

https://doi.org/10.31449/inf.v49i5.8351 Informatica 49 (2025) 257-268 257

Optimizing Complex Functions: A Numerical and ML Comparison

Xuechao Zhang

Mathematics Teaching and Research, Office，Zhengzhou, Professional Technical Institute of Electronic & Information,

Zhengzhou, Henan, 451450, China

E-mail：zxfchao1982@126.com

Keywords: complex function optimization, convergence rate, benchmark functions, computational efficiency, machine

learning algorithms, numerical methods

Received: February 20, 2025

Optimization plays a vital role across disciplines such as engineering, economics, and artificial

intelligence. Complex functions, which map complex numbers to complex outputs, often cannot be solved

analytically, necessitating numerical or machine learning-based approaches. This study presents a

comparative analysis of numerical optimization methods—specifically Gradient Descent and Newton’s

Method—against machine learning-based techniques, including Genetic Algorithms, Particle Swarm

Optimization, and Deep Q-Learning. These methods are evaluated using standard benchmark functions:

Ackley, Rastrigin, and Rosenbrock. The comparison focuses on convergence rate and runtime

performance. Results show that numerical methods offer faster runtimes but lower convergence rates,

while machine learning approaches achieve higher convergence at the cost of increased computational

time. This analysis underscores the trade-offs between efficiency and robustness in optimization

techniques, offering practical insights for selecting appropriate methods based on specific application

needs, especially in scenarios involving complex, non-linear, or high-dimensional functions.

Povzetek: Prispevek išče kompromis med hitrostjo in robustnostjo kompleksnih funkcij. Uporablja

GD/Newton vs. GA/PSO/DQN na Ackley/Rastrigin/Rosenbrock, brez standardnih postopkov.

1 Introduction

Complex function optimization is a significant area of

research within optimization problems. The

methodologies for solving optimization issues can be

categorized into analytical methods and numerical

computations [1]. The analytical method addresses the

problem by examining the correlation between the

derivative of the objective function and its extreme values.

This strategy is applicable solely to optimization problems

characterized by relatively uncomplicated objective

functions. According to the variation principle of the

objective function value, one should proceed in suitable

increments along the direction that maximizes the

objective function value. A method for approximate

calculation that incrementally approaches the optimal

point of the objective function. This technique is effective

for resolving continuous differentiable convex

optimization problems. However, with the ongoing

proliferation of engineering optimization challenges, the

majority of objective functions are non-convex

optimization problems. The advent of group intelligent

optimization algorithms offers a constrained approach to

difficult function optimization challenges [2].

Numerical Optimization is a recognized domain within

Mathematical Sciences that seeks to determine the extreme

values of a function, namely its maxima and minima. In

the past two decades, optimization approaches have

emerged as essential instruments for management,

decision-making, technological enhancement, and

development, conferring competitive benefits to diverse

systems. Consequently, optimization models and

algorithms have become prominent in various domains,

including industry [3], disease diagnosis [4], scheduling

and resource allocation [5], and finance [6].

A prominent domain dedicated to addressing issues

through mathematical models and algorithms is Machine

Learning. In certain real-world scenarios, a substantial

amount of data must be handled. This volume of data

typically necessitates computational support to convert the

information into pertinent knowledge for problem-solving.

In this situation, machine learning techniques are highly

beneficial. These models and algorithms aim to provide a

mathematical representation that characterizes the data

collection and extrapolates insights to unfamiliar data

samples [7]. Machine learning models and algorithms are

applicable in various fields, including industry, healthcare,

finance, and education.

https://doi.org/10.31449/inf.v49i5.
mailto:zxfchao1982@126.com

258 Informatica 49 (2025) 257-268 X. Zhang

Owing to the practical significance of both domains,

numerous methods have been devised to address

optimization and machine learning challenges. While the

majority of algorithms are effective in addressing their

respective challenges, none are entirely flawless [8]. A

pure algorithm denotes a singular approach or method

utilized to resolve an issue comprehensively from

inception to completion. A hybrid algorithm amalgamates

many algorithms or techniques from disparate disciplines

to address a problem or enhance the efficacy of a singular

solution. Hybrid methods can combine many

methodologies to capitalize on the strengths of each

algorithm while alleviating their weaknesses.

The hybrid algorithm represents a synthesis of concepts

and techniques aimed at investigating the capabilities of

several approaches while mitigating their deficiencies. By

integrating complementary algorithms, one can leverage

their strengths and mitigate limits, resulting in enhanced

overall performance.

A hybrid algorithm that integrates optimization and

machine learning approaches is an effective approach that

leverages the strengths of both disciplines to provide a

robust framework for addressing complicated issues [9].

This integration enhances decision-making capacities by

incorporating optimization approaches into the machine

learning process and vice versa. A hybrid algorithm can

utilize optimization techniques to direct the learning

process, thereby improving the accuracy and effectiveness

of decision-making. This integration allows the algorithm

to utilize explicit mathematical optimization methods and

data-driven learning capabilities, resulting in enhanced

and more efficient decision-making [10].

This paper delineates and examines the primary

characteristics of numerical optimization and machine

learning techniques. By recognizing and examining the

primary aspects of each methodology in conjunction, they

can mitigate difficulties and improve one or both processes

through hybrid approaches. The objective is to determine

the optimal combinations that yield hybrid approaches,

taking into account a machine learning algorithm

influenced by optimization strategies or vice versa.

