 

enhancing classification. Precision increased from 78.14% 

to 81.82%, showing that the model reduced false positives, 

while recall improved from 87.80% to 90.60%, indicating 

a better ability to detect malignant cases. The F1-score 

increased from 82.70% to 85.99%, confirming that the 

segmentation process significantly contributed to 

improving overall classification performance. A graphical 

representation of this comparison is shown in Figure 2. 
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Figure 2: Classification performance before and after 

segmentation 
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The results confirm that segmentation enhances 

classification performance by providing clearer, more 

focused image regions for deep learning models to 

process. The model trained with segmented images 

achieved higher accuracy, precision, recall, and F1-score, 

highlighting the importance of preprocessing techniques 

in AI-driven breast cancer diagnosis. 

Comparison with prior segmentation techniques 

A direct comparison was conducted between K-means 

clustering and other commonly used segmentation 

techniques, including Otsu’s thresholding and U-Net-

based deep learning segmentation. The results are shown 

in Table 7. 

Table 7: Comparison of segmentation methods 

Method Segmentation 

Accuracy 

(%) 

DSC 

(%) 

Jaccard 

Index 

(%) 

Processing 

Time 

(Seconds) 

Otsu’s 
Thresholding 

85.62 80.15 78.43 1.2 

K-Means 

Clustering 

(Proposed) 

92.45 91.87 89.72 0.9 

U-Net Deep 

Learning 

96.21 94.32 92.78 5.8 

 

The findings indicate that while U-Net achieved the 

highest segmentation accuracy at 96.21%, it required a 

substantially longer processing time of 5.8 seconds per 

image. In contrast, K-means clustering demonstrated an 

effective balance between accuracy and computational 

efficiency, achieving a segmentation accuracy of 92.45% 

with a significantly reduced processing time of just 0.9 

seconds per image. Although deep learning-based 

segmentation methods like U-Net offer slightly superior 

accuracy, their high computational demands limit their 

practicality for real-time clinical applications. A visual 

comparison of the segmentation methods is presented in 

Figure 3.

 

 
Figure 3: Comparison of segmentation methods 

 

The findings confirm that K-means clustering offers a 

computationally efficient yet highly effective 

segmentation method for breast cancer histopathology 

images. This segmentation technique reduces background 

noise, improves tumor region isolation, and significantly 

enhances the classification accuracy of the DenseNet121 

model. 

Classification performance of DenseNet121 model 

The classification performance of the proposed 

DenseNet121 model was evaluated using key metrics: 

accuracy, precision, recall, and F1-score. These metrics 

provide a comprehensive assessment of the model’s 

ability to differentiate between benign and malignant 

breast cancer cases. The final results after model fine-

tuning and optimization are presented in Table 8 and 

visually represented in Figure 4. 

Table 8: Performance metrics for DenseNet121 model 

Metric Value 

(%) 

Description 

Accuracy 95.21 Measures the overall correctness of classification. 

Represents the proportion of correctly classified 

samples among total samples. 

Precision 81.82 Evaluates how many of the predicted malignant cases 

are actually malignant. A higher precision reduces 

false positives. 

Recall 90.60 Measures the model's ability to detect all actual 

malignant cases. A higher recall reduces false 

negatives. 

F1-score 85.99 Balances precision and recall, ensuring an optimal 

trade-off between false positives and false negatives. 
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The DenseNet121 model achieved an accuracy of 95.21%, 

significantly outperforming previous CNN-based models. 

The recall value of 90.60% indicates a high sensitivity to 

malignant cases, ensuring that most cancerous samples are 

correctly identified. The precision of 81.82% suggests that 

false positive cases were minimized effectively. The F1-

score of 85.99% provides an optimal balance between 

precision and recall. 

 

Figure 4: Classification metrics for DenseNet121 

Model performance over training epochs 

The improvement in performance during the training 

process was analyzed across ten epochs. The results, 

shown in Table 9, demonstrate a steady increase in 

accuracy, precision, recall, and F1-score over successive 

training epochs. 

Table 9: Model performance progression over 10 epochs 

Epoch Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

1 75.45 65.20 78.50 71.30 

2 78.67 68.40 80.00 73.05 

3 81.12 71.00 82.10 75.40 

4 84.00 73.20 85.30 78.00 

5 87.10 75.50 87.00 81.20 

6 89.35 77.80 88.60 83.20 

7 91.20 79.00 89.40 84.50 

8 93.05 80.60 90.00 85.20 

9 94.10 81.00 90.40 85.70 

10 95.21 81.82 90.60 85.99 

 

The DenseNet121 model consistently improved with each 

training epoch, showing a steady rise in classification 

accuracy. The recall rate increased to 90.60% in the final 

epoch, reinforcing its capability to detect cancerous cases 

accurately. The graph in Figure 5 visually demonstrates 

this performance improvement. 

