
 Informatica 39 (2015) 187–194 187

History-based Approach for Detecting Modularity Defects in Aspect

Oriented Software

Hanene Cherait and Nora Bounour

LISCO Laboratory, BadjiMokhtar – Annaba University P.O. Box 12, 23000 Annaba, Algeria

E-mail: {hanene_cherait, nora_bounour}@yahoo.fr

Keywords: modularity defects, aspect oriented programming, crosscutting concerns, frequent itemset mining, logical

coupling, refactoring.

Received: May 4, 2014

The evolution of Aspect oriented (AO) software would degrade and modify its structure and its modularity.

In this scenario, one of the main problems is to evaluate the modularity of the system, is the evolved AO

software still has a good modularity or not? Unfortunately, this research area is not explored yet. This

paper presents a history-based approach that detects modularity defects in evolved AO software. It is a

two-step automated approach: 1) in the first step, it applies data mining over an AO software repository

in order to detect logical couplings among its entities. It analyses fine-grained logical couplings between

AO software entities as indicated by common changes. 2) These last are then analysed to detect modularity

defects in the AO software system. The approach focuses on the evaluation of an AO system’s modularity

and points out potential enhancements to get a more stable one. We provide a prototype implementation

to evaluate our approach in a case study, where modularity defects are detected in 22 releases of three

well-known AspectJ systems: Contract4J, Health-Watcher and Mobile-Media. The results show that the

approach is able to detect logical couplings among aspect entities, as well as modularity defects that are

not easily (or not) detectable using static source code analysis.

Povzetek: Članek se ukvarja z zaznavanjem defektnosti modulov med evolucijo programov.

1 Introduction
Aspect-oriented programming (AOP) [11] allows a

developer to modularize a crosscutting concern’s

implementation by introducing a new kind of module

called “Aspect”. This last encapsulates crosscutting

concerns and thus improves modularity,

understandability, and evolvability of the code. As any

software system, AO systems are continuously modified

and increase in size and complexity. After many

enhancements and other evolution activities, the AO

software modularity can be violated, and modifications

become hard to do. The insufficient modularity of

crosscutting concerns complicates AO software evolution

and reduces crosscutting concern reusability. Therefore,

methods and techniques are needed to detect modularity

defects in AO software, in order to improve its

decomposition and enhance its modularity.

To detect modularity defects in AO software, we need

to understand the relationships among entities that belong

to software aspects, more specifically, to the crosscutting

concerns of the system. However, many works [2, 5, 20]

have proved with empirical evidence the ripple effects in

AO software i.e. changes are propagated to unrelated

entities in the program. So, it is difficult to detect

modularity defects in AO software through a static

analysis of the source code (e.g. [26]). In reality, two

crosscutting concerns that are supposed to be independent

statically may frequently change together.

This paper presents a history-based approach to detect

modularity defects in AO software. It consists of two main

steps: first, an AO software repository is mined to detect

logical couplings between the aspect’s entities of the

system—how entities actually change together. In our

approach, we don’t detect coupled aspects only. But, we

can extract the aspect entities related to this coupling.
Second, the resulted logical couplings are analysed to

detect modularity defects. We identify modularity defects

by external logical couplings i.e. if two entities always

change together to accommodate modification requests,

but they belong to two independent aspects; we consider

this as a modularity defect. These last can be used to

improve the AO software modularity in order to prevent it

from decay. For example, the detected defects could be

removed or minimized by using appropriated refactorings

to change the AO software decomposition.

The rest of the paper is organized as follows: in the

next section we give the background used in this paper.

We describe our approach in section 3; where we present

the relationship between logical couplings and modularity

defects, and how this relationship can be used to detect

modularity defects in AO software. The tool chain is

presented in section 4. Our approach is applied on a case

study in section 5. Section 6 summarizes related work.

Finally, section 7 closes with conclusions and future work.

2 Background
In this section, we first introduce definitions of important

concepts related to our proposal. Then, we give a brief

description of the AspectJ language.

