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Optimization plays a vital role across disciplines such as engineering, economics, and artificial 

intelligence. Complex functions, which map complex numbers to complex outputs, often cannot be solved 

analytically, necessitating numerical or machine learning-based approaches. This study presents a 

comparative analysis of numerical optimization methods—specifically Gradient Descent and Newton’s 

Method—against machine learning-based techniques, including Genetic Algorithms, Particle Swarm 

Optimization, and Deep Q-Learning. These methods are evaluated using standard benchmark functions: 

Ackley, Rastrigin, and Rosenbrock. The comparison focuses on convergence rate and runtime 

performance. Results show that numerical methods offer faster runtimes but lower convergence rates, 

while machine learning approaches achieve higher convergence at the cost of increased computational 

time. This analysis underscores the trade-offs between efficiency and robustness in optimization 

techniques, offering practical insights for selecting appropriate methods based on specific application 

needs, especially in scenarios involving complex, non-linear, or high-dimensional functions. 

Povzetek: Prispevek išče kompromis med hitrostjo in robustnostjo kompleksnih funkcij. Uporablja 

GD/Newton vs. GA/PSO/DQN na Ackley/Rastrigin/Rosenbrock, brez standardnih postopkov. 

 

1 Introduction 

Complex function optimization is a significant area of 

research within optimization problems. The 

methodologies for solving optimization issues can be 

categorized into analytical methods and numerical 

computations [1]. The analytical method addresses the 

problem by examining the correlation between the 

derivative of the objective function and its extreme values. 

This strategy is applicable solely to optimization problems 

characterized by relatively uncomplicated objective 

functions. According to the variation principle of the 

objective function value, one should proceed in suitable 

increments along the direction that maximizes the 

objective function value. A method for approximate 

calculation that incrementally approaches the optimal 

point of the objective function. This technique is effective 

for resolving continuous differentiable convex 

optimization problems. However, with the ongoing 

proliferation of engineering optimization challenges, the 

majority of objective functions are non-convex 

optimization problems. The advent of group intelligent 

optimization algorithms offers a constrained approach to 

difficult function optimization challenges [2]. 

Numerical Optimization is a recognized domain within 

Mathematical Sciences that seeks to determine the extreme 

values of a function, namely its maxima and minima. In 

the past two decades, optimization approaches have 

emerged as essential instruments for management, 

decision-making, technological enhancement, and 

development, conferring competitive benefits to diverse 

systems. Consequently, optimization models and 

algorithms have become prominent in various domains, 

including industry [3], disease diagnosis [4], scheduling 

and resource allocation [5], and finance [6]. 

A prominent domain dedicated to addressing issues 

through mathematical models and algorithms is Machine 

Learning. In certain real-world scenarios, a substantial 

amount of data must be handled. This volume of data 

typically necessitates computational support to convert the 

information into pertinent knowledge for problem-solving. 

In this situation, machine learning techniques are highly 

beneficial. These models and algorithms aim to provide a 

mathematical representation that characterizes the data 

collection and extrapolates insights to unfamiliar data 

samples [7]. Machine learning models and algorithms are 

applicable in various fields, including industry, healthcare, 

finance, and education. 
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Owing to the practical significance of both domains, 

numerous methods have been devised to address 

optimization and machine learning challenges. While the 

majority of algorithms are effective in addressing their 

respective challenges, none are entirely flawless [8]. A 

pure algorithm denotes a singular approach or method 

utilized to resolve an issue comprehensively from 

inception to completion. A hybrid algorithm amalgamates 

many algorithms or techniques from disparate disciplines 

to address a problem or enhance the efficacy of a singular 

solution. Hybrid methods can combine many 

methodologies to capitalize on the strengths of each 

algorithm while alleviating their weaknesses. 

The hybrid algorithm represents a synthesis of concepts 

and techniques aimed at investigating the capabilities of 

several approaches while mitigating their deficiencies. By 

integrating complementary algorithms, one can leverage 

their strengths and mitigate limits, resulting in enhanced 

overall performance. 

A hybrid algorithm that integrates optimization and 

machine learning approaches is an effective approach that 

leverages the strengths of both disciplines to provide a 

robust framework for addressing complicated issues [9]. 

This integration enhances decision-making capacities by 

incorporating optimization approaches into the machine 

learning process and vice versa. A hybrid algorithm can 

utilize optimization techniques to direct the learning 

process, thereby improving the accuracy and effectiveness 

of decision-making. This integration allows the algorithm 

to utilize explicit mathematical optimization methods and 

data-driven learning capabilities, resulting in enhanced 

and more efficient decision-making [10]. 