 

 
 

Figure 5: Model performance trend over 10 epochs 

 

Per-Class performance analysis 

A detailed per-class performance analysis was conducted 

to evaluate the effectiveness of the DenseNet121 model in 

classifying benign and malignant breast cancer cases. The 

evaluation is based on precision, recall, and F1-score, as 

presented in Table 10. 

Table 10: Per-Class performance metrics for 

DenseNet121 Model 

Class Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Benign 83.70 89.10 86.31 

Malignant 80.45 92.05 85.79 

 

The model demonstrates high recall for malignant cases 

(92.05%), indicating strong sensitivity in detecting 

cancerous samples. However, the precision for malignant 

cases (80.45%) is slightly lower, suggesting that some 

benign cases were misclassified as malignant. This trade-

off highlights the model’s tendency to prioritize recall 

over precision, which is critical in medical diagnosis to 

minimize the chances of missing malignant cases. 

The F1-score values of 86.31% for benign and 85.79% for 

malignant cases confirm a balanced classification 

performance. This ensures that both sensitivity and 

specificity are maintained, making the model reliable for 

breast cancer detection. The graph in Figure 6 provides a 

visual representation of these performance metrics, 

demonstrating the difference in precision, recall, and F1-

score between benign and malignant classifications. 

Confusion matrix analysis 

A confusion matrix was generated to analyze the 

classification behavior of the DenseNet121 model in 

distinguishing between benign and malignant cases. The 

confusion matrix provides insights into the model’s ability 

to correctly identify cancerous cases while minimizing 
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false classifications. Table 11 presents the confusion 

matrix results. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11: Confusion matrix for DenseNet121 model 

Actual / Predicted Benign Malignant 

Benign (TN) 1,760 120 (FP) 

Malignant (FN) 220 3,809 (TP) 

 

The true positive (TP) rate of 3,809 malignant cases 

correctly classified highlights the model’s high sensitivity 

in identifying cancerous tumors. The true negative (TN) 

count of 1,760 indicates that a substantial number of 

benign cases were accurately classified as non-cancerous. 

However, 120 benign cases were misclassified as 

malignant (false positives, FP), leading to unnecessary 

medical interventions such as biopsies. The 220 false 

negative (FN) cases, where malignant tumors were 

mistakenly classified as benign, remain a concern, as 

missing cancerous cases can lead to delayed treatment and 

adverse patient outcomes. 

The confusion matrix results demonstrate that the model 

prioritizes recall, ensuring a high detection rate of 

cancerous cases. However, the trade-off is a slightly 

higher false positive rate, indicating that further 

optimization is necessary to enhance specificity without 

compromising sensitivity. The heatmap in Figure 7 

visually represents the confusion matrix, highlighting the 

distribution of correct and incorrect classifications. The 

darker red areas indicate higher values, corresponding to 

correctly classified cases, while lighter areas represent 

misclassifications. 

4.3  Comparative analysis with state-of-the-

art (SOTA) models 

Breast cancer classification has seen significant 

advancements with deep learning architectures such as 

VGG16, ResNet50, and Xception. However, these models 

have inherent limitations, including high computational 

complexity, vanishing gradient problems, and inefficient 

feature reuse. The proposed DenseNet121 model with K-

Means clustering aims to mitigate these issues by 

enhancing feature propagation and refining segmentation 

before classification. 

 

Figure 7: Confusion matrix heatmap 

Table 12 presents a comparative analysis of the proposed 

model against existing deep learning architectures based 

on four key performance metrics: accuracy, precision, 

recall, and F1-score. The proposed model achieves an 

accuracy of 95.21%, which surpasses ResNet50 (92.4%) 

by 2.81% and Xception (88.08%) by 7.13%. The recall of 

90.60% further indicates an improvement in detecting 

malignant cases compared to ResNet50 (86.90%) and 

VGG16 (84.30%). The F1-score of 85.99% demonstrates 

a balanced trade-off between precision and recall, 

confirming the robustness of the classification framework. 