188 Informatica 39 (2015) 187–194 H. Cherait et al.

2.1 Modularity defects

The IEEE Standard Glossary of Software Engineering

Terminology (IEEE, 1990) defines modularity as “the

degree to which a software system is composed of discrete

components such that a change to one component has

minimal impact on other components”. So, it allows each

part to be modified, substituted or deleted with minimal

impact on the rest of the system. Modularity has been

playing a pervasive role in the context of software

development and evolution. It can be considered a

fundamental engineering principle as it allows:

- to develop different parts of the same system by

distinct people;

- to test systems in a simultaneous fashion;

- to substitute or repair defective parts of a system

without affecting with other parts;

- to reuse existing parts in different contexts; and

- to restrict change propagation.

In reality, however, during software evolution two

modules that are supposed to be independent may always

change together, due to unwanted side effects caused by

quick and dirty implementation [24]. When such

couplings exist, the software can deviate from its designed

modular structure, which is called a modularity defect

(violation). Such modularity defects could cause

modularity decay over time and may require expensive

system-wide refactorings. Detecting and fixing

modularity defects make programs easier to understand

and to evolve.

2.2 Logical coupling

Semantically coupled software entities may not

structurally depend on each other i.e. different entities of

a software system may be related to each other although

this relationship is not easily detectable in the software

source code. When different entities of a software system

change together (as the system evolves) their common

behavior is referred to as logical coupling [7]. Recently,

researchers have used revision histories to more

effectively identify semantically coupled components by

checking how components historically change together [9,

10].

Logical couplings detection extract interesting

dependencies between software entities that is not possible

with the analysis of a single version. So, based on the

historical data we can detect logical couplings between the

entities of a software system. In this last, two entities are

coupled whenever a change in an entity A implies a

change in another entity B—one says that B depends on

A.

The logical couplings have been used for different

purposes: to identify hidden architectural dependencies, to

point developers to possible places that need change, or to

use them as change predictors. In our context, we use such

dependencies to evaluate the modularity of an AO

software system.

2.3 AspectJ

AOP is a new paradigm introduced by Kiczales et al. [11]

that provides separation of crosscutting concerns. It

modularizes the crosscutting concerns in a clear-cut

fashion, yielding a system architecture that is easier to

implement, and to evolve. With AOP, a program is

composed with a set of aspects, and a base code describing

the core modules. An aspect weaver, which is a compiler-

like entity, composes the final system by combining the

core and crosscutting modules through a process called

weaving [12].

AO languages offer abstractions for the

implementation of crosscutting concerns whose

modularization cannot be achieved by using traditional

programming languages. During the last decade, a

considerable number of AO languages have been

introduced. AspectJ [12] has been the pioneer of the AO

languages, and it is still one of the most relevant

frameworks supporting the AOP methodology. For the

remaining of this paper, we will use AspectJ as our target

language, although the observations made are also valid

for other currently available AspectJ-like languages.

AspectJ defines two types of crosscutting: dynamic

crosscutting and static crosscutting.

Dynamic crosscutting: is the weaving of new

behaviour into the execution of a program using: join

point, pointcut and advice. We briefly introduce each of

these constructs as follows:

- Join Point: denotes points at which crosscutting code

can be executed. The join point is a well-defined “point”

in the dynamic execution flow of an application. For

instance, in object oriented languages, join points may

refer to passing messages and writing on instance

variables.

- Pointcut: is a program element that picks out join points

and exposes data from the execution context of those

join points. The pointcut language of AspectJ offers a set

of primitive pointcut designators, like call specifying

method call or get/set specifying field access. These

primitive pointcut designators can be combined using

logical operators (and “&&”, or “||”, not “!”).

- Advice: represents a program module which is to be

executed at the designated join points. There are three

types of advices before, after and around, which

correspond to the program modules to be executed prior,

after or instead of the designated events, respectively. It

is defined in terms of pointcuts. The code of a piece of

advice runs at every join point picked out by its pointcut.

Static crosscutting: is the weaving of modifications

into the static structure—the classes, interfaces, and

aspects—of the system. By itself, it does not modify the

system behavior, but it operates over the static structure of

type hierarchies. AspectJ provides inter-type member

declarations (introductions) and other declare forms. It

makes static changes to the modules of the system, for

example, we can add a method or field to a class.

Finally, an Aspect is a modular unit designed to

implement a crosscutting concern. It contains the code that

History-based Approach for Detecting... Informatica 39 (2015) 187–194 189

expresses the weaving rules for both dynamic and static

crosscutting. An aspect may also incorporate member

variables, methods, etc., just like a normal class Java.

