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Optimization plays a vital role across disciplines such as engineering, economics, and artificial
intelligence. Complex functions, which map complex numbers to complex outputs, often cannot be solved
analytically, necessitating numerical or machine learning-based approaches. This study presents a
comparative analysis of numerical optimization methods—specifically Gradient Descent and Newton’s
Method—against machine learning-based techniques, including Genetic Algorithms, Particle Swarm
Optimization, and Deep Q-Learning. These methods are evaluated using standard benchmark functions:
Ackley, Rastrigin, and Rosenbrock. The comparison focuses on convergence rate and runtime
performance. Results show that numerical methods offer faster runtimes but lower convergence rates,
while machine learning approaches achieve higher convergence at the cost of increased computational
time. This analysis underscores the trade-offs between efficiency and robustness in optimization
techniques, offering practical insights for selecting appropriate methods based on specific application
needs, especially in scenarios involving complex, non-linear, or high-dimensional functions.

Povzetek: Prispevek isce kompromis med hitrostio in robustnostjo kompleksnih funkcij. Uporablja

GD/Newton vs. GA/PSO/DQN na Ackley/Rastrigin/Rosenbrock, brez standardnih postopkov.

1 Introduction

Complex function optimization is a significant area of
research  within  optimization  problems.  The
methodologies for solving optimization issues can be
categorized into analytical methods and numerical
computations [1]. The analytical method addresses the
problem by examining the correlation between the
derivative of the objective function and its extreme values.
This strategy is applicable solely to optimization problems
characterized by relatively uncomplicated objective
functions. According to the variation principle of the
objective function value, one should proceed in suitable
increments along the direction that maximizes the
objective function value. A method for approximate
calculation that incrementally approaches the optimal
point of the objective function. This technique is effective
for resolving continuous  differentiable  convex
optimization problems. However, with the ongoing
proliferation of engineering optimization challenges, the
majority of objective functions are non-convex
optimization problems. The advent of group intelligent
optimization algorithms offers a constrained approach to
difficult function optimization challenges [2].

Numerical Optimization is a recognized domain within
Mathematical Sciences that seeks to determine the extreme
values of a function, namely its maxima and minima. In
the past two decades, optimization approaches have
emerged as essential instruments for management,
decision-making, technological enhancement, and
development, conferring competitive benefits to diverse
systems. Consequently, optimization models and
algorithms have become prominent in various domains,
including industry [3], disease diagnosis [4], scheduling
and resource allocation [5], and finance [6].

A prominent domain dedicated to addressing issues
through mathematical models and algorithms is Machine
Learning. In certain real-world scenarios, a substantial
amount of data must be handled. This volume of data
typically necessitates computational support to convert the
information into pertinent knowledge for problem-solving.
In this situation, machine learning techniques are highly
beneficial. These models and algorithms aim to provide a
mathematical representation that characterizes the data
collection and extrapolates insights to unfamiliar data
samples [7]. Machine learning models and algorithms are
applicable in various fields, including industry, healthcare,
finance, and education.
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Owing to the practical significance of both domains,
numerous methods have been devised to address
optimization and machine learning challenges. While the
majority of algorithms are effective in addressing their
respective challenges, none are entirely flawless [8]. A
pure algorithm denotes a singular approach or method
utilized to resolve an issue comprehensively from
inception to completion. A hybrid algorithm amalgamates
many algorithms or techniques from disparate disciplines
to address a problem or enhance the efficacy of a singular

solution. Hybrid methods can combine many
methodologies to capitalize on the strengths of each
algorithm  while  alleviating  their  weaknesses.

The hybrid algorithm represents a synthesis of concepts
and techniques aimed at investigating the capabilities of
several approaches while mitigating their deficiencies. By
integrating complementary algorithms, one can leverage
their strengths and mitigate limits, resulting in enhanced
overall performance.

A hybrid algorithm that integrates optimization and
machine learning approaches is an effective approach that
leverages the strengths of both disciplines to provide a
robust framework for addressing complicated issues [9].
This integration enhances decision-making capacities by
incorporating optimization approaches into the machine
learning process and vice versa. A hybrid algorithm can
utilize optimization techniques to direct the learning
process, thereby improving the accuracy and effectiveness
of decision-making. This integration allows the algorithm
to utilize explicit mathematical optimization methods and
data-driven learning capabilities, resulting in enhanced
and more efficient decision-making [10].

