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Named entity recognition serves as a cornerstone in natural language processing and has garnered
extensive research attention due to its significance in various downstream applications. Owing to the
intricate nature of Chinese texts, characterized by complex syntactic structures and the lack of explicit
word boundaries, conventional NER methodologies often encounter difficulties in simultaneously
optimizing recognition accuracy and computational efficiency. To address this issue, the study proposes
a named entity recognition algorithm that integrates attention mechanisms with Convolutional Neural
Networks, incorporates into a Transformer-based bidirectional encoder framework for training. A
multi-head self-attention mechanism is employed to capture the global semantic information of the text,
and multi-task learning is introduced to construct the final model. When evaluated on datasets with
sample sizes of 200, 1000, and 3000, the proposed model consistently outperforms the baseline models
in terms of precision, recall, and F1 score. Specifically, under the low-resource setting with 200
samples, the model achieves a precision of 98.62%, a recall of 98.10%, and an F1 score of 98.36%. In
terms of inference efficiency, the model processes at a speed of 2618 tokens per second. The
experimental results indicate that this method can be widely applied in various fields such as
information extraction and text understanding, providing strong technical support for related research.

Povzetek: Model AC-MTL zdruzuje pozornostne mehanizme, konvolucijske nevronske mreZe in
vecopravilno ucenje za kitajsko prepoznavo imenovanih entitet. Povezuje globalni pomen in lokalne

znacilnosti, odlikujeta ga robustnost in natancnost.

1 Introduction

Chinese Named Entity Recognition (CNER) is a
fundamental task in Natural Language Processing (NLP),
aiming to automatically identify entities with specific
meanings within Chinese text. As Chinese information
technology continues to advance, Named Entity
Recognition (NER) has become a crucial technology in
various applications, including information extraction,
sentiment analysis, knowledge graph construction,
intelligent question answering, and machine translation
[1]. CNER is increasingly being utilized across various
sectors, including finance, healthcare, e-commerce, and
law. It provides crucial support for cross-domain data
integration, information extraction, and intelligent
applications [2]. With the rise of deep learning
technologies, NER methods based on Convolutional
Neural Networks (CNN), Recurrent Neural Networks,
and Transformers have gradually become the mainstream
in research [3]. However, CNER still faces significant
challenges due to the unique structure of the Chinese
language. Traditional NER methods based on
dictionaries and machine learning still suffer from low
universality and poor cross-regional recognition

performance [4]. Bidirectional Encoder Representations
from Transformers (BERT), built on the Transformer

architecture, effectively captures deep contextual
information from text, thereby improving the accuracy
and generalization of entity recognition in complex
contexts [5]. The Multi-Head Self-Attention Mechanism
(MHSA) is particularly well-suited for capturing long-
range dependencies and contextual relationships in
Chinese text, enhancing NER accuracy by considering
the global semantic information across the entire
sentence [6]. To address the issues of low
generalizability and suboptimal recognition performance
in CNER, a novel recognition approach—Attention-
Enhanced Convolutional Neural Network (Attention-
CNN)—was proposed to improve recognition accuracy
and optimize computational efficiency. The study also
introduces Multi-Task Learning (MTL) to develop the
final CNER hybrid model, named Attention-CNN with
Multi-Task Learning for Chinese Named Entity
Recognition (AC-MTL). By combining the advantages of
MHSA and CNN, this study aims to simultaneously
process global semantics and local features. The AC-
MTL model provides an effective and feasible new
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method to improve the performance and accuracy of
CNER.