This paper delineates and examines the primary 

characteristics of numerical optimization and machine 

learning techniques. By recognizing and examining the 

primary aspects of each methodology in conjunction, they 

can mitigate difficulties and improve one or both processes 

through hybrid approaches. The objective is to determine 

the optimal combinations that yield hybrid approaches, 

taking into account a machine learning algorithm 

influenced by optimization strategies or vice versa. 

This paper compares numerical optimization methods, 

specifically gradient descent and Newton’s method, with 

machine learning optimization algorithms, including 

genetic algorithms, particle swarm optimization, and deep 

Q-learning. The benchmark optimization test functions 

Ackley, Rastrigin, and Rosenbrock are employed to assess 

the optimization methods based on convergence rate and 

runtime. The machine learning algorithms demonstrate the 

capability to effectively address complex function 

optimization problems and enhance the convergence rate 

relative to numerical methods. 

The remaining part of this research is organized as, section 

2 provides the background details including complex 

function, numerical optimization, machine learning and 

related works summary. Section 3 explains the proposed 

methodology. Section 4 provides the experimental results 

and section 5 conclude the research paper. 

 

2 Background  

2.1 Complex function 

Let S denote a collection of complex numbers. A function 

f defined on S is a mapping that allocates to each z in the 

complex numbers a corresponding w. The quantity w is 

referred to as the value of f at z and is represented as f(z); 

so, w = f(z). The set S is referred to as the domain of 

definition of f.  

If each value of z corresponds to only one value of w, we 

denote w as a single-valued function of z or f(z) that is 

single-valued. If many values of w correspond to each 

value of z, w is classified as a multiple-valued or many-

valued function of z.  

A multiple-valued function can be regarded as a 

compilation of single-valued functions, with each 

constituent referred to as a branch of the function. 

Typically, we designate one specific member as the 

principal branch of the multi-valued function, with the 

matching function value referred to as the principal value.  

Polynomial function: 

For xn,xn-1,…,x0 complex constants, 

𝑝(𝑦) = 𝑥𝑛𝑦
𝑛 + 𝑥𝑛−1𝑦

𝑛−1 +⋯+ 𝑥1𝑦

+ 𝑥0                                                  (1) 

Where 𝑥𝑛 ≠ 0 and n is a integer value. 

Exponential function 

If 𝑧 = 𝑎 + 𝑖𝑏, the exponential function ez is represented 

by, 

𝑒𝑧 = 𝑒𝑎𝑒𝑖𝑏                                                                 (2) 

Where  𝑒𝑖𝑏 = cos 𝑏 + 𝑖 𝑠𝑖𝑛 𝑏 

𝑒𝑧 = 𝑒𝑧(𝑐𝑜𝑠 𝑏 + 𝑖 𝑠𝑖𝑛 𝑦)                                        (3) 

Logarithmic Function 

The complex logarithm is an extension of the standard real 

natural logarithm (base e) into the complex domain. In 

polar coordinates, the complex logarithm is expressed as, 

𝑙𝑜𝑔𝑧 = log(𝑟𝑒𝑖𝜃)

= log 𝑟 + 𝑙𝑜𝑔𝑒𝑖𝜃

= 𝑙𝑜𝑔𝑟 + 𝑖𝜃                                      (4) 

Trigonometric functions: 

 

The sine and cosine of a complex variable are described 

as, 

𝑠𝑖𝑛 𝑧 =
𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖
                                                         (5) 

 

𝑐𝑜𝑠 𝑧 =
𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2
                                                          (6) 
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In optimization, a complex function refers to one in which 

the input and/or output are complex numbers, with the 

objective of identifying maximum, minimum, or other key 

points, frequently subject to constraints or special 

conditions. These functions may be nonlinear, 

multivariable, and incorporate both real and imaginary 

components in their inputs and outputs, rendering them 

more complex to evaluate and optimize than real-valued 

functions.Optimization problems may involve complex 

functions when the objective function originates from 

physical systems represented by complex-valued 

variables, or in signal processing, control systems, and 

specific machine learning models where data or 

parameters are inherently articulated in the complex 

domain.  

 

2.2 Numerical optimization 

Although there are various strategies and algorithms 

available for addressing optimization difficulties, none are 

universally applicable or flawless in properly resolving all 

such concerns. Each algorithm possesses distinct 

properties, making it more suitable for addressing specific 

challenges based on these attributes. The formulation of 

the problem, selection of methods, and choice of 

algorithms are pivotal aspects in addressing an 

optimization issue, as certain methods and algorithms are 

more suitable than others based on the specific challenge 

at hand. The initial stage in an optimization problem is the 

formulation of the mathematical model. A mathematical 

model seeks to represent a real-world situation as a 

mathematical function applicable in optimization 

techniques. An optimization problem can be articulated in 

mathematical terms through a collection of variables and 

numerical relationships that encapsulate an abstraction of 

the issue, aiming to identify the optimal solution within Rn 

from a set of potential alternatives. To construct a 

mathematical model, four essential procedures must be 

performed [11]. 

