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Cable fault detection is critical for ensuring the reliability and safety of high-voltage 20 kV XLPE ca-
ble systems, minimizing downtime and maintenance costs. This research introduces a semi-supervised
hybrid ensemble model combining Random Forest, Gradient Boosting, and XGBoost within a Voting Clas-
sifier framework. Data preprocessing involves feature scaling and Gaussian noise injection (σ = 0.01)
to enhance robustness, followed by training on 3943 labeled samples and iteratively incorporating high-
confidence predictions (threshold > 0.9) from 11829 unlabeled samples. Evaluated on a dataset of 15772
samples with diverse features like cable age, partial discharge, corrosion, and loading conditions, themodel
achieves 98% accuracy, 97.5% recall, 97% precision, and 97% F1-score. Compared to SOTA supervised
models such as SVM, CNN, and ANN, it demonstrates superior performance and scalability by leveraging
unlabeled data. This approach offers an efficient, accurate solution for cable fault diagnosis in industrial
applications

Povzetek: Razvit je pol nadzorovan hibridni ansambelski model za zaznavo napak v 20 kV XLPE kablih, ki
z integracijo neoznačenih podatkov doseže visoko točnost in robustnost v industrijskih pogojih.

1 Introduction
For electrical networks to operate safely and consistently,
cable fault detection is essential , especially for high-
voltage systems like 20kV XLPE (cross-linked polyethy-
lene) cables [1]. These cables are crucial parts of power dis-
tribution networks, and any problems with them could have
serious consequences such as equipment damage, power
outages, and even safety risks [2]. Manual inspection, vi-
sual evaluations, and physical testing are examples of tra-
ditional cable fault detection techniques [3] that are ex-
pensive, time-consuming, labor-intensive, and prone to hu-
man mistake. Additionally, the failure of these traditional
techniques to accurately identify cable defects increases the
possibility of system failures and raises maintenance ex-
penses. Therefore, there is a growing need for automated
fault detection systems that can accurately and efficiently
diagnosis faults in cables, enabling quick intervention and
minimizing potential disruptions.
Even with advancements in fault detection techniques,

challenges still exist regarding the accuracy, speed, and ro-
bustness of existing methods, especially in the context of
complex and diverse cable systems [4]. Factors such as
environmental variability, cable aging, and the presence of
different types of faults, such as partial discharge [5], in-
sulation breakdown, and corrosion make the fault detec-
tion process inherently challenging. Additionally, the data
sources used for fault detection [6], which range from sen-
sor readings to visual inspections, are often noisy, incom-

plete, or inconsistent, further complicating the detection
process. These issues can significantly reduce the effec-
tiveness of traditional detection models, necessitating more
advanced and robust solutions.

This study aims to handle the challenges associated with
cable fault detection by developing a robust and auto-
mated semi-supervised [7] hybrid model specifically tai-
lored for 20kV XLPE cables [8]. The proposed model
enhances detection capabilities by combining multiple
datasets [9], addressing the limitations inherent in using in-
dividual datasets. Utilizing a hybrid machine learning [10]
methodology, the approach combines Random Forest [11]
and Gradient Boosting classifiers [12] within an ensem-
ble [13] framework implemented through a VotingClassi-
fier [14]. This ensemble strategy leverages the complemen-
tary strengths of the individual models, resulting in more
accurate and reliable predictions.

The dataset for this research encompasses key attributes
such as cable age, partial discharge, visual inspections, neu-
tral conductor corrosion, and loading conditions. These
critical features play a vital role in evaluating cable health
and integrity by capturing a wide range of influencing fac-
tors [15]. Through the integration of multiple datasets, the
model achieves improved performance across various fault
scenarios, enhancing its generalization and adaptability to
real-world conditions.
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1.1 Contributions of the study
This research offers several significant contributions, de-
tailed as follows:

– Development of a Hybrid Model: This study intro-
duces an advanced hybrid machine learning frame-
work that integrates Random Forest and Gradient
Boosting classifiers within a VotingClassifier en-
semble. The model harnesses the complementary
strengths of these algorithms to improve fault detec-
tion in 20kV XLPE cables. By addressing the inher-
ent limitations of individual models, this hybrid frame-
work delivers a more accurate and reliable solution for
fault identification.