2 Related works

With the advent of the information age, CNER has
emerged as a crucial task in natural language processing,
aiming to extract specific types of entities—such as
person names, locations, and organizations—from
unstructured text [7]. The lack of clear word boundaries
in Chinese, combined with semantic ambiguity, nested
entities, and long-distance dependencies, has long made
CNER a challenging problem. Early research in NER
primarily relied on statistical learning approaches such as
Conditional Random Fields (CRF) and Hidden Markov
Models (HMM), which were heavily dependent on hand-
crafted features and lacked generalizability in complex
scenarios [8]. Later on, deep learning approaches took
center stage. Notably, the BILSTM-CRF framework
proposed by Huang et al. significantly improved
sequence labeling performance and became a widely
adopted baseline in NER research [9]. In recent years, the
development of pre-trained language models has driven
substantial advances in NER performance. Devlin et al.’s
BERT model, which employs a deep bidirectional
Transformer to  capture  contextual  semantics,
demonstrated strong performance across various NLP
tasks and has been extensively applied to NER [10].
Several BERT-based adaptations have been introduced to
better model Chinese-specific linguistic features. For
example, Chay-intr et al. introduced a Lattice Attention
Encoding (LATTE) method for character-based word
segmentation that achieved promising results on standard
datasets in Chinese, Japanese, and Thai [11]. These
studies underscore BERT's potential for modeling word
boundaries, contextual dependencies, and semantic
richness in Chinese NER tasks.
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Beyond foundational architectures, the integration of
attention mechanisms and multi-task learning has
become a prominent direction for boosting NER
performance. For instance, Patel and Ezeife proposed a
novel aspect-based opinion mining system, BERT-MTL,
which introduces auxiliary tasks to enable shared
representation across multiple subtasks, simultaneously
handling aspect term and category extraction. This
approach not only improves accuracy but also
significantly  reduces training time [12]. The
GlobalPointer method further overcomes the limitations
of CRF in recognizing overlapping entities. Zhai et al.
developed a CNER framework that utilizes an Efficient
GlobalPointer model to effectively address entity nesting,
along with a context shielding window mechanism [13].
These works validate the effectiveness of structural
integration strategies in enhancing NER capabilities. In
terms of applied CNER, several studies have extended
the task to domain-specific text, including medical,
agricultural, and railway documents. Models combining
CNNs and attention mechanisms have shown promising
performance by leveraging convolutional layers for local
feature extraction and attention mechanisms for
capturing global dependencies [14]. Yang et al. proposed
a BERT-based CNER model tailored for complex
filtering in COVID-19 epidemiological investigation
texts, resulting in notable improvements in both accuracy
and F1 score [15]. Zhao et al. introduced a high-
performance  NER model for agricultural texts by
incorporating multi-level glyph feature modeling and
self-attention mechanisms. This model achieved an F1
score of 95.56% and enriched target word representations
through hierarchical glyph feature learning [16]. A
summary and comparison of these studies are provided in
Table 1.

Table 1: Structured summary of related work

Author(s) Dataset / Domain Method Key results Major contribution
. . Introduced a classic deep structured
H:IarEg]et CONII;Q#:“_MSK BiLSTM-CRF Multllétla:gla})\//erage model for sequence labeling; became a
' 9 0 standard NER baseline.
Devlin et Multilingual pre- BERT: Bidirectional Significant Proposed the BERT pre?tralned
al. [10] training corpora Transformer improvement in F1 language ”TOde" establishing a new
i paradigm for NER tasks.
craynre | acowycTonees | LATIE (nces | IJEOREONT [ Addseed ey ialy st
al. [11] T2010 GNN-+Attention) 9 gurty using : g
accuracy and attention mechanisms.
. . Enhanced generalization and training
EF;aetil]z:e a[rllczi] SemEval-14 ABSA BERT"I\_Ae;I,‘r“(gA?ItHaSk Impro;/(fcdu?;léltl-task efficiency between subtasks through
g Y shared BERT representations.
Medical Knowledae Proposed an efficient GlobalPointer
Zhai et al. T ge F1 score exceeds architecture to handle nested entities and
texts/CMeEE and Distillation+Efficient - - - . .
[13] - existing best results redundant information while balancing
others GlobalPointer
accuracy and speed.
Yang etal. COVID-19 BERT+BILSTM+IDCN |  F1 score exceeds Constructed a multi-level architecture
epidemiological -~ for complex medical text modeling,
[15] N+CRF existing best results : -
texts improving CNER accuracy.
_ _ ALBERT+CNN+BILS Enhances_the genergl_lzat_lon aplllty of
Zhao etal. | Agricultural chinese _ named entity recognition in agricultural
[16] texts TM_+SeIf- F1=95.56% texts by leveraging multi-level glyph
Attention+CRF features
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In summary, the development of CNER has evolved
from statistical learning methods to deep learning, and
further toward integrated pre-trained architectures and
multi-task modeling. Deep learning approaches that
incorporate self-attention mechanisms and convolutional
neural networks have demonstrated superior performance
in capturing complex data patterns and modeling global
contextual information. The primary challenge at present
lies in how to jointly model character-level semantics,
word boundaries, and contextual dependencies while
achieving accurate entity classification and boundary
recognition. To address this, the study proposes the AC-
MTL model, which integrates attention mechanisms with
CNN structures. This design aims to achieve a better
balance between global semantic understanding and local
feature extraction, particularly when dealing with
complex entities and long-form texts, thereby enhancing
the model’s adaptability in Chinese named entity
recognition tasks.

