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Named entity recognition serves as a cornerstone in natural language processing and has garnered 

extensive research attention due to its significance in various downstream applications. Owing to the 

intricate nature of Chinese texts, characterized by complex syntactic structures and the lack of explicit 

word boundaries, conventional NER methodologies often encounter difficulties in simultaneously 

optimizing recognition accuracy and computational efficiency. To address this issue, the study proposes 

a named entity recognition algorithm that integrates attention mechanisms with Convolutional Neural 

Networks, incorporates into a Transformer-based bidirectional encoder framework for training. A 

multi-head self-attention mechanism is employed to capture the global semantic information of the text, 

and multi-task learning is introduced to construct the final model. When evaluated on datasets with 

sample sizes of 200, 1000, and 3000, the proposed model consistently outperforms the baseline models 

in terms of precision, recall, and F1 score. Specifically, under the low-resource setting with 200 

samples, the model achieves a precision of 98.62%, a recall of 98.10%, and an F1 score of 98.36%. In 

terms of inference efficiency, the model processes at a speed of 2618 tokens per second. The 

experimental results indicate that this method can be widely applied in various fields such as 

information extraction and text understanding, providing strong technical support for related research. 

Povzetek: Model AC-MTL združuje pozornostne mehanizme, konvolucijske nevronske mreže in 

večopravilno učenje za kitajsko prepoznavo imenovanih entitet. Povezuje globalni pomen in lokalne 

značilnosti, odlikujeta ga robustnost in natančnost. 

 

1 Introduction 
Chinese Named Entity Recognition (CNER) is a 

fundamental task in Natural Language Processing (NLP), 

aiming to automatically identify entities with specific 

meanings within Chinese text. As Chinese information 

technology continues to advance, Named Entity 

Recognition (NER) has become a crucial technology in 

various applications, including information extraction, 

sentiment analysis, knowledge graph construction, 

intelligent question answering, and machine translation 

[1]. CNER is increasingly being utilized across various 

sectors, including finance, healthcare, e-commerce, and 

law. It provides crucial support for cross-domain data 

integration, information extraction, and intelligent 

applications [2]. With the rise of deep learning 

technologies, NER methods based on Convolutional 

Neural Networks (CNN), Recurrent Neural Networks, 

and Transformers have gradually become the mainstream 

in research [3]. However, CNER still faces significant 

challenges due to the unique structure of the Chinese 

language. Traditional NER methods based on 

dictionaries and machine learning still suffer from low 

universality and poor cross-regional recognition  

 

performance [4]. Bidirectional Encoder Representations 

from Transformers (BERT), built on the Transformer  

architecture, effectively captures deep contextual 

information from text, thereby improving the accuracy 

and generalization of entity recognition in complex 

contexts [5]. The Multi-Head Self-Attention Mechanism 

(MHSA) is particularly well-suited for capturing long-

range dependencies and contextual relationships in 

Chinese text, enhancing NER accuracy by considering 

the global semantic information across the entire 

sentence [6]. To address the issues of low 

generalizability and suboptimal recognition performance 

in CNER, a novel recognition approach—Attention-

Enhanced Convolutional Neural Network (Attention-

CNN)—was proposed to improve recognition accuracy 

and optimize computational efficiency. The study also 

introduces Multi-Task Learning (MTL) to develop the 

final CNER hybrid model, named Attention-CNN with 

Multi-Task Learning for Chinese Named Entity 

Recognition (AC-MTL). By combining the advantages of 

MHSA and CNN, this study aims to simultaneously 

process global semantics and local features. The AC-

MTL model provides an effective and feasible new 
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method to improve the performance and accuracy of 

CNER. 

2 Related works 
With the advent of the information age, CNER has 

emerged as a crucial task in natural language processing, 

aiming to extract specific types of entities—such as 

person names, locations, and organizations—from 

unstructured text [7]. The lack of clear word boundaries 

in Chinese, combined with semantic ambiguity, nested 

entities, and long-distance dependencies, has long made 

CNER a challenging problem. Early research in NER 

primarily relied on statistical learning approaches such as 

Conditional Random Fields (CRF) and Hidden Markov 

Models (HMM), which were heavily dependent on hand-

crafted features and lacked generalizability in complex 

scenarios [8]. Later on, deep learning approaches took 

center stage. Notably, the BiLSTM-CRF framework 

proposed by Huang et al. significantly improved 

sequence labeling performance and became a widely 

adopted baseline in NER research [9]. In recent years, the 

development of pre-trained language models has driven 

substantial advances in NER performance. Devlin et al.’s 

BERT model, which employs a deep bidirectional 

Transformer to capture contextual semantics, 

demonstrated strong performance across various NLP 

tasks and has been extensively applied to NER [10]. 

Several BERT-based adaptations have been introduced to 

better model Chinese-specific linguistic features. For 

example, Chay-intr et al. introduced a Lattice Attention 

Encoding (LATTE) method for character-based word 

segmentation that achieved promising results on standard 

datasets in Chinese, Japanese, and Thai [11]. These 

studies underscore BERT's potential for modeling word 

boundaries, contextual dependencies, and semantic 

richness in Chinese NER tasks. 