– Semi-Supervised Data Integration: The study uti-
lizes a semi-supervised learning approach to integrate
labeled and unlabeled datasets effectively. By lever-
aging both labeled and unlabeled data, the model
achieves improved robustness and generalization, en-
abling it to handle a broader range of real-world fault
scenarios.

– Incorporation of Noise for ImprovedResilience: To
simulate the variability of real-world data, controlled
noise is introduced into the dataset. This technique
enhances the model’s robustness by preparing it to
handle imperfections such as noise, missing values,
and inconsistencies commonly encountered in prac-
tical applications. Consequently, the model demon-
strates superior performance in fault detection under
challenging and unpredictable conditions.

This research is crucial because it has the potential to
improve fault detection in cable systems, making it more
effective, reliable, and efficient. Traditional fault detection
techniques are often reactive and slow, leading to expensive
maintenance and frequent system breakdowns. In contrast,
the proposed machine learning-based method offers an au-
tomated and proactive solution that can detect fault early,
allowing for prompt intervention and reducing the risk of
significant failures. By aggregating multiple datasets [16]
and using ensemble learning [17] approach, the model en-
sures accuracy and robustness, making it a valuable tool for
maintaining the health of electrical cable systems.
Moreover, the results of this study could contribute to the

development of intelligent monitoring systems that can be
integrated into existing power distribution networks [18].
By providing real-time, accurate predictions of cable fail-
ures, these systems could help utilities optimize mainte-
nance schedules, reduce downtime, and prevent costly re-
pairs [19]. This study not only enhances fault detection but
also offers valuable insights into the application of machine
learning techniques in electrical infrastructure, particularly
in the areas of condition monitoring and asset management.
The methodology and related work used to develop and

evaluate the hybrid fault detection model will be discussed

in the following sections of this paper. The results and per-
formance analysis will also be presented, along with the
implications of these findings for future research and real-
world applications. Our goal is to advance the develop-
ment of automated fault detection technologies and provide
a framework for the creation of more reliable and efficient
cable management systems. This study aims to enhance the
overall safety and reliability of electrical distribution net-
works by addressing the limitations of traditional fault de-
tection methods and introducing advanced machine learn-
ing techniques, ensuring a more resilient and sustainable
energy infrastructure.

2 Related work

2.1 Machine learning approaches for fault
detection

Machine learning has increasingly been employed to en-
hance fault detection in electrical cable systems. Sev-
eral studies have explored different machine learning al-
gorithms for detecting and classifying faults in electrical
networks. For instance, Baghaee et al. proposed an SVM-
based [25] fault detection system for high-voltage cable in-
sulation, which showed promising results. However, their
approach struggled with noisy data and required substan-
tial feature engineering, limiting scalability and flexibility.
Similarly, Peng et al. used convolutional neural networks
(CNNs) [26] for fault classification in medium-voltage ca-
bles. While their model exhibited high accuracy, it was
computationally expensive and required large amounts of
labeled data for training—something not always feasible in
real-world applications with limited data. A broader sum-
mary of such approaches, including their objectives, find-
ings, and limitations, is provided in Table 1, highlighting
the challenges that motivate our work.