3 CNER model based on attention
mechanism and CNN

3.1 CNER design based on CNN and
attention mechanism

With the development of the internet, artificial
intelligence has become ubiquitous in people's lives,
bringing convenient and intelligent technologies for
societal advancement [17]. NER serves the purpose of
automatically identifying entities such as person names,
organizations, and locations in text [18, 19]. In service,
NER needs to accurately and quickly recognize specific
entities, whereas traditional NER methods often suffer
from insufficient accuracy. CNN, a feedforward neural
network that utilizes convolutional operations and a deep
architecture, is widely applied in tasks like object
detection and image recognition [20]. In NER tasks,
CNNs can be employed to extract local contextual
features from embedded character sequences. The
standard processing pipeline involves four main steps.
First, the input Chinese sentence is encoded by a pre-
trained language model such as BERT into a two-
dimensional embedding matrix X < R™“ , where N
denotes the sentence length and d represents the
dimensionality of each character's embedding vector.
This embedded sequence is then passed through a one-
dimensional convolutional layer. The convolutional layer
applies multiple sets of filters with varying kernel
sizes—specifically, window sizes of 3, 5, and 7—sliding
along the sequence dimension to capture local features at
different granularities. Each filter generates a feature map,
and all resulting feature maps are concatenated to form a
richer representation. Following the convolution
operation, a max-pooling layer is applied to reduce the
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length of the feature maps and retain the most salient
features. The pooled output is subsequently fed into a
fully connected layer or a CRF layer for final entity label
prediction. Unlike the two-dimensional convolution used
in image processing tasks, the convolution operation in
this model is performed only along the temporal
(sequence) dimension, and thus constitutes a one-
dimensional convolution. This approach effectively
captures local structural features in Chinese, such as
radicals, part-of-speech combinations, and character
patterns, thereby enhancing the model’s ability to
understand short-range entity structures. When the
convolutional layer processes the sequence, the
dimensions are adjusted, and the padding size is shown
in Equation (1).

paddingSize = fT 1)

In Equation (1), f represents that the convolutional

kernel size is odd. The formula used to calculate the
convolution output size is provided in Equation (2).

_ W+ 2x paddingSize — f N

out S 1
h + 2 x paddingSize — f (@)
hout = +1
s

In Equation (2), w and h represent the width and
height of the input image, while s is the stride. To
reduce the output dimensions, a pooling operation is
performed as shown in Equation (3).

C, =ConvliD(A,,W,b)
{cmax = max(C,,C,,...C,) ©)
In Equation (3), A, represents the input processed
by MHSA, and C, is the output after convolution. In the

field of natural language processing, CNN is widely used
to extract features such as the structural components of
Chinese characters. CNN can also handle long Chinese
sentences or capture potential word properties. However,
since CNN performs better in learning local features and
cannot fully consider global semantics, it may encounter
issues with inaccurate recognition of Chinese, as its
operational scope is limited. The core idea of the
attention mechanism is to focus on specific locations
while ignoring less important information, similar to how
humans focus their attention on specific parts of an
object to enhance feature learning from semantic
information [19]. Among the different types of attention
mechanisms, MHSA has multiple attention heads, and
when processing semantic information, it not only
extracts local features clearly but also processes them in
parallel, allowing global features to be expressed more
distinctly [20]. The principle of the MHSA mechanism is
shown in Figure 1.
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Figure 1: Diagram of the multi-head attention mechanism.

As shown in Figure 1, MHSA is capable of focusing
on the most important tasks at the moment by gathering
various pieces of information. First, for each sequence, a
query vector (Q), a key vector (K), and a value vector (V)
are assigned. These vectors are then processed through
linear layers for individual linear transformations. After
that, they are aggregated into scaled dot-product attention,

where the attention distribution is calculated.
Subsequently, operations like concatenation are
performed, followed by another round of linear

transformations. When the Q and K vectors undergo
attention via matrix multiplication and masking, the
resulting scores are processed by the softmax function.
All the outcomes are then added to the V vector, and
after the final matrix multiplication, the output is

obtained. The attention computation during linear
transformations is expressed in Equation (4).
Q=XW?
K =XW" (4)
V= xXw"
In Equation (4), X represents the word vector

X :{xl,xz,x3,...,xn}. Due to the parallel computing

capability of MHSA during CNER, it effectively
captures global semantic information. Therefore, the
study proposes combining MHSA with CNN to form
Attention-CNN, which improves the accuracy of text
CNER. The structure of CNER based on Attention-CNN

is shown in Figure 2.
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Figure 2: Structure of CNER based on Attention-CNN.

As shown in Figure 2, Attention-CNN structure in
CNER has MHSA at the front end, which identifies
Chinese entities in the text. Its multiple heads perform
parallel computation of attention scores, and after matrix
multiplication and softmax function mapping, the output
of the MHSA feature map is obtained. This output is then
used as the input for CNN, where convolution operations
are applied with different kernels, followed by max
pooling to reduce dimensions. The process of

convolution and pooling is repeated, and after further
matrix and function calculations, the final recognition
result is output through the maximum probability at the
fully connected layer. The more optimal results are
selected, and CNN is used to further extract the optimal
solution, resulting in the best overall output. Additionally,
position encoding solves the problem of lacking
sequential order information when the model processes
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words at different positions. The expression is shown in
Equation (5).

PE(pos, 2i) = sin( pos

Zi)

10000¢
pos
2i
10000¢
In Equation (5), pos represents the position, and i
represents the dimension. Further clarification of the
scaled dot-product attention is shown in Equation (6).