Beyond foundational architectures, the integration of 

attention mechanisms and multi-task learning has 

become a prominent direction for boosting NER 

performance. For instance, Patel and Ezeife proposed a 

novel aspect-based opinion mining system, BERT-MTL, 

which introduces auxiliary tasks to enable shared 

representation across multiple subtasks, simultaneously 

handling aspect term and category extraction. This 

approach not only improves accuracy but also 

significantly reduces training time [12]. The 

GlobalPointer method further overcomes the limitations 

of CRF in recognizing overlapping entities. Zhai et al. 

developed a CNER framework that utilizes an Efficient 

GlobalPointer model to effectively address entity nesting, 

along with a context shielding window mechanism [13]. 

These works validate the effectiveness of structural 

integration strategies in enhancing NER capabilities. In 

terms of applied CNER, several studies have extended 

the task to domain-specific text, including medical, 

agricultural, and railway documents. Models combining 

CNNs and attention mechanisms have shown promising 

performance by leveraging convolutional layers for local 

feature extraction and attention mechanisms for 

capturing global dependencies [14]. Yang et al. proposed 

a BERT-based CNER model tailored for complex 

filtering in COVID-19 epidemiological investigation 

texts, resulting in notable improvements in both accuracy 

and F1 score [15]. Zhao et al. introduced a high-

performance NER model for agricultural texts by 

incorporating multi-level glyph feature modeling and 

self-attention mechanisms. This model achieved an F1 

score of 95.56% and enriched target word representations 

through hierarchical glyph feature learning [16]. A 

summary and comparison of these studies are provided in 

Table 1. 

 

 

Table 1: Structured summary of related work 
Author(s) Dataset / Domain Method Key results Major contribution 

Huang et 

al. [9] 

CoNLL/multi-task 

labeling 
BiLSTM-CRF 

Multi-task average 

F1>91% 

Introduced a classic deep structured 

model for sequence labeling; became a 

standard NER baseline. 

Devlin et 

al. [10] 

Multilingual pre-

training corpora 

BERT: Bidirectional 

Transformer 

Significant 

improvement in F1 

Proposed the BERT pre-trained 

language model, establishing a new 

paradigm for NER tasks. 

Chayintr et 

al. [11] 

BCCWJ/CTB6/BES

T2010 

LATTE (Lattice+ 

GNN+Attention) 

Improved word 

segmentation 

accuracy 

Addressed multi-granularity semantic 

ambiguity using lattice-based encoding 

and attention mechanisms. 

Patel and 

Ezeife [12] 
SemEval-14 ABSA 

BERT-MTL (Multi-task 

Learning) 

Improved multi-task 

accuracy 

Enhanced generalization and training 

efficiency between subtasks through 

shared BERT representations. 

Zhai et al. 

[13] 

Medical 

texts/CMeEE and 

others 

Knowledge 

Distillation+Efficient 

GlobalPointer 

F1 score exceeds 

existing best results 

Proposed an efficient GlobalPointer 

architecture to handle nested entities and 

redundant information while balancing 

accuracy and speed. 

Yang et al. 

[15] 

COVID-19 

epidemiological 

texts 

BERT+BiLSTM+IDCN

N+CRF 

F1 score exceeds 

existing best results 

Constructed a multi-level architecture 

for complex medical text modeling, 

improving CNER accuracy. 

Zhao et al. 

[16] 

Agricultural chinese 

texts 

ALBERT+CNN+BiLS

TM+Self-

Attention+CRF 

F1=95.56% 

Enhances the generalization ability of 

named entity recognition in agricultural 

texts by leveraging multi-level glyph 

features. 
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In summary, the development of CNER has evolved 

from statistical learning methods to deep learning, and 

further toward integrated pre-trained architectures and 

multi-task modeling. Deep learning approaches that 

incorporate self-attention mechanisms and convolutional 

neural networks have demonstrated superior performance 

in capturing complex data patterns and modeling global 

contextual information. The primary challenge at present 

lies in how to jointly model character-level semantics, 

word boundaries, and contextual dependencies while 

achieving accurate entity classification and boundary 

recognition. To address this, the study proposes the AC-

MTL model, which integrates attention mechanisms with 

CNN structures. This design aims to achieve a better 

balance between global semantic understanding and local 

feature extraction, particularly when dealing with 

complex entities and long-form texts, thereby enhancing 

the model’s adaptability in Chinese named entity 

recognition tasks. 

3 CNER model based on attention 

mechanism and CNN 

3.1 CNER design based on CNN and 

attention mechanism 

With the development of the internet, artificial 

intelligence has become ubiquitous in people's lives, 

bringing convenient and intelligent technologies for 

societal advancement [17]. NER serves the purpose of 

automatically identifying entities such as person names, 

organizations, and locations in text [18, 19]. In service, 

NER needs to accurately and quickly recognize specific 

entities, whereas traditional NER methods often suffer 

from insufficient accuracy. CNN, a feedforward neural 

network that utilizes convolutional operations and a deep 

architecture, is widely applied in tasks like object 

detection and image recognition [20]. In NER tasks, 

CNNs can be employed to extract local contextual 

features from embedded character sequences. The 

standard processing pipeline involves four main steps. 