2.2 Ensemble learning for fault diagnosis
Ensemble learning methods, which combine multiple indi-
vidual models to improve performance, have been widely
applied in fault detection tasks [13] employed Random For-
est [11] classifiers for fault diagnosis in overhead power
lines, demonstrating Random Forest’s ability to handle
noisy and imbalanced datasets effectively. It has been
praised for its robustness and ease of use, performing well
even with irrelevant or noisy features. Similarly, used gra-
dient boosting classifiers[12] for fault detection in electrical
circuits, focusing on improving precision by tuning hyper-
parameters. However, gradient boosting classifiers proved
less effective for real-time fault detection in dynamic sys-
tems [27].
Ensemble methods like Voting Classifiers[28]have

shown considerable promise by combining the strengths
of multiple classifiers to enhance prediction accuracy
demonstrated combining Random Forest and Gradient
Boosting [29] in an ensemble framework for fault diagnosis
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Table 1: Comprehensive summary of the literature survey on defect detection in XLPE insulation. This table highlights
key objectives, findings, and limitations of various machine learning-based approaches used for classification and analysis
Reference Objective Finding Limitation

[20] Detect and classify defects in XLPE
insulation using SVM

Achieved 83.9% accuracy in identi-
fying insulation defects

Noise-sensitive, requires extensive
feature engineering.

[21] Recognize partial discharge pat-
terns in high-voltage cables using
CNN

Obtained 92.57% accuracy in PD
classification

High computational cost limits scal-
ability.

[22] Classify internal vs. external PD de-
fects in XLPE cables using ANN

Achieved 97% accuracy with statis-
tical features

Supervised, limited by small dataset
(180 samples).

[23] Identify XLPE cable insulation de-
fects (bubbles, water trees) using
LSTM

Reached 95.83% accuracy in defect
diagnosis

Supervised, computationally inten-
sive.

[24] Develop a semi-supervised ensem-
ble for general classification tasks

Demonstrated ∼93% accuracy
across KEEL datasets

Not specific to cables, lacks domain
focus.

in electrical equipment, showing improvements in classi-
fication accuracy and robustness over single classifiers.
However, their research did not address the challenges of
noise handling or dataset integration, which are critical for
improving real-world performance.

2.3 Handling noisy data in fault detection
Dealing with noisy and inconsistent data remains a signifi-
cant challenge in cable fault detection [30]. Sensor readings
are often affected by environmental factors and equipment
limitations, introducing noise into the data. Several stud-
ies have attempted to address this issue [31]. For example,
combined noise filtering techniques with ML algorithms to
detect faults in power transformers, improving the system’s
robustness. However, this method required careful feature
selection and preprocessing, increasing complexity and re-
ducing efficiency [32].

2.4 Multiple dataset integration for
improved performance

Integrating multiple datasets to enhance fault detection per-
formance has gained attention as a promising strategy. [16].
combined data from various sensors (e.g., temperature,
pressure, voltage) to improve fault prediction accuracy in
industrial systems [33]. Their work demonstrated the po-
tential of combining heterogeneous data sources to build
more comprehensive models. However, dataset integration
poses challenges related to data inconsistency and the need
for advanced preprocessing techniques to align and merge
different types of data.

2.5 Hybrid models in fault detection
Hybrid models that combine multiple machine learning
techniques are gaining traction due to their ability to exploit
the complementary strengths of individual models pro-
posed a hybrid approach combining deep neural networks

(DNNs) [34] and support vector machines (SVMs) [35]
for fault detection in electrical grids, which improved ac-
curacy, particularly when dealing with complex and noisy
data. Similarly, explored hybrid ensemble learning models
[36], combining decision trees, SVM [37], and neural net-
works for fault detection in power systems. While these hy-
brid approaches showed promise, they increased computa-
tional complexity, which may hinder real-time application
in large-scale systems [38].

2.6 Noise injection for robustness in
machine learning

Noise injection is an increasingly explored technique to im-
prove the robustness of machine learning models by simu-
lating real-world imperfections in data [39] highlighted the
value of adding noise to training data as a regularization
method to prevent overfitting, particularly in neural net-
works. In the context of cable fault detection, noise injec-
tion can enhance the model’s resilience to inconsistencies
and errors commonly found in sensor data [40]. While this
technique has proven successful in domains such as image
processing and natural language processing, its application
in fault detection remains an underexplored area, offering
potential for improving model robustness and generaliza-
tion [41].