QK

6

NS (6)

In Equation (6), d, represents the key dimension,

which is used for scaling. The combined formulation of
MHSA is given in Equation (7).

MultiHead(Q, K,V) = Concat(head,, head,, .., head, )W° 7

In Equation (7), head represents the output of each
head.

©)
PE(pos, 2i +1) = cos(

)

Attention(Q, K,V) = softmax( )\

3.2 Attention-CNN model design for CNER

After completing the design of the Attention-CNN
algorithm, the study proceeds to apply it for modeling
CNER in text. Existing NER models predominantly
focus on surface-level lexical recognition and often fail
to capture the deeper semantic features inherent in
Chinese characters. This work leverages the parallel
computation capability of the attention mechanism to
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extract global semantic features of Chinese characters
and further utilizes CNNs to perform high-precision local
extraction of salient features, thereby improving both the
accuracy and efficiency of Chinese NER. The character-
level embeddings are trained within the BERT
framework to enhance the expressive capacity of Chinese
representations. BERT is a bidirectional language model
capable of performing classification, question answering,
and other natural language processing tasks [21, 22]. In
this study, the BERT-Base Chinese model is adopted
along with its built-in WordPiece tokenizer, which
segments the original Chinese character stream into
subword units and maps them to vocabulary indices. No
additional stopword filtering is applied, and all function
words and grammatical particles are retained during
training to preserve the full semantic context. The
expression for each character vector after BERT training
is shown in Equation (8).

€, =(1,€y.---,8, ) = BERT (5,,5,,...,S,) @
S={s,,5,,..., S, }
In Equation (8), S represents a sentence, n

represents the length of a sentence, and s, and e,

represent the low-dimensional character vector and the
character vector obtained after training, respectively.
Then, the Attention-CNN CNER model will be
established, and the model architecture is shown in
Figure 3.
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Figure 3: Attention-CNN model architecture for CNER.

In Figure 3, the Attention-CNN model consists of
four modules. First, the Chinese character and pinyin
vectors are input into the Chinese semantic feature

embedding module, where the four tones in Chinese are
represented by [1, 4] for tone values. Then, the attention
mechanism is used to globally and parallelly compute the
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attention scores for the features such as the Chinese
characters and pinyin, allowing more accurate extraction
of global semantic features. Next, in the CNN phase, the
Chinese semantic features undergo convolution
operations, and the final output of the Chinese character
labels is sent to the CRF for decoding. In the CRF, PER
denotes person names, B indicates the beginning of a
label, | represent the intermediate stage of the label, and
E signifies the end of the label, O denotes non-entity
tokens such as prepositions, while LOC represents
location names. The expression for the vector after the
character feature fusion operation is shown in Equation

9).
E = concat([ef,eﬂ) 9)
In Equation (9), e and e" represent the

corresponding character and pinyin vectors of Chinese.
The output expression obtained after h attention heads

of  Multi-Head  Self-Attention  undergo  linear
transformation is shown in Equation (10).
h = f(Wiqq,Wikk,Wi”v)
| " (10)
Multihead (h) =W, | :
hn

In Equation (10), W and f represent the learnable

parameter matrix and scaled dot-product attention,
respectively. Next, convolution operations are performed
to connect the convolutional layers, followed by
information fusion, as shown in Equation (11).

{S’zCOnle(hsTP)

(11)
S"=GeLU (Maxpool1D(S +S'))
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In Equation (11), S and S’ represent the 1D
convolution and max pooling, respectively, while S”
represents the entity scoring matrix after convolution
processing. After updating the weights, the results
obtained by parallel computations in the MHSA are
concatenated, as shown in Equation (12).

Multi — Head (Q, K,V ) = (Head; ®...® Head, ) (12)

After the computation in Equation (12), higher-
precision text content features are obtained. The optimal
sequence decoded by the CRF is shown in Equation (13).

y* = arg myaxz(p\/u% + Pivyi)
i=1

In Equation (13), A denotes the transition matrix
and P represents the emission score matrix. The
Attention-CNN CNER model progressively extracts
entity-related features from the text while effectively
capturing global key semantic information, thereby
enhancing the accuracy of label classification. In specific
textual domains, the NER task is often inherently related
to other tasks; however, traditional models typically
focus on single-task learning. NER naturally correlates
with tasks such as entity type classification and sentiment
polarity  detection. To improve the model's
comprehension of semantic nuances, this study adopts a
multi-task learning framework, which shares parameters
in both the attention and convolutional layers while
jointly optimizing multiple related tasks. Therefore, in
the final model, MTL is introduced to improve the
recognition accuracy, even with limited data. The MTL
framework is shown in Figure 4 [23, 24].

(13)

Character sequence

. —>
input

<-- Shared parameters

<-- Shared parameters

<«-- Shared parameters

!