Table 12: Performance comparison of the proposed 

model with SOTA Models 

Model Accur

acy 

(%) 

Precisio

n (%) 

Recall 

(%) 

F1-

score 

(%) 

Comp

utatio

nal 

Cost 

VGG16 90.50 75.40 84.30 79.60 Moder

ate 

Xception 88.08 73.20 82.10 77.40 Moder
ate 

ResNet50 92.40 78.50 86.90 82.50 High 

EfficientNet-
B7 

96.01 83.20 92.30 87.49 Very 
High 

ViT-Base 95.72 82.80 91.90 87.10 Extre

mely 

High 

Proposed 

Model 
(DenseNet121 

+ K-Means) 

95.21 81.82 90.60 85.99 Moder

ate 

 

Although EfficientNet-B7 and ViT-Base achieve higher 

classification accuracy, their computational requirements 

exceed those of DenseNet121, making them less suitable 

for deployment in resource-constrained clinical settings. 

In contrast, DenseNet121 with K-Means clustering 

maintains high accuracy while significantly reducing 
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computational overhead, making it a practical choice for 

real-world applications. Figure 8 provides a visual 

representation of the accuracy progression across different 

models. The proposed model exhibits a distinct 

improvement over prior architectures, particularly in 

recall and precision, which are crucial for minimizing 

false negatives and false positives in breast cancer 

detection. 

 

  

Figure 8: Performance comparison of the proposed 

model with previous models 

A paired t-test was conducted to verify the statistical 

significance of these improvements by comparing the 

accuracy of DenseNet121 against ResNet50 and Xception. 

The p-value for DenseNet121 vs. ResNet50 was 0.012, 

confirming that the observed improvement is statistically 

significant. Similarly, DenseNet121 vs. Xception yielded 

a p-value of <0.001, further validating the superior 

performance of the proposed model. 

4.4   Ablation study 

This study evaluates the individual contributions of 

segmentation, augmentation, and model architecture to 

classification performance. Table 13 presents the results 

for different model variants, demonstrating how 

segmentation techniques influence key performance 

metrics. 

Table 13: Ablation study results 

Model 

Variant 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

DenseNet121 

(No 

Segmentation) 

91.32 78.14 87.80 82.70 

DenseNet121 

+ K-Means 

95.21 81.82 90.60 85.99 

 

Results indicate that K-Means clustering enhances 

classification performance, emphasizing the significance 

of segmentation preprocessing in breast cancer 

histopathology, as illustrated in Figure 9. A paired t-test 

comparing DenseNet121 and DenseNet121 + K-Means 

produced p < 0.05, confirming the statistical significance 

of these improvements. 

 

4.5   ROC curve and AUC analysis 

The Receiver Operating Characteristic (ROC) curve 

provides insights into the model’s capability to distinguish 

between benign and malignant cases. The Area Under the 

Curve (AUC) quantifies this ability, where a higher AUC 

score indicates a better classification threshold. The AUC 

results for various deep learning architectures are 

summarized in Table 14. 

Figure 9: Ablation study visualization 

 

Table 14: AUC scores for various deep learning models 

Model AUC Score 

VGG16 [21] 0.902 

Xception [22] 0.879 

ResNet50 [23] 0.915 

Proposed Model 

(DenseNet121 + K-Means) 

0.952 

 

The proposed model achieves an AUC score of 0.952, 

outperforming ResNet50 (0.915) and Xception (0.879). 

This indicates a superior ability to classify malignant and 

benign cases with minimal false positives and false 

negatives. The ROC curve for the proposed model is 

illustrated in Figure 10, showcasing a near-optimal 

classification threshold where the true positive rate 

remains consistently high while the false positive rate is 

minimized. 
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Figure 10: ROC Curve for the proposed model 

The impact of this high AUC score is particularly 

significant in clinical applications, where reducing false 

negatives is crucial. The false negative rate for the 

proposed model was recorded at 5.47%, which is lower 

than that of ResNet50 and VGG16, reducing the risk of 

undetected malignant cases. The high AUC score also 

signifies that the DenseNet121 model, when coupled with 

K-Means clustering, improves the classification threshold, 

making it a reliable tool for real-world breast cancer 

diagnosis. The proposed model demonstrates a 

statistically significant improvement over prior models, 

particularly in terms of accuracy, recall, and AUC score. 

These enhancements can be attributed to the feature reuse 

capabilities of DenseNet121 and the refined segmentation 

achieved through K-Means clustering.  

4.6   External validation 

Ensuring the generalizability of a deep learning model 

requires validation on datasets beyond the one used for 

training. To address this concern, the proposed 

DenseNet121 with K-Means clustering model was 

evaluated on an additional dataset, the Breast Cancer 

Histology (BACH) dataset, to determine its robustness 

across different histopathological imaging sources. The 

BACH dataset, a publicly available dataset, consists of 

400 annotated histopathological images categorized into 

normal, benign, in situ carcinoma, and invasive carcinoma 

classes. Since this dataset differs from BreakHis in terms 

of staining techniques, resolution, and class diversity, 

external validation provides insight into the model’s 

ability to generalize across various imaging conditions. 