This paper delineates and examines the primary
characteristics of numerical optimization and machine
learning techniques. By recognizing and examining the
primary aspects of each methodology in conjunction, they
can mitigate difficulties and improve one or both processes
through hybrid approaches. The objective is to determine
the optimal combinations that yield hybrid approaches,
taking into account a machine learning algorithm
influenced by optimization strategies or vice versa.

This paper compares numerical optimization methods,
specifically gradient descent and Newton’s method, with
machine learning optimization algorithms, including
genetic algorithms, particle swarm optimization, and deep
Q-learning. The benchmark optimization test functions
Ackley, Rastrigin, and Rosenbrock are employed to assess
the optimization methods based on convergence rate and
runtime. The machine learning algorithms demonstrate the
capability to effectively address complex function
optimization problems and enhance the convergence rate
relative to numerical methods.

The remaining part of this research is organized as, section
2 provides the background details including complex
function, numerical optimization, machine learning and
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related works summary. Section 3 explains the proposed
methodology. Section 4 provides the experimental results
and section 5 conclude the research paper.

2 Background

2.1 Complex function

Let S denote a collection of complex numbers. A function
f defined on S is a mapping that allocates to each z in the
complex numbers a corresponding w. The quantity w is
referred to as the value of f at z and is represented as f(z);
so, w = f(z). The set S is referred to as the domain of
definition of f.
If each value of z corresponds to only one value of w, we
denote w as a single-valued function of z or f(z) that is
single-valued. If many values of w correspond to each
value of z, w is classified as a multiple-valued or many-
valued function of z.
A multiple-valued function can be regarded as a
compilation of single-valued functions, with each
constituent referred to as a branch of the function.
Typically, we designate one specific member as the
principal branch of the multi-valued function, with the
matching function value referred to as the principal value.
Polynomial function:
For Xn,Xn-1,...,Xo cOmplex constants,
POY) = XY™ + X YT A+ xpy
+ Xy

Where x,, # 0 and n is a integer value.
Exponential function
If z=a + ib, the exponential function e* is represented
by,

e? = el (2)
Where e’ = cosh +isinb

e” =e“(cosb+isiny)
Logarithmic Function
The complex logarithm is an extension of the standard real
natural logarithm (base e) into the complex domain. In
polar coordinates, the complex logarithm is expressed as,
logz = log(re®®)

ey

(3)

=logr + loge®
= logr +i0
Trigonometric functions:

(4)

The sine and cosine of a complex variable are described

as,
iz _ e—iz

sinz = ot 5)
eiz + e—iz
CoS Z = T (6)
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In optimization, a complex function refers to one in which
the input and/or output are complex numbers, with the
objective of identifying maximum, minimum, or other key
points, frequently subject to constraints or special
conditions. These functions may be nonlinear,
multivariable, and incorporate both real and imaginary
components in their inputs and outputs, rendering them
more complex to evaluate and optimize than real-valued
functions.Optimization problems may involve complex
functions when the objective function originates from
physical systems represented by complex-valued
variables, or in signal processing, control systems, and
specific machine learning models where data or
parameters are inherently articulated in the complex
domain.

2.2 Numerical optimization

Although there are various strategies and algorithms
available for addressing optimization difficulties, none are
universally applicable or flawless in properly resolving all
such concerns. Each algorithm possesses distinct
properties, making it more suitable for addressing specific
challenges based on these attributes. The formulation of
the problem, selection of methods, and choice of
algorithms are pivotal aspects in addressing an
optimization issue, as certain methods and algorithms are
more suitable than others based on the specific challenge
at hand. The initial stage in an optimization problem is the
formulation of the mathematical model. A mathematical
model seeks to represent a real-world situation as a
mathematical function applicable in optimization
techniques. An optimization problem can be articulated in
mathematical terms through a collection of variables and
numerical relationships that encapsulate an abstraction of
the issue, aiming to identify the optimal solution within Rn
from a set of potential alternatives. To construct a
mathematical model, four essential procedures must be
performed [11].