NER output

As shown in Figure 4, the MTL module uses soft
parameter sharing technology. Although tasks share the
underlying feature extraction parts of the convolutional
layer and attention mechanism, tasks such as NER,

v

Type classification
output

Figure 4: MTL framework with a shared backbone and task-specific branches.

sentiment analysis, and text classification typically have
specific output layers and task goals. Therefore, they
require independent, task-specific parameters. This
design allows for the use of shared lower-level feature
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extraction capabilities while ensuring that the individual
requirements of each task are met, rather than using hard
parameter sharing where all tasks would use the same
network layers and weights. When constructing the final
model, a Dropout layer is typically added within the
CNN framework to prevent overfitting. The Dropout
operation is expressed in Equation (14).
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C = Cmax : DrOpOUt(p) (14)
In Equation (14), p represents the dropout

probability. The operational flow of the AC-MTL
document CNER model, which combines Attention-
CNN and MTL techniques, is shown in Figure 5.
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Figure 5: Flowchart of AC-MTL operation combining Attention-CNN and MTL techniques.

As shown in Figure 5, when the AC-MTL model is
running, the first step is to input Chinese character
features, which are pre-trained in the BERT module.
After that, the trained character features proceed to the
next step of corpus reading, where pinyin letters and tone
values need to be set. Then, during the Attention phase,
parallel computation of attention scores, dot-product
scaling, and other operations are performed, followed by
feature fusion. After Attention extracts the global
semantic features, the data proceeds to the CNN
sequence stage. Next, after convolution and max-pooling
operations, feature combinations and transformations are
processed through the fully connected layer. The model
is then trained with multi-task learning, followed by CRF
label decoding to obtain the final optimal Chinese named
entity sequence.

4  Performance analysis of CNER
model integrating attention and CNN
with MTL

4.1 Comprehensive evaluation of AC-MTL
on Chinese NER Tasks

To evaluate the effectiveness of the proposed AC-MTL
model, experiments were conducted on a workstation
equipped with an Intel Xeon Gold 6248R processor, 128
GB of memory, and an NVIDIA Tesla V100 GPU. The
operating system used was Ubuntu 18.04, with PyTorch
1.8.1 as the deep learning framework, CUDA version
11.1, and driver version 450.80.02. The hyperparameters
of the AC-MTL model were set based on prior empirical
studies and experimental validation. The learning rate
was set to 5e5, a common starting value for BERT fine-

tuning which ensured stable convergence without
needing extensive tuning. The batch size was set to 32 to
balance training efficiency and GPU memory constraints.
The number of training epochs was set to 50, with early
stopping applied to prevent overfitting. The dropout rate
was set to 0.1, which was the standard value used in
Transformer architectures to prevent overfitting.
Additionally, the initial weight of the primary task in the
multi-task loss function was set to 0.7 to emphasize its
central role. This value was empirically validated to
deliver  favorable performance across multiple
experimental settings. The Adam optimizer was
employed due to its fast convergence and stability,
making it a mainstream choice for deep learning tasks
and particularly suitable for Transformer-based text
modeling.

To assess the model's performance in Chinese named
entity recognition, AC-MTL was compared against
baseline CNER models based on BiLSTM, RoBERTa,
and XLNet architectures. For a fair comparison,
RoBERTa and XLNet were fine-tuned by adding a CRF
decoding layer and training with BIO-labeled sequences
on the same dataset, to meet the requirements of the NER
task. The experiments utilized the Weibo dataset and a
subset of the Microsoft Research Asia (MSRA) dataset.
The MSRA subset contained 200 samples specifically
selected to evaluate performance under low-resource
conditions. A stratified sampling strategy was adopted to
divide each dataset, ensuring that the distribution of
named entity labels was consistent across the training set
(70%), validation set (15%), and test set (15%). Four
models were used for Chinese NER, and their
performance was measured by precision, recall, and F1
score. The results are presented in Table 2.
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Table 2: Overall performance comparison of CNER models
Sample size Model Precision (%) Recall (%) F1 Score (%)
AC-MTL 98.62 98.10 98.36
200 XLNet 96.21 95.89 95.54
RoBERTa 88.53 85.37 86.92
BiLSTM 82.48 82.64 82.73
AC-MTL 98.40 97.90 98.15
1000 XLNet 97.16 96.29 96.64
RoBERTa 88.24 88.71 89.44
BiLSTM 81.76 81.46 82.17
AC-MTL 98.54 98.19 98.79
3000 XLNet 97.46 95.27 96.26
RoBERTa 86.89 87.04 87.28
BiLSTM 82.40 81.67 81.64