• Specify the decision parameters. (x1,x2,x3,….,xn) 

• Construct the objective function f(x) or the set of 

objective functions f1(x), f2(x),f3(x),…,fk(x) that 

rely on the choice variables and yield a real value. 

• If required, provide a collection of equality and/or 

inequality constraints, gi(x) = 0 and hj(x) ≤ 0 for i 

= 1, 2, ..., ng and j = 1,2, ...nh, that must be 

satisfied by the decision variables. 

• Define the domain sets D1,D2,D3,….,Dn 

corresponding to the decision parameters, 

x1,x2,x3,….,xn accordingly. 

The optimization issue is defined by the objective function 

and the restrictions on the variables. The objective function 

delineates the goal of the problem, which may encompass 

any quantity or amalgamation of quantities represented by 

a singular numeral, such as personnel, time, materials, 

energy, etc.; conversely, the constraints directly influence 

the decision space and outcomes, imposing restrictions on 

the algorithmic options. The primary purpose of an 

optimization issue is to reduce or maximize the objective 

function while adhering to the restrictions. Furthermore, 

optimization models can be categorized into two principal 

classes based on the number of objectives: Single-

objective and multi-objective optimization issues [12]. 

Single optimization problems typically consist of a 

singular target, with or without restrictions, while multi-

objective optimization pertains to multiple-criteria 

decision-making, comprising the simultaneous 

optimization of numerous objective functions, with or 

without constraints [13]. Following the creation of the 

mathematical model, it is essential to ascertain the most 

suitable strategy for identifying the optimal solution. 

A solution to an optimization issue can be characterized by 

local and global optimization, with corresponding 

techniques referred to as local search and global search. 

Local and global search optimization methods are 

employed in various contexts or to address distinct 

optimization inquiries [14]. Local optimization aims to 

identify a solution that reduces (or increases) the objective 

function within a defined region of the search space, hence 

locating a local solution among feasible points in the 

vicinity. This type of search does not ensure an objective 

value that is lower (or higher) than all other viable 

locations. Conversely, global optimization seeks to 

identify the point that reduces (or increases) the objective 

function [15]. 

 

2.3 Machine learning 

The essence of human intelligence is on experiential 

learning and the transmission of personal knowledge 

between generations. Machine learning pertains to the 

development of computer programs that enhance their 

performance through experience. The experience is 

derived by a data analysis procedure executed by a 

customized algorithm. Consequently, the machine 

learning approach employs algorithms to identify patterns 

within a dataset through computational, analytical, 

optimization, and information discovery techniques [16]. 

There are three types of machine learning: Supervised 

Learning, Unsupervised Learning, and Reinforcement 

Learning. Within each category, methods can be 

differentiated based on their knowledge acquisition 

techniques, including classification, regression, clustering, 

association learning, relational analysis, differential 

equations, and others. Machine learning seeks to construct 

a hypothesis (model) capable of extracting information 

from training data and generalizing the learned knowledge 

to unfamiliar samples. This model must exhibit simplicity 

regarding complexity and demonstrate efficacy in 

minimizing empirical mistakes within the data. 

Supervised learning techniques seek to identify the 

correlation between input attributes (independent 
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variables) and a target attribute (dependent variable). 

Supervised learning is employed for two categories of 

tasks: pattern categorization and regression. 

Occasionally, there is an absence of knowledge regarding 

the correlation between input and output attributes in 

machine learning challenges [17]. Consequently, the 

algorithms must identify similarities or differences within 

the data collection. The method necessitates greater human 

comprehension than supervised procedures, as a decision-

maker, whether an individual or a collective, is 

accountable for the final decision-making. 

While supervised and unsupervised approaches engage 

with data and necessitate exploration and comprehension 

of the data in relation to the application domain, significant 

distinctions exist between the two methodologies. The 

primary distinction is the lack of an output vector for the 

target variable, as observed in supervised approaches. 

Moreover, unsupervised learning is frequently linked to 

creative pursuits—exploration, comprehension, and 

enhancement—that do not conform to predefined 

protocols, unlike supervised methods [18]. Unsupervised 

learning is often categorized into clustering methods and 

dimensionality reduction methods.  