e Specify the decision parameters. (X1,X2,Xs,....,Xn)

e Construct the objective function f(x) or the set of
objective functions fi(x), f2(x),f3(x),...,fk(x) that
rely on the choice variables and yield a real value.

e Ifrequired, provide a collection of equality and/or
inequality constraints, gi(x) = 0 and hj(x) <0 for i
=1, 2, .., ngand j = 1.2, ..ny that must be
satisfied by the decision variables.

e Define the domain sets Dji,D;,Ds,....,Dy
corresponding to the decision parameters,
X1,X2,X3,....,xnaccordingly.

The optimization issue is defined by the objective function
and the restrictions on the variables. The objective function
delineates the goal of the problem, which may encompass
any quantity or amalgamation of quantities represented by
a singular numeral, such as personnel, time, materials,
energy, etc.; conversely, the constraints directly influence
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the decision space and outcomes, imposing restrictions on
the algorithmic options. The primary purpose of an
optimization issue is to reduce or maximize the objective
function while adhering to the restrictions. Furthermore,
optimization models can be categorized into two principal
classes based on the number of objectives: Single-
objective and multi-objective optimization issues [12].
Single optimization problems typically consist of a
singular target, with or without restrictions, while multi-
objective optimization pertains to multiple-criteria
decision-making, comprising  the  simultaneous
optimization of numerous objective functions, with or
without constraints [13]. Following the creation of the
mathematical model, it is essential to ascertain the most
suitable strategy for identifying the optimal solution.

A solution to an optimization issue can be characterized by
local and global optimization, with corresponding
techniques referred to as local search and global search.
Local and global search optimization methods are
employed in various contexts or to address distinct
optimization inquiries [14]. Local optimization aims to
identify a solution that reduces (or increases) the objective
function within a defined region of the search space, hence
locating a local solution among feasible points in the
vicinity. This type of search does not ensure an objective
value that is lower (or higher) than all other viable
locations. Conversely, global optimization seeks to
identify the point that reduces (or increases) the objective
function [15].

2.3 Machine learning

The essence of human intelligence is on experiential
learning and the transmission of personal knowledge
between generations. Machine learning pertains to the
development of computer programs that enhance their
performance through experience. The experience is
derived by a data analysis procedure executed by a
customized algorithm. Consequently, the machine
learning approach employs algorithms to identify patterns
within a dataset through computational, analytical,
optimization, and information discovery techniques [16].
There are three types of machine learning: Supervised
Learning, Unsupervised Learning, and Reinforcement
Learning. Within each category, methods can be
differentiated based on their knowledge acquisition
techniques, including classification, regression, clustering,
association learning, relational analysis, differential
equations, and others. Machine learning seeks to construct
a hypothesis (model) capable of extracting information
from training data and generalizing the learned knowledge
to unfamiliar samples. This model must exhibit simplicity
regarding complexity and demonstrate efficacy in
minimizing empirical mistakes within the data.

Supervised learning techniques seek to identify the
correlation between input attributes (independent
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variables) and a target attribute (dependent variable).
Supervised learning is employed for two categories of
tasks:  pattern  categorization and  regression.
Occasionally, there is an absence of knowledge regarding
the correlation between input and output attributes in
machine learning challenges [17]. Consequently, the
algorithms must identify similarities or differences within
the data collection. The method necessitates greater human
comprehension than supervised procedures, as a decision-
maker, whether an individual or a collective, is
accountable for the final decision-making.

While supervised and unsupervised approaches engage
with data and necessitate exploration and comprehension
of the data in relation to the application domain, significant
distinctions exist between the two methodologies. The
primary distinction is the lack of an output vector for the
target variable, as observed in supervised approaches.
Moreover, unsupervised learning is frequently linked to
creative pursuits—exploration, comprehension, and
enhancement—that do not conform to predefined
protocols, unlike supervised methods [18]. Unsupervised
learning is often categorized into clustering methods and
dimensionality reduction methods.
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Reinforcement learning is a machine learning technique
predicated on a reward mechanism, predominantly utilized
in dynamic control systems; however it is also applicable
to optimization issues [19]. Reinforcement learning
addresses the challenge of instructing an autonomous
agent, which interacts with and perceives its environment,
to select optimal actions for attaining its objectives. The
agent acquires information regarding the present
environmental conditions and must use its existing
knowledge through a greedy approach to optimize
rewards, while simultaneously engaging in exploration to
identify superior actions for the future.