This paper compares numerical optimization methods,

specifically gradient descent and Newton’s method, with

machine learning optimization algorithms, including

genetic algorithms, particle swarm optimization, and deep

Q-learning. The benchmark optimization test functions

Ackley, Rastrigin, and Rosenbrock are employed to assess

the optimization methods based on convergence rate and

runtime. The machine learning algorithms demonstrate the

capability to effectively address complex function

optimization problems and enhance the convergence rate

relative to numerical methods.

The remaining part of this research is organized as, section

2 provides the background details including complex

function, numerical optimization, machine learning and

related works summary. Section 3 explains the proposed

methodology. Section 4 provides the experimental results

and section 5 conclude the research paper.

2 Background

2.1 Complex function

Let S denote a collection of complex numbers. A function

f defined on S is a mapping that allocates to each z in the

complex numbers a corresponding w. The quantity w is

referred to as the value of f at z and is represented as f(z);

so, w = f(z). The set S is referred to as the domain of

definition of f.

If each value of z corresponds to only one value of w, we

denote w as a single-valued function of z or f(z) that is

single-valued. If many values of w correspond to each

value of z, w is classified as a multiple-valued or many-

valued function of z.

A multiple-valued function can be regarded as a

compilation of single-valued functions, with each

constituent referred to as a branch of the function.

Typically, we designate one specific member as the

principal branch of the multi-valued function, with the

matching function value referred to as the principal value.

Polynomial function:

For xn,xn-1,…,x0 complex constants,

𝑝(𝑦) = 𝑥𝑛𝑦
𝑛 + 𝑥𝑛−1𝑦

𝑛−1 +⋯+ 𝑥1𝑦

+ 𝑥0 (1)

Where 𝑥𝑛 ≠ 0 and n is a integer value.

Exponential function

If 𝑧 = 𝑎 + 𝑖𝑏, the exponential function ez is represented

by,

𝑒𝑧 = 𝑒𝑎𝑒𝑖𝑏 (2)

Where 𝑒𝑖𝑏 = cos 𝑏 + 𝑖 𝑠𝑖𝑛 𝑏

𝑒𝑧 = 𝑒𝑧(𝑐𝑜𝑠 𝑏 + 𝑖 𝑠𝑖𝑛 𝑦) (3)

Logarithmic Function

The complex logarithm is an extension of the standard real

natural logarithm (base e) into the complex domain. In

polar coordinates, the complex logarithm is expressed as,

𝑙𝑜𝑔𝑧 = log(𝑟𝑒𝑖𝜃)

= log 𝑟 + 𝑙𝑜𝑔𝑒𝑖𝜃

= 𝑙𝑜𝑔𝑟 + 𝑖𝜃 (4)

Trigonometric functions:

The sine and cosine of a complex variable are described

as,

𝑠𝑖𝑛 𝑧 =
𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖
 (5)

𝑐𝑜𝑠 𝑧 =
𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2
 (6)

Optimizing Complex Functions: A Numerical and ML Comparison… Informatica 49 (2025) 257-268 259

In optimization, a complex function refers to one in which

the input and/or output are complex numbers, with the

objective of identifying maximum, minimum, or other key

points, frequently subject to constraints or special

conditions. These functions may be nonlinear,

multivariable, and incorporate both real and imaginary

components in their inputs and outputs, rendering them

more complex to evaluate and optimize than real-valued

functions.Optimization problems may involve complex

functions when the objective function originates from

physical systems represented by complex-valued

variables, or in signal processing, control systems, and

specific machine learning models where data or

parameters are inherently articulated in the complex

domain.

2.2 Numerical optimization

Although there are various strategies and algorithms

available for addressing optimization difficulties, none are

universally applicable or flawless in properly resolving all

such concerns. Each algorithm possesses distinct

properties, making it more suitable for addressing specific

challenges based on these attributes. The formulation of

the problem, selection of methods, and choice of

algorithms are pivotal aspects in addressing an

optimization issue, as certain methods and algorithms are

more suitable than others based on the specific challenge

at hand. The initial stage in an optimization problem is the

formulation of the mathematical model. A mathematical

model seeks to represent a real-world situation as a

mathematical function applicable in optimization

techniques. An optimization problem can be articulated in

mathematical terms through a collection of variables and

numerical relationships that encapsulate an abstraction of

the issue, aiming to identify the optimal solution within Rn

from a set of potential alternatives. To construct a

mathematical model, four essential procedures must be

performed [11].

• Specify the decision parameters. (x1,x2,x3,….,xn)

• Construct the objective function f(x) or the set of

objective functions f1(x), f2(x),f3(x),…,fk(x) that

rely on the choice variables and yield a real value.

• If required, provide a collection of equality and/or

inequality constraints, gi(x) = 0 and hj(x) ≤ 0 for i

= 1, 2, ..., ng and j = 1,2, ...nh, that must be

satisfied by the decision variables.

• Define the domain sets D1,D2,D3,….,Dn

corresponding to the decision parameters,

x1,x2,x3,….,xn accordingly.

The optimization issue is defined by the objective function

and the restrictions on the variables. The objective function

delineates the goal of the problem, which may encompass

any quantity or amalgamation of quantities represented by

a singular numeral, such as personnel, time, materials,

energy, etc.; conversely, the constraints directly influence

the decision space and outcomes, imposing restrictions on

the algorithmic options. The primary purpose of an

optimization issue is to reduce or maximize the objective

function while adhering to the restrictions. Furthermore,

optimization models can be categorized into two principal

classes based on the number of objectives: Single-

objective and multi-objective optimization issues [12].

Single optimization problems typically consist of a

singular target, with or without restrictions, while multi-

objective optimization pertains to multiple-criteria

decision-making, comprising the simultaneous

optimization of numerous objective functions, with or

without constraints [13]. Following the creation of the

mathematical model, it is essential to ascertain the most

suitable strategy for identifying the optimal solution.