Reinforcement learning is a machine learning technique 

predicated on a reward mechanism, predominantly utilized 

in dynamic control systems; however it is also applicable 

to optimization issues [19]. Reinforcement learning 

addresses the challenge of instructing an autonomous 

agent, which interacts with and perceives its environment, 

to select optimal actions for attaining its objectives. The 

agent acquires information regarding the present 

environmental conditions and must use its existing 

knowledge through a greedy approach to optimize 

rewards, while simultaneously engaging in exploration to 

identify superior actions for the future. 

 

2.4 Related work summary 

This section highlights the existing numerical and machine 

learning-based optimization strategies for complex 

function optimization problems. Table 1 provides the 

summary of existing optimization approach with limitation 

or research gap. 

 

 

Table 1: Related work summary 

Ref Methods Data set and Metrics Limitations / Research Gap 

[9] Hybrid Bee algorithm for solving 

continues complex function 

Benchmark function; 

Accuracy and mean value. 

It does not handle numerical 

methods. Testing the enhanced 

algorithms on practical 

optimization challenges 

[20] Deep learning proxy model Rosenbrock, Rastrigin and 

Ackley functions; Mean 

Euclidean distance and the 

standard deviation 

Sparse sampling is ineffective, 

and the optimizers exhibit 

heightened sensitivity to the 

landscape derived from this 

kind of data. 

[21] First order optimization methods: 

Standard gradient descent, 

momentum, heavy ball, nesterov 

Benchmark functions; 

Iteration, time, function value 

and weight 

It only compares first order 

optimization methods and does 

not consider other optimization 

approaches 

[22] Improved Hypercube optimization 

algorithm 

Benchmark functions; Mean, 

Standard deviation, 

Convergence rate and Time. 

It offers optimal value and 

accelerates convergence 

processes; however, it does not 

address practical optimization 

concerns. 

[23] Genetic algorithm for high 

dimensional optimization problem. 

Benchmark functions; Gain 

and convergence rate. 

A robust criterion is required to 

dynamically determine the 

number of active subspace 

dimensions. 

[24] Local and global numerical 

optimization; Focusing robust 

optimization with uncertainty-based 

sampling approach 

Benchmark functions; CPU 

Time, mean, median and 

success rate 

It does not converge effectively 

to the global minimum for 

various contrived test functions, 

rendering its broad application 

inadvisable. 
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3 Methodology 

Optimizing complex functions involves identifying the 

extrema of functions that utilize complex numbers as both 

inputs and outputs. These functions may encompass both 

real and imaginary components, and addressing 

optimization problems involving such functions is a 

prevalent endeavor in disciplines such as signal 

processing, control theory, physics, and machine learning. 

A complex function f(z) can be written as, 

𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦)

= 𝑢(𝑥, 𝑦)

+ 𝑖𝑣(𝑥, 𝑦)                                   (7) 

where, 𝑢(𝑥,𝑦) denotes the real component and 𝑣(𝑥,𝑦) 

signifies the imaginary component, with 𝑥 and 𝑦 

representing real variables corresponding to the real and 

imaginary parts of the complex input 𝑧. The objective of 

optimization frequently involves minimizing (or 

maximizing) a complex-valued function, specifically 

identifying the point 𝑧 in the complex plane that yields the 

optimal value of (𝑧).  

This paper compares numerical optimization methods, 

specifically gradient descent and Newton’s method, with 

machine learning optimization algorithms, including 

genetic algorithms, particle swarm optimization, and deep 

Q-learning. Figure 1 shows the work flow of the proposed 

approach. 

 

 

 
 

Figure 1: Proposed work flow 

 

In all real-valued single-objective unconstrained 

optimization algorithms, the objective is to identify the 

minimum (or, equivalently, the maximum) of a scalar 

objective function (𝑥), represented by the vector of free 

parameters 𝑋=(𝑥1, 𝑥2, 𝑥3,...,𝑥𝑚), where 𝑚 denotes the 

problem's dimensionality. Consequently, 𝑓 is a mapping 

from R𝑚 to R. Assume the following hypothesis: 

• Function 𝑓 is accessible solely as a black box; 

thus, we possess no understanding or ability to 

manipulate its internal mechanisms. We access 𝑓 

solely through input-output mechanisms.  

• The function 𝑓 possesses a continuous domain 

inside the specified constraints; thus, every point 

within these bounds is mapped by 𝑓. 

• 𝑓 is well-defined in the domain, at least 

numerically; it is continuous and exhibits a 

degree of smoothness. This restricts very noisy 

functions, where spatial correlation is absent. 

However, there is also an implicit assumption of 

some degree of noise, wherein finite differences 

in the vicinity of a point do not resemble the 

derivatives of the noiseless function. 