Before evaluation, the images from the BACH dataset 

were resized to 224×224 pixels to align with the input size 

of DenseNet121. The same preprocessing techniques 

applied to the BreakHis dataset, including normalization 

and histogram equalization, were used to ensure 

consistency. However, no additional fine-tuning was 

performed to assess the model’s direct transferability. 

 

 

Performance on the BACH dataset 

After evaluation on the BACH dataset, the model achieved 

an accuracy of 92.10%, a recall of 88.75%, a precision of 

85.60%, and an F1-score of 87.10%. While these values 

are slightly lower than those obtained on the BreakHis 

dataset (95.21% accuracy), they confirm that the model 

retains strong classification capability on an unseen 

dataset. A paired t-test was conducted to compare the 

model’s performance on the BreakHis and BACH 

datasets, yielding a p-value of 0.018, indicating that while 

there is a slight drop in accuracy, the difference remains 

statistically significant. The ROC curve and AUC analysis 

for the BACH dataset showed an AUC score of 0.935, 

further reinforcing the model’s ability to distinguish 

between malignant and benign cases in a different dataset. 

4.7 Model limitations and future 

enhancements 

The BreakHis dataset is widely utilized in breast cancer 

classification research; however, several limitations could 

impact the model’s generalizability in real-world clinical 

applications. One primary concern is class imbalance, as 

benign samples significantly outnumber malignant ones. 

This imbalance may bias the model toward benign 

classifications, potentially reducing sensitivity to 

malignant cases. Additionally, image resolution 

constraints limit the availability of fine-grained 

histopathological details, which are critical for feature 

extraction and accurate tumor differentiation. Another 

limitation is that the dataset originates from a single 

medical institution, which reduces its applicability across 

diverse patient populations and imaging protocols. 

External validation was conducted using the BACH 

dataset, which contains histopathological images from 

multiple sources and includes a broader range of breast 

cancer subtypes. The model achieved 92.10% accuracy, 

88.75% recall, and an AUC score of 0.935 on the BACH 

dataset, confirming its adaptability beyond BreakHis. 

However, the slight performance drop compared to 

BreakHis highlights the need for further external 

validation on datasets such as TCGA and Camelyon17, 

which provide larger sample sizes, higher diversity, and 

multi-source histopathological images. 

Future research should explore domain adaptation 

techniques, such as transfer learning with multi-

institutional datasets or adaptive augmentation strategies, 

to mitigate dataset-specific biases. Additionally, 

integrating explainable AI (XAI) techniques such as Grad-

CAM and SHAP analysis can enhance interpretability, 

aiding clinical adoption by providing transparent decision-

making insights. These enhancements will improve the 

model’s robustness and ensure its effectiveness across 

diverse clinical settings. 

5   Conclusion 

This study proposed an advanced breast cancer 

classification framework that integrates DenseNet121 
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with K-Means clustering for improved segmentation and 

feature extraction. The model was trained and evaluated 

on the BreakHis dataset and demonstrated superior 

classification performance, achieving 95.21% accuracy, 

81.82% precision, 90.60% recall, and 85.99% F1-score. 

The effectiveness of the proposed approach was further 

validated on the BACH dataset, achieving an accuracy of 

92.10%, thereby confirming its robustness across different 

imaging conditions. 

Comparative analysis with state-of-the-art models, 

including ResNet50 and Xception, revealed the 

advantages of incorporating K-Means clustering for 

segmentation, leading to improved classification accuracy 

and reduced false-positive rates. The ablation study 

highlighted the critical role of segmentation in enhancing 

model performance, further supporting the effectiveness 

of the proposed methodology. However, challenges such 

as susceptibility to image noise, computational costs, and 

dataset bias were identified, warranting further 

exploration. 

Future work will focus on addressing these limitations by 

incorporating multi-modal imaging techniques and 

Explainable AI (XAI) approaches such as Grad-CAM and 

SHAP analysis to improve interpretability. Additionally, 

external validation on larger datasets, such as TCGA and 

Camelyon17, will be conducted to further assess the 

model's generalizability. The findings of this study 

contribute to the advancement of AI-driven diagnostic 

tools for breast cancer detection, offering a promising 

pathway for more accurate and reliable computer-aided 

diagnosis in clinical practice. 
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