A solution to an optimization issue can be characterized by

local and global optimization, with corresponding

techniques referred to as local search and global search.

Local and global search optimization methods are

employed in various contexts or to address distinct

optimization inquiries [14]. Local optimization aims to

identify a solution that reduces (or increases) the objective

function within a defined region of the search space, hence

locating a local solution among feasible points in the

vicinity. This type of search does not ensure an objective

value that is lower (or higher) than all other viable

locations. Conversely, global optimization seeks to

identify the point that reduces (or increases) the objective

function [15].

2.3 Machine learning

The essence of human intelligence is on experiential

learning and the transmission of personal knowledge

between generations. Machine learning pertains to the

development of computer programs that enhance their

performance through experience. The experience is

derived by a data analysis procedure executed by a

customized algorithm. Consequently, the machine

learning approach employs algorithms to identify patterns

within a dataset through computational, analytical,

optimization, and information discovery techniques [16].

There are three types of machine learning: Supervised

Learning, Unsupervised Learning, and Reinforcement

Learning. Within each category, methods can be

differentiated based on their knowledge acquisition

techniques, including classification, regression, clustering,

association learning, relational analysis, differential

equations, and others. Machine learning seeks to construct

a hypothesis (model) capable of extracting information

from training data and generalizing the learned knowledge

to unfamiliar samples. This model must exhibit simplicity

regarding complexity and demonstrate efficacy in

minimizing empirical mistakes within the data.

Supervised learning techniques seek to identify the

correlation between input attributes (independent

260 Informatica 49 (2025) 257-268 X. Zhang

variables) and a target attribute (dependent variable).

Supervised learning is employed for two categories of

tasks: pattern categorization and regression.

Occasionally, there is an absence of knowledge regarding

the correlation between input and output attributes in

machine learning challenges [17]. Consequently, the

algorithms must identify similarities or differences within

the data collection. The method necessitates greater human

comprehension than supervised procedures, as a decision-

maker, whether an individual or a collective, is

accountable for the final decision-making.

While supervised and unsupervised approaches engage

with data and necessitate exploration and comprehension

of the data in relation to the application domain, significant

distinctions exist between the two methodologies. The

primary distinction is the lack of an output vector for the

target variable, as observed in supervised approaches.

Moreover, unsupervised learning is frequently linked to

creative pursuits—exploration, comprehension, and

enhancement—that do not conform to predefined

protocols, unlike supervised methods [18]. Unsupervised

learning is often categorized into clustering methods and

dimensionality reduction methods.

Reinforcement learning is a machine learning technique

predicated on a reward mechanism, predominantly utilized

in dynamic control systems; however it is also applicable

to optimization issues [19]. Reinforcement learning

addresses the challenge of instructing an autonomous

agent, which interacts with and perceives its environment,

to select optimal actions for attaining its objectives. The

agent acquires information regarding the present

environmental conditions and must use its existing

knowledge through a greedy approach to optimize

rewards, while simultaneously engaging in exploration to

identify superior actions for the future.

2.4 Related work summary

This section highlights the existing numerical and machine

learning-based optimization strategies for complex

function optimization problems. Table 1 provides the

summary of existing optimization approach with limitation

or research gap.

Table 1: Related work summary

Ref Methods Data set and Metrics Limitations / Research Gap

[9] Hybrid Bee algorithm for solving

continues complex function

Benchmark function;

Accuracy and mean value.

It does not handle numerical

methods. Testing the enhanced

algorithms on practical

optimization challenges

[20] Deep learning proxy model Rosenbrock, Rastrigin and

Ackley functions; Mean

Euclidean distance and the

standard deviation

Sparse sampling is ineffective,

and the optimizers exhibit

heightened sensitivity to the

landscape derived from this

kind of data.

[21] First order optimization methods:

Standard gradient descent,

momentum, heavy ball, nesterov

Benchmark functions;

Iteration, time, function value

and weight

It only compares first order

optimization methods and does

not consider other optimization

approaches

[22] Improved Hypercube optimization

algorithm

Benchmark functions; Mean,

Standard deviation,

Convergence rate and Time.

It offers optimal value and

accelerates convergence

processes; however, it does not

address practical optimization

concerns.

[23] Genetic algorithm for high

dimensional optimization problem.

Benchmark functions; Gain

and convergence rate.

A robust criterion is required to

dynamically determine the

number of active subspace

dimensions.

[24] Local and global numerical

optimization; Focusing robust

optimization with uncertainty-based

sampling approach

Benchmark functions; CPU

Time, mean, median and

success rate

It does not converge effectively

to the global minimum for

various contrived test functions,

rendering its broad application

inadvisable.

Optimizing Complex Functions: A Numerical and ML Comparison… Informatica 49 (2025) 257-268 261

3 Methodology

Optimizing complex functions involves identifying the

extrema of functions that utilize complex numbers as both

inputs and outputs. These functions may encompass both

real and imaginary components, and addressing

optimization problems involving such functions is a

prevalent endeavor in disciplines such as signal

processing, control theory, physics, and machine learning.

A complex function f(z) can be written as,

𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦)

= 𝑢(𝑥, 𝑦)

+ 𝑖𝑣(𝑥, 𝑦) (7)

where, 𝑢(𝑥,𝑦) denotes the real component and 𝑣(𝑥,𝑦)

signifies the imaginary component, with 𝑥 and 𝑦

representing real variables corresponding to the real and

imaginary parts of the complex input 𝑧. The objective of

optimization frequently involves minimizing (or

maximizing) a complex-valued function, specifically

identifying the point 𝑧 in the complex plane that yields the

optimal value of (𝑧).