2.4 Related work summary

This section highlights the existing numerical and machine
learning-based optimization strategies for complex
function optimization problems. Table 1 provides the
summary of existing optimization approach with limitation
or research gap.

Table 1: Related work summary

Ref Methods Data set and Metrics Limitations / Research Gap

[9] Hybrid Bee algorithm for solving | Benchmark function; | It does not handle numerical
continues complex function Accuracy and mean value. methods. Testing the enhanced

algorithms on practical
optimization challenges

[20] Deep learning proxy model Rosenbrock, Rastrigin and | Sparse sampling is ineffective,

Ackley  functions; Mean | and the optimizers exhibit

Euclidean distance and the | heightened sensitivity to the

standard deviation landscape derived from this
kind of data.

[21] | First order optimization methods: | Benchmark functions; | It only compares first order
Standard gradient descent, | lteration, time, function value | optimization methods and does
momentum, heavy ball, nesterov and weight not consider other optimization

approaches

[22] | Improved Hypercube optimization | Benchmark functions; Mean, | It offers optimal value and
algorithm Standard deviation, | accelerates convergence

Convergence rate and Time. processes; however, it does not
address practical optimization
concerns.

[23] | Genetic algorithm  for  high | Benchmark functions; Gain | A robust criterion is required to
dimensional optimization problem. | and convergence rate. dynamically  determine the

number of active subspace
dimensions.

[24] | Local and global numerical | Benchmark functions; CPU | It does not converge effectively
optimization;  Focusing  robust | Time, mean, median and | to the global minimum for
optimization with uncertainty-based | success rate various contrived test functions,
sampling approach rendering its broad application

inadvisable.




Optimizing Complex Functions: A Numerical and ML Comparison...

3 Methodology

Optimizing complex functions involves identifying the
extrema of functions that utilize complex numbers as both
inputs and outputs. These functions may encompass both
real and imaginary components, and addressing
optimization problems involving such functions is a
prevalent endeavor in disciplines such as signal
processing, control theory, physics, and machine learning.
A complex function f(z) can be written as,
f@) = f(x+iy)

=u(x,y)

+ iv(x,y) 7
where, u(x,y) denotes the real component and v(x,y)
signifies the imaginary component, with x and y
representing real variables corresponding to the real and
imaginary parts of the complex input z. The objective of
optimization  frequently involves minimizing (or
maximizing) a complex-valued function, specifically
identifying the point z in the complex plane that yields the
optimal value of (z2).
This paper compares numerical optimization methods,
specifically gradient descent and Newton’s method, with
machine learning optimization algorithms, including
genetic algorithms, particle swarm optimization, and deep
Q-learning. Figure 1 shows the work flow of the proposed
approach.
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Figure 1: Proposed work flow

In all real-valued single-objective unconstrained
optimization algorithms, the objective is to identify the
minimum (or, equivalently, the maximum) of a scalar
objective function (x), represented by the vector of free
parameters X=(x1, X2, Xxs,...,.Xxm), Where m denotes the
problem’s dimensionality. Consequently, f is a mapping
from Rm to R. Assume the following hypothesis:

e Function f is accessible solely as a black box;
thus, we possess no understanding or ability to
manipulate its internal mechanisms. We access f
solely through input-output mechanisms.

e The function f possesses a continuous domain
inside the specified constraints; thus, every point
within these bounds is mapped by f.

e f is well-defined in the domain, at least
numerically; it is continuous and exhibits a
degree of smoothness. This restricts very noisy
functions, where spatial correlation is absent.
However, there is also an implicit assumption of
some degree of noise, wherein finite differences
in the vicinity of a point do not resemble the
derivatives of the noiseless function.