Numerical optimization techniques are employed to 

identify the most effective for intricate functions when 

statistical techniques are impractical or excessively 

challenging. The primary classifications of numerical 

optimization methods are gradient-based and gradient-free 
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techniques. In this paper two numerical optimization 

methods are considered: Gradient descent and Newton’s 

method. The previous works only consider the first-order 

optimization but this research considers both first-order 

and second-order optimization. Due to the simplicity, the 

first order optimization i.e gradient descent is selected 

which reduces the training time.   

Gradient Descent: 

Standard gradient descent is among the most fundamental 

and prevalent optimization techniques. The fundamental 

concept involves incrementally adjusting the model 

parameters in accordance with the gradient of the loss 

function. The gradient signifies the direction in which the 

value of the loss function diminishes most rapidly. The 

objective is to minimize the function by modifying the 

model parameters accordingly.  

The primary phases of Standard Gradient Descent: 

Computation of gradients: At each stage of the procedure, 

the gradient of the loss function is computed for all model 

parameters. The gradient is a vector comprising the partial 

derivatives of the loss function with respect to each 

parameter, signifying the direction of the steepest ascent in 

the function.  

Update of parameters: Subsequent to computing the 

gradient, the model parameters are revised in accordance 

with the formula: 

 

𝛿𝑛𝑒𝑤 = 𝛿𝑜𝑙𝑑 − 𝛼 × ∇𝜏(𝛿)                                 (8) 

Where δ represents the model parameter, α indicates the 

learning rate and ∇𝜏(𝛿) is the gradient loss function. 

 

Rate of learning: This is a crucial parameter of the 

procedure. If the step size is very tiny, the optimization 

process will be sluggish; conversely, if it is overly high, it 

may bypass the minimum and induce instability in the 

process. Consequently, the appropriate selection of alpha 

is essential.  

Repetitions: The parameter update process is iterated 

multiple times until a termination point is achieved, either 

by convergence criteria or after a predetermined number 

of iterations. 

Gradient Descent is straightforward to implement, as it 

requires only the calculation of the gradient and the 

subsequent update of the model parameters for each 

iteration. Should the loss function exhibit smoothness and 

convexity, the approach can effectively identify the global 

minimum. 

Newton’s Method  

Newton's approach is a second-order optimization 

approach that can be used to locate the roots of complex 

functions or optimize them. This method is based on the 

second derivative and often converges quicker than 

gradient descent for smooth functions. 

Given a complex function 𝑓(𝑧) = 𝑧2 − 2 + 𝑖 

1. Select an initial guess, z0= 1+i 

2. Compute the next approximation using the 

formula: 

𝑧𝑛+1 = 𝑧𝑛 −
𝑓(𝑧𝑛)

𝑓′(𝑧𝑛)
                                               (9) 

Where 𝑓(𝑧) = 𝑧2 − 2 + 𝑖 and f’(z)=2z 

f(1+i)=(1+i)2 – 2+i=1+2i-1+i=3i 

f’(1+i)=2(1+i)=2+2i 

therefore, 𝑧1 = (1 + 𝑖) −
3𝑖

2+2𝑖
 

3. Repeat this process iteratively until convergence. 

Genetic Algorithm 

Genetic Algorithm (GA) is an optimization technique 

based on population dynamics. These heuristic search 

methods, inspired by natural evolution, can optimize 

complex functions, particularly when the functions are 

noisy or non-differentiable. Genetic algorithms employ a 

population of potential solutions, which are iteratively 

evolved throughout multiple generations using selection, 

crossover, and mutation to identify the optimal answer. 

Algorithm-1 shows the general steps of genetic algorithm. 

 

 

Algorithm-1: Genetic Algorithm 

Input: Population Size (pop), Maximum iteration (MaxIter) 

Output: Global best solution 

Step1: Randomly generate initial population of n chromosomes 

Step2: Initialize iteration count iter = 0 

Step3: Compute the fitness value of each chromosomes 

Step4:  while (iter <MaxIter) 

Step5:     Select a pair of chromosomes from initial population based on fitness 

Step6:     Apply crossover operation on selected pair with crossover probability  

Step7:     Apply mutation on the offspring with mutation probability 

Step8:     Replace old population with newly generated population 

Step9:     Increment the iteration iter by 1 

Step10: EndWhile 

Step11: Return the best solution 
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The genetic algorithm (GA) employed a population size of 

between 20 or 200, contingent upon the number of 

variables. The crossover rate was 0.8, and the maximum 

number of iterations was 1000. The algorithm terminated 

when the average relative change in the optimal fitness 

function value over 100 iterations was less than or equal to 

1e-6. 