This paper compares numerical optimization methods,

specifically gradient descent and Newton’s method, with

machine learning optimization algorithms, including

genetic algorithms, particle swarm optimization, and deep

Q-learning. Figure 1 shows the work flow of the proposed

approach.

Figure 1: Proposed work flow

In all real-valued single-objective unconstrained

optimization algorithms, the objective is to identify the

minimum (or, equivalently, the maximum) of a scalar

objective function (𝑥), represented by the vector of free

parameters 𝑋=(𝑥1, 𝑥2, 𝑥3,...,𝑥𝑚), where 𝑚 denotes the

problem's dimensionality. Consequently, 𝑓 is a mapping

from R𝑚 to R. Assume the following hypothesis:

• Function 𝑓 is accessible solely as a black box;

thus, we possess no understanding or ability to

manipulate its internal mechanisms. We access 𝑓

solely through input-output mechanisms.

• The function 𝑓 possesses a continuous domain

inside the specified constraints; thus, every point

within these bounds is mapped by 𝑓.

• 𝑓 is well-defined in the domain, at least

numerically; it is continuous and exhibits a

degree of smoothness. This restricts very noisy

functions, where spatial correlation is absent.

However, there is also an implicit assumption of

some degree of noise, wherein finite differences

in the vicinity of a point do not resemble the

derivatives of the noiseless function.

Numerical optimization techniques are employed to

identify the most effective for intricate functions when

statistical techniques are impractical or excessively

challenging. The primary classifications of numerical

optimization methods are gradient-based and gradient-free

262 Informatica 49 (2025) 257-268 X. Zhang

techniques. In this paper two numerical optimization

methods are considered: Gradient descent and Newton’s

method. The previous works only consider the first-order

optimization but this research considers both first-order

and second-order optimization. Due to the simplicity, the

first order optimization i.e gradient descent is selected

which reduces the training time.

Gradient Descent:

Standard gradient descent is among the most fundamental

and prevalent optimization techniques. The fundamental

concept involves incrementally adjusting the model

parameters in accordance with the gradient of the loss

function. The gradient signifies the direction in which the

value of the loss function diminishes most rapidly. The

objective is to minimize the function by modifying the

model parameters accordingly.

The primary phases of Standard Gradient Descent:

Computation of gradients: At each stage of the procedure,

the gradient of the loss function is computed for all model

parameters. The gradient is a vector comprising the partial

derivatives of the loss function with respect to each

parameter, signifying the direction of the steepest ascent in

the function.

Update of parameters: Subsequent to computing the

gradient, the model parameters are revised in accordance

with the formula:

𝛿𝑛𝑒𝑤 = 𝛿𝑜𝑙𝑑 − 𝛼 × ∇𝜏(𝛿) (8)

Where δ represents the model parameter, α indicates the

learning rate and ∇𝜏(𝛿) is the gradient loss function.

Rate of learning: This is a crucial parameter of the

procedure. If the step size is very tiny, the optimization

process will be sluggish; conversely, if it is overly high, it

may bypass the minimum and induce instability in the

process. Consequently, the appropriate selection of alpha

is essential.

Repetitions: The parameter update process is iterated

multiple times until a termination point is achieved, either

by convergence criteria or after a predetermined number

of iterations.

Gradient Descent is straightforward to implement, as it

requires only the calculation of the gradient and the

subsequent update of the model parameters for each

iteration. Should the loss function exhibit smoothness and

convexity, the approach can effectively identify the global

minimum.

Newton’s Method

Newton's approach is a second-order optimization

approach that can be used to locate the roots of complex

functions or optimize them. This method is based on the

second derivative and often converges quicker than

gradient descent for smooth functions.

Given a complex function 𝑓(𝑧) = 𝑧2 − 2 + 𝑖

1. Select an initial guess, z0= 1+i

2. Compute the next approximation using the

formula:

𝑧𝑛+1 = 𝑧𝑛 −
𝑓(𝑧𝑛)

𝑓′(𝑧𝑛)
 (9)

Where 𝑓(𝑧) = 𝑧2 − 2 + 𝑖 and f’(z)=2z

f(1+i)=(1+i)2 – 2+i=1+2i-1+i=3i

f’(1+i)=2(1+i)=2+2i

therefore, 𝑧1 = (1 + 𝑖) −
3𝑖

2+2𝑖

3. Repeat this process iteratively until convergence.

Genetic Algorithm

Genetic Algorithm (GA) is an optimization technique

based on population dynamics. These heuristic search

methods, inspired by natural evolution, can optimize

complex functions, particularly when the functions are

noisy or non-differentiable. Genetic algorithms employ a

population of potential solutions, which are iteratively

evolved throughout multiple generations using selection,

crossover, and mutation to identify the optimal answer.

Algorithm-1 shows the general steps of genetic algorithm.

Algorithm-1: Genetic Algorithm

Input: Population Size (pop), Maximum iteration (MaxIter)

Output: Global best solution

Step1: Randomly generate initial population of n chromosomes

Step2: Initialize iteration count iter = 0

Step3: Compute the fitness value of each chromosomes

Step4: while (iter <MaxIter)

Step5: Select a pair of chromosomes from initial population based on fitness

Step6: Apply crossover operation on selected pair with crossover probability

Step7: Apply mutation on the offspring with mutation probability

Step8: Replace old population with newly generated population

Step9: Increment the iteration iter by 1

Step10: EndWhile

Step11: Return the best solution

Optimizing Complex Functions: A Numerical and ML Comparison… Informatica 49 (2025) 257-268 263

The genetic algorithm (GA) employed a population size of

between 20 or 200, contingent upon the number of

variables. The crossover rate was 0.8, and the maximum

number of iterations was 1000. The algorithm terminated

when the average relative change in the optimal fitness

function value over 100 iterations was less than or equal to

1e-6.