Numerical optimization techniques are employed to
identify the most effective for intricate functions when
statistical techniques are impractical or excessively
challenging. The primary classifications of numerical
optimization methods are gradient-based and gradient-free
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techniques. In this paper two numerical optimization
methods are considered: Gradient descent and Newton’s
method. The previous works only consider the first-order
optimization but this research considers both first-order
and second-order optimization. Due to the simplicity, the
first order optimization i.e gradient descent is selected
which reduces the training time.

Gradient Descent:

Standard gradient descent is among the most fundamental
and prevalent optimization techniques. The fundamental
concept involves incrementally adjusting the model
parameters in accordance with the gradient of the loss
function. The gradient signifies the direction in which the
value of the loss function diminishes most rapidly. The
objective is to minimize the function by modifying the
model parameters accordingly.

The primary phases of Standard Gradient Descent:
Computation of gradients: At each stage of the procedure,
the gradient of the loss function is computed for all model
parameters. The gradient is a vector comprising the partial
derivatives of the loss function with respect to each
parameter, signifying the direction of the steepest ascent in
the function.

Update of parameters: Subsequent to computing the
gradient, the model parameters are revised in accordance
with the formula:

Snew = 601(1 —aX VT(S) (8)
Where & represents the model parameter, o indicates the
learning rate and V(&) is the gradient loss function.

Rate of learning: This is a crucial parameter of the
procedure. If the step size is very tiny, the optimization
process will be sluggish; conversely, if it is overly high, it
may bypass the minimum and induce instability in the
process. Consequently, the appropriate selection of alpha
is essential.

Repetitions: The parameter update process is iterated
multiple times until a termination point is achieved, either
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by convergence criteria or after a predetermined number
of iterations.

Gradient Descent is straightforward to implement, as it
requires only the calculation of the gradient and the
subsequent update of the model parameters for each
iteration. Should the loss function exhibit smoothness and
convexity, the approach can effectively identify the global
minimum.
Newton’s Method

Newton's approach is a second-order optimization
approach that can be used to locate the roots of complex
functions or optimize them. This method is based on the
second derivative and often converges quicker than
gradient descent for smooth functions.

Given a complex function f(z) = z2 -2+ i

1. Select an initial guess, zo= 1+i

2. Compute the next approximation using the
formula:
pACD

" f(za)
Where f(z) = z? — 2 + i and °(z)=2z
f(1+i)=(1+i)? — 2+i=1+2i-1+i=3i
(1+1)=2(1+1)=2+2i
therefore, z, = (1 + i) — Zi;i

3. Repeat this process iteratively until convergence.
Genetic Algorithm

Genetic Algorithm (GA) is an optimization technique
based on population dynamics. These heuristic search
methods, inspired by natural evolution, can optimize
complex functions, particularly when the functions are
noisy or non-differentiable. Genetic algorithms employ a
population of potential solutions, which are iteratively
evolved throughout multiple generations using selection,
crossover, and mutation to identify the optimal answer.
Algorithm-1 shows the general steps of genetic algorithm.

)

Zn+1 =

Algorithm-1: Genetic Algorithm

Output: Global best solution

Step2: Initialize iteration count iter = 0

Step10: EndWhile
Stepl1: Return the best solution

Input: Population Size (pop), Maximum iteration (Maxlter)
Stepl: Randomly generate initial population of n chromosomes

Step3: Compute the fitness value of each chromosomes

Step4: while (iter <Maxlter)

Step5:  Select a pair of chromosomes from initial population based on fitness
Step6:  Apply crossover operation on selected pair with crossover probability
Step7:  Apply mutation on the offspring with mutation probability

Step8:  Replace old population with newly generated population

Step9:  Increment the iteration iter by 1
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The genetic algorithm (GA) employed a population size of
between 20 or 200, contingent upon the number of
variables. The crossover rate was 0.8, and the maximum
number of iterations was 1000. The algorithm terminated
when the average relative change in the optimal fitness
function value over 100 iterations was less than or equal to
le-6.