As shown in Table 2, under sample sizes of 200,
1000, and 3000, the AC-MTL model consistently
maintained a leading position across all three-
performance metrics: precision, recall, and F1 score. In
the low-resource setting with only 200 samples, AC-
MTL achieved a precision of 98.62%, recall of 98.10%,
and an F1 score of 98.36%, significantly outperforming
XLNet, RoBERTa, and BIiLSTM, showing its strong
adaptability to limited data. When the sample size
increased to 1000, AC-MTL still maintained the highest

—— AC-MTL —— RoBERTa
XLNet ~ —— BiLSTM
120 |
2
S 100 |
z
X
w
o
(]
£
©
5
a
100 150 200 250 300

Training time per Epoch (s)
(@) Model size of different models

Inference speed (token/s)

precision at 98.40% and recall at 97.90%, resulting in an
F1 score of 98.15%, which was notably higher than
RoBERTa’s 89.44% and BiLSTM’s 82.17%. It was also
worth noting that although XLNet showed some
improvement in recall under medium- to high-resource
settings, its overall precision stability and combined
performance stayed below AC-MTL’s. This suggested
that AC-MTL achieved a better balance between high-
accuracy recognition and error tolerance. Subsequently,
the study evaluated the model’s runtime efficiency, as
illustrated in Figure 6.
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Figure 6: Inference speed and parameter size comparison among CNER models.

As shown in Figure 6(a), AC-MTL maintained high
performance while keeping its parameter size at 64
million, which was significantly smaller than
ROBERTa’s 118 million and XLNet’s 105 million—
representing a model compression rate exceeding 40%
relative to both. In contrast, although BiLSTM had the
smallest parameter size, it lacked deep semantic
modeling capability and thus exhibited functional
limitations. Through the integration of modular structures
and task-guided mechanisms, AC-MTL effectively
reduced redundant parameters while preserving both
global semantic understanding and local feature
representation, achieving a well-balanced trade-off
between structural compactness and expressive power. In
Figure 6(b), the inference efficiency of each model was
further compared using token-level processing speed as
the evaluation metric. AC-MTL reached a throughput of

2618 tokens per second, demonstrating significantly
faster inference than RoBERTa and XLNet, and
approaching the speed of the lightweight BiLSTM
model. This improvement was primarily attributed to the
introduction of convolutional modules and task
decoupling optimizations within the encoding structure
of AC-MTL, which collectively enhanced computational
efficiency during inference. Overall, AC-MTL exhibited
superior performance in both parameter compactness and
inference speed. These are two key factors for real-world
deployment, making it a practical and deployable
solution for resource-constrained environments.

4.2 Ablation study: validating the structural
design of AC-MTL

To verify the actual contribution of each core structural
module within the AC-MTL model to overall
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performance, a systematic ablation study was conducted
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combinations, as detailed in Table 3.

to compare the effects of different component
Table 3: Ablation results of AC-MTL on key structural components
Model architecture Precision (%) Recall (%) F1-score (%)
BERT+CNN 95.14 94.12 94.75
BERT+MHSA 96.23 94.85 95.32
BERT+MHSA+CNN 97.37 96.22 96.74
AC-MTL 99.54 98.19 98.79

As shown in Table 3, the AC-MTL model achieved
the highest performance when all structural components
were retained, with a precision of 99.54%, a recall of
98.19%, and an F1 score of 98.79%. Compared to the
model with only the BERT+MHSA+CNN structure, the
F1 score increased by 2.05 percentage points, indicating
that the multi-task learning mechanism significantly
improved overall performance. In contrast, simplified
models that retained only the CNN or MHSA module
yielded F1 scores of 94.75% and 95.32%, respectively—
substantially lower than the full AC-MTL configuration.
This suggested that relying solely on local feature
extraction or global semantic modeling was insufficient
and that the synergy of module integration was critical
for optimal performance. The study further evaluated
attention scores across three model structures using two
sentence segments. Segments a, b, ¢, d, and e
corresponded to the Chinese sentences: He is a Beijinger.
He graduated from Beijing Jiaotong University. He still
works in Beijing. The pace of development in Beijing is
fast. | also want to study in Beijing. Segments A, B, C, D,

and E represented Chinese sentences: Innovation is the
core driving force behind enterprise development. Only
through continuous exploration of new technologies and
new models could one stand out in the fierce market
competition. In the field of scientific research, innovation
meant breaking free from the constraints of conventional
thinking and capturing every spark of inspiration that
could lead to transformative change with keen insight.
The essence of education lay in cultivating innovative
talents. Through diversified curricula and practical
activities, students’  creativity and spirit of exploration
could be effectively stimulated. The sustainable
development of cities could not proceed without the
integration of innovative concepts. From the application
of green energy to the construction of intelligent
transportation systems, the power of innovation was
evident everywhere. Cultural heritage required
innovative expression. By leveraging digital technology
and interdisciplinary fusion, traditional culture could be
revitalized and given new life in the modern era. The
detailed comparative results were illustrated in Figure 7.