First, the input Chinese sentence is encoded by a pre-

trained language model such as BERT into a two-

dimensional embedding matrix n dX R  , where n  

denotes the sentence length and d  represents the 

dimensionality of each character's embedding vector. 

This embedded sequence is then passed through a one-

dimensional convolutional layer. The convolutional layer 

applies multiple sets of filters with varying kernel 

sizes—specifically, window sizes of 3, 5, and 7—sliding 

along the sequence dimension to capture local features at 

different granularities. Each filter generates a feature map, 

and all resulting feature maps are concatenated to form a 

richer representation. Following the convolution 

operation, a max-pooling layer is applied to reduce the 

length of the feature maps and retain the most salient 

features. The pooled output is subsequently fed into a 

fully connected layer or a CRF layer for final entity label 

prediction. Unlike the two-dimensional convolution used 

in image processing tasks, the convolution operation in 

this model is performed only along the temporal 

(sequence) dimension, and thus constitutes a one-

dimensional convolution. This approach effectively 

captures local structural features in Chinese, such as 

radicals, part-of-speech combinations, and character 

patterns, thereby enhancing the model’s ability to 

understand short-range entity structures. When the 

convolutional layer processes the sequence, the 

dimensions are adjusted, and the padding size is shown 

in Equation (1). 
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paddingSize

−
=  (1)

 

In Equation (1), f  represents that the convolutional 

kernel size is odd. The formula used to calculate the 

convolution output size is provided in Equation (2). 
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In Equation (2), w  and h  represent the width and 

height of the input image, while s  is the stride. To 

reduce the output dimensions, a pooling operation is 

performed as shown in Equation (3). 
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C Conv1D(A , W, )
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k
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In Equation (3), Ai
 represents the input processed 

by MHSA, and Ci
 is the output after convolution. In the 

field of natural language processing, CNN is widely used 

to extract features such as the structural components of 

Chinese characters. CNN can also handle long Chinese 

sentences or capture potential word properties. However, 

since CNN performs better in learning local features and 

cannot fully consider global semantics, it may encounter 

issues with inaccurate recognition of Chinese, as its 

operational scope is limited. The core idea of the 

attention mechanism is to focus on specific locations 

while ignoring less important information, similar to how 

humans focus their attention on specific parts of an 

object to enhance feature learning from semantic 

information [19]. Among the different types of attention 

mechanisms, MHSA has multiple attention heads, and 

when processing semantic information, it not only 

extracts local features clearly but also processes them in 

parallel, allowing global features to be expressed more 

distinctly [20]. The principle of the MHSA mechanism is 

shown in Figure 1. 
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Figure 1: Diagram of the multi-head attention mechanism. 

 

As shown in Figure 1, MHSA is capable of focusing 

on the most important tasks at the moment by gathering 

various pieces of information. First, for each sequence, a 

query vector (Q), a key vector (K), and a value vector (V) 

are assigned. These vectors are then processed through 

linear layers for individual linear transformations. After 

that, they are aggregated into scaled dot-product attention, 

where the attention distribution is calculated. 

Subsequently, operations like concatenation are 

performed, followed by another round of linear 

transformations. When the Q and K vectors undergo 

attention via matrix multiplication and masking, the 

resulting scores are processed by the softmax function. 

All the outcomes are then added to the V vector, and 

after the final matrix multiplication, the output is 

obtained. The attention computation during linear 

transformations is expressed in Equation (4). 

 

Q

K

V

Q XW

K XW

V XW

 =

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
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 (4)

 

In Equation (4), X  represents the word vector 

 1 2 3, , , , nX x x x x= . Due to the parallel computing 

capability of MHSA during CNER, it effectively 

captures global semantic information. Therefore, the 

study proposes combining MHSA with CNN to form 

Attention-CNN, which improves the accuracy of text 

CNER. The structure of CNER based on Attention-CNN 

is shown in Figure 2. 
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Figure 2: Structure of CNER based on Attention-CNN. 

 

As shown in Figure 2, Attention-CNN structure in 

CNER has MHSA at the front end, which identifies 

Chinese entities in the text. Its multiple heads perform 

parallel computation of attention scores, and after matrix 

multiplication and softmax function mapping, the output 

of the MHSA feature map is obtained. This output is then 

used as the input for CNN, where convolution operations 

are applied with different kernels, followed by max 

pooling to reduce dimensions. The process of 

convolution and pooling is repeated, and after further 

matrix and function calculations, the final recognition 

result is output through the maximum probability at the 

fully connected layer. The more optimal results are 

selected, and CNN is used to further extract the optimal 

solution, resulting in the best overall output. Additionally, 

position encoding solves the problem of lacking 

sequential order information when the model processes 
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words at different positions. The expression is shown in 

Equation (5). 