Particle swarm Optimization

The PSO algorithm is a gradient-free technique founded

on the notion of swarm dynamics. In Particle Swarm

Optimization (PSO), each sample is designated as a

particle, and a collection of particles is termed a swarm. In

the initial iteration of PSO, each particle commences at rest

with a velocity vector of zero. The objective function's

value is calculated for the initial iteration, and the particles'

velocity and position are revised. The velocity of each

particle is determined by three components: inertia,

cognitive, and social components, along with certain

random coefficients. The inertia component signifies a

particle's velocity at the present iteration, inhibiting

significant positional alterations. The cognitive component

assesses a particle's performance in relation to its prior

best, and the social component evaluates a particle's

performance in comparison to the swarm's optimal

location. The optimal positions are ascertained from the

fitness function assessment in the preceding iteration, and

the updates for velocity and position persist until the

termination criteria are met. Algorithm-2 shows the

general steps of PSO algorithm.

Algorithm-2: Particle swarm optimization

Input: Particle Size , Maximum iteration (MaxIter)

Output:best solution

Step1: Initialize particles, velocity, iter=0, pbest, gbest

Step2: Randomly generate initial particles

Step3: For each particle

Step4: Compute fitness function

Step5: Update pbest, gbest

Step6: End For

Step7: While (iter <MaxIter)

Step8: For each particle

Step9: Update velocity and particle

Step10: Compute fitness value

Step11: Update pbest, gbest

Step12: EndFor

Step13: EndWhile

The PSO employed a swarm size of between 20 or 200,

contingent upon the number of variables. The weight was

0.1, and the maximum number of iterations was 1000.

Machine learning is applicable for optimizing complex

functions, especially in the context of high-dimensional,

non-convex, or noisy functions that are challenging for

conventional approaches to manage.A neural network can

be taught to approximate a complicated function by

utilizing the real and imaginary components of the

function as input and output. This can be particularly

useful if the optimization process entails investigating

complex spaces with numerous variables. To optimize the

network, it can be trained using a loss function, such as

Mean Squared Error (MSE), to reduce the disparity

between the expected output of the complex function and

the actual function. The network acquires the ability to

forecast ideal input parameter values (complex values) that

reduce the output of the complex function. The

backpropagation algorithm updates the network's weights

according to the prediction error.

Reinforcement learning (RL) can optimize intricate

functions, particularly in scenarios where the function is

costly to assess or exhibits noise. In reinforcement

learning, the agent engages with the environment (a

complicated function) by executing actions (selecting

intricate input values) and obtaining rewards (ideal

outputs).Methods such as Q-learning or Deep Q Networks

(DQN) can be utilized to progressively enhance the answer

through environmental feedback. Algorithm-3 shows the

general steps of DQN.

Algorithm-3: DQN

Step1: Initialize parameters

Step2: For each episode

Step3: Observe initial state

Step4: For each step of episode

Step5: Select action

Step6: Execute action

Step7: Observe reward and new state

Step8: Store transition

Step9: Sample mini-batch of transitions

Step10: Compute target for each transition

Step11: Perform descent step with respect to the

quantum circuit parameters

Step12: Every steps reset Q’ = Q

Step13: End For

Step14: EndFor

264 Informatica 49 (2025) 257-268 X. Zhang

A hybrid approach integrates the advantages of numerical

methods and machine learning approaches to enhance the

efficiency of complex function optimization. For example,

one might employ a genetic algorithm to investigate the

search space of intricate functions, subsequently utilizing

a neural network to refine the answers near the optimum.

The hybrid approach is not scope of the current work. This

may be considered as a future work.

4 Experimental results and analysis

4.1 Benchmark dataset

This research uses benchmark dataset (Optimization Test

Functions [24]) for evaluate the performance of the

optimization problem. This work uses three optimization

test functions Ackley, Rastrigin, and Rosenbrock.

Ackley function is continuous, scalable, non-separable,

and a substantially multimodal test function. This test

function is defined as follows:

𝑓(𝑥) = −20 𝑒𝑥𝑝

(

 −0.2 × √
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
)

− 𝑒𝑥𝑝 (
1

𝑑
∑cos (2𝜋𝑥𝑖)

𝑑

𝑖=1

) + 20

+ 𝑒 (10)

where d represents the number of dimensions and 𝑥𝑖 = (𝑥1,

𝑥2, ..., 𝑥d) is a d-dimensional row vector. The test region is

typically assessed within the range of [-32.768, 32.768]d.

The global minimum (𝑥) = 0 is achievable at 𝑥𝑖 = (0,0).

Figure 2 shows the surface plot of 2D representation of

Ackley function.

Figure 2: Ackley function - surface plot

Rastrigin function is continuous, scalable, separable, and a

highly multimodal global optimization function. This test

function is defined as follows:

𝑓(𝑥) = 10𝑑 +∑(𝑥𝑖
2 − 10 cos (2𝜋𝑥𝑖))

𝑑

𝑖=1

 (11)

where d represents the number of dimensions and 𝑥𝑖 = (𝑥1,

𝑥2, ..., 𝑥d) is a d-dimensional row vector. The test region is

typically assessed within the range of [−5.12, 5.12]d. The

global minimum (𝑥) = 0 is achievable at 𝑥𝑖 = (0,0). This

test function poses significant challenges for numerous

global optimization techniques. Figure 3 shows the surface

plot of Rastrigin function.