Particle swarm Optimization

The PSO algorithm is a gradient-free technique founded
on the notion of swarm dynamics. In Particle Swarm
Optimization (PSO), each sample is designated as a
particle, and a collection of particles is termed a swarm. In
the initial iteration of PSO, each particle commences at rest
with a velocity vector of zero. The objective function's
value is calculated for the initial iteration, and the particles'
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velocity and position are revised. The velocity of each
particle is determined by three components: inertia,
cognitive, and social components, along with certain
random coefficients. The inertia component signifies a
particle's velocity at the present iteration, inhibiting
significant positional alterations. The cognitive component
assesses a particle's performance in relation to its prior
best, and the social component evaluates a particle's
performance in comparison to the swarm's optimal
location. The optimal positions are ascertained from the
fitness function assessment in the preceding iteration, and
the updates for velocity and position persist until the
termination criteria are met. Algorithm-2 shows the
general steps of PSO algorithm.

Algorithm-2: Particle swarm optimization

Input: Particle Size , Maximum iteration (Maxlter)
Output:best solution

Stepl: Initialize particles, velocity, iter=0, pbest, gbest
Step2: Randomly generate initial particles

Step3: For each particle

Step4: Compute fitness function

Step5: Update pbest, gbest

Step6: End For

Step7: While (iter <Maxlter)

Step8: For each particle

Step9:  Update velocity and particle

Step10: Compute fitness value

Stepll: Update pbest, gbest

Step12: EndFor

Step13: EndWhile

The PSO employed a swarm size of between 20 or 200,
contingent upon the number of variables. The weight was
0.1, and the maximum number of iterations was 1000.
Machine learning is applicable for optimizing complex
functions, especially in the context of high-dimensional,
non-convex, or noisy functions that are challenging for
conventional approaches to manage.A neural network can
be taught to approximate a complicated function by
utilizing the real and imaginary components of the
function as input and output. This can be particularly
useful if the optimization process entails investigating
complex spaces with numerous variables. To optimize the
network, it can be trained using a loss function, such as
Mean Squared Error (MSE), to reduce the disparity
between the expected output of the complex function and
the actual function. The network acquires the ability to
forecast ideal input parameter values (complex values) that
reduce the output of the complex function. The
backpropagation algorithm updates the network's weights
according to the prediction error.

Reinforcement learning (RL) can optimize intricate
functions, particularly in scenarios where the function is
costly to assess or exhibits noise. In reinforcement

learning, the agent engages with the environment (a
complicated function) by executing actions (selecting
intricate input values) and obtaining rewards (ideal
outputs).Methods such as Q-learning or Deep Q Networks
(DQN) can be utilized to progressively enhance the answer
through environmental feedback. Algorithm-3 shows the
general steps of DQN.
Algorithm-3: DQN

Stepl: Initialize parameters
Step2: For each episode

Step3: Observe initial state

Step4: For each step of episode

Step5: Select action

Stepé6: Execute action

Step7: Observe reward and new state
Step8:  Store transition

Step9:  Sample mini-batch of transitions

Step10: Compute target for each transition

Stepll: Perform descent step with respect to the
quantum circuit parameters

Step12: Every steps reset Q° =Q

Stepl13: End For

Stepl14: EndFor
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A hybrid approach integrates the advantages of numerical
methods and machine learning approaches to enhance the
efficiency of complex function optimization. For example,
one might employ a genetic algorithm to investigate the
search space of intricate functions, subsequently utilizing
a neural network to refine the answers near the optimum.
The hybrid approach is not scope of the current work. This
may be considered as a future work.

4 Experimental results and analysis

4.1 Benchmark dataset

This research uses benchmark dataset (Optimization Test
Functions [24]) for evaluate the performance of the
optimization problem. This work uses three optimization
test functions Ackley, Rastrigin, and Rosenbrock.

Ackley function is continuous, scalable, non-separable,
and a substantially multimodal test function. This test

function is defined as follows:
1¢ \
i
i=1
d

/—0.2 X
1
—exp (Ez cos (anl-)> + 20

f(x) =—20exp \
+e = (10)

where d represents the number of dimensions and x: = (x1,
X2, ..., Xd) is a d-dimensional row vector. The test region is
typically assessed within the range of [-32.768, 32.768]°.
The global minimum (x) = 0 is achievable at xi = (0,0).
Figure 2 shows the surface plot of 2D representation of
Ackley function.