10 + BERT+MHSA *AC-MTL 10 + BERT+MHSA xAC-MTL
o BERT+MHSA+CNN o BERT+MHSA+CNN
c 08 c 08
o x o x X
g 06 : 3 : 5061, t 3 : ¥
Zoal Z 04 :
0.2 0.2
a b c d e A B C D E

Sentence type

(2) The attention weight assigned
to the token Beijing(Chinese)

Sentence type

(b) The attention weight assigned
to the token Innovation(Chinese)

Figure 7: Attention score comparison for tokens under different model architectures.

In Figure 7(a), the AC-MTL model consistently
achieved higher attention scores across all positions
compared to the other two baseline models. Notably, it
reached 0.63 in sentence b and 0.67 in sentence d,
demonstrating more precise semantic recognition of
nested entities and core thematic terms. In contrast, the
BERT+MHSA model exhibited relatively uniform
attention distribution toward the token Beijing, lacking
focused differentiation, while the addition of CNN
introduced some improvement but still fell short of the
structural enhancement achieved by AC-MTL. Overall,
AC-MTL demonstrated stronger discriminative capacity
and contextual understanding in allocating attention to
high-frequency geographical terms under polysemous
conditions. In Figure 7(b), AC-MTL exhibited the
strongest semantic focus in all contexts. Specifically, it

scored 0.68 in sentence B (“scientific thinking”) and 0.66
in sentence D (“sustainable development”), surpassing
BERT+MHSA in both cases. This indicated that the
model had a superior ability to capture the semantic
salience of abstract policy-related terms within complex
syntactic structures. Notably, even in peripheral semantic
scenarios such as “mode of expression,” AC-MTL
maintained a relative advantage, whereas BERT+MHSA
achieved only 0.46. These overall trends suggested that
AC-MTL possessed enhanced contextual aggregation
and semantic stability when dealing with abstract, highly
context-dependent  lexical disambiguation, thereby
validating the effectiveness of its structural design in
recognizing semantically ambiguous words.
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4.3 Interpretability and robustness analysis
of AC-MTL

To further evaluate the stability and interpretability of the
AC-MTL model in practical applications, the study

Y. Fuetal.

conducted robustness analysis under various types of
perturbation scenarios. The model was tested on datasets
with noise-injected samples derived from the original
corpus, and the resulting F1 scores were shown in Figure
8.
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Figure 8: Robustness of AC-MTL under noisy and informal input conditions.

In Figure 8(a), during training on the standard
MSRA test set, the F1 score of the AC-MTL model
increased rapidly within the first five epochs and
stabilized, eventually converging at 98.79%, significantly
outperforming XLNet (96.26%) and RoBERTa
(87.28%). This demonstrated both a faster convergence
speed and a higher performance ceiling. Notably, AC-
MTL reached its major performance plateau by epoch 10,
whereas the baseline models required at least 20 epochs
to approach a similar level. This indicating that AC-
MTL’s structural design was more efficient in capturing
semantic features and entity boundaries. In Figure 8(b),
despite larger fluctuations during training on the spelling-
perturbed dataset, AC-MTL maintained strong stability
and noise resistance, with a final F1 score of 96.54%,

substantially higher than other models. In Figure 8(c), on
the Weibo short-text dataset, AC-MTL almost fully
converged after just four epochs and stabilized at an F1
score of 98.35%. In contrast, XLNet achieved only
92.78% on this dataset and showed considerable
volatility throughout training, reflecting its limited
adaptability to unstructured and contextually ambiguous
language. Supported by multi-task learning signals, AC-
MTL  exhibited superior  contextual modeling
capabilities, allowing it to maintain high recognition
accuracy and convergence stability even under
fragmented input conditions. Figure 9 presented a
validation of AC-MTL's performance in identifying
different thematic categories in legal text cases.
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Figure 9: Distribution of recognized thematic entities in legal texts.
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As shown in Figure 9(a), the wvertical axis

represented the number of entities mentions identified as
belonging to each thematic category, while the theme
river illustrated the aggregation trend of topic recognition
as the text progressed. The thematic stream recognized
by the AC-MTL model across 2,000 legal text cases was
shown, with each colored band represented a different
theme category identified by the model, including
organizations, person names, locations, and domain-
specific terms. The AC-MTL model demonstrated the
ability to accurately identify and distinguish between
different types of entities, with a smooth distribution of
recognized themes that effectively covered a wide range
of entity categories present in the text. Figure 9(b)
presented the actual thematic distribution across the

2,000 legal text cases. The distribution generated by the
AC-MTL model closely matched the true distribution,
with minimal fluctuations between the two. As the
number of cases increased, the recognition trends became
increasingly aligned. This indicated that the AC-MTL
model had strong recognition capabilities and was able to
extract and differentiate themes from complex texts with
high accuracy, further underscoring its effectiveness in
the context of legal document analysis. Finally, to further
investigate the limitations of the model, an error analysis
was conducted by categorizing 100 misclassified samples
produced by the AC-MTL model. The distribution of
common misclassification types was presented in Figure
10.
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Figure 10: Distribution of common misclassification types in AC-MTL output.