Particle swarm Optimization 

The PSO algorithm is a gradient-free technique founded 

on the notion of swarm dynamics. In Particle Swarm 

Optimization (PSO), each sample is designated as a 

particle, and a collection of particles is termed a swarm. In 

the initial iteration of PSO, each particle commences at rest 

with a velocity vector of zero. The objective function's 

value is calculated for the initial iteration, and the particles' 

velocity and position are revised. The velocity of each 

particle is determined by three components: inertia, 

cognitive, and social components, along with certain 

random coefficients. The inertia component signifies a 

particle's velocity at the present iteration, inhibiting 

significant positional alterations. The cognitive component 

assesses a particle's performance in relation to its prior 

best, and the social component evaluates a particle's 

performance in comparison to the swarm's optimal 

location. The optimal positions are ascertained from the 

fitness function assessment in the preceding iteration, and 

the updates for velocity and position persist until the 

termination criteria are met. Algorithm-2 shows the 

general steps of PSO algorithm. 

Algorithm-2: Particle swarm optimization 

Input: Particle Size , Maximum iteration (MaxIter) 

Output:best solution 

Step1: Initialize particles, velocity, iter=0, pbest, gbest 

Step2: Randomly generate initial particles 

Step3: For each particle 

Step4:  Compute fitness function 

Step5:  Update pbest, gbest 

Step6: End For 

Step7:  While (iter <MaxIter) 

Step8:    For each particle 

Step9:     Update velocity and particle 

Step10:   Compute fitness value 

Step11:   Update pbest, gbest 

Step12:  EndFor 

Step13: EndWhile 

 

The PSO employed a swarm size of between 20 or 200, 

contingent upon the number of variables. The weight was 

0.1, and the maximum number of iterations was 1000. 

Machine learning is applicable for optimizing complex 

functions, especially in the context of high-dimensional, 

non-convex, or noisy functions that are challenging for 

conventional approaches to manage.A neural network can 

be taught to approximate a complicated function by 

utilizing the real and imaginary components of the 

function as input and output. This can be particularly 

useful if the optimization process entails investigating 

complex spaces with numerous variables. To optimize the 

network, it can be trained using a loss function, such as 

Mean Squared Error (MSE), to reduce the disparity 

between the expected output of the complex function and 

the actual function. The network acquires the ability to 

forecast ideal input parameter values (complex values) that 

reduce the output of the complex function. The 

backpropagation algorithm updates the network's weights 

according to the prediction error. 

Reinforcement learning (RL) can optimize intricate 

functions, particularly in scenarios where the function is 

costly to assess or exhibits noise. In reinforcement 

learning, the agent engages with the environment (a 

complicated function) by executing actions (selecting 

intricate input values) and obtaining rewards (ideal 

outputs).Methods such as Q-learning or Deep Q Networks 

(DQN) can be utilized to progressively enhance the answer 

through environmental feedback. Algorithm-3 shows the 

general steps of DQN. 

Algorithm-3: DQN 

Step1: Initialize parameters 

Step2: For each episode 

Step3:    Observe initial state 

Step4:    For each step of episode 

Step5:       Select action 

Step6:       Execute action 

Step7:       Observe reward and new state 

Step8:      Store transition 

Step9:     Sample mini-batch of transitions 

Step10:   Compute target for each transition 

Step11:   Perform descent step with respect to the 

quantum circuit parameters 

Step12:   Every steps reset Q’  = Q 

Step13:  End For 

Step14: EndFor 
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A hybrid approach integrates the advantages of numerical 

methods and machine learning approaches to enhance the 

efficiency of complex function optimization. For example, 

one might employ a genetic algorithm to investigate the 

search space of intricate functions, subsequently utilizing 

a neural network to refine the answers near the optimum. 

The hybrid approach is not scope of the current work. This 

may be considered as a future work. 

 

4 Experimental results and analysis 

4.1 Benchmark dataset 

This research uses benchmark dataset (Optimization Test 

Functions [24]) for evaluate the performance of the 

optimization problem. This work uses three optimization 

test functions Ackley, Rastrigin, and Rosenbrock.  

Ackley function is continuous, scalable, non-separable, 

and a substantially multimodal test function. This test 

function is defined as follows: 

𝑓(𝑥) = −20 𝑒𝑥𝑝

(

 −0.2 × √
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
)

 

− 𝑒𝑥𝑝 (
1

𝑑
∑cos (2𝜋𝑥𝑖)

𝑑

𝑖=1

) + 20

+ 𝑒                                            (10) 

where d represents the number of dimensions and 𝑥𝑖 = (𝑥1, 

𝑥2, ..., 𝑥d) is a d-dimensional row vector. The test region is 

typically assessed within the range of [-32.768, 32.768]d. 

The global minimum (𝑥) = 0 is achievable at 𝑥𝑖 = (0,0). 

Figure 2 shows the surface plot of 2D representation of 

Ackley function. 