3 Our approach

3.1 Basic idea

To understand better our contribution, it is important to

define clearly the relationship between logical coupling

detection and modularity defects. In this section, we

present the utility of logical couplings in the detection of

software modularity defects. And, we explain how this

idea can be used in the context of AO software.

 There is a strong correlation between modularity

defects and logical couplings. Some modularity defects

are not easily detectable by static or dynamic software

analysis. Fluri et al.’s [7] study shows that a large number

of change coupling relationships are not entailed by

structural dependencies.

Extracting logical couplings and analysing them can

help in detecting modularity defects in a software system.

The basic idea is that we can distinguish two types of

logical couplings, as depicted in Figure 1: internal and

external logical couplings. A logical coupling is an

internal logical coupling, if it relates two entities that

belong to the same module in the software decomposition.

On the other hand, an external logical coupling relates two

entities that belong to two different (independent)

software modules.

The last type is the most important in our context;

because the existence of external logical couplings in a

software system presents possible modularity defects in

that system. Two modules that are supposed to be changed

independently are changed together i.e. a change in an

entity that belong to a specific module will necessitate

changes in other(s) entity(s) that belong to other

module(s). So, we call such logical couplings “negative

logical couplings” or “modularity defects”.

In AOP, the crosscutting concerns are modularized by

identifying a clear role for each one in the system,

implementing each role in its own module, and loosely

coupling each module to only a limited number of other

modules [12]. Unfortunately, these systems need to evolve

continually in order to cope with ever-changing software

requirements. Empirical results show that AO software is

not immune from the negative side effects of software

evolution [2, 5, 20]. This fact harms the modularity of the

AO program, hinders the concerns encapsulation and

reduces the aspect reusability. To overcome this problem

is a hot topic.

Our research question is: how we can detect

efficiently the modularity defects in AO software? To this

end, we use the idea described above to achieve our goal.

In this context, software modules (Figure 1) are the

crosscutting concerns (Aspects) of the system, and the

modularity defects are considered as external logical

Figure 1: Types of logical couplings.

couplings among these aspects. So a modularity defect in

AO software can be defined as follows:

Definition of a modularity defect: let A and B two

independent aspects. A modularity defect (x, y) is a logical

coupling between the two entities x and y, where xA and

yB.

To resume up, just how well does the AO software

system evolution justify its best modularity? The existence

of modularity defects (external logical couplings) in an

AO system shows that the separation of crosscutting

concerns (modularity) into that system is violated. The

coupled crosscutting concerns are candidates for

restructuring or refactoring. Here, the detected modularity

defects are used to guide improvement efforts; in order to

get a more stable decomposition with very little

dependencies i.e. an ideal situation would allow changing

each crosscutting concern independently of the others.

This is very useful to reconstruct a best modularization for

the AO software system and a good reusability of their

crosscutting concerns.

3.2 Approach overview

The purpose of this paper is to present an approach to

uncover modularity defects in AO software by analysing

its evolution history. As depicted in Figure 2, our approach

consists of two complementary steps, which form an

integrated approach for detecting modularity defects: 1)

An AO software repository is mined to detect logical

couplings between the software entities that belong to the

different aspects of the system; 2) The resulted logical

couplings are then analysed according to the AO software

decomposition to detect and locate modularity defects. If

two entities x and y are frequently changed together, and

they belong to two independent aspects A and B

respectively, so the logical dependency (x,y) represents a

modularity defect. The main purpose of such modularity

defects is to evaluate how modular an AO application is,

and to guide improvement efforts i.e. these couplings can

be used to guide the software developer during

restructuring and refactoring tasks.

Module A

E 1

Module B

Internal logical coupling

External logical coupling

E 2

E 3 E 4

E 7

E 6

E 9

E 5

E 8

190 Informatica 39 (2015) 187–194 H. Cherait et al.

Figure 2: Modularity defect detection.

So, it is to the developer to examine the corresponding

code (the entities that are related to a modularity defect) to

improve it and enhance the AO software modularisation.