2.7 Our approach
While existing studies have focused on machine learning
techniques for fault detection in electrical cable systems,
many approaches still struggle with challenges such as
noisy data, limited dataset size, and computational com-
plexity. Traditional methods often rely on basic algorithms
that require substantial feature engineering or struggle to
generalize to noisy, real-world data.
In this paper, we propose a novel approach that integrates

advanced noise-handling techniques with machine learn-
ing models to improve fault detection accuracy in electri-
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Table 2: Parameters and strengths of base models (optimized via grid search with 5-fold cross-validation)
Model Key Parameters (Tuned Ranges) Strength
Random Forest Estimators: 100, Max Depth: 3–15, Min

Samples Split: 2–10
Robust to noise, ranks feature importance,
resists overfitting.

Gradient Boosting Learning Rate: 0.01–0.1, Estimators: 100,
Max Depth: 3–10

Handles noisy data, iteratively improves
weak predictions.

XGBoost Learning Rate: 0.01–0.1, Max Depth: 3–
10, Min Child Weight: 1–5

Scales efficiently, robust to noise and im-
balance, regularized.

cal cable systems. Our method incorporates noise injection
to simulate real-world imperfections, enhancing model ro-
bustness to inconsistencies commonly found in sensor data.
By leveraging ensemble learning and hybrid models, our
approach addresses the challenges of noisy data and small
datasets, improving the performance and generalization of
fault detection systems. This approach offers a more re-
liable solution for real-time fault monitoring in electrical
systems, paving the way for more efficient predictive main-
tenance and fault diagnosis.

3 Methodology
This section outlines the methodology employed for cable
fault detection, encompassing data preprocessing, model
architecture, semi-supervised learning [42], and evaluation
metrics.

3.1 Research design
This study tests the hypothesis: ”Can a semi-supervised
hybrid ensemble approach leveraging unlabeled data and
noise injection improve fault detection accuracy in 20 kV
XLPE cables over supervised methods?” We aim to en-
hance performance in real-world cable systems.

3.2 Data analysis and visualization
This section presents a comprehensive visual analysis of
the 20kV XLPE cable dataset, providing insights into data
distributions and patterns that informed our modeling ap-
proach.

3.2.1 Distribution of cable health index

Figure 1 illustrates the distribution of cable health indices
across the dataset.

3.2.2 Feature analysis

The distribution of key numerical features is presented in
Figure 2. Notable observations include:

– Age Distribution: Shows a right-skewed pattern, in-
dicating a significant number of aging cables in the
network

Figure 1: Distribution of cable health index categories
showing the proportion of cables in each health status clas-
sification

– Partial Discharge: Exhibits multiple peaks, suggesting
distinct fault categories

– Loading Conditions: Demonstrates normal distribu-
tion, reflecting typical operational patterns

– Neutral Corrosion: Shows varying degrees of deterio-
ration across the cable population

3.2.3 Visual condition assessment

Figure 3 presents the distribution of visual condition assess-
ments. This information is particularly valuable for main-
tenance planning and resource allocation. These visualiza-
tions played a crucial role in:

– Identifying potential data imbalances that needed ad-
dressing in the model

– Understanding feature relationships and their impact
on fault detection

– Guiding the selection of appropriate preprocessing
techniques
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Figure 2: Distribution of key numerical features showing
patterns in cable age, partial discharge, neutral corrosion,
and loading conditions

– Informing the choice of model architecture and hyper-
parameters

Figure 3: Distribution of visual condition assessments
showing the frequency of different visual inspection cat-
egories

These visualizations played a crucial role in:

– Identifying potential data imbalances that needed ad-
dressing in the model

– Understanding feature relationships and their impact
on fault detection

– Guiding the selection of appropriate preprocessing
techniques

– Informing the choice of model architecture and hyper-
parameters

3.3 Data preprocessing
The raw data, comprising various features related to ca-
ble health, undergoes a rigorous preprocessing pipeline to

ensure data quality and enhance model performance, as
shown in Figure 4. The dataset includes 15772 samples:
3943 labeled samples (fault and non-fault instances from 20
kV XLPE cables) and 11829 unlabeled samples from real-
world sensor readings (e.g., cable age, partial discharge,
corrosion, loading conditions). Preprocessing applies fea-
ture scaling and adds Gaussian noise (σ = 0.01) plus 1%
random perturbations to simulate sensor errors, improving
robustness. The steps involved in data preprocessing are as
follows:

Figure 4: Data preprocessing pipeline illustrating the ap-
plication of feature scaling, noise augmentation, and label
encoding techniques to enhance data quality and improve
model performance

3.3.1 Feature scaling

To enhance model convergence, numerical features such as
Cable Age and Loading Current were standardized using
StandardScaler. The scaling operation is defined as:

Xscaled =
X − µ

σ
(1)

where X is the feature, µ is the mean, and σ is the stan-
dard deviation. This transformation ensures that the fea-
tures have zero mean and unit variance.

3.3.2 Noise integration

To simulate real-world noise and inconsistencies, the fol-
lowing types were introduced:

– Gaussian Noise: Gaussian noise with a standard de-
viation σ = 0.01 was added to simulate random fluc-
tuations in sensor data.

– Random Perturbations: Discrete values were per-
turbed by ±1% to mimic real-world measurement er-
rors and data variability.

– Missing Value Simulation: Missing values were sim-
ulated by introducing missing data points in 1% of
the dataset to test model robustness to inconsistencies
(e.g., sensor variability, data misalignment).



198 Informatica 49 (2025) 193–204 N. DeXu

Figure 5: This framework depicts the architecture of the proposed hybrid model for cable fault detection. The framework
integrates three machine learning models (Random Forest, Gradient Boosting, and XGBoost) into an ensemble, leveraging
their complementary strengths

3.3.3 Label encoding

Categorical features, such as Fault Types, were encoded us-
ing one-hot encoding to convert them into a format that can
be used by machine learning models.

3.4 Model architecture

A hybrid approach combining ensemble learning and semi-
supervised learningwas employed to address the challenges
of limited labeled data and class imbalance. The architec-
ture is described in the following subsections.

3.4.1 Base models

Three machine learning models Random Forest, Gradient
Boosting, and XGBoost were selected as base learners for
their robustness to noisy sensor data and effectiveness with
imbalanced datasets, such as our 3943 labeled and 11829
unlabeled samples from 20 kV XLPE cables. Random For-
est excels in ranking feature importance and resisting over-
fitting, Gradient Boosting iteratively corrects errors, and
XGBoost offers scalability and regularization. Alternative
ensemble models (e.g., AdaBoost, LightGBM) were tested
but underperformed; AdaBoost yielded an F1-score of 0.88
due to noise sensitivity, while our trio achieved 0.97, justi-
fying their selection.

3.4.2 Ensemble integration

The final prediction probability integrates the outputs of in-
dividual models, computed as:

Pfinal = w1 · PRF + w2 · PGB + w3 · PXGB

where PRF , PGB , PXGB are predictions from Random
Forest, Gradient Boosting, and XGBoost, respectively, and
w1, w2, w3 are weights optimized via grid search. We em-
ployed k-fold cross-validation (k=5) on our 15772 sam-
ple dataset (3943 labeled, 11829 unlabeled), splitting it
into 5 folds of approximately 3154 samples each. Grid
search tested parameter ranges (e.g., max depth: 3-10,
learning rate: 0.01-0.1 for XGBoost) to maximize the F1-
score across folds, ensuring optimal performance and re-
producibility.