 

 
Figure 2: Ackley function - surface plot 

 

Rastrigin function is continuous, scalable, separable, and a 

highly multimodal global optimization function. This test 

function is defined as follows: 

𝑓(𝑥) = 10𝑑 +∑(𝑥𝑖
2 − 10 cos (2𝜋𝑥𝑖))

𝑑

𝑖=1

       (11) 

where d represents the number of dimensions and 𝑥𝑖 = (𝑥1, 

𝑥2, ..., 𝑥d) is a d-dimensional row vector. The test region is 

typically assessed within the range of [−5.12, 5.12]d. The 

global minimum (𝑥) = 0 is achievable at 𝑥𝑖 = (0,0). This 

test function poses significant challenges for numerous 

global optimization techniques. Figure 3 shows the surface 

plot of Rastrigin function. 

 
Figure 3:  Rastrigin function -surface plot 

 

Rosenbrock is a unimodal, valley-shaped function defined 

for dimensions d ≥ 2. This test function is continuous, 

scalable, inherently nonseparable, nonconvex, and 

unimodal. This test function is defined as follows: 

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − (𝑥𝑖)
2)2 + (𝑥𝑖 −

𝑑−1
𝑖=1

1)2]                                                                             (12)  

where d > 2 represents the number of dimensions and 𝑥𝑖 = 

(𝑥1, 𝑥2, ..., 𝑥d) denotes a d-dimensional row vector. The test 

region is typically assessed within the range of [−2.048, 

2.048]d, where 𝑖 = (1,...,d). The global minimum (𝑥) = 0 is 

achievable at 𝑥𝑖 = (1,1). The function is mostly recognized 

for its exceedingly slow convergence at the minimum 

point. Figure 4 shows the surface plot of Rosenbrock 

function. 
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Figure 4:  Rosenbrock function - surface plot 

 

4.2 Results 

This section compares the performance of the optimization 

approaches described. In each instance, function reduction 

was conducted commencing from 50 randomly chosen 

initial points within the search space of the test function. 

The comparisons were conducted throughout time, 

assessing the success rate of the optimizations. An 

optimization initiated from a specified set of beginning 

conditions is deemed successfully convergent to the global 

optimum if |f(x) − f(x∗)| ≤ 10−4, where f(x∗) and f(x) 

represent the known accurate global minimum and the 

lowest obtained value of the objective function, 

respectively. Conversely, the optimization is deemed 

unsuccessful. 

Table 2 presents the findings derived from the Ackley 

function. The GA and DQN approaches effectively 

converged to the global optimum, but the gradient descent 

and Newton methods failed to converge in all instances. 

The PSO approach achieved convergence in 98% of the 

total runs. The time for numerical methods are low 

compared to machine learning methods. 

 

 

Table 2: Result of Ackley function for different methods 

Method Time (Sec) Convergence Rate 

(%) 

Gradient 

Descent 

0.037 0 

Newton’s  0.0085 0 

GA 0.17 100 

PSO 0.051 98 

DQN 0.55 100 

 

Table 3, presents the findings derived from the Rastrigin 

function. The GA and DQN approaches effectively 

converged to the global optimum, but the gradient descent 

and Newton methods failed to converge in all instances. 

The PSO approach achieved convergence in 70% of the 

total runs. The time for numerical methods are low 

compared to machine learning methods. 

 

Table 3: Result of Rastrigin Function for Different 

Methods 

Method Time (Sec) Convergence Rate 

(%) 

Gradient 

Descent 

0.065 0 

Newton’s  0.010 0 

GA 0.15 100 

PSO 0.075 70 

DQN 0.98 100 

 

Table 4 presents the findings derived from the Rosenbrock 

function. In this case, the GA and DQN approaches has 

high convergence rate (98% and 90%), but the other 

approaches has lowered convergence rate. The time for 

numerical methods are low compared to machine learning 

methods. 

 

Table 4: Result of Rosenbrock function for different 

methods 

Method Time (Sec) Convergence Rate 

(%) 

Gradient 

Descent 

0.081 50 

Newton’s  0.0230 76 

GA 2.5 98 

PSO 1.9 65 

DQN 3.2 90 

 

4.3 Discussion 

When comparing Numerical Optimization and Machine 

Learning Optimization methods for complicated functions, 

it is essential to assess their performance based on many 

factors, including accuracy, efficiency, scalability, 

robustness, and application. Each optimization technique 

presents unique advantages and disadvantages contingent 

upon the characteristics of the problem (e.g., 

differentiability, dimensionality, noise, etc.). Table 5 

shows the comparison of numerical and machine learning 

optimization. 