3.3 Logical coupling detection

In this step, a syntactic analysis of the Aspects source code

is performed, such that additions and modifications of

aspect’s entities can be recorded. So, the source data for

the mining will constitutes of the different building blocks

of the software aspects: fields, methods, pointcuts,

advices, and introductions. With our Mining approach, we

address the following questions: 1) what are the coupled

aspect entities in the AO system? and 2) what are the

strengths of these couplings?

3.3.1 Coupled aspect entities

As we are mining for entities that are frequently

changed together, it seems natural to use the technique

called frequent itemset mining, which is able to discover

interesting relations in a database. Our mining approach

follows these steps: it acquires aspects data from a

repository and transforms them into change-sets, which

consist of the names of the entities added or modified in

each transaction. Filtering may help in avoiding irrelevant

data at this stage. We aim to track and mine software

entities belonging to aspects, so we do not take into

account base code entities. We focus on the logical

couplings among crosscutting concerns only. So, we keep

in every transaction only the aspect entities of an AO

system (not base code entities). These are then processed

using the Apriori frequent itemset mining algorithm [1].

Let 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} be a set of aspect’s entities

i.e. entities that belong to the different aspects of the AO

software, and 𝑋 ⊆ 𝐸 an entity-set. We define repository 𝑅

as a set of transactions: 𝑅 = {𝑡1, 𝑡2, … , 𝑡𝑚}, where 𝑡𝑖 =
{𝑒𝑖1, 𝑒𝑖2, … , 𝑒𝑖𝑘} and 𝑒𝑖𝑗 ∈ 𝐸. Also, let 𝑠(𝑋) be the set of

transactions that contain entity-set 𝑋, formally 𝑠(𝑋) =
{𝑌 ∈ 𝑅|𝑌 ⊇ 𝑋}. Finally, the support of an entity-set 𝑋 is

the fraction of transactions in the repository that

contain 𝑋: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) =
|𝑠(𝑋)|

|𝑅|
. Then 𝑋 is called a

logical coupling when its support is higher than a given

minimum support: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡.

Figure 3: Analysing logical couplings.

3.3.2 Strength of a logical coupling

The strength of a logical coupling is considered as the

support of this logical coupling. So, the strength of a

logical coupling {𝑒1, … , 𝑒𝑛} where each 𝑒𝑖 is an aspect

entity, is measured by support which is the number (or

percentage) of transactions containing the

entities 𝑒1, … , 𝑒𝑛.

3.4 Modularity defect detection

The logical couplings extracted in the above step, are then

analysed to detect modularity defects in the AO software

system. This analysis is based on the structural

decomposition of the AO software as crosscutting

concerns (Aspects). In this step, the detected logical

couplings are classed into two categories: internal and

external logical couplings. As depicted in Figure 3, we

define internal coupling as a dependency between two

entities that belong to the same Aspect. The couplings

between entities of an Aspect and any other entities that

belong to other aspects are considered as external

couplings.

These external logical couplings are considered as

possible defects in the AO software modularity. Formally,

a set of external logical couplings ELC is defined as ELC

= {(𝑒i, 𝑒𝑗)|𝑒i ∈ A, 𝑒𝑗 ∈ B}, where A and B are two

independent aspects. So, the set of modularity defects MD

in an AO program P is defined as:

𝑀𝐷(𝑃) = ∑ 𝐸𝐿𝐶𝑖

|𝐸𝐿𝐶|

𝑖=1

Since modularity defects are logical couplings, each

modularity defect has a strength/support value (the

number of transactions that contain the external logical

coupling). So, we can say that (x, y) is a modularity defect

that occurred once, (y, z) is a modularity defect that

occurred twice, and so on.

3.5 Discussion

Using the detected logical couplings between aspect

entities, we can deduce the coupled crosscutting concerns

(aspects) in the AO system. As depicted in Figure 4, if two

aspect entities e1 and e2 that belong to the independent

aspects A1 and A2 respectively (modularity defect). Then,

we deduce automatically that A1 and A2 are coupled

aspects.

AO

software

repository

Mining

Logical

couplings
Analysing

Modularity

defects

AO software

decomposition

Developer

Aspect B Aspect A

External coupling Internal coupling

Change Transaction

History-based Approach for Detecting... Informatica 39 (2015) 187–194 191

Figure 4: Coupled aspects.