Figure 3: Rastrigin function -surface plot

Rosenbrock is a unimodal, valley-shaped function defined

for dimensions d ≥ 2. This test function is continuous,

scalable, inherently nonseparable, nonconvex, and

unimodal. This test function is defined as follows:

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − (𝑥𝑖)
2)2 + (𝑥𝑖 −

𝑑−1
𝑖=1

1)2] (12)

where d > 2 represents the number of dimensions and 𝑥𝑖 =

(𝑥1, 𝑥2, ..., 𝑥d) denotes a d-dimensional row vector. The test

region is typically assessed within the range of [−2.048,

2.048]d, where 𝑖 = (1,...,d). The global minimum (𝑥) = 0 is

achievable at 𝑥𝑖 = (1,1). The function is mostly recognized

for its exceedingly slow convergence at the minimum

point. Figure 4 shows the surface plot of Rosenbrock

function.

Optimizing Complex Functions: A Numerical and ML Comparison… Informatica 49 (2025) 257-268 265

Figure 4: Rosenbrock function - surface plot

4.2 Results

This section compares the performance of the optimization

approaches described. In each instance, function reduction

was conducted commencing from 50 randomly chosen

initial points within the search space of the test function.

The comparisons were conducted throughout time,

assessing the success rate of the optimizations. An

optimization initiated from a specified set of beginning

conditions is deemed successfully convergent to the global

optimum if |f(x) − f(x∗)| ≤ 10−4, where f(x∗) and f(x)

represent the known accurate global minimum and the

lowest obtained value of the objective function,

respectively. Conversely, the optimization is deemed

unsuccessful.

Table 2 presents the findings derived from the Ackley

function. The GA and DQN approaches effectively

converged to the global optimum, but the gradient descent

and Newton methods failed to converge in all instances.

The PSO approach achieved convergence in 98% of the

total runs. The time for numerical methods are low

compared to machine learning methods.

Table 2: Result of Ackley function for different methods

Method Time (Sec) Convergence Rate

(%)

Gradient

Descent

0.037 0

Newton’s 0.0085 0

GA 0.17 100

PSO 0.051 98

DQN 0.55 100

Table 3, presents the findings derived from the Rastrigin

function. The GA and DQN approaches effectively

converged to the global optimum, but the gradient descent

and Newton methods failed to converge in all instances.

The PSO approach achieved convergence in 70% of the

total runs. The time for numerical methods are low

compared to machine learning methods.

Table 3: Result of Rastrigin Function for Different

Methods

Method Time (Sec) Convergence Rate

(%)

Gradient

Descent

0.065 0

Newton’s 0.010 0

GA 0.15 100

PSO 0.075 70

DQN 0.98 100

Table 4 presents the findings derived from the Rosenbrock

function. In this case, the GA and DQN approaches has

high convergence rate (98% and 90%), but the other

approaches has lowered convergence rate. The time for

numerical methods are low compared to machine learning

methods.

Table 4: Result of Rosenbrock function for different

methods

Method Time (Sec) Convergence Rate

(%)

Gradient

Descent

0.081 50

Newton’s 0.0230 76

GA 2.5 98

PSO 1.9 65

DQN 3.2 90

4.3 Discussion

When comparing Numerical Optimization and Machine

Learning Optimization methods for complicated functions,

it is essential to assess their performance based on many

factors, including accuracy, efficiency, scalability,

robustness, and application. Each optimization technique

presents unique advantages and disadvantages contingent

upon the characteristics of the problem (e.g.,

differentiability, dimensionality, noise, etc.). Table 5

shows the comparison of numerical and machine learning

optimization.

Table 5: Comparison of numerical Vs machine learning optimization

Criterion Numerical Optimization Machine Learning Optimization

Objective Optimize a designated objective function

(e.g., cost function).

Optimize loss or error functions

utilizing models (e.g., neural networks,

regression models).

266 Informatica 49 (2025) 257-268 X. Zhang

Type of Functions

Handled

Functions exhibiting explicit,

deterministic characteristics (frequently

differentiable)

Intricate, non-differentiable, stochastic,

or opaque functions

Optimization

Algorithms

Gradient-dependent methods (e.g.,

steepest descent, Newton's method) or

gradient-independent methods (e.g.,

genetic algorithms, simulated annealing).

Stochastic algorithms (e.g., gradient

descent, Adam, genetic algorithms),

evolutionary strategies.

Computational

Complexity

The cost is contingent upon the

employed method; it may be

computationally intensive for high-

dimensional or non-linear functions.

May incur significant computing costs,

particularly in high-dimensional

environments (e.g., deep learning

architectures).

Convergence Speed Typically more efficient for smooth,

convex, or differentiable functions.

Convergence may require an extended

duration, particularly when addressing

high-dimensional and noisy objective

functions.

Scalability May encounter difficulties in high-

dimensional spaces, particularly with

gradient-based techniques.

Capable of scaling to high-dimensional

areas, particularly in deep learning or

evolutionary algorithms.

Use of Derivatives Heavily depends on gradients or

Hessians (second-order derivatives) for

convergence.

Frequently operates with or without

derivatives (e.g., gradient-free

techniques or models like as neural

networks).

Ability to Handle Noise Susceptible to noise and necessitates

smooth functions or noise mitigation

techniques such as regularization.

Resilient to noisy data and frequently

capable of identifying optimal solutions

in circumstances characterized by noise

or insufficient data.