3.5 Semi-supervised learning
A semi-supervised learning workflow was implemented to
utilize both labeled and unlabeled data. This approach helps
to enhance the performance of the model by expanding the
training set without requiring additional labeled data. The
semi-supervised learning process is described as follows:

1. Initial Training Phase: The ensemble model is first
trained on the available labeled data.

2. Prediction on Unlabeled Data: The model predicts
labels for unlabeled data.
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Figure 6: Key steps of the semi-supervised learning pro-
cess: initial training on labeled data, prediction on unla-
beled data, incorporation of high-confidence predictions
into the training set, and iterative model retraining for im-
proved performance and generalization

3. DataGrowth: High-confidence predictions are added
to the training set to expand the labeled data.

4. Model Retraining: The model is retrained iteratively
with the expanded dataset, improving accuracy over
time.

This workflow is depicted in Figure 6. Additionally, The
model trains on 3943 labeled samples, then iteratively in-
corporates unlabeled data by selecting high-confidence pre-
dictions (threshold > 0.9) from 11829 samples, expanding
the training set for better generalization.

3.6 Evaluation metrics
Themodel’s performance is evaluated using both classifica-
tion and reliability metrics. The classification metrics used
are:

– Accuracy: The proportion of correctly predicted in-
stances out of the total instances.

– Precision: The proportion of true positives among the
predicted positives.

– Recall: The proportion of true positives among the ac-
tual positives.

– F1-Score: The harmonic mean of precision and recall,
providing a balance between the two metrics.

Additionally, calibration error is included as a reliability
metric, with our semi-supervised hybrid model achieving
a low error of 0.03, indicating well-calibrated predictions.

4 Experiments and results

4.1 Experimental setup
The experiments were conducted using the following soft-
ware and hardware configurations as shown in Table 3:

Table 3: Experimental setup
Specification Details
Processor Intel Core i7-12700K, 3.6 GHz
RAM 16 GB DDR4
Operating System Windows 11 (64-bit)
Programming Environment Python 3.9 with Jupyter Notebook
Libraries Used scikit-learn, matplotlib, numpy, and Pandas

4.2 Results
The performance of the proposed hybrid model and the in-
dividual base models is summarized in Table 2.

4.2.1 Analysis of results

The results indicate that the proposed hybrid model, when
trained using the semi-supervised learning approach, out-
performs the individual base models and the supervised hy-
brid model in terms of accuracy, precision, recall, and F1-
score. Specifically:

– Random Forest demonstrated strong recall and pre-
cision but did not achieve the highest overall perfor-
mance.

– Gradient Boosting balanced precision and recall but
was less effective than hybrid models.

– XGBoost exhibited relatively lower recall, indicating
a reduced ability to capture positive cases compared to
the other models.

– Hybrid Model (Supervised) showed a notable im-
provement over the individual models, demonstrating
the advantages of combining multiple classifiers.

– Proposed Hybrid Model (Semi-supervised)
achieved the best overall performance, benefiting
from the inclusion of high-confidence predictions
from unlabeled data, which significantly enhanced
classification capability.

The semi-supervised approach enhanced prediction ac-
curacy, particularly with limited labeled data. This high-
lights the effectiveness of leveraging unlabeled data to re-
fine decision boundaries and improve overall classification
results.

4.3 Performance comparison
This section compares our model against individual base
models and a rule-based baseline using accuracy, recall,
precision, and F1-score as shown in table 2. The rule-based
method (threshold-based detection on partial discharge)
achieves an F1-score of 0.78, while our semi-supervised
hybrid model reaches 0.97, highlighting its superior effec-
tiveness. A Wilcoxon signed-rank test across 5-fold cross-
validation runs confirms this improvement over the super-
vised hybrid model (F1-score 0.90), with a p-value of 0.01
(95% confidence level).
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4.3.1 Accuracy comparison

Figure 7 illustrates the accuracy achieved by each model.
Random Forest and Gradient Boosting both achieve an ac-
curacy of 84%, while XGBoost performs slightly lower at
83%. The hybrid model (supervised) improves accuracy to
91.5%, indicating the benefits of integrating multiple learn-
ing strategies. The semi-supervised hybrid model achieves
the highest accuracy of 98%, showing the effectiveness
of leveraging unlabeled data to enhance predictive perfor-
mance.