The detected modularity defects can be used to assist

restructuring and refactoring tasks. If some aspects change

at the same time very often over several releases, they can

be used to point to candidates for refactoring.

On the other hand, our results can be used to evaluate

the AO software modularity. We can for example define a

modularity measure using the detected logical couplings

(it can be equal to the number of no coupled aspects,

devised by the total number of aspects). Based on this

measure we can evaluate the AO system modularity. This

measure can be used later to compare many

implementations of AO software systems. So, we can

answer interesting questions as: Is the AO program P more

modularized then the AO program P’? Is the

implementation of the crosscutting concern C in program

P is much more encapsulated than in program P’? If we

detect crosscutting concerns (aspects) that have no

coupling to any other crosscutting concerns, these can be

a perfect reusable crosscutting concerns.

4 Tool chain
This section describes the tool-chain with which we

identify modularity defects in AO programs written in

AspectJ [12]. This last is a well-established AOP

language. As depicted in Figure 5, the overall process is

performed using three main tools:

The AspectJML Tool: an existing open source

proposed by Melo Junior and Mendonça [13]. It is an

XML-based markup language for representing source

code written in AspectJ. The AspectJ source code is

converted in XML (eXtended Markup Language) format

[21] through the power of AspectJML. This XML-based

representation is then used by the other tools in the tool-

chain.

The Mining Tool: We have implemented this tool to

extract logical couplings from the AspectJ repository.

First, this tool takes change transactions from the

repository and filters them to keep just the changed entities

belonging to the aspects of the system (not base

Figure 5: Tool chain.

code entities) in every transaction. Then, every entity in

the transactions is replaced by its identifier. This last is

extracted from the XML-based representation of the

AspectJ source code. So, the tool gets change transactions

of entity identifiers and organizing them in a single XML

document. Finally, the transactions are mined using the

Apriori algorithm.

Here, we used the XQuery implementation of the

Apriori algorithm proposed by Wan and Dobbie [22]. The

output of this tool is the logical couplings in the AspectJ

source code that have a support higher than a specific

threshold (min support). Every logical coupling is a set of

entity identifiers.

The MDD Tool: a Modularity Defect Detection tool

is implemented to filter the logical couplings obtained by

the Mining tool. Here, the tool extracts modularity defects

by eliminating internal logical couplings. It uses the XML-

based representation of the source code to test if the

entities that belong to a specific logical coupling are

existing in the same aspect, or in different aspects using

their identifiers. The results present possible modularity

defects.

A4
A1

A2

A3

E3

E4

E2 E1

E5
E6

Logical coupling dependency

Membership dependency

AspectJ

Software

Repository

Mining

Tool

Logical

Coupling

s

MDD

Tool

Modularity

Defects

AspectJ

Source

Code

AspectJML

Tool

XML

Representation

http://www.eclipse.org/aspectj/

192 Informatica 39 (2015) 187–194 H. Cherait et al.

5 Case study
In order to assess the feasibility and correctness of our

approach, this case study uses 22 releases of three well-

known AspectJ programs available as open source. These

systems were selected because they are rich in kinds of

crosscutting concerns. Also they are used as case study in

different research works [4, 5, 8, 14].

Table 1 describes these systems. It gives the number

of versions and aspects of each software system. The first

one, called Contract4J, it supports "Design by Contract"

programming in Java. We considered the 5 releases of

Contract4J in our study. The second is a product line for

deriving applications that manipulate photos, videos and

music on mobile devices called Mobile Media [6]. We

selected its 7 releases in this experimentation. The last

system called Health Watcher [19]; is a real Web-based

information system that allows citizens to register

complaints about health issues in public and heath care

institutions to investigate and take the required actions.

We selected the 10 releases of Health Watcher in our

study.

After the application of our approach on these

systems, we find many internal logical couplings as:

“frequently changing a pointcut involves changing its

related advices”, “changing a field, involves changing the

methods that use this field”, etc. Many modularity defects

(external logical couplings) are detected also. Table 2

presents the detected coupled aspects in each system. For

each coupled aspects, it gives the number of detected

modularity defects (external logical couplings). Besides, it

gives the support of each coupling. Here the support is the

average of the supports of the related modularity defects

i.e. the support of a logical dependency between two

Aspects A and B is the sum of supports of their related

modularity defects, devised by the number of such

modularity defects.