 

2
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In Equation (5), pos  represents the position, and i  

represents the dimension. Further clarification of the 

scaled dot-product attention is shown in Equation (6). 

 Attention( , , ) softmax( )V
T

k

QK
Q K V

d
=  (6) 

In Equation (6), 
kd  represents the key dimension, 

which is used for scaling. The combined formulation of 

MHSA is given in Equation (7). 

 1 2MultiHead( , , ) Concat(head ,head ,...,head ) O

hQ K V W=  (7)
 

In Equation (7), head  represents the output of each 

head. 

3.2 Attention-CNN model design for CNER 

After completing the design of the Attention-CNN 

algorithm, the study proceeds to apply it for modeling 

CNER in text. Existing NER models predominantly 

focus on surface-level lexical recognition and often fail 

to capture the deeper semantic features inherent in 

Chinese characters. This work leverages the parallel 

computation capability of the attention mechanism to 

extract global semantic features of Chinese characters 

and further utilizes CNNs to perform high-precision local 

extraction of salient features, thereby improving both the 

accuracy and efficiency of Chinese NER. The character-

level embeddings are trained within the BERT 

framework to enhance the expressive capacity of Chinese 

representations. BERT is a bidirectional language model 

capable of performing classification, question answering, 

and other natural language processing tasks [21, 22]. In 

this study, the BERT-Base Chinese model is adopted 

along with its built-in WordPiece tokenizer, which 

segments the original Chinese character stream into 

subword units and maps them to vocabulary indices. No 

additional stopword filtering is applied, and all function 

words and grammatical particles are retained during 

training to preserve the full semantic context. The 

expression for each character vector after BERT training 

is shown in Equation (8). 

 
( ) ( )

 

1 2 1 2
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, , ,
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n

e e e e BERT s s s
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

=
 (8) 

In Equation (8), S  represents a sentence, n  

represents the length of a sentence, and 
ns  and 

be  

represent the low-dimensional character vector and the 

character vector obtained after training, respectively. 

Then, the Attention-CNN CNER model will be 

established, and the model architecture is shown in 

Figure 3. 
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Figure 3: Attention-CNN model architecture for CNER. 

 

In Figure 3, the Attention-CNN model consists of 

four modules. First, the Chinese character and pinyin 

vectors are input into the Chinese semantic feature 

embedding module, where the four tones in Chinese are 

represented by [1, 4] for tone values. Then, the attention 

mechanism is used to globally and parallelly compute the 
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attention scores for the features such as the Chinese 

characters and pinyin, allowing more accurate extraction 

of global semantic features. Next, in the CNN phase, the 

Chinese semantic features undergo convolution 

operations, and the final output of the Chinese character 

labels is sent to the CRF for decoding. In the CRF, PER 

denotes person names, B indicates the beginning of a 

label, I represent the intermediate stage of the label, and 

E signifies the end of the label, O denotes non-entity 

tokens such as prepositions, while LOC represents 

location names. The expression for the vector after the 

character feature fusion operation is shown in Equation 

(9). 

 ( ),c p

i i iE concat e e =    (9) 

In Equation (9), 
c

ie  and 
p

ie  represent the 

corresponding character and pinyin vectors of Chinese. 

The output expression obtained after h  attention heads 

of Multi-Head Self-Attention undergo linear 

transformation is shown in Equation (10). 
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In Equation (10), W  and f  represent the learnable 

parameter matrix and scaled dot-product attention, 

respectively. Next, convolution operations are performed 

to connect the convolutional layers, followed by 

information fusion, as shown in Equation (11). 
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In Equation (11), S  and S   represent the 1D 

convolution and max pooling, respectively, while S   

represents the entity scoring matrix after convolution 

processing. After updating the weights, the results 

obtained by parallel computations in the MHSA are 

concatenated, as shown in Equation (12). 

 ( ) ( ), , j hMulti Head Q K V Head Head− =   (12) 

After the computation in Equation (12), higher-

precision text content features are obtained. The optimal 

sequence decoded by the CRF is shown in Equation (13). 
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In Equation (13), A  denotes the transition matrix 

and P  represents the emission score matrix. The 

Attention-CNN CNER model progressively extracts 

entity-related features from the text while effectively 

capturing global key semantic information, thereby 

enhancing the accuracy of label classification. In specific 

textual domains, the NER task is often inherently related 

to other tasks; however, traditional models typically 

focus on single-task learning. NER naturally correlates 

with tasks such as entity type classification and sentiment 

polarity detection. To improve the model's 

comprehension of semantic nuances, this study adopts a 

multi-task learning framework, which shares parameters 

in both the attention and convolutional layers while 

jointly optimizing multiple related tasks. Therefore, in 

the final model, MTL is introduced to improve the 

recognition accuracy, even with limited data. The MTL 

framework is shown in Figure 4 [23, 24]. 
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(CRF decoder)
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Character sequence 
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Shared parameters
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Figure 4: MTL framework with a shared backbone and task-specific branches. 