-40 -40

Figure 2: Ackley function - surface plot
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Rastrigin function is continuous, scalable, separable, and a
highly multimodal global optimization function. This test
function is defined as follows:

a
f(x) =10d + Z(xiz —10cos (2mx;))  (11)

i=1
where d represents the number of dimensions and x; = (x1,
X2, ..., Xd) is a d-dimensional row vector. The test region is
typically assessed within the range of [—5.12, 5.12]%. The
global minimum (x) = 0 is achievable at x; = (0,0). This
test function poses significant challenges for numerous
global optimization techniques. Figure 3 shows the surface
plot of Rastrigin function.

Figure 3: Rastrigin function -surface plot

Rosenbrock is a unimodal, valley-shaped function defined
for dimensions d > 2. This test function is continuous,
scalable, inherently nonseparable, nonconvex, and
unimodal. This test function is defined as follows:

fx) = RE100(x41 — ()% + (% —

1?] (12)
where d > 2 represents the number of dimensions and x; =
(x1, x2, ..., x4) denotes a d-dimensional row vector. The test
region is typically assessed within the range of [—2.048,
2.048]¢, where i = (1,...,d). The global minimum (x) =0 is
achievable at xi = (1,1). The function is mostly recognized
for its exceedingly slow convergence at the minimum
point. Figure 4 shows the surface plot of Rosenbrock
function.
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Figure 4: Rosenbrock function - surface plot

4.2 Results

This section compares the performance of the optimization
approaches described. In each instance, function reduction
was conducted commencing from 50 randomly chosen
initial points within the search space of the test function.
The comparisons were conducted throughout time,
assessing the success rate of the optimizations. An
optimization initiated from a specified set of beginning
conditions is deemed successfully convergent to the global
optimum if [f(x) — f(x*)] < 107, where f(xx) and f(x)
represent the known accurate global minimum and the
lowest obtained value of the objective function,
respectively. Conversely, the optimization is deemed
unsuccessful.

Table 2 presents the findings derived from the Ackley
function. The GA and DQN approaches effectively
converged to the global optimum, but the gradient descent
and Newton methods failed to converge in all instances.
The PSO approach achieved convergence in 98% of the
total runs. The time for numerical methods are low
compared to machine learning methods.
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Table 3, presents the findings derived from the Rastrigin
function. The GA and DQN approaches effectively
converged to the global optimum, but the gradient descent
and Newton methods failed to converge in all instances.
The PSO approach achieved convergence in 70% of the
total runs. The time for numerical methods are low
compared to machine learning methods.

Table 3: Result of Rastrigin Function for Different

Methods
Method Time (Sec) Convergence Rate
(%)
Gradient 0.065 0
Descent
Newton’s 0.010 0
GA 0.15 100
PSO 0.075 70
DON 0.98 100

Table 4 presents the findings derived from the Rosenbrock
function. In this case, the GA and DQN approaches has
high convergence rate (98% and 90%), but the other
approaches has lowered convergence rate. The time for
numerical methods are low compared to machine learning
methods.

Table 4: Result of Rosenbrock function for different

methods
Method Time (Sec) Convergence Rate
(%)

Gradient 0.081 50

Descent

Newton’s 0.0230 76

GA 2.5 98

PSO 1.9 65

DON 3.2 90

Table 2: Result of Ackley function for different methods

4.3 Discussion

When comparing Numerical Optimization and Machine

(e.g.

(e.g., cost function).

Method Time (Sec) Convergence Rate | Learning Optimization methods for complicated functions,
(%) it is essential to assess their performance based on many
Gradient 0.037 0 factors, including accuracy, efficiency, scalability,
Descent robustness, and application. Each optimization technique
Newton’s 0.0085 0 presents unique advantages and disadvantages contingent
GA 0.17 100 upon the characteristics of the problem
PSO 0.051 08 differentiability, dimensionality, noise, etc.). Table 5
DQN 0.55 100 shows the comparison of numerical and machine learning
optimization.
Table 5: Comparison of numerical Vs machine learning optimization
Criterion Numerical Optimization Machine Learning Optimization
Objective Optimize a designated objective function Optimize loss or error functions

utilizing models (e.g., neural networks,
regression models).
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Type of Functions

Functions exhibiting explicit,

Intricate, non-differentiable, stochastic,

gradient-independent methods (e.g.,
genetic algorithms, simulated annealing).