In the program Contract4J we have detected that the

aspects ConstructorBoundaryConditions and Method-

BoundaryConditions are tightly coupled with 7

modularity defects. Here the coupled low-level entities

with the higher support for these aspects are: the method

doTest in the aspect ConstructorBoundaryConditions and

the method doBeforeTest in the aspect MethodBound-

aryConditions.

Software #versions #Aspects

Contract4J 5 814

Mobile Media 7 442

Health Watcher 10 1123

Table 1: Subject programs.

The aspect ConstructorBoundaryConditions is also

coupled with the aspect UsageEnforcement through 3

modularity defects. The modularity defect with the higher

support here is between: the advice applied after the

pointcut postCtor in the aspect ConstructorBound-

aryConditions and the pointcuts preNotInContract, post-

NotInContract, and invarNotInContract that belong to the

aspect UsageEnforcement.

In the Mobile Media program, we have detected much

more coupled aspects than those detected in the

Contract4J program. The aspects DataModelAspectEH

and UtilAspectEH are coupled via 2 modularity defects:

the pointcuts loadMediaDataFromRMS and readMe-

diaAsByteArray belonging to DataModelAspectEH and

UtilAspectEH respectively are frequently changed

together. Also, the pointcuts getMedias and getBytes-

FromMediaInfo are tightly coupled.

We have also detected that the aspect SortingAspect is

coupled with 3 other aspects, which restricts its

evolvability and reusability. It is coupled with the aspect

FavouritesAspect via 4 modularity defects. Besides, it is

coupled with the aspects ControllerAspectE and Copy-

PhotoAspect through one modularity defect. The most

frequent detected modularity defects here are of the type

pointcut duplications. For instance, the pointcuts han-

dleCommandAction and appendMedias are duplicated in

the aspects FavouritesAspect and SortingAspect. Besides,

the pointcut showImage is defined in the aspects Con-

trollerAspectEH and SortingAspect. So any modification

in such pointcuts implies changes in many aspects.

Application Coupled aspects #Modularity defects Support

Contract4J ConstructorBoundaryConditions

MethodBoundaryConditions

7 0,6

ConstructorBoundaryConditions

UsageEnforcement

3 0,6

Mobile Media DataModelAspectEH

UtilAspectEH

2 0,4

FavouritesAspect

SortingAspect

4 0,4

ControllerAspectEH

SortingAspect

1 0,2

CopyPhotoAspect

SortingAspect

1 0,2

Health Watcher

Table 2: Detected modularity defects.

History-based Approach for Detecting... Informatica 39 (2015) 187–194 193

Finally, in the Health Watcher application we have

detected many internal logical couplings, but we do not

detect serious modularity defects in that system (except of

a few external logical couplings which are detected once).

So, in contrast to the above applications (Contract4J and

Mobile Media), we can say that Health Watcher has a

good modularization, and their crosscutting concerns

(Aspects) are good reusable modules.

6 Related work
This section of the paper presents related works discussing

the benefits of our proposal in contrast to the other ones.

Our work involves the following research areas:

AO software analysis: Existing approaches for

detecting dependencies among AO software generally use

static analysis [15, 17, 25, 26]. Such approaches are

mainly based on an instruction-level to analyse the

evolution of an AO software system: the source code is

analysed and source code slicing is used to perform

change impact analysis. We may say that such code-based

approaches reveal syntactic dependencies and what we are

really interested in is logical dependencies among AO

software concerns. On the other hand, the information is

derived using analysis of textual software artefacts that are

found in a single version of the software. In contrast, our

approach is based on an empirical observation of AO

system structural modifications. We treat the whole

evolution history to detect the modularity defects.

Mining AO software repositories: There are many

approaches and techniques for detecting logical couplings

in OO software [9, 10]. These works prove that such

historical analysis is often able to capture couplings

among software entities that cannot be captured by static

and dynamic analysis. But this research area still not

enough explored for AO software. Few works are

dedicated to mine AO software repositories. For instance,

Qian et al. [16] treat the detection of change patterns in

AspectJ programs. They analyse the successive versions

of an AspectJ program, and then decompose their

differences into a set of atomic changes. Finally, they

employ the Apriori data mining algorithm to generate the

most frequent item-sets. In [3], we have also detected

change patterns in AspectJ software by Mining a rewriting

rule-based repository. In this paper, our goal is different,

as we aim at identifying logical couplings between the

aspect entities instead of change patterns.