 

As shown in Figure 4, the MTL module uses soft 

parameter sharing technology. Although tasks share the 

underlying feature extraction parts of the convolutional 

layer and attention mechanism, tasks such as NER, 

sentiment analysis, and text classification typically have 

specific output layers and task goals. Therefore, they 

require independent, task-specific parameters. This 

design allows for the use of shared lower-level feature 
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extraction capabilities while ensuring that the individual 

requirements of each task are met, rather than using hard 

parameter sharing where all tasks would use the same 

network layers and weights. When constructing the final 

model, a Dropout layer is typically added within the 

CNN framework to prevent overfitting. The Dropout 

operation is expressed in Equation (14). 

 dropout maxC C Dropout( )p=   (14) 

In Equation (14), p  represents the dropout 

probability. The operational flow of the AC-MTL 

document CNER model, which combines Attention-

CNN and MTL techniques, is shown in Figure 5. 
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Figure 5: Flowchart of AC-MTL operation combining Attention-CNN and MTL techniques. 

 

As shown in Figure 5, when the AC-MTL model is 

running, the first step is to input Chinese character 

features, which are pre-trained in the BERT module. 

After that, the trained character features proceed to the 

next step of corpus reading, where pinyin letters and tone 

values need to be set. Then, during the Attention phase, 

parallel computation of attention scores, dot-product 

scaling, and other operations are performed, followed by 

feature fusion. After Attention extracts the global 

semantic features, the data proceeds to the CNN 

sequence stage. Next, after convolution and max-pooling 

operations, feature combinations and transformations are 

processed through the fully connected layer. The model 

is then trained with multi-task learning, followed by CRF 

label decoding to obtain the final optimal Chinese named 

entity sequence. 

4 Performance analysis of CNER 

model integrating attention and CNN 

with MTL 

4.1 Comprehensive evaluation of AC-MTL 

on Chinese NER Tasks 

To evaluate the effectiveness of the proposed AC-MTL 

model, experiments were conducted on a workstation 

equipped with an Intel Xeon Gold 6248R processor, 128 

GB of memory, and an NVIDIA Tesla V100 GPU. The 

operating system used was Ubuntu 18.04, with PyTorch 

1.8.1 as the deep learning framework, CUDA version 

11.1, and driver version 450.80.02. The hyperparameters 

of the AC-MTL model were set based on prior empirical 

studies and experimental validation. The learning rate 

was set to 5e-5, a common starting value for BERT fine-

tuning which ensured stable convergence without 

needing extensive tuning. The batch size was set to 32 to 

balance training efficiency and GPU memory constraints. 

The number of training epochs was set to 50, with early 

stopping applied to prevent overfitting. The dropout rate 

was set to 0.1, which was the standard value used in 

Transformer architectures to prevent overfitting. 

Additionally, the initial weight of the primary task in the 

multi-task loss function was set to 0.7 to emphasize its 

central role. This value was empirically validated to 

deliver favorable performance across multiple 

experimental settings. The Adam optimizer was 

employed due to its fast convergence and stability, 

making it a mainstream choice for deep learning tasks 

and particularly suitable for Transformer-based text 

modeling. 

To assess the model's performance in Chinese named 

entity recognition, AC-MTL was compared against 

baseline CNER models based on BiLSTM, RoBERTa, 

and XLNet architectures. For a fair comparison, 

RoBERTa and XLNet were fine-tuned by adding a CRF 

decoding layer and training with BIO-labeled sequences 

on the same dataset, to meet the requirements of the NER 

task. The experiments utilized the Weibo dataset and a 

subset of the Microsoft Research Asia (MSRA) dataset. 

The MSRA subset contained 200 samples specifically 

selected to evaluate performance under low-resource 

conditions. A stratified sampling strategy was adopted to 

divide each dataset, ensuring that the distribution of 

named entity labels was consistent across the training set 

(70%), validation set (15%), and test set (15%). Four 

models were used for Chinese NER, and their 

performance was measured by precision, recall, and F1 

score. The results are presented in Table 2. 
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Table 2: Overall performance comparison of CNER models 

Sample size Model Precision (%) Recall (%) F1 Score (%) 

200 

AC-MTL 98.62 98.10 98.36 

XLNet 96.21 95.89 95.54 

RoBERTa 88.53 85.37 86.92 

BiLSTM 82.48 82.64 82.73 

1000 

AC-MTL 98.40 97.90 98.15 

XLNet 97.16 96.29 96.64 

RoBERTa 88.24 88.71 89.44 

BiLSTM 81.76 81.46 82.17 

3000 

AC-MTL 98.54 98.19 98.79 
XLNet 97.46 95.27 96.26 

RoBERTa 86.89 87.04 87.28 

BiLSTM 82.40 81.67 81.64 

 