Global vs. Local

Optima

Susceptible to entrapment in local

minima for non-convex functions.

Local minima can be circumvented

using methods such as stochastic

gradient descent or evolutionary

algorithms.

Flexibility Most appropriate for issues with a well

delineated objective function and

restrictions.

Extremely adaptable and applicable to

various issues, including regression,

classification, and black-box

optimization.

Learning and

Adaptability

Generally does not get knowledge from

the optimization process.

Models can "adapt" over time (e.g.,

neural networks modifying weights).

Examples of Use Engineering design, optimal resource

distribution, and resolution of physical

models.

Machine learning activities (e.g., neural

network training, hyperparameter

tuning, reinforcement learning).

Robustness Sensitive to starting conditions (e.g., first

guess for gradient algorithms).

Resilient to initialization and noise in

extensive datasets, particularly with

ensemble techniques.

Interpretability Generally more straightforward to

interpret solutions, particularly for less

complex models (e.g., linear

programming).

Frequently less interpretable, especially

in deep learning, where models may

function as "black boxes".

Numerical optimization is particularly efficient for well-

defined, differentiable, and smooth objective functions.

This approach is typically more efficient for such issues

but may encounter difficulties with non-linearity, large

dimensionality, and noisy data. Machine Learning

Optimization is particularly effective for high-

dimensional, non-differentiable, or noisy functions.

Machine learning techniques can exhibit greater

adaptability and scalability; yet, they may require extended

convergence periods and might occasionally lack

interpretability compared to numerical methods.

Optimizing Complex Functions: A Numerical and ML Comparison… Informatica 49 (2025) 257-268 267

5 Conclusion

Optimizing complex functions presents a formidable

challenge that necessitates meticulous evaluation of both

numerical techniques and machine learning

methodologies. Conventional optimization techniques

such as gradient descent, Newton's method, and

evolutionary algorithms are well-recognized. Machine

learning optimization techniques provide an array of

instruments for addressing intricate function optimization,

particularly when conventional numerical optimization

approaches are inadequate due to non-linearity, non-

differentiability, or high dimensionality of the issue.

Utilizing techniques such as Bayesian Optimization and

Deep Reinforcement Learning, machine learning offers

enhanced flexibility and robustness, facilitating solutions

for intricate real-world challenges across several domains.

The benchmark optimization test functions Ackley,

Rastrigin, and Rosenbrock are employed to assess the

optimization methods for convergence rate and execution

time. The results demonstrate that numerical optimization

approaches exhibit a low convergence rate and diminished

runtime, but machine learning optimization displays a high

convergence rate and prolonged runtime. In the future, the

hybrid optimization methods are considered to solve

complex function. The hybrid approach can

combine numerical and machine learning algorithm to

obtain the best efficient results.

References

[1] Liu, C., Niu, P., Li, G., Ma, Y., Zhang, W., & Chen,

K. (2018). Enhanced shuffled frog-leaping algorithm

for solving numerical function optimization

problems. Journal of Intelligent Manufacturing, 29,

1133-1153. https://doi.org/10.1007/s10845-015-

1164-z

[2] Li, G., Cui, L., Fu, X., Wen, Z., Lu, N., & Lu, J.

(2017). Artificial bee colony algorithm with gene

recombination for numerical function

optimization. Applied Soft Computing, 52, 146-159.

https://doi.org/10.1016/j.asoc.2016.12.017

[3] Fera, M., Fruggiero, F., Lambiase, A., Macchiaroli,

R., & Todisco, V. (2018). A modified genetic

algorithm for time and cost optimization of an additive

manufacturing single-machine

scheduling. International Journal of Industrial

Engineering Computations, 9(4), 423-438.
https://doi.org/10.5267/j.ijiec.2018.1.001

[4] Nazir, A., Akhyar, A., Yusra, Y., & Budianita, E.

(2022). Toddler nutritional status classification using

C4. 5 and particle swarm optimization. Sci. J.

Informatics, 9(1), 32-41.
https://doi.org/10.15294/sji.v9i1.33158

[5] Azevedo, B. F., Brito, T., Lima, J., & Pereira, A. I.

(2021). Optimum sensors allocation for a forest fires

monitoring system. Forests, 12(4), 453.

https://doi.org/10.3390/f12040453

[6] Zhao, R., & Tang, D. (2024). The integration of

financial business and the transformation of financial

management functions based on internal control

optimization algorithm. Informatica, 48(10).
https://doi.org/10.31449/inf.v48i10.5672

[7] Azevedo, B., Bressan, G., Agulhari, C., Santos, H., &

Endo, W. (2019). Three-phase induction motors faults

classification using audio signals and decision

trees. Applied Mathematics and Information

Sciences, 13(5), 847-858.

http://dx.doi.org/10.18576/amis/130519

[8] Telikani, A., Tahmassebi, A., Banzhaf, W., &

Gandomi, A. H. (2021). Evolutionary machine

learning: A survey. ACM Computing Surveys

(CSUR), 54(8), 1-35.

https://doi.org/10.1145/3467477

[9] Nemmich, M. A., Debbat, F., & Slimane, M. (2020).

Hybrid bees approach based on improved search sites

selection by firefly algorithm for solving complex

continuous

functions. Informatica, 44(2). https://doi.org/10.314

49/inf.v44i2.2385

[10] Pan, J. S., Liu, N., Chu, S. C., & Lai, T. (2021). An

efficient surrogate-assisted hybrid optimization

algorithm for expensive optimization

problems. Information Sciences, 561, 304-

325. https://doi.org/10.1016/j.ins.2020.11.056

[11] Sohrabi, M. K., & Azgomi, H. (2020). A survey on the

combined use of optimization methods and game

theory. Archives of Computational Methods in

Engineering, 27(1), 59-80.

https://doi.org/10.1007/s11831-018-9300-5

[12] Lu, Y., Wang, S., Zhao, Y., & Yan, C. (2015).