Detecting software modularity defects: Many

works prove the benefits of analysing the OO software

evolution history for assessing its modularity. In [18] the

authors state that to improve current modularity views, it

is important to investigate the impact of design decisions

concerning modularity in other dimensions, as the

evolutionary view. They propose the ModularityCheck

tool to assess package modularity using co-change

clusters, which are sets of classes that usually changed

together in the past.

Wong et al. [23, 24] presented CLIO, a tool that

detects and locates modularity violations. CLIO compares

how components should co-change according to the

modular structure and how components usually co-change

retrieving information from version history. A modularity

violation is detected when two components usually change

together but they belong to different modules, which are

supposed to evolve independently. We use the same idea

to detect modularity defects in AO software. However,

these works extract couplings at a file level; in contrast,

we detect logical couplings at entity level. Our detected

fine-grained logical couplings can be very useful for

restructuring and refactoring tasks.

7 Conclusion
Unintended modularity defects of AO software may not

be easily detectable by static or dynamic analysis

techniques, but could cause modularity decay and bad

separation of crosscutting concerns. To detect such

modularity defects, we suggested a history-based

approach based on the logical couplings in the AO

software system.

Our approach applies frequent itemset mining over an

AO software repository in order to detect logical

couplings among its entities. The extracted logical

couplings are then analysed to detect modularity defects

in the AO software system. Many case studies are

experimented to demonstrate the feasibility of our

approach. The results show that the approach is able to

detect logical couplings among aspect entities, as well as

modularity defects. The approach leads naturally to an

evaluation of AO system’s modularity. The results of our

approach can be used for reducing the dependencies

between AO software Aspects and consequently

promoting its modularity.

The same idea can be used for detecting other types of

AO software defects. For example, we can analyse the AO

software evolution history for detecting bad smells, anti-

patterns, etc.

References
[1] R. Agrawal, and R. Srikant (1994). Fast algorithms

for mining association rules in large databases. In J.

B. Bocca, M. Jarke, and C. Zaniolo, editors,

Proceedings of 20th International Conference on

Very Large Data Bases, Santiago, Chile, pp. 487–

499.

[2] R.T. Alexander, J. M. Bieman, and A. A. Andrews

(2004). Towards the Systematic Testing of Aspect-

Oriented Programs. Report CS-04-105, Colorado

State University, Fort Collins-USA.

[3] H. Cherait, and N. Bounour (2014). Detecting

Change Patterns in Aspect Oriented Software

Evolution: Rule-based Repository Analysis.

International Journal of Software Engineering and

Its Applications (IJSEIA), Vol. 8, No. 1, pp. 247-

266.

[4] R. Dyer, H. Rajan, and Y. Cai (2012). An

Exploratory Study of the Design Impact of Language

Features for Aspect-oriented Interfaces. In

Proceedings of AOSD’12, Potsdam, Germany.

[5] F. Ferrari, R. Burrows, O. Lemos, A. Garcia, E.

Figueiredo, N. Cacho, F. Lopes, N. Temudo, L.

194 Informatica 39 (2015) 187–194 H. Cherait et al.

Silva, S. Soares, A. Rashid, P. Masiero, T. Batista,

and J. Maldonado (2010). An Exploratory Study of

Fault-Proneness in Evolving Aspect-Oriented

Programs. In Proceedings of ICSE '10, Cape Town,

South Africa, ACM press, pp. 65 – 74.

[6] E. Figueiredo, N. Cacho, C. Sant’Anna, M.

Monteiro, U. Kulesza, A. Garcia, S. Soares, F.

Ferrari, S. Khan, F. Castor Filho, and F. Dantas

(2008). Evolving software product lines with

aspects: an empirical study on design stability. In

Proceedings of ICSE’08.

[7] B. Fluri, H. C. Gall, and M. Pinzger (2005). Fine-

grained analysis of change couplings. In Proceedings

of 5th WICSA’05, pp. 66–74.

[8] P. Greenwood, T. T. Bartolomei, E. Figueiredo, M.

Dósea, A. F. Garcia, N. Cacho, C. Sant’Anna, S.