As shown in Table 2, under sample sizes of 200, 

1000, and 3000, the AC-MTL model consistently 

maintained a leading position across all three-

performance metrics: precision, recall, and F1 score. In 

the low-resource setting with only 200 samples, AC-

MTL achieved a precision of 98.62%, recall of 98.10%, 

and an F1 score of 98.36%, significantly outperforming 

XLNet, RoBERTa, and BiLSTM, showing its strong 

adaptability to limited data. When the sample size 

increased to 1000, AC-MTL still maintained the highest  

 

 

precision at 98.40% and recall at 97.90%, resulting in an 

F1 score of 98.15%, which was notably higher than 

RoBERTa’s 89.44% and BiLSTM’s 82.17%. It was also 

worth noting that although XLNet showed some 

improvement in recall under medium- to high-resource 

settings, its overall precision stability and combined 

performance stayed below AC-MTL’s. This suggested 

that AC-MTL achieved a better balance between high-

accuracy recognition and error tolerance. Subsequently, 

the study evaluated the model’s runtime efficiency, as 

illustrated in Figure 6. 
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Figure 6: Inference speed and parameter size comparison among CNER models. 

 

As shown in Figure 6(a), AC-MTL maintained high 

performance while keeping its parameter size at 64 

million, which was significantly smaller than 

RoBERTa’s 118 million and XLNet’s 105 million—

representing a model compression rate exceeding 40% 

relative to both. In contrast, although BiLSTM had the 

smallest parameter size, it lacked deep semantic 

modeling capability and thus exhibited functional 

limitations. Through the integration of modular structures 

and task-guided mechanisms, AC-MTL effectively 

reduced redundant parameters while preserving both 

global semantic understanding and local feature 

representation, achieving a well-balanced trade-off 

between structural compactness and expressive power. In 

Figure 6(b), the inference efficiency of each model was 

further compared using token-level processing speed as 

the evaluation metric. AC-MTL reached a throughput of 

2618 tokens per second, demonstrating significantly 

faster inference than RoBERTa and XLNet, and 

approaching the speed of the lightweight BiLSTM 

model. This improvement was primarily attributed to the 

introduction of convolutional modules and task 

decoupling optimizations within the encoding structure 

of AC-MTL, which collectively enhanced computational 

efficiency during inference. Overall, AC-MTL exhibited 

superior performance in both parameter compactness and 

inference speed. These are two key factors for real-world 

deployment, making it a practical and deployable 

solution for resource-constrained environments. 

4.2 Ablation study: validating the structural 

design of AC-MTL 

To verify the actual contribution of each core structural 

module within the AC-MTL model to overall 
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performance, a systematic ablation study was conducted 

to compare the effects of different component 

combinations, as detailed in Table 3. 

 

Table 3: Ablation results of AC-MTL on key structural components 

Model architecture Precision (%) Recall (%) F1-score (%) 

BERT+CNN 95.14 94.12 94.75 

BERT+MHSA 96.23 94.85 95.32 

BERT+MHSA+CNN 97.37 96.22 96.74 

AC-MTL 99.54 98.19 98.79 

 

As shown in Table 3, the AC-MTL model achieved 

the highest performance when all structural components 

were retained, with a precision of 99.54%, a recall of 

98.19%, and an F1 score of 98.79%. Compared to the 

model with only the BERT+MHSA+CNN structure, the 

F1 score increased by 2.05 percentage points, indicating 

that the multi-task learning mechanism significantly 

improved overall performance. In contrast, simplified 

models that retained only the CNN or MHSA module 

yielded F1 scores of 94.75% and 95.32%, respectively—

substantially lower than the full AC-MTL configuration. 

This suggested that relying solely on local feature 

extraction or global semantic modeling was insufficient 

and that the synergy of module integration was critical 

for optimal performance. The study further evaluated 

attention scores across three model structures using two 

sentence segments. Segments a, b, c, d, and e 

corresponded to the Chinese sentences: He is a Beijinger. 

He graduated from Beijing Jiaotong University. He still 

works in Beijing. The pace of development in Beijing is 

fast. I also want to study in Beijing. Segments A, B, C, D,  

 

 

and E represented Chinese sentences: Innovation is the 

core driving force behind enterprise development. Only 

through continuous exploration of new technologies and 

new models could one stand out in the fierce market 

competition. In the field of scientific research, innovation 

meant breaking free from the constraints of conventional 

thinking and capturing every spark of inspiration that 

could lead to transformative change with keen insight. 

The essence of education lay in cultivating innovative 

talents. Through diversified curricula and practical 

activities, students’ creativity and spirit of exploration 

could be effectively stimulated. The sustainable 

development of cities could not proceed without the 

integration of innovative concepts. From the application 

of green energy to the construction of intelligent 

transportation systems, the power of innovation was 

evident everywhere. Cultural heritage required 

innovative expression. By leveraging digital technology 

and interdisciplinary fusion, traditional culture could be 

revitalized and given new life in the modern era. The 

detailed comparative results were illustrated in Figure 7. 

a

A
tt

e
n

ti
o

n

Sentence type

1.0

b c d e

0.8

0.6

0.4

0.2

A

A
tt

e
n

ti
o

n

Sentence type

1.0

B C D E

0.8

0.6

0.4

0.2

(a) The attention weight assigned 

to the token Beijing(Chinese)

(b) The attention weight assigned 

to the token Innovation(Chinese)

BERT+MHSA+CNN

BERT+MHSA AC-MTL

BERT+MHSA+CNN

BERT+MHSA AC-MTL

 

Figure 7: Attention score comparison for tokens under different model architectures. 