Renewable energy system optimization of low/zero

energy buildings using single-objective and multi-

objective optimization methods. Energy and

Buildings, 89, 61-

75. https://doi.org/10.1016/j.enbuild.2014.12.032

[13] Pereira, J. L. J., Oliver, G. A., Francisco, M. B., Cunha

Jr, S. S., & Gomes, G. F. (2022). A review of multi-

objective optimization: methods and algorithms in

mechanical engineering problems. Archives of

Computational Methods in Engineering, 29(4), 2285-

2308. https://doi.org/10.1007/s11831-021-09663-x

[14] Rosso, M. M., Cucuzza, R., Aloisio, A., & Marano, G.

C. (2022). Enhanced multi-strategy particle swarm

optimization for constrained problems with an

evolutionary-strategies-based unfeasible local search

operator. Applied Sciences, 12(5), 2285.

https://doi.org/10.3390/app12052285

https://doi.org/10.1007/s10845-015-1164-z
https://doi.org/10.1007/s10845-015-1164-z
https://doi.org/10.1016/j.asoc.2016.12.017
https://doi.org/10.5267/j.ijiec.2018.1.001
https://doi.org/10.15294/sji.v9i1.33158
https://doi.org/10.3390/f12040453
https://doi.org/10.31449/inf.v48i10.5672
http://dx.doi.org/10.18576/amis/130519
https://doi.org/10.1145/3467477
https://doi.org/10.31449/inf.v44i2.2385
https://doi.org/10.31449/inf.v44i2.2385
https://doi.org/10.1016/j.ins.2020.11.056
https://doi.org/10.1007/s11831-018-9300-5
https://doi.org/10.1016/j.enbuild.2014.12.032
https://doi.org/10.1007/s11831-021-09663-x
https://doi.org/10.3390/app12052285

268 Informatica 49 (2025) 257-268 X. Zhang

[15] Abdollahzadeh, B., Gharehchopogh, F. S.,

Khodadadi, N., & Mirjalili, S. (2022). Mountain

gazelle optimizer: a new nature-inspired metaheuristic

algorithm for global optimization problems. Advances

in Engineering Software, 174, 103282.

https://doi.org/10.1016/j.advengsoft.2022.103282

[16] Gambella, C., Ghaddar, B., & Naoum-Sawaya, J.

(2021). Optimization problems for machine learning:

A survey. European Journal of Operational

Research, 290(3), 807-

828. https://doi.org/10.1016/j.ejor.2020.08.045

[17] Krishnan, R., Rajpurkar, P., & Topol, E. J. (2022).

Self-supervised learning in medicine and

healthcare. Nature Biomedical Engineering, 6(12),

1346-1352. https://doi.org/10.1038/s41551-022-

00914-1

[18] Naeem, S., Ali, A., Anam, S., & Ahmed, M. M.

(2023). An unsupervised machine learning algorithm:

Comprehensive review. International Journal of

Computing and Digital Systems.

https://doi.org/10.12785/ijcds/130172

[19] Matsuo, Y., LeCun, Y., Sahani, M., Precup, D., Silver,

D., Sugiyama, M., ... & Morimoto, J. (2022). Deep

learning, reinforcement learning, and world

models. Neural Networks, 152, 267-275.
https://doi.org/10.1016/j.neunet.2022.03.037

[20] Albreiki, F., Belayouni, N., & Gupta, D. K. (2023). On

Using Deep Learning Proxies as Forward Models in

Deep Learning Problems. arXiv preprint

arXiv:2301.07102.

https://doi.org/10.48550/arXiv.2301.07102

[21] Tunay, M., & Abiyev, R. (2022). Improved hypercube

optimisation search algorithm for optimisation of high

dimensional functions. Mathematical Problems in

Engineering, 2022(1),

6872162. https://doi.org/10.1155/2022/6872162

[22] Demo, N., Tezzele, M., & Rozza, G. (2021). A

supervised learning approach involving active

subspaces for an efficient genetic algorithm in high-

dimensional optimization problems. SIAM Journal on

Scientific Computing, 43(3), B831-

B853. https://doi.org/10.1137/20m1345219

[23] Goitom, S., Nagy, T., & Turányi, T. (2022, January).

TESTING VARIOUS NUMERICAL

OPTIMIZATION METHODS ON A SERIES OF

ARTIFICIAL TEST FUNCTIONS. In Annales

Universitatis Scientiarum Budapestinensis de

Rolando Eötvös Nominatae. Sectio

Computatorica (Vol.

53). https://doi.org/10.71352/ac.53.175

[24] Optimization Test Functions.

https://www.sfu.ca/~ssurjano/ackley.html

https://doi.org/10.1016/j.advengsoft.2022.103282
https://doi.org/10.1016/j.ejor.2020.08.045
https://doi.org/10.1038/s41551-022-00914-1
https://doi.org/10.1038/s41551-022-00914-1
https://doi.org/10.12785/ijcds/130172
https://doi.org/10.1016/j.neunet.2022.03.037
https://doi.org/10.48550/arXiv.2301.07102
https://doi.org/10.48550/arXiv.2301.07102
https://doi.org/10.1155/2022/6872162
https://doi.org/10.1137/20m1345219
https://doi.org/10.71352/ac.53.175
https://www.sfu.ca/~ssurjano/ackley.html