Soares, P. Borba, U. Kulesza, and A. Rashid (2007).

On the impact of aspectual decompositions on design

stability: An empirical study. In Proceedings of

ECOOP, pp. 176–200.

[9] A. E. Hassan (2008). The road ahead for mining

software repositories. In Frontiers of Software

Maintenance, pp. 48–57.

[10] H. Kagdi, M. L Collard, and J. I. Maletic (2007). A

Survey and Taxonomy of Approaches for Mining

Software Repositories in the Context of Software

Evolution. Journal of Software Maintenance and

Evolution: Research and Practice, Vol. 19, No. 2, pp.

77-131.

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J. M. Loingtier, and J. Irwin (1997).

Aspect-oriented programming. In Proceedings of

11th European Conference on Object-Oriented

Programming, Springer-Verlag, LNCS Vol. 1241,

pp. 220–242.

[12] R. Laddad (2003). AspectJ in Action: Pratical

Aspect-Oriented Programming. Manning

Pubblications Company.

[13] L. S. Melo Junior, and N. C. Mendonça (2005).

AspectJML: A Markup Language for AspectJ. In

Proceedings of the 2nd Brazilian Workshop on

Aspect Oriented Software Development,

Uberlândia, MG, Brazil.

[14] A. C. Neto, M. Ribeiro, M. Dosea, R. Bonifacio, P.

Borba, and S. Soares (2007). Semantic

Dependencies and Modularity of Aspect-Oriented

Software. In Proceeding of the First International

Workshop on Assessment of Contemporary

Modularization Techniques (ACoM'07).

[15] E. K. Piveta , M. Hecht , M. S. Pimenta , and R. T.

Price (2006). Detecting bad smells in AspectJ.

Journal of Universal Computer Science.

[16] Y. Qian, S. Zhang and Z. Qi (2008). Mining Change

Patterns in AspectJ Software Evolution. In

Proceedings of the International Conference on

Computer Science and Software Engineering, pp.

108-111.

[17] M. Rinard, A. Salcianu, and S. Bugrara (2004). A

classification system and analysis for aspect-oriented

programs. In Proceedings of FSE’04, pp. 147–158.

[18] L. L. Silva, D. Félix, M. T. Valente, M. de A. Maia

(2014). ModularityCheck: A Tool for Assessing

Modularity using Co-Change Clusters. In

Proceedings of the Brazilian Conference on

Software: Theory and Practice (CBSoft’14) - Tool

Session.

[19] S. Soares, E. Laureano, and P. Borba (2002).

Implementing distribution and persistence aspects

with AspectJ. In Proceedings of the 17th OOPSLA.

[20] F. Steimann (2006). The Paradoxical Success of

Aspect-Oriented Programming. In Proceedings of

OOPSLA’06, pp. 481-497.

[21] J. Suzukiand, and Y. Yamamoto (1998). Managing

the software design documents with xml. In

Proceedings of the 16th annual international

conference on Computer documentation, ACM

Press: New York, pp. 127-136.

[22] J. W. W. Wan, and G. Dobbie (2003). Extracting

Association Rules from XML Documents using

XQuery. In Proceedings of WIDM’03, New Orleans,

Louisiana, USA, pp. 94-97.

[23] S. Wong, Y. Cai, and M. Dalton (2009). Detecting

Design Defects Caused by Design Rule Violations.

Report DU-CS-09-04, Drexel University.

[24] S. Wong, Y. Cai, M. Kim, and M. Dalton (2011).

Detecting software modularity violations. In

Proceedings of 33rd International Conference on

Software Engineering (ICSE’11), pp. 411–420.

[25] G. Xu, and A. Rountev (2008). AJANA: A General

Framework for Source-Code-Level Interprocedural

Dataflow Analysis of AspectJ Software. In

Proceedings of AOSD’08, Brussels, Belgium.

[26] J. Zhao (2002). Change Impact Analysis for Aspect-

Oriented Software Evolution. In Proceedings of the

5th International Workshop on Principles of

Software Evolution, Orlando, Florida, pp. 108-112.

http://dl.acm.org/author_page.cfm?id=81100162809&coll=DL&dl=ACM&trk=0&cfid=477820885&cftoken=67396174