 

In Figure 7(a), the AC-MTL model consistently 

achieved higher attention scores across all positions 

compared to the other two baseline models. Notably, it 

reached 0.63 in sentence b and 0.67 in sentence d, 

demonstrating more precise semantic recognition of 

nested entities and core thematic terms. In contrast, the 

BERT+MHSA model exhibited relatively uniform 

attention distribution toward the token Beijing, lacking 

focused differentiation, while the addition of CNN 

introduced some improvement but still fell short of the 

structural enhancement achieved by AC-MTL. Overall, 

AC-MTL demonstrated stronger discriminative capacity 

and contextual understanding in allocating attention to 

high-frequency geographical terms under polysemous 

conditions. In Figure 7(b), AC-MTL exhibited the 

strongest semantic focus in all contexts. Specifically, it 

scored 0.68 in sentence B (“scientific thinking”) and 0.66 

in sentence D (“sustainable development”), surpassing 

BERT+MHSA in both cases. This indicated that the 

model had a superior ability to capture the semantic 

salience of abstract policy-related terms within complex 

syntactic structures. Notably, even in peripheral semantic 

scenarios such as “mode of expression,” AC-MTL 

maintained a relative advantage, whereas BERT+MHSA 

achieved only 0.46. These overall trends suggested that 

AC-MTL possessed enhanced contextual aggregation 

and semantic stability when dealing with abstract, highly 

context-dependent lexical disambiguation, thereby 

validating the effectiveness of its structural design in 

recognizing semantically ambiguous words. 
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4.3 Interpretability and robustness analysis 

of AC-MTL 

To further evaluate the stability and interpretability of the 

AC-MTL model in practical applications, the study 

conducted robustness analysis under various types of 

perturbation scenarios. The model was tested on datasets 

with noise-injected samples derived from the original 

corpus, and the resulting F1 scores were shown in Figure 

8. 
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Figure 8: Robustness of AC-MTL under noisy and informal input conditions. 

 

In Figure 8(a), during training on the standard 

MSRA test set, the F1 score of the AC-MTL model 

increased rapidly within the first five epochs and 

stabilized, eventually converging at 98.79%, significantly 

outperforming XLNet (96.26%) and RoBERTa 

(87.28%). This demonstrated both a faster convergence 

speed and a higher performance ceiling. Notably, AC-

MTL reached its major performance plateau by epoch 10, 

whereas the baseline models required at least 20 epochs 

to approach a similar level. This indicating that AC-

MTL’s structural design was more efficient in capturing 

semantic features and entity boundaries. In Figure 8(b), 

despite larger fluctuations during training on the spelling-

perturbed dataset, AC-MTL maintained strong stability 

and noise resistance, with a final F1 score of 96.54%, 

substantially higher than other models. In Figure 8(c), on 

the Weibo short-text dataset, AC-MTL almost fully 

converged after just four epochs and stabilized at an F1 

score of 98.35%. In contrast, XLNet achieved only 

92.78% on this dataset and showed considerable 

volatility throughout training, reflecting its limited 

adaptability to unstructured and contextually ambiguous 

language. Supported by multi-task learning signals, AC-

MTL exhibited superior contextual modeling 

capabilities, allowing it to maintain high recognition 

accuracy and convergence stability even under 

fragmented input conditions. Figure 9 presented a 

validation of AC-MTL's performance in identifying 

different thematic categories in legal text cases. 
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Figure 9: Distribution of recognized thematic entities in legal texts. 

 

As shown in Figure 9(a), the vertical axis 

represented the number of entities mentions identified as 

belonging to each thematic category, while the theme 

river illustrated the aggregation trend of topic recognition 

as the text progressed. The thematic stream recognized 

by the AC-MTL model across 2,000 legal text cases was 

shown, with each colored band represented a different 

theme category identified by the model, including 

organizations, person names, locations, and domain-

specific terms. The AC-MTL model demonstrated the 

ability to accurately identify and distinguish between 

different types of entities, with a smooth distribution of 

recognized themes that effectively covered a wide range 

of entity categories present in the text. Figure 9(b) 

presented the actual thematic distribution across the 

2,000 legal text cases. The distribution generated by the 

AC-MTL model closely matched the true distribution, 

with minimal fluctuations between the two. As the 

number of cases increased, the recognition trends became 

increasingly aligned. This indicated that the AC-MTL 

model had strong recognition capabilities and was able to 

extract and differentiate themes from complex texts with 

high accuracy, further underscoring its effectiveness in 

the context of legal document analysis. Finally, to further 

investigate the limitations of the model, an error analysis 

was conducted by categorizing 100 misclassified samples 

produced by the AC-MTL model. The distribution of 

common misclassification types was presented in Figure 

10. 
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Figure 10: Distribution of common misclassification types in AC-MTL output. 