 

Table 5:  Comparison of numerical Vs machine learning optimization 

Criterion Numerical Optimization Machine Learning Optimization 

Objective Optimize a designated objective function 

(e.g., cost function). 

Optimize loss or error functions 

utilizing models (e.g., neural networks, 

regression models). 
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Type of Functions 

Handled 

Functions exhibiting explicit, 

deterministic characteristics (frequently 

differentiable) 

Intricate, non-differentiable, stochastic, 

or opaque functions 

Optimization 

Algorithms 

Gradient-dependent methods (e.g., 

steepest descent, Newton's method) or 

gradient-independent methods (e.g., 

genetic algorithms, simulated annealing). 

Stochastic algorithms (e.g., gradient 

descent, Adam, genetic algorithms), 

evolutionary strategies. 

 

Computational 

Complexity 

The cost is contingent upon the 

employed method; it may be 

computationally intensive for high-

dimensional or non-linear functions. 

May incur significant computing costs, 

particularly in high-dimensional 

environments (e.g., deep learning 

architectures). 

 

Convergence Speed Typically more efficient for smooth, 

convex, or differentiable functions. 

 

Convergence may require an extended 

duration, particularly when addressing 

high-dimensional and noisy objective 

functions. 

Scalability May encounter difficulties in high-

dimensional spaces, particularly with 

gradient-based techniques. 

Capable of scaling to high-dimensional 

areas, particularly in deep learning or 

evolutionary algorithms. 

Use of Derivatives Heavily depends on gradients or 

Hessians (second-order derivatives) for 

convergence. 

 

Frequently operates with or without 

derivatives (e.g., gradient-free 

techniques or models like as neural 

networks). 

Ability to Handle Noise Susceptible to noise and necessitates 

smooth functions or noise mitigation 

techniques such as regularization. 

Resilient to noisy data and frequently 

capable of identifying optimal solutions 

in circumstances characterized by noise 

or insufficient data. 

Global vs. Local 

Optima 

Susceptible to entrapment in local 

minima for non-convex functions. 

Local minima can be circumvented 

using methods such as stochastic 

gradient descent or evolutionary 

algorithms. 

Flexibility Most appropriate for issues with a well 

delineated objective function and 

restrictions. 

Extremely adaptable and applicable to 

various issues, including regression, 

classification, and black-box 

optimization. 

Learning and 

Adaptability 

Generally does not get knowledge from 

the optimization process. 

Models can "adapt" over time (e.g., 

neural networks modifying weights). 

Examples of Use Engineering design, optimal resource 

distribution, and resolution of physical 

models. 

Machine learning activities (e.g., neural 

network training, hyperparameter 

tuning, reinforcement learning). 

Robustness Sensitive to starting conditions (e.g., first 

guess for gradient algorithms). 

Resilient to initialization and noise in 

extensive datasets, particularly with 

ensemble techniques. 

Interpretability Generally more straightforward to 

interpret solutions, particularly for less 

complex models (e.g., linear 

programming). 

Frequently less interpretable, especially 

in deep learning, where models may 

function as "black boxes". 

 

Numerical optimization is particularly efficient for well-

defined, differentiable, and smooth objective functions. 

This approach is typically more efficient for such issues 

but may encounter difficulties with non-linearity, large 

dimensionality, and noisy data. Machine Learning 

Optimization is particularly effective for high-

dimensional, non-differentiable, or noisy functions. 

Machine learning techniques can exhibit greater 

adaptability and scalability; yet, they may require extended 

convergence periods and might occasionally lack 

interpretability compared to numerical methods. 
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5 Conclusion 

Optimizing complex functions presents a formidable 

challenge that necessitates meticulous evaluation of both 

numerical techniques and machine learning 

methodologies. Conventional optimization techniques 

such as gradient descent, Newton's method, and 

evolutionary algorithms are well-recognized. Machine 

learning optimization techniques provide an array of 

instruments for addressing intricate function optimization, 

particularly when conventional numerical optimization 

approaches are inadequate due to non-linearity, non-

differentiability, or high dimensionality of the issue. 

Utilizing techniques such as Bayesian Optimization and 

Deep Reinforcement Learning, machine learning offers 

enhanced flexibility and robustness, facilitating solutions 

for intricate real-world challenges across several domains. 

The benchmark optimization test functions Ackley, 

Rastrigin, and Rosenbrock are employed to assess the 

optimization methods for convergence rate and execution 

time. The results demonstrate that numerical optimization 

approaches exhibit a low convergence rate and diminished 

runtime, but machine learning optimization displays a high 

convergence rate and prolonged runtime. In the future, the 

hybrid optimization methods are considered to solve 

complex function. The hybrid approach can  

 

 

combine numerical and machine learning algorithm to 

obtain the best efficient results. 
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