Figure 7: Accuracy comparison of different models

4.3.2 Recall comparison

As shown in Figure 8, recall performance varies across
the models. Random Forest achieves a recall of 87.5%,
while Gradient Boosting and XGBoost have recall values
of 80% and 79%, respectively. The hybrid model (su-
pervised) achieves a recall of 87%, showing an improve-
ment over the traditional models. The semi-supervised hy-
brid model reaches 97.5%, demonstrating its superior abil-
ity to correctly identify positive instances and minimize
false negatives. Specifically, Gradient Boosting maintains
a balanced trade-off with 80% recall, 86% precision, and
an F1-score of 85%, but its effectiveness lags behind the
semi-supervised hybrid model’s 97.5% recall, 97% preci-
sion, and 97% F1-score as shown in table 2.

Figure 8: Recall comparison of different models

4.3.3 Precision comparison

Figure 9 presents the precision scores for each model. Ran-
dom Forest has a precision of 89%, while Gradient Boost-
ing and XGBoost score 86% and 82.5%, respectively. The
hybrid model (supervised) improves precision to 94%, re-
ducing false positive classifications. The semi-supervised
hybrid model achieves 97%, making it the most effective
model in correctly identifying positive instances.

Figure 9: Precision comparison of different models

4.3.4 F1-score comparison

Figure 10 compares the F1-scores, which balance both pre-
cision and recall. Random Forest achieves an F1-score
of 84%, while Gradient Boosting and XGBoost have F1-
scores of 85% and 82%, respectively. The hybrid model
(supervised) improves this score to 90%, reflecting a well-
balanced trade-off between precision and recall. The semi-
supervised hybrid model reaches an outstanding F1-score
of 97%, reinforcing its robustness and overall classification
effectiveness.

Figure 10: F1-Score comparison of different models

4.4 Result interpretation
The model achieves 98% accuracy, 97.5% recall, 97% pre-
cision, and 97% F1-score on a dataset of 15772 samples.
The high recall (97.5%) minimizes false negatives, ensur-
ing most faults in 20 kV XLPE cables are detected a critical
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factor for preventing outages and ensuring safety in real-
world use. The 97% precision indicates a small rate of false
positives, which may lead to occasional unnecessary main-
tenance but is less severe than missing faults. For cable
fault detection, false negatives are more problematic due to
their risk of undetected failures, while false positives can
be mitigated with inspections, making this trade-off suit-
able for industrial applications.

Table 4: Performance comparison of different models and
baseline
Model Accuracy Recall Precision F1-Score
Rule-Based (Threshold) 0.80 0.75 0.82 0.78
Random Forest 0.84 0.875 0.89 0.84
Gradient Boosting 0.84 0.80 0.86 0.85
XGBoost 0.83 0.79 0.825 0.82
Hybrid (Supervised) 0.915 0.87 0.94 0.90
Hybrid (Semi-Supervised) 0.98 0.975 0.97 0.97

4.5 Impact of noise injection
To assess noise injection’s effect, we conducted an ab-
lation study on our 15772-sample dataset (3943 labeled,
11829 unlabeled). We compared the semi-supervised hy-
brid model with Gaussian noise (σ = 0.01) and 1% random
perturbations against a version without noise injection. Ta-
ble 5 shows the F1-score improves from 0.93 to 0.97 with
noise, with recall rising from 0.91 to 0.975 and precision
from 0.95 to 0.97. This enhancement reflects better robust-
ness to sensor imperfections common in 20 kV XLPE cable
data.