 

As illustrated in Figure 10, the most frequent 

misclassification types involved confusion between 

location and organization entities (LOC↔ORG), which 

reflected the semantic overlap in Chinese place names 

and institutional titles. Errors related to person names 

also occurred, especially when user handles or role-based 

nicknames were interpreted as named entities. Boundary-

related mislabeling and nested entity conflicts occurred 

in complex expressions, suggesting that further 

improvements in fine-grained boundary detection might 

be necessary. 

5 Discussion 
The proposed AC-MTL model demonstrated outstanding 

performance in CNER tasks, particularly in maintaining 

high robustness and accuracy when faced with limited 

data resources and noisy textual environments. 

Experimental results confirmed that the integration of 

attention mechanisms with convolutional neural 

networks, along with the adoption of a multi-task 

learning strategy, effectively compensated for the 

deficiencies of traditional methods in modeling long-

range dependencies while enhancing local feature 

extraction capabilities. This reflected the model’s 
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structural design in terms of both scientific rigor and 

engineering practicality. Firstly, performance evaluations 

indicated that AC-MTL consistently outperformed 

mainstream baseline models such as XLNet, RoBERTa, 

and BiLSTM across datasets of varying sizes. Even in a 

low-resource scenario with only 200 samples, the model 

achieved an F1 score of 98.36%, showing strong 

generalization capability in data-scarce conditions. 

Secondly, in terms of inference efficiency, AC-MTL 

attained a processing speed of 2618 tokens per second, 

approaching that of the lightweight BiLSTM while 

significantly surpassing both XLNet and RoBERTa, 

thereby highlighting its computational advantage for 

real-world deployment. 

The effectiveness of individual modules within the 

AC-MTL architecture was further validated through 

ablation experiments. While combinations such as 

BERT+CNN or BERT+MHSA showed some recognition 

ability, they fell short in holistic semantic modeling and 

precise feature localization. Only through the synergistic 

integration of BERT, MHSA, and CNN—each enhanced 

by a multi-task learning framework—enabled the model 

to achieve substantial performance gains. This soft 

parameter-sharing MTL framework enabled information 

sharing across multiple subtasks such as entity boundary 

recognition and type classification, significantly 

enhancing semantic discrimination capability. 

Visualization of attention weights revealed that AC-MTL 

was particularly adept at capturing syntactic and 

semantic cores when processing polysemous and abstract 

lexical items (e.g., “Beijing” or “innovation”), showing 

clearer focus compared to BERT+MHSA and 

BERT+CNN structures. Moreover, the model’s stable 

performance on Weibo short texts and spelling-perturbed 

corpora demonstrated its adaptability to unstructured 

input, making it suitable for real-world applications such 

as social media analysis and legal document mining. 

Nevertheless, certain limitations remained. In 

contexts with highly sparse information or pronounced 

semantic ambiguity, the model still suffered from 

inaccurate boundary detection or entity type confusion. 

Additionally, although AC-MTL exhibited strong 

generalization, its reliance on large-scale pre-trained 

models like BERT posed challenges for deployment in 

resource-constrained environments, necessitating further 

compression and optimization. In conclusion, AC-MTL 

excelled in both theoretical design and empirical 

performance, offering an efficient, robust, and extensible 

approach to Chinese named entity recognition. Given its 

modular architecture and strong performance in 

capturing both global semantics and local features, the 

AC-MTL model held significant potential for adaptation 

across multilingual NER tasks and domain-specific 

applications such as biomedical text mining, cross-

lingual knowledge extraction, and low-resource language 

processing, where robust entity recognition remained a 

persistent challenge. 

6 Conclusion 
To address the limitations of existing methods in 

handling complex textual environments, this study 

proposes a Chinese named entity recognition approach 

that integrates attention mechanisms with convolutional 

neural networks, and further designs the AC-MTL model 

by incorporating BERT and multi-task learning 

techniques for legal document entity recognition. On the 

standard MSRA test set, the AC-MTL model achieved an 

F1 score of 98.79%, and on a spelling-perturbed sample 

set, it reached an F1 score of 96.54%, both 

outperforming the baseline models XLNet and 

RoBERTa. When applied specifically to legal document 

cases, the thematic distribution recognized by the model 

across 2,000 samples closely matched the actual 

distribution, demonstrating its strong potential for 

domain-specific applications and generalization. 

Although the current method performs well in 

recognizing named entities in long-form texts, it may still 

encounter errors in scenarios with high semantic 

ambiguity or sparse contextual information. Future 

optimization may proceed in two directions: first, by 

incorporating larger and more domain-adapted pre-

trained language models for targeted fine-tuning; and 

second, by exploring the integration of external 

knowledge graphs or entity linking mechanisms to 

enhance its practical applicability in tasks such as 

question answering, information extraction, and 

sentiment analysis. 
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