As illustrated in Figure 10, the most frequent
misclassification types involved confusion between
location and organization entities (LOC (#)ORG), which
reflected the semantic overlap in Chinese place names
and institutional titles. Errors related to person names
also occurred, especially when user handles or role-based
nicknames were interpreted as named entities. Boundary-
related mislabeling and nested entity conflicts occurred
in complex expressions, suggesting that further
improvements in fine-grained boundary detection might
be necessary.

5 Discussion

The proposed AC-MTL model demonstrated outstanding
performance in CNER tasks, particularly in maintaining
high robustness and accuracy when faced with limited
data resources and noisy textual environments.
Experimental results confirmed that the integration of
attention mechanisms with  convolutional neural
networks, along with the adoption of a multi-task
learning strategy, effectively compensated for the
deficiencies of traditional methods in modeling long-
range dependencies while enhancing local feature
extraction capabilities. This reflected the model’s
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structural design in terms of both scientific rigor and
engineering practicality. Firstly, performance evaluations
indicated that AC-MTL consistently outperformed
mainstream baseline models such as XLNet, RoOBERTa,
and BiLSTM across datasets of varying sizes. Even in a
low-resource scenario with only 200 samples, the model
achieved an F1 score of 98.36%, showing strong
generalization capability in data-scarce conditions.
Secondly, in terms of inference efficiency, AC-MTL
attained a processing speed of 2618 tokens per second,
approaching that of the lightweight BIiLSTM while
significantly surpassing both XLNet and RoBERTa,
thereby highlighting its computational advantage for
real-world deployment.

The effectiveness of individual modules within the
AC-MTL architecture was further validated through
ablation experiments. While combinations such as
BERT+CNN or BERT+MHSA showed some recognition
ability, they fell short in holistic semantic modeling and
precise feature localization. Only through the synergistic
integration of BERT, MHSA, and CNN—each enhanced
by a multi-task learning framework—enabled the model
to achieve substantial performance gains. This soft
parameter-sharing MTL framework enabled information
sharing across multiple subtasks such as entity boundary
recognition and type classification, significantly
enhancing semantic discrimination capability.
Visualization of attention weights revealed that AC-MTL
was particularly adept at capturing syntactic and
semantic cores when processing polysemous and abstract
lexical items (e.g., “Beijing” or “innovation”), showing
clearer focus compared to BERT+MHSA and
BERT+CNN structures. Moreover, the model’s stable
performance on Weibo short texts and spelling-perturbed
corpora demonstrated its adaptability to unstructured
input, making it suitable for real-world applications such
as social media analysis and legal document mining.

Nevertheless, certain limitations remained. In
contexts with highly sparse information or pronounced
semantic ambiguity, the model still suffered from
inaccurate boundary detection or entity type confusion.
Additionally, although AC-MTL exhibited strong
generalization, its reliance on large-scale pre-trained
models like BERT posed challenges for deployment in
resource-constrained environments, necessitating further
compression and optimization. In conclusion, AC-MTL
excelled in both theoretical design and empirical
performance, offering an efficient, robust, and extensible
approach to Chinese named entity recognition. Given its
modular architecture and strong performance in
capturing both global semantics and local features, the
AC-MTL model held significant potential for adaptation
across multilingual NER tasks and domain-specific
applications such as biomedical text mining, cross-
lingual knowledge extraction, and low-resource language
processing, where robust entity recognition remained a
persistent challenge.
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6 Conclusion

To address the limitations of existing methods in
handling complex textual environments, this study
proposes a Chinese named entity recognition approach
that integrates attention mechanisms with convolutional
neural networks, and further designs the AC-MTL model
by incorporating BERT and multi-task learning
techniques for legal document entity recognition. On the
standard MSRA test set, the AC-MTL model achieved an
F1 score of 98.79%, and on a spelling-perturbed sample
set, it reached an F1 score of 96.54%, both
outperforming the baseline models XLNet and
RoBERTa. When applied specifically to legal document
cases, the thematic distribution recognized by the model
across 2,000 samples closely matched the actual
distribution, demonstrating its strong potential for
domain-specific  applications and  generalization.
Although the current method performs well in
recognizing named entities in long-form texts, it may still
encounter errors in scenarios with high semantic
ambiguity or sparse contextual information. Future
optimization may proceed in two directions: first, by
incorporating larger and more domain-adapted pre-
trained language models for targeted fine-tuning; and
second, by exploring the integration of external
knowledge graphs or entity linking mechanisms to
enhance its practical applicability in tasks such as
question answering, information extraction, and
sentiment analysis.
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