Handled deterministic characteristics (frequently or opaque functions
differentiable)
Optimization Gradient-dependent methods (e.g., Stochastic algorithms (e.g., gradient
Algorithms steepest descent, Newton's method) or descent, Adam, genetic algorithms),

evolutionary strategies.

Computational
Complexity

The cost is contingent upon the
employed method; it may be
computationally intensive for high-
dimensional or non-linear functions.

May incur significant computing costs,
particularly in high-dimensional
environments (e.g., deep learning

architectures).

Convergence Speed

Typically more efficient for smooth,
convex, or differentiable functions.

Convergence may require an extended

duration, particularly when addressing

high-dimensional and noisy objective
functions.

Scalability

May encounter difficulties in high-
dimensional spaces, particularly with
gradient-based techniques.

Capable of scaling to high-dimensional
areas, particularly in deep learning or
evolutionary algorithms.

Use of Derivatives

Heavily depends on gradients or
Hessians (second-order derivatives) for
convergence.

Frequently operates with or without
derivatives (e.g., gradient-free
techniques or models like as neural
networks).

Ability to Handle Noise

Susceptible to noise and necessitates
smooth functions or noise mitigation
techniques such as regularization.

Resilient to noisy data and frequently
capable of identifying optimal solutions
in circumstances characterized by noise

or insufficient data.

Global vs. Local

Susceptible to entrapment in local

Local minima can be circumvented

delineated objective function and
restrictions.

Optima minima for non-convex functions. using methods such as stochastic
gradient descent or evolutionary
algorithms.
Flexibility Most appropriate for issues with a well Extremely adaptable and applicable to

various issues, including regression,
classification, and black-box
optimization.

Learning and
Adaptability

Generally does not get knowledge from
the optimization process.

Models can "adapt" over time (e.g.,
neural networks modifying weights).

Examples of Use

Engineering design, optimal resource
distribution, and resolution of physical
models.

Machine learning activities (e.g., neural
network training, hyperparameter
tuning, reinforcement learning).

Robustness

Sensitive to starting conditions (e.qg., first
guess for gradient algorithms).

Resilient to initialization and noise in
extensive datasets, particularly with
ensemble techniques.

Interpretability

Generally more straightforward to
interpret solutions, particularly for less
complex models (e.g., linear
programming).

Frequently less interpretable, especially
in deep learning, where models may
function as "black boxes".

Numerical optimization is particularly efficient for well-

Optimization
dimensional,
learning

Machine

is particularly effective for
non-differentiable, or

techniques can exhibit

high-

noisy functions.
greater

defined, differentiable, and smooth objective functions.
This approach is typically more efficient for such issues
but may encounter difficulties with non-linearity, large
dimensionality, and noisy data. Machine Learning

adaptability and scalability; yet, they may require extended
convergence periods and might occasionally lack
interpretability compared to numerical methods.
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5 Conclusion

Optimizing complex functions presents a formidable
challenge that necessitates meticulous evaluation of both
numerical  techniques and  machine  learning
methodologies. Conventional optimization techniques
such as gradient descent, Newton's method, and
evolutionary algorithms are well-recognized. Machine
learning optimization techniques provide an array of
instruments for addressing intricate function optimization,
particularly when conventional numerical optimization
approaches are inadequate due to non-linearity, non-
differentiability, or high dimensionality of the issue.
Utilizing techniques such as Bayesian Optimization and
Deep Reinforcement Learning, machine learning offers
enhanced flexibility and robustness, facilitating solutions
for intricate real-world challenges across several domains.
The benchmark optimization test functions Ackley,
Rastrigin, and Rosenbrock are employed to assess the
optimization methods for convergence rate and execution
time. The results demonstrate that numerical optimization
approaches exhibit a low convergence rate and diminished
runtime, but machine learning optimization displays a high
convergence rate and prolonged runtime. In the future, the
hybrid optimization methods are considered to solve
complex function. The hybrid approach can

combine numerical and machine learning algorithm to
obtain the best efficient results.
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