Table 5: Ablation study: impact of noise injection
Configuration Recall Precision F1-Score
Without Noise Injection 0.91 0.95 0.93
With Noise (Gaussian σ = 0.01, 1% Perturbations) 0.975 0.97 0.97

4.6 Computational efficiency
To evaluate computational efficiency, we measured train-
ing and inference times for our semi-supervised hybrid en-
semble model on our 15772-sample dataset (3943 labeled,
11829 unlabeled) using an Intel i7 with 16GB RAM. Train-
ing takes 45minutes, and inference is 0.02 seconds per sam-
ple. In contrast, a standalone Random Forest requires 10
minutes for training and 0.01 seconds for inference, with
an F1-score of 0.90. Our model’s increased resource de-
mand is offset by a 7% F1-score gain (0.97), supporting its
suitability for real-world 20 kVXLPE cable fault detection.

5 Discussion
Our semi-supervised hybrid ensemble model achieves 98%
accuracy, 97.5% recall, 97% precision, and 97% F1-score,
outperforming many prior supervised approaches reported

in the literature. Previous methods, such as support vec-
tor machines, convolutional neural networks, artificial neu-
ral networks, and long short-term memory models, typi-
cally range from 83% to 97% accuracy when applied to
cable fault detection tasks. These approaches often strug-
gle with noise sensitivity, high computational demands, or
small labeled datasets. In contrast, our model leverages
11829 unlabeled samples alongside 3943 labeled ones, us-
ing noise injection (Gaussian, σ = 0.01) to enhance ro-
bustness and scalability. This enables superior performance
in real-world scenarios with diverse, imperfect data. Deep
learning models like CNNs or transformers were not con-
sidered due to their high computational cost (e.g., CNNs
requiring hours vs. our 45 minutes training) and need for
large labeled datasets, unfeasible with our 3943 labeled
samples, whereas our ensemble leverages unlabeled data
effectively. The model scales effectively to large datasets,
handling 15772 samples (3943 labeled, 11829 unlabeled)
with a training time of 45 minutes and inference at 0.02
seconds per sample on modest hardware (Intel i7, 16GB
RAM). However, memory usagemay increase linearly with
dataset size due to ensemble complexity, and processing
speed could constrain real-time applications on datasets
exceeding 50,000 samples without hardware optimization.
However, the model might fail under extreme class imbal-
ance or when encountering entirely new fault types, limita-
tions we explore further in the manuscript.

5.1 Limitations

Real-world data limitations may impact generalization.
Our dataset (3943 labeled, 11829 unlabeled) includes sen-
sor noise and occasional missing values due to equipment
variability, addressed via preprocessing. However, perfor-
mance may degrade with other cable types or extreme con-
ditions not represented in our 20 kV XLPE data. Specific
failure cases include: extreme class imbalance (e.g., <1%
fault samples) reducing recall below 0.90, highly noisy data
(e.g., σ > 0.05) lowering the F1-score to 0.92, and unseen
failure types not in our training data, potentially decreasing
accuracy below 0.95.

6 Conclusion
In this study, we proposed a hybrid model for fault de-
tection, integrating multiple base models (Random For-
est, Gradient Boosting, XGBoost) with a semi-supervised
learning approach and noise injection (Gaussian σ = 0.01,
1% perturbations). This novel combination addresses the
scarcity of labeled data (3943 samples) and noisy sensor
conditions in 20 kV XLPE cable fault detection, leverag-
ing 11829 unlabeled samples. Experiments demonstrated
superiority over individual base models and supervised ap-
proaches, achieving a 98% accuracy, 97.5% recall, 97%
precision, and 97% F1-score outperforming state-of-the-
art supervised methods (e.g., 0.90 F1-score for supervised
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hybrid). This work advances cable fault detection by en-
hancing robustness and scalability, laying a foundation for
broader applications in power systems with limited labeled
data. Future research could explore adapting the model to
other cable types (e.g., PVC), integrating real-time sensor
streams, and testing transfer learning to handle unseen fault